KR101711311B1 - 레이저 가공 방법, 레이저 가공 장치 및 그 제조 방법 - Google Patents
레이저 가공 방법, 레이저 가공 장치 및 그 제조 방법 Download PDFInfo
- Publication number
- KR101711311B1 KR101711311B1 KR1020157007615A KR20157007615A KR101711311B1 KR 101711311 B1 KR101711311 B1 KR 101711311B1 KR 1020157007615 A KR1020157007615 A KR 1020157007615A KR 20157007615 A KR20157007615 A KR 20157007615A KR 101711311 B1 KR101711311 B1 KR 101711311B1
- Authority
- KR
- South Korea
- Prior art keywords
- wavefront
- spatial light
- light modulator
- laser light
- laser
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/064—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/50—Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/0006—Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/04—Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/04—Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
- B23K26/046—Automatically focusing the laser beam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/062—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
- B23K26/0622—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
- B23K26/0624—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
- B23K26/083—Devices involving movement of the workpiece in at least one axial direction
- B23K26/0853—Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
- B23K26/0861—Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane in at least in three axial directions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/12—Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
- B23K26/127—Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an enclosure
- B23K26/128—Laser beam path enclosures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/38—Removing material by boring or cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/40—Removing material taking account of the properties of the material involved
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/40—Removing material taking account of the properties of the material involved
- B23K26/402—Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/50—Working by transmitting the laser beam through or within the workpiece
- B23K26/53—Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28D—WORKING STONE OR STONE-LIKE MATERIALS
- B28D1/00—Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
- B28D1/22—Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising
- B28D1/221—Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising by thermic methods
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28D—WORKING STONE OR STONE-LIKE MATERIALS
- B28D5/00—Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B33/00—Severing cooled glass
- C03B33/02—Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
- C03B33/0222—Scoring using a focussed radiation beam, e.g. laser
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/544—Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/36—Electric or electronic devices
- B23K2101/40—Semiconductor devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/50—Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
- B23K2103/56—Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2223/00—Details relating to semiconductor or other solid state devices covered by the group H01L23/00
- H01L2223/544—Marks applied to semiconductor devices or parts
- H01L2223/54453—Marks applied to semiconductor devices or parts for use prior to dicing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Engineering (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mining & Mineral Resources (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Laser Beam Processing (AREA)
- Processing Of Stones Or Stones Resemblance Materials (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
Abstract
가공 대상물(1)의 내부에 집광되는 레이저 광(L)의 수차가 소정의 수차 이하가 되도록 반사형 공간 광변조기(203)에 의해서 변조된 레이저 광(L)이 가공 대상물(1)에 조사된다. 그 때문에, 레이저 광(L)의 집광점(P)을 맞추는 위치에서 발생하는 레이저 광(L)의 수차를 아주 작게 하고, 그 위치에서의 레이저 광(L)의 에너지 밀도를 높여 절단의 기점으로서의 기능이 높은 개질 영역(7)을 형성할 수 있다. 게다가, 반사형 공간 광변조기(203)를 이용하기 때문에, 투과형 공간 광변조기에 비해 레이저 광(L)의 이용 효율을 향상시킬 수 있다. 이와 같은 레이저 광(L)의 이용 효율의 향상은, 절단의 기점이 되는 개질 영역(7)을 판 모양의 가공 대상물(1)에 형성하는 경우, 특히 중요하다.
Description
본 발명은 판 모양의 가공 대상물을 절단 예정 라인을 따라서 절단하기 위한 레이저 가공 방법, 레이저 가공 장치 및, 그 제조 방법에 관한 것이다.
종래의 레이저 가공 장치로서, 특허문헌 1에는, 레이저 광원으로부터 출사된 레이저 광을 레이저 발산점 이동 수단에 의해서 발산하고, 발산한 레이저 광을 집광 광학계에 의해서 가공 대상물의 내부에 있어서의 소정의 위치에 집광하는 것이 기재되어 있다. 이 레이저 가공 장치에 의하면, 가공 대상물의 내부에 있어서의 소정의 위치에서 발생하는 레이저 광의 수차(收差)를 경감할 수 있다.
또한, 특허문헌 2에는, 공간 광변조기에 의해서 레이저 광을 변조하는 것으로 레이저 광의 파면(波面) 보상을 행하는 파면 보상 장치가 기재되어 있다. 또, 특허문헌 3에는, 공간 광변조기에 의해서 레이저 광을 변조하는 것으로 가공 대상물의 내부에 있어서의 복수의 위치에 레이저 광을 집광하는 레이저 가공 장치가 기재되어 있다.
그런데, 판 모양의 가공 대상물의 내부에 집광점을 맞추고 레이저 광을 조사하는 것에 의해, 절단 예정 라인을 따라서 개질 영역을 형성하는 기술에 있어서는, 가공 대상물의 레이저 광 입사면으로부터의 거리 등의 가공 조건에 따라서 절단의 기점으로서의 기능이 낮은(예를 들어, 갈라짐을 발생시키기 어려움) 개질 영역이 형성되는 경우가 있다.
따라서, 본 발명은 이와 같은 사정을 감안하여 이루어진 것으로, 절단의 기점이 되는 개질 영역을 확실하게 형성할 수 있는 레이저 가공 방법, 레이저 가공 장치 및, 그 제조 방법을 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위해서, 본 발명에 관한 레이저 가공 방법은, 판 모양의 가공 대상물의 내부에 집광점을 맞추고 레이저 광을 조사하는 것에 의해, 가공 대상물의 절단 예정 라인을 따라서 절단의 기점이 되는 개질 영역을 형성하는 레이저 가공 방법으로서, 개질 영역을 형성할 때에는, 가공 대상물의 내부에 있어서 레이저 광의 파면이 소정의 파면이 되도록 반사형 공간 광변조기에 의해서 레이저 광을 변조하는 것을 특징으로 한다.
또, 본 발명에 관한 레이저 가공 방법은, 판 모양의 가공 대상물의 내부에 집광점을 맞추고 레이저 광을 조사하는 것에 의해, 가공 대상물의 절단 예정 라인을 따라서 절단의 기점이 되는 개질 영역을 형성하는 레이저 가공 방법으로서, 개질 영역을 형성할 때에는, 가공 대상물의 내부에 집광되는 레이저 광의 수차(收差)가 소정의 수차 이하가 되도록 반사형 공간 광변조기에 의해서 레이저 광을 변조하는 것을 특징으로 한다.
이들 레이저 가공 방법에서는, 가공 대상물의 내부에 있어서 레이저 광의 파면이 소정의 파면이 되도록(또는, 가공 대상물의 내부에 집광되는 레이저 광의 수차가 소정의 수차 이하가 되도록) 반사형 공간 광변조기에 의해서 변조된 레이저 광이 가공 대상물에 조사된다. 그 때문에, 예를 들어, 레이저 광의 집광점을 맞추는 위치에서 발생하는 레이저 광의 수차를 대략 제로로 하고, 그 위치에서의 레이저 광의 에너지 밀도를 높여, 절단의 기점으로서의 기능이 높은(예를 들어, 갈라짐을 발생시키기 쉬운) 개질 영역을 형성할 수 있다. 게다가, 반사형 공간 광변조기를 이용하기 때문에, 투과형 공간 광변조기에 비해 레이저 광의 이용 효율을 향상시킬 수 있다. 이와 같은 레이저 광의 이용 효율의 향상은, 절단의 기점이 되는 개질 영역을 판 모양의 가공 대상물에 형성하는 경우, 특히 중요하다. 따라서, 이들 레이저 가공 방법에 의하면, 절단의 기점이 되는 개질 영역을 확실하게 형성하는 것이 가능해진다.
본 발명에 관한 레이저 가공 방법은, 판 모양의 가공 대상물의 내부에 집광점을 맞추고 레이저 광을 조사하는 것에 의해, 가공 대상물의 절단 예정 라인을 따라서, 가공 대상물의 두께 방향으로 나란하게 되도록, 절단의 기점이 되는 개질 영역을 복수열 형성하는 레이저 가공 방법으로서, 복수열의 개질 영역 중, 가공 대상물의 레이저 광 입사면으로부터 가장 먼 개질 영역을 포함하는 1열 또는 복수열의 개질 영역을 형성할 때에는, 형성하는 개질 영역에 따라, 가공 대상물의 내부에 레이저 광을 집광하는 집광 광학계와 가공 대상물과의 거리가 소정의 거리가 되도록 집광 광학계와 가공 대상물과의 거리를 변화시킴과 아울러, 가공 대상물의 내부에 있어서 레이저 광의 파면이 소정의 파면이 되도록 반사형 공간 광변조기에 의해서 레이저 광을 변조하는 것을 특징으로 한다.
또한, 본 발명에 관한 레이저 가공 방법은, 판 모양의 가공 대상물의 내부에 집광점을 맞추고 레이저 광을 조사하는 것에 의해, 가공 대상물의 절단 예정 라인을 따라서, 가공 대상물의 두께 방향으로 나란하게 되도록, 절단의 기점이 되는 개질 영역을 복수열 형성하는 레이저 가공 방법으로서, 복수열의 개질 영역 중, 가공 대상물의 레이저 광 입사면으로부터 가장 먼 개질 영역을 포함하는 1 열 또는 복수열의 개질 영역을 형성할 때에는, 형성하는 개질 영역에 따라, 가공 대상물의 내부에 레이저 광을 집광하는 집광 광학계와 가공 대상물과의 거리가 소정의 거리가 되도록 집광 광학계와 가공 대상물과의 거리를 변화시킴과 아울러, 가공 대상물의 내부에 집광되는 레이저 광의 수차가 소정의 수차 이하가 되도록 반사형 공간 광변조기에 의해서 레이저 광을 변조하는 것을 특징으로 한다.
이들 레이저 가공 방법에서는, 복수열의 개질 영역 중, 가공 대상물의 레이저 광 입사면으로부터 가장 먼 개질 영역을 포함하는 1열 또는 복수열의 개질 영역을 형성할 때에, 반사형 공간 광변조기에 의해서 변조된 레이저 광이 가공 대상물에 조사된다. 이와 같이, 레이저 광 입사면으로부터 가장 먼 개질 영역을 형성할 때에, 반사형 공간 광변조기에 의한 레이저 광의 변조를 필수로 하는 것은, 개질 영역을 형성하는 위치가 레이저 광 입사면으로부터 멀어질수록, 레이저 광의 집광점을 맞추는 위치에서 발생하는 레이저 광의 수차가 커지기 때문이다. 따라서, 이러한 레이저 가공 방법에 의하면, 하나의 절단 예정 라인에 대해 복수열의 개질 영역을 형성하는 경우라도, 절단의 기점이 되는 개질 영역을 확실하게 형성하는 것이 가능해진다.
이 때, 절단 예정 라인이 가공 대상물에 대해 복수 개 설정되어 있는 경우에는, 하나의 절단 예정 라인을 따라서 복수열의 개질 영역을 형성한 후에, 다른 하나의 절단 예정 라인을 따라서 복수열의 개질 영역을 형성하면, 다음과 같은 효과가 나타난다. 즉, 가공 대상물의 레이저 광 입사면에 기복이 존재하는 것과 같은 경우에는, 레이저 광 입사면으로부터 소정의 거리의 위치에 레이저 광의 집광점을 정밀도 좋게 맞추기 위해서, 절단 예정 라인을 따른 레이저 광 입사면의 변위 데이터를 취득하고, 그 변위 데이터에 기초하여 집광 광학계와 가공 대상물과의 거리를 미세(微)조정한다. 따라서, 하나의 절단 예정 라인을 따라서 복수열의 개질 영역을 형성한 후에, 다른 하나의 절단 예정 라인을 따라서 복수열의 개질 영역을 형성하면, 변위 데이터의 전환 회수를 감소시킬 수 있어, 각 절단 예정 라인에 있어서 복수열의 개질 영역을 레이저 광 입사면으로부터 소정의 거리의 위치에 정밀도 좋게 형성하는 것이 가능해진다.
또, 절단 예정 라인이 가공 대상물에 대해 복수 개 설정되어 있는 경우에는, 복수 개의 절단 예정 라인을 따라서 1열의 개질 영역을 형성한 후에, 복수 개의 절단 예정 라인을 따라서 다른 1열의 개질 영역을 형성하면, 다음과 같은 효과가 나타난다. 즉, 하나의 절단 예정 라인을 따른 복수열의 개질 영역의 형성에 의해서 가공 대상물이 갈라지는 것과 같은 경우에는, 하나의 절단 예정 라인을 따라서 복수열의 개질 영역을 형성한 후에, 다른 하나의 절단 예정 라인을 따라서 복수열의 개질 영역을 형성하면, 가공 대상물의 갈라짐에 의해서 가공 대상물의 위치에 차이가 생긴다. 따라서, 절단 예정 라인을 따라서 개질 영역을 정밀도 좋게 형성하기 위해서는, 가공 대상물의 위치를 보정할 필요가 있다. 그렇지만, 복수 개의 절단 예정 라인을 따라서 1열의 개질 영역을 형성한 후에, 복수 개의 절단 예정 라인을 따라서 다른 1열의 개질 영역을 형성하면, 가공 대상물의 갈라짐에 의해서 가공 대상물의 위치가 어긋나는 것을 방지할 수 있어, 가공 대상물의 위치의 보정 회수를 감소시켜, 복수 개의 절단 예정 라인을 따라서 복수열의 개질 영역을 단시간에 형성하는 것이 가능해진다.
본 발명에 관한 레이저 가공 방법은, 판 모양의 가공 대상물의 내부에 집광점을 맞추고 레이저 광을 조사하는 것에 의해, 가공 대상물의 절단 예정 라인을 따라서 절단의 기점이 되는 개질 영역을 형성하는 레이저 가공 방법으로서, 개질 영역을 형성할 때에는, 가공 대상물의 내부에 집광되는 레이저 광의 개구 수가 소정의 개구 수가 되도록 반사형 공간 광변조기에 의해서 레이저 광을 변조하는 것을 특징으로 한다.
이 레이저 가공 방법에서는, 가공 대상물의 내부에 집광되는 레이저 광의 개구 수가 소정의 개구 수가 되도록 반사형 공간 광변조기에 의해서 변조된 레이저 광이 가공 대상물에 조사된다. 그 때문에, 예를 들어, 가공 대상물의 재질이나 개질 영역을 형성해야 할 위치까지의 거리 등에 따라 레이저 광의 개구 수를 변화시켜서 절단의 기점으로서의 기능이 높은 개질 영역을 형성할 수 있다.
본 발명에 관한 레이저 가공 방법은, 판 모양의 가공 대상물의 내부에 집광점을 맞추고 레이저 광을 조사하는 것에 의해, 가공 대상물의 절단 예정 라인을 따라서, 가공 대상물의 두께 방향으로 나란하도록, 절단의 기점이 되는 개질 영역을 복수열 형성하는 레이저 가공 방법으로서, 복수열의 개질 영역 중, 가공 대상물의 레이저 광 입사면 또는 가공 대상물에 있어서 레이저 광 입사면과 대향하는 대향 표면에 가장 가까운 개질 영역을 제외한 개질 영역을 형성할 때에는, 레이저 광 입사면 또는 대향 표면에 가장 가까운 개질 영역을 형성하는 경우에 비해, 가공 대상물의 내부에 집광되는 레이저 광의 개구 수가 작아지도록 반사형 공간 광변조기에 의해서 레이저 광을 변조하는 것을 특징으로 한다.
이 레이저 가공 방법에서는, 절단의 기점으로서 특히 중요한 개질 영역으로서, 가공 대상물의 레이저 광 입사면 또는 가공 대상물에 있어서 레이저 광 입사면과 대향하는 대향 표면에 가장 가까운 개질 영역을 형성할 때에, 그 외의 개질 영역을 형성하는 경우에 비해, 가공 대상물의 내부에 집광되는 레이저 광의 개구 수가 커지도록 반사형 공간 광변조기에 의해서 변조된 레이저 광이 가공 대상물에 조사된다. 그 때문에, 가공 대상물의 레이저 광 입사면 또는 가공 대상물에 있어서 레이저 광 입사면과 대향하는 대향 표면에 가장 가까운 개질 영역을, 절단의 기점으로서의 기능이 아주 높은 개질 영역(예를 들어, 가라짐을 포함한 개질 영역)으로 할 수 있다.
이 때, 절단 예정 라인을 따라서, 가공 대상물의 두께 방향으로 나란하도록, 개질 영역을 적어도 3열 형성하는 경우에 있어서, 적어도 3열의 개질 영역 중, 레이저 광 입사면으로부터 가장 먼 개질 영역 및 레이저 광 입사면에 가장 가까운 개질 영역을 제외한 개질 영역을 형성할 때에는, 레이저 광 입사면으로부터 가장 먼 개질 영역 및 레이저 광 입사면에 가장 가까운 개질 영역을 형성하는 경우에 비해, 가공 대상물의 내부에 집광되는 레이저 광의 개구 수가 작아지도록 반사형 공간 광변조기에 의해서 레이저 광을 변조하는 것이 바람직하다. 이 경우, 절단의 기점으로서 특히 중요한 개질 영역으로서, 레이저 광 입사면으로부터 가장 먼 개질 영역 및 레이저 광 입사면에 가장 가까운 개질 영역을 형성할 때에, 그 사이의 개질 영역을 형성하는 경우에 비해, 가공 대상물의 내부에 집광되는 레이저 광의 개구 수가 커지도록 반사형 공간 광변조기에 의해서 변조된 레이저 광이 가공 대상물에 조사된다. 그 때문에, 레이저 광 입사면으로부터 가장 먼 개질 영역 및 레이저 광 입사면에 가장 가까운 개질 영역을, 절단의 기점으로서의 기능이 아주 높은 개질 영역(예를 들어, 갈라짐을 포함하는 개질 영역)으로 할 수 있다.
본 발명에 관한 레이저 가공 방법은, 판 모양의 가공 대상물의 내부에 집광점을 맞추고 레이저 광을 조사하는 것에 의해, 가공 대상물의 절단 예정 라인을 따라서 절단의 기점이 되는 개질 영역을 형성하는 레이저 가공 방법으로서, 개질 영역을 형성할 때에는, 레이저 광의 광학 특성이 소정의 광학 특성이 되도록 복수의 반사형 공간 광변조기에 의해서 레이저 광을 변조하는 것을 특징으로 한다.
이 레이저 가공 방법에서는, 레이저 광의 광학 특성이 소정의 광학 특성이 되도록 복수의 반사형 공간 광변조기에 의해서 변조된 레이저 광이 가공 대상물에 조사된다. 이와 같이 복수의 반사형 공간 광변조기를 이용하면, 레이저 광의 광학 특성으로서 빔 지름이나 광축 등을 제어할 수 있다. 이에 의해, 절단의 기점이 되는 개질 영역을 확실하게 형성하는 것이 가능해진다.
본 발명에 관한 레이저 가공 장치는, 판 모양의 가공 대상물의 내부에 집광점을 맞추고 레이저 광을 조사하는 것에 의해, 가공 대상물의 절단 예정 라인을 따라서 절단의 기점이 되는 개질 영역을 형성하는 레이저 가공 장치로서, 가공 대상물을 지지하는 지지대와, 레이저 광을 출사하는 레이저 광원과, 레이저 광원으로부터 출사된 레이저 광을 변조하는 반사형 공간 광변조기와, 지지대에 의해서 지지된 가공 대상물의 내부에 반사형 공간 광변조기에 의해서 변조된 레이저 광을 집광하는 집광 광학계와, 개질 영역을 형성할 때에, 레이저 광의 집광점이 가공 대상물의 레이저 광 입사면으로부터 소정의 거리에 위치하며 또한 레이저 광의 집광점이 절단 예정 라인을 따라서 상대적으로 이동하도록 지지대 및 집광 광학계의 적어도 하나를 제어함과 아울러, 가공 대상물의 내부에 있어서 레이저 광의 파면이 소정의 파면이 되도록 반사형 공간 광변조기를 제어하는 제어부를 구비하는 것을 특징으로 한다.
이 레이저 가공 장치에 의하면, 가공 대상물의 내부에 있어서 레이저 광의 파면이 소정의 파면이 되도록 반사형 공간 광변조기에 의해서 변조된 레이저 광을 절단 예정 라인을 따라서 가공 대상물에 조사할 수 있다. 이에 의해, 절단의 기점이 되는 개질 영역을 확실하게 형성하는 것이 가능해진다. 또한, 「제어부가 지지대 및 집광 광학계의 적어도 하나를 제어한다」라고 하는 것은, 제어부가 지지대 및 집광 광학계의 적어도 하나를 직접적으로 제어하는 경우뿐만 아니라, 제어부가, 지지대를 포함하는 계(系) 및 집광 광학계를 포함하는 계의 적어도 하나를 직접적으로 제어함으로써, 지지대 및 집광 광학계의 적어도 하나를 간접적으로 제어하는 경우를 포함하는 것으로 한다.
이 때, 제어부는, 가공 대상물의 두께 방향으로 나란하도록 절단 예정 라인을 따라서 복수열 형성되는 개질 영역마다, 레이저 광의 집광점이 레이저 광 입사면으로부터 소정의 거리에 위치하도록 지지대 및 집광 광학계의 적어도 하나를 제어하기 위한 제어 신호와, 가공 대상물의 내부에 있어서 레이저 광의 파면이 소정의 파면이 되도록 반사형 공간 광변조기를 제어하기 위한 제어 신호를 대응시켜서 기억하고 있는 것이 바람직하다. 이 경우, 형성해야 할 복수열의 개질 영역의 각각에 따라, 가공 대상물의 내부에 있어서 레이저 광의 파면을 소정의 파면으로 할 수 있다.
본 발명에 관한 레이저 가공 장치는, 판 모양의 가공 대상물의 내부에 집광점을 맞추고 레이저 광을 조사하는 것에 의해, 가공 대상물의 절단 예정 라인을 따라서 절단의 기점이 되는 개질 영역을 형성하는 레이저 가공 장치로서, 가공 대상물을 지지하는 지지대와, 레이저 광을 출사하는 레이저 광원과, 레이저 광원으로부터 출사된 레이저 광을 변조하는 반사형 공간 광변조기와, 지지대에 의해서 지지된 가공 대상물의 내부에 반사형 공간 광변조기에 의해서 변조된 레이저 광을 집광하는 집광 광학계와, 개질 영역을 형성할 때에, 레이저 광의 집광점이 가공 대상물의 레이저 광 입사면으로부터 소정의 거리에 위치하고 또한 레이저 광의 집광점이 절단 예정 라인을 따라서 상대적으로 이동하도록 지지대 및 집광 광학계의 적어도 하나를 제어함과 아울러, 가공 대상물의 내부에 집광되는 레이저 광의 수차가 소정의 수차 이하가 되도록 반사형 공간 광변조기를 제어하는 제어부를 구비하는 것을 특징으로 한다.
이 레이저 가공 장치에 의하면, 가공 대상물의 내부에 집광되는 레이저 광의 수차가 소정의 수차 이하가 되도록 반사형 공간 광변조기에 의해서 변조된 레이저 광을 절단 예정 라인을 따라서 가공 대상물에 조사할 수 있다. 이에 의해, 절단의 기점이 되는 개질 영역을 확실하게 형성하는 것이 가능해진다.
이 때, 제어부는, 가공 대상물의 두께 방향으로 나란하도록 절단 예정 라인을 따라서 복수열 형성되는 개질 영역마다, 레이저 광의 집광점이 레이저 광 입사면으로부터 소정의 거리에 위치하도록 지지대 및 집광 광학계의 적어도 하나를 제어하기 위한 제어 신호와, 가공 대상물의 내부에 집광되는 레이저 광의 수차가 소정의 수차 이하가 되도록 반사형 공간 광변조기를 제어하기 위한 제어 신호를 대응시켜 기억하고 있는 것이 바람직하다. 이 경우, 형성해야 할 복수열의 개질 영역의 각각에 따라, 가공 대상물의 내부에 집광되는 레이저 광의 수차를 소정의 수차 이하로 할 수 있다.
본 발명에 관한 레이저 가공 장치는, 판 모양의 가공 대상물의 내부에 집광점을 맞추고 레이저 광을 조사하는 것에 의해, 가공 대상물의 절단 예정 라인을 따라서 절단의 기점이 되는 개질 영역을 형성하는 레이저 가공 장치로서, 가공 대상물을 지지하는 지지대와, 레이저 광을 출사하는 레이저 광원과, 레이저 광원으로부터 출사된 레이저 광을 변조하는 복수의 반사형 공간 광변조기와, 지지대에 의해서 지지된 가공 대상물의 내부에 반사형 공간 광변조기에 의해서 변조된 레이저 광을 집광하는 집광 광학계와, 개질 영역을 형성할 때에, 레이저 광의 집광점이 가공 대상물의 레이저 광 입사면으로부터 소정의 거리에 위치하며 또한 레이저 광의 집광점이 절단 예정 라인을 따라서 상대적으로 이동하도록 지지대 및 집광 광학계의 적어도 하나를 제어하는 제어부를 구비하고, 제어부는, 레이저 광의 광학 특성이 소정의 광학 특성이 되도록 반사형 공간 광변조기를 제어하는 기능을 가지는 것을 특징으로 한다.
이 레이저 가공 장치에 의하면, 복수의 반사형 공간 광변조기를 구비하고 있기 때문에, 레이저 광의 광학 특성으로서 빔 지름이나 광축 등을 제어할 수 있다. 따라서, 어떠한 원인으로 레이저 광의 광축에 차이가 생겼을 경우라도, 그 차이를 용이하게 보정하여 절단의 기점이 되는 개질 영역을 확실하게 형성하는 것이 가능해진다.
본 발명에 관한 레이저 가공 장치의 제조 방법은, 판 모양의 가공 대상물을 지지하는 지지대와, 레이저 광을 출사하는 레이저 광원과, 레이저 광원으로부터 출사된 레이저 광을 변조하는 반사형 공간 광변조기와, 지지대에 의해서 지지된 가공 대상물의 내부에 반사형 공간 광변조기에 의해서 변조된 레이저 광을 집광하는 집광 광학계와, 반사형 공간 광변조기를 제어하는 제어부를 구비하고, 가공 대상물의 내부에 집광점을 맞추고 레이저 광을 조사하는 것에 의해, 가공 대상물의 절단 예정 라인을 따라서 절단의 기점이 되는 개질 영역을 형성하는 레이저 가공 장치의 제조 방법으로서, 기준 레이저 가공 장치를 준비하고, 기준 레이저 가공 장치의 기준 집광 광학계로부터 출사된 기준 레이저 광의 파면을 계측하여 기준 파면 데이터를 취득하는 공정과, 집광 광학계로부터 출사된 레이저 광의 파면을 계측하여 파면 데이터를 취득하는 공정과, 기준 파면 데이터 및 파면 데이터에 기초하여, 레이저 광의 파면이 기준 레이저 광의 파면이 되도록 반사형 공간 광변조기를 제어하기 위한 제어 신호를 산출하여, 제어 신호를 제어부에 기억시키는 공정을 포함하는 것을 특징으로 한다.
이 레이저 가공 장치의 제조 방법에 의하면, 절단의 기점으로서의 기능이 높은 개질 영역을 형성할 수 있는 레이저 가공 장치를 기준 레이저 가공 장치로서 준비함으로써, 장치간의 개체 차(差)를 메워서, 기준 레이저 가공 장치와 동등한 성능을 가지는 레이저 가공 장치를 제조할 수 있다.
본 발명에 의하면, 절단의 기점이 되는 개질 영역을 확실하게 형성할 수 있다.
도 1은 개질 영역의 형성에 이용되는 레이저 가공 장치의 개략 구성도이다.
도 2는 개질 영역의 형성의 대상이 되는 가공 대상물의 평면도이다.
도 3은 도 2의 가공 대상물의 III-III선을 따른 단면도이다.
도 4는 레이저 가공 후의 가공 대상물의 평면도이다.
도 5는 도 4의 가공 대상물의 V-V선을 따른 단면도이다.
도 6은 도 4의 가공 대상물의 VI-VI선을 따른 단면도이다.
도 7은 레이저 가공 후의 실리콘 웨이퍼의 절단면의 사진을 나타내는 도면이다.
도 8은 레이저 광의 파장과 실리콘 기판 내부의 투과율과의 관계를 나타내는 그래프이다.
도 9는 레이저 광의 피크 파워 밀도와 크랙 스폿의 크기와의 관계를 나타내는 그래프이다.
도 10은 본 실시형태에 관한 레이저 가공 장치의 개략 구성도이다.
도 11은 도 10의 레이저 가공 장치의 반사형 공간 광변조기의 분해 사시도이다.
도 12는 본 실시형태에 관한 레이저 가공 장치의 제조 방법에 이용되는 기준 레이저 가공 장치의 개략 구성도이다.
도 13은 본 실시형태에 관한 레이저 가공 장치의 제조 방법에 이용되는 레이저 가공 장치의 개략 구성도이다.
도 14는 본 실시형태에 관한 레이저 가공 장치의 제조 방법에 이용되는 레이저 가공 장치의 개략 구성도이다.
도 15는 본 실시형태에 관한 레이저 가공 장치의 제조 방법에 이용되는 레이저 가공 장치의 개략 구성도이다.
도 16은 본 실시형태에 관한 레이저 가공 방법의 대상이 되는 가공 대상물의 평면도이다.
도 17은 본 실시형태에 관한 레이저 가공 방법이 실시되어 있는 도 16의 가공 대상물의 단면도이다.
도 18은 본 실시형태에 관한 레이저 가공 방법이 실시되어 있는 도 16의 가공 대상물의 단면도이다.
도 19는 본 실시형태에 관한 다른 레이저 가공 장치의 개략 구성도이다.
도 20은 도 19의 레이저 가공 장치의 반사형 공간 광변조기의 배치에 대한 설명도이다.
도 21은 본 실시형태에 관한 다른 레이저 가공 방법에 대한 설명도이다.
도 22는 본 실시형태에 관한 다른 레이저 가공 방법에 대한 설명도이다.
도 23은 본 실시형태에 관한 다른 레이저 가공 장치의 개략 구성도이다.
도 24는 본 실시형태에 관한 레이저 가공 장치의 제조 방법에 이용되는 다른 기준 레이저 가공 장치의 개략 구성도이다.
도 25는 본 실시형태에 관한 레이저 가공 장치의 제조 방법에 이용되는 다른 레이저 가공 장치의 개략 구성도이다.
도 26은 본 실시형태에 관한 레이저 가공 장치의 제조 방법에 이용되는 다른 레이저 가공 장치의 개략 구성도이다.
도 27은 본 실시형태에 관한 레이저 가공 장치의 제조 방법에 이용되는 다른 레이저 가공 장치의 개략 구성도이다.
도 28은 본 실시형태에 관한 다른 레이저 가공 장치의 개략 구성도이다.
도 29는 본 실시형태에 관한 다른 레이저 가공 장치의 개략 구성도이다.
도 2는 개질 영역의 형성의 대상이 되는 가공 대상물의 평면도이다.
도 3은 도 2의 가공 대상물의 III-III선을 따른 단면도이다.
도 4는 레이저 가공 후의 가공 대상물의 평면도이다.
도 5는 도 4의 가공 대상물의 V-V선을 따른 단면도이다.
도 6은 도 4의 가공 대상물의 VI-VI선을 따른 단면도이다.
도 7은 레이저 가공 후의 실리콘 웨이퍼의 절단면의 사진을 나타내는 도면이다.
도 8은 레이저 광의 파장과 실리콘 기판 내부의 투과율과의 관계를 나타내는 그래프이다.
도 9는 레이저 광의 피크 파워 밀도와 크랙 스폿의 크기와의 관계를 나타내는 그래프이다.
도 10은 본 실시형태에 관한 레이저 가공 장치의 개략 구성도이다.
도 11은 도 10의 레이저 가공 장치의 반사형 공간 광변조기의 분해 사시도이다.
도 12는 본 실시형태에 관한 레이저 가공 장치의 제조 방법에 이용되는 기준 레이저 가공 장치의 개략 구성도이다.
도 13은 본 실시형태에 관한 레이저 가공 장치의 제조 방법에 이용되는 레이저 가공 장치의 개략 구성도이다.
도 14는 본 실시형태에 관한 레이저 가공 장치의 제조 방법에 이용되는 레이저 가공 장치의 개략 구성도이다.
도 15는 본 실시형태에 관한 레이저 가공 장치의 제조 방법에 이용되는 레이저 가공 장치의 개략 구성도이다.
도 16은 본 실시형태에 관한 레이저 가공 방법의 대상이 되는 가공 대상물의 평면도이다.
도 17은 본 실시형태에 관한 레이저 가공 방법이 실시되어 있는 도 16의 가공 대상물의 단면도이다.
도 18은 본 실시형태에 관한 레이저 가공 방법이 실시되어 있는 도 16의 가공 대상물의 단면도이다.
도 19는 본 실시형태에 관한 다른 레이저 가공 장치의 개략 구성도이다.
도 20은 도 19의 레이저 가공 장치의 반사형 공간 광변조기의 배치에 대한 설명도이다.
도 21은 본 실시형태에 관한 다른 레이저 가공 방법에 대한 설명도이다.
도 22는 본 실시형태에 관한 다른 레이저 가공 방법에 대한 설명도이다.
도 23은 본 실시형태에 관한 다른 레이저 가공 장치의 개략 구성도이다.
도 24는 본 실시형태에 관한 레이저 가공 장치의 제조 방법에 이용되는 다른 기준 레이저 가공 장치의 개략 구성도이다.
도 25는 본 실시형태에 관한 레이저 가공 장치의 제조 방법에 이용되는 다른 레이저 가공 장치의 개략 구성도이다.
도 26은 본 실시형태에 관한 레이저 가공 장치의 제조 방법에 이용되는 다른 레이저 가공 장치의 개략 구성도이다.
도 27은 본 실시형태에 관한 레이저 가공 장치의 제조 방법에 이용되는 다른 레이저 가공 장치의 개략 구성도이다.
도 28은 본 실시형태에 관한 다른 레이저 가공 장치의 개략 구성도이다.
도 29는 본 실시형태에 관한 다른 레이저 가공 장치의 개략 구성도이다.
이하, 본 발명의 바람직한 실시형태에 대해 도면을 참조하여 상세하게 설명한다. 또한, 각 도면에 있어서 동일 또는 상당 부분에는 동일 부호를 붙이고 중복되는 설명을 생략한다.
본 실시형태에 관한 레이저 가공 방법 및 레이저 가공 장치에 있어서는, 판 모양의 가공 대상물에 집광점을 맞추고 레이저 광을 조사하는 것에 의해, 절단 예정 라인을 따라서 가공 대상물에 개질 영역을 형성한다.
따라서, 우선 본 실시형태에 관한 레이저 가공 방법 및 레이저 가공 장치에 있어서의 개질 영역의 형성에 대해, 도 1~도 9를 참조하여 설명한다.
도 1에 나타낸 바와 같이, 레이저 가공 장치(100)는, 레이저 광(가공용 레이저 광)(L)을 펄스 발진하는 레이저 광원(101)과, 레이저 광(L)의 광축의 방향을 90° 변경하도록 배치된 다이크로익 미러(dichroic mirror)(103)와, 레이저 광(L)을 집광하기 위한 집광용 렌즈(105)를 구비하고 있다. 또, 레이저 가공 장치(100)는, 집광용 렌즈(105)에서 집광된 레이저 광(L)이 조사되는 가공 대상물(1)을 지지하기 위한 지지대(107)와, 지지대(107)를 X, Y, Z축 방향으로 이동시키기 위한 스테이지(111)와, 레이저 광(L)의 출력이나 펄스폭 등을 조절하기 위해서 레이저 광원(101)을 제어하는 레이저 광원 제어부(102)와, 스테이지(111)의 이동을 제어하는 스테이지 제어부(115)를 구비하고 있다.
이 레이저 가공 장치(100)에 있어서는, 레이저 광원(101)으로부터 출사된 레이저 광(L)은, 다이크로익 미러(103)에 의해서 그 광축의 방향이 90°변경되어, 지지대(107)상에 배치된 가공 대상물(1)의 내부에 집광 렌즈(105)에 의해서 집광된다. 이와 함께, 스테이지(111)가 이동되고, 가공 대상물(1)이 레이저 광(L)에 대해 절단 예정 라인(5)을 따라서 상대 이동된다. 이에 의해, 절단 예정 라인(5)을 따라서 절단의 기점이 되는 개질 영역이 가공 대상물(1)에 형성되게 된다. 이하, 이 개질 영역에 대해 상세하게 설명한다.
도 2에 나타낸 바와 같이, 판 모양의 가공 대상물(1)에는, 가공 대상물(1)을 절단하기 위한 절단 예정 라인(5)이 설정되어 있다. 절단 예정 라인(5)은 직선 모양으로 연장된 가상선이다. 가공 대상물(1)의 내부에 개질 영역을 형성하는 경우, 도 3에 나타낸 바와 같이, 가공 대상물(1)의 내부에 집광점(P)을 맞춘 상태에서, 레이저 광(L)을 절단 예정 라인(5)을 따라서(즉, 도 2의 화살표 A 방향으로) 상대적으로 이동시킨다. 이에 의해, 도 4~도 6에 나타낸 바와 같이, 개질 영역(7)이 절단 예정 라인(5)을 따라서 가공 대상물(1)의 내부에 형성되고, 절단 예정 라인(5)을 따라서 형성된 개질 영역(7)이 절단 기점 영역(8)이 된다.
또한, 집광점(P)이란 레이저 광(L)이 집광하는 개소이다. 또, 절단 예정 라인(5)은 직선 모양으로 한정되지 않고 곡선 모양이라도 되며, 가상선으로 한정되지 않고 가공 대상물(1)의 표면(3)에 실제로 그어진 선이어도 된다. 또, 개질 영역(7)은 연속적으로 형성되는 경우도 있고, 단속적으로 형성되는 경우도 있다. 또, 개질 영역(7)은 적어도 가공 대상물(1)의 내부에 형성되어 있으면 된다. 또, 개질 영역(7)을 기점으로 균열이 형성되는 경우가 있고, 균열 및 개질 영역(7)은 가공 대상물(1)의 외표면(표면, 이면, 또는 외주면)에 노출해 있어도 된다.
덧붙여서, 여기에서는 레이저 광(L)이 가공 대상물(1)을 투과함과 동시에 가공 대상물(1)의 내부의 집광점 근방에서 특히 흡수되고, 이에 의해, 가공 대상물(1)에 개질 영역(7)이 형성된다(즉, 내부 흡수형 레이저 가공). 따라서, 가공 대상물(1)의 표면(3)에서는 레이저 광(L)이 거의 흡수되지 않기 때문에, 가공 대상물(1)의 표면(3)이 용융되는 일은 없다. 일반적으로, 표면(3)으로부터 용융되고 제거되어 구멍이나 홈 등의 제거부가 형성되는(표면 흡수형 레이저 가공) 경우, 가공 영역은 표면(3)측으로부터 서서히 이면 측으로 진행한다.
그런데, 본 실시형태에 관한 레이저 가공 방법 및 레이저 가공 장치로 형성되는 개질 영역은, 밀도, 굴절률, 기계적 강도나 그 밖의 물리적 특성이 주위와는 다른 상태가 된 영역을 말한다. 예를 들어, (1) 용융 처리 영역, (2) 크랙 영역, 절연 파괴 영역, (3) 굴절률 변화 영역 등이 있으며, 이것들이 혼재된 영역도 있다.
본 실시형태에 관한 레이저 가공 방법 및 레이저 가공 장치에 있어서의 개질 영역은, 레이저 광의 국소적인 흡수나 다광자 흡수라고 하는 현상에 의해 형성된다. 다광자 흡수란, 재료 흡수의 밴드 갭 EG보다 광자의 에너지 hν가 작으면 광학적으로 투명해지기 때문에, 재료에 흡수가 생기는 조건은 hν>EG이지만, 광학적으로 투명하더라도 레이저 광(L)의 강도를 아주 크게 하면 nhν>EG의 조건(n=2, 3, 4,···)에서 재료에 흡수가 생기는 현상을 말한다. 다광자 흡수에 의한 용융 처리 영역의 형성은, 예를 들어 용접학회 전국대회강연 개요 제66집(2000년 4월)의 제72 페이지~ 제73 페이지의 「피코초 펄스 레이저에 의한 실리콘의 가공 특성 평가」에 기재되어 있다.
또, D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, "Laser Induced Breakdown by Impact Ionization in SiO2 with Pulse Widths from 7ns to 150fs", Appl Phys Lett64(23), Jun. 6, 1994에 기재되어 있는 바와 같이, 펄스폭이 수 피코초부터 펨토초의 초단 펄스 레이저 광을 이용하는 것에 의해 형성되는 개질 영역을 이용해도 된다.
(1) 개질 영역이 용융 처리 영역을 포함하는 경우
가공 대상물(예를 들어 실리콘과 같은 반도체 재료)의 내부에 집광점을 맞추고, 집광점에 있어서의 전계 강도가 1×108(W/㎠) 이상이며 또한 펄스폭이 1㎲ 이하의 조건으로 레이저 광(L)을 조사한다. 이에 의해, 집광점 근방에서 레이저 광(L)이 흡수되어 가공 대상물의 내부가 국소적으로 가열되고, 이 가열에 의해 가공 대상물의 내부에 용융 처리 영역이 형성된다.
용융 처리 영역이란, 일단 용융 후 재고체화한 영역이나, 확실하게 용융 상태인 영역이나, 용융 상태로부터 재고체화하는 상태의 영역이며, 상(相) 변화한 영역이나 결정 구조가 변화한 영역이라고 할 수도 있다. 또, 용융 처리 영역이란 단결정 구조, 비정질 구조, 다결정 구조에 있어서, 어느 구조가 다른 구조로 변화한 영역이라고 할 수도 있다. 즉, 예를 들어, 단결정 구조로부터 비정질 구조로 변화한 영역, 단결정 구조로부터 다결정 구조로 변화한 영역, 단결정 구조로부터 비정질 구조 및 다결정 구조를 포함하는 구조로 변화한 영역을 의미한다. 가공 대상물이 실리콘 단결정 구조인 경우, 용융 처리 영역은 예를 들어 비정질 실리콘 구조이다.
도 7은, 레이저 광이 조사된 실리콘 웨이퍼(반도체 기판)의 일부에 있어서의 단면의 사진을 나타낸 도면이다. 도 7에 나타낸 바와 같이, 반도체 기판(11)의 내부에 용융 처리 영역(13)이 형성되어 있다.
입사하는 레이저 광의 파장에 대해 투과성 재료의 내부에 용융 처리 영역(13)이 형성된 것을 설명한다. 도 8은, 레이저 광의 파장과 실리콘 기판의 내부의 투과율과의 관계를 나타내는 선도(線圖)이다. 단, 실리콘 기판의 표면측과 이면측 각각의 반사 성분을 제거하고, 내부만의 투과율을 나타내고 있다. 실리콘 기판의 두께 t가 50㎛, 100㎛, 200㎛, 500㎛, 1000㎛인 각각에 대해 상기 관계를 나타내었다.
예를 들어, Nd:YAG 레이저의 파장인 1064㎚에 있어서, 실리콘 기판의 두께가 500㎛ 이하인 경우, 실리콘 기판의 내부에서는 레이저 광(L)이 80% 이상 투과하는 것을 알 수 있다. 도 7에 나타낸 반도체 기판(11)의 두께는 350㎛이므로, 용융 처리 영역(13)은 반도체 기판(11)의 중심 부근, 즉 표면으로부터 175㎛의 부분에 형성된다. 이 경우의 투과율은, 두께 200㎛의 실리콘 웨이퍼를 참고로 하면 90% 이상이므로, 레이저 광(L)이 반도체 기판(11)의 내부에서 흡수되는 것은 얼마 되지 않으며, 대부분이 투과한다. 그러나, 1×108(W/㎠) 이상이며 또한 펄스폭이 1㎲ 이하의 조건으로 레이저 광(L)을 실리콘 웨이퍼 내부에 집광함으로써 집광점과 그 근방에서 국소적으로 레이저 광이 흡수되어 용융 처리 영역(13)이 반도체 기판(11)의 내부에 형성된다.
또한, 실리콘 웨이퍼에는 용융 처리 영역을 기점으로 하여 균열이 발생하는 경우가 있다. 또, 용융 처리 영역에 균열이 내포되어 형성되는 경우가 있으며, 이 경우에는, 그 균열이 용융 처리 영역에 있어서의 전체 면에 걸쳐 형성되어 있거나, 일부분만이나 복수 부분에 형성되어 있거나 하는 일이 있다. 또한, 이 균열은 자연스럽게 성장하는 경우도 있고, 실리콘 웨이퍼에 힘이 인가됨으로써 성장하는 경우도 있다. 용융 처리 영역으로부터 균열이 자연스럽게 성장하는 경우에는, 용융 처리 영역이 용융하고 있는 상태로부터 성장하는 경우와, 용융 처리 영역이 용융하고 있는 상태로부터 재고체화 할 때에 성장하는 경우 모두 있다. 단, 어느 경우라도 용융 처리 영역은 실리콘 웨이퍼의 내부에 형성되며, 절단면에 있어서는, 도 7에 나타낸 바와 같이, 내부에 용융 처리 영역이 형성되어 있다.
(2) 개질 영역이 크랙 영역을 포함하는 경우
가공 대상물(예를 들어 유리나 LiTaO3으로 이루어진 압전(壓電) 재료)의 내부에 집광점을 맞추고, 집광점에 있어서의 전계 강도가 1×108(W/㎠) 이상이며 또한 펄스폭이 1㎲ 이하의 조건으로 레이저 광(L)을 조사한다. 이 펄스폭의 크기는, 가공 대상물의 내부에 레이저 광(L)이 흡수되어 크랙 영역이 형성되는 조건이다. 이에 의해, 가공 대상물의 내부에는 광학적 손상이라고 하는 현상이 발생한다. 이 광학적 손상에 의해 가공 대상물의 내부에 열 변형이 야기되고, 이에 의해 가공 대상물의 내부에, 1개 또는 복수의 크랙을 포함하는 크랙 영역이 형성된다. 크랙 영역은 절연 파괴 영역이라고도 할 수 있다.
도 9는 전계 강도와 크랙의 크기와의 관계의 실험 결과를 나타내는 선도이다. 가로축은 피크 파워 밀도이며, 레이저 광(L)이 펄스 레이저 광이므로 전계 강도는 피크 파워 밀도로 나타난다. 세로축은 1 펄스의 레이저 광(L)에 의해 가공 대상물의 내부에 형성된 크랙 부분(크랙 스폿)의 크기를 나타내고 있다. 크랙 스폿이 모여 크랙 영역이 된다. 크랙 스폿의 크기는 크랙 스폿의 형상 중 최대의 길이가 되는 부분의 크기이다. 그래프 중의 검은색 동그라미로 나타낸 데이터는 집광용 렌즈(C)의 배율이 100배, 개구 수(NA)가 0.80인 경우이다. 한편, 그래프 중의 흰색 동그라미로 나타낸 데이터는 집광용 렌즈(C)의 배율이 50배, 개구 수(NA)가 0.55인 경우이다. 피크 파워 밀도가 1011(W/㎠) 정도로부터 가공 대상물의 내부에 크랙 스폿이 발생하고, 피크 파워 밀도가 커짐에 따라 크랙 스폿도 커지는 것을 알 수 있다.
(3) 개질 영역이 굴절률 변화 영역을 포함하는 경우
가공 대상물(예를 들어 유리)의 내부에 집광점을 맞추고, 집광점에 있어서의 전계 강도가 1×108(W/㎠) 이상이며 또한 펄스폭이 1㎱ 이하의 조건으로 레이저 광(L)을 조사한다. 이와 같이, 펄스폭이 매우 짧은 상태에서 가공 대상물의 내부에 레이저 광(L)이 흡수되면, 그 에너지가 열에너지로 바뀌지 않아, 가공 대상물의 내부에는 이온 가수 변화, 결정화 또는 분극 배향 등의 영속적인 구조 변화가 야기되어 굴절률 변화 영역이 형성된다.
또한, 개질 영역이란, 용융 처리 영역, 절연 파괴 영역, 굴절률 변화 영역 등이나 그것들이 혼재한 영역을 포함하며, 그 재료에 있어서 개질 영역의 밀도가 비개질 영역의 밀도와 비교해서 변화한 영역이거나, 격자 결함이 형성된 영역이거나 한다. 이것들을 통틀어서 고밀(高密) 전이 영역이라고 할 수도 있다.
또, 용융 처리 영역이나 굴절률 변화 영역, 개질 영역의 밀도가 비개질 영역의 밀도와 비교해서 변화한 영역, 격자 결함이 형성된 영역은, 또한 그들 영역의 내부나 개질 영역과 비개질 영역과의 계면에 균열(갈라짐, 마이크로 크랙)을 내포하고 있는 경우가 있다. 내포되는 균열은 개질 영역의 전체 면에 걸친 경우나 일부분만이나 복수 부분에 형성되는 경우가 있다.
덧붙여서, 가공 대상물의 결정 구조나 그 벽개성(劈開性) 등을 고려하여, 개질 영역을 다음과 같이 형성하면, 정밀도 좋게 가공 대상물을 절단하는 것이 가능하게 된다.
즉, 실리콘 등의 다이아몬드 구조의 단결정 반도체로 이루어진 기판의 경우는, (111)면(제1 벽개면)이나 (110)면(제2 벽개면)을 따른 방향으로 개질 영역을 형성하는 것이 바람직하다. 또, GaAs 등의 섬아연광형 구조의 III-V족 화합물 반도체로 이루어진 기판의 경우는, (110)면을 따른 방향으로 개질 영역을 형성하는 것이 바람직하다. 또한, 사파이어(Al2O3) 등의 육방정계의 결정 구조를 가지는 기판의 경우는, (0001)면(C면)을 메인 면으로 하여 (1120)면(A면) 또는 (1100)면(M면)을 따른 방향으로 개질 영역을 형성하는 것이 바람직하다.
또, 상술한 개질 영역을 형성해야 할 방향(예를 들어, 단결정 실리콘 기판에 있어서의 (111)면을 따른 방향), 또는 개질 영역을 형성해야 할 방향으로 직교하는 방향을 따라서 기판에 오리엔테이션 플랫을 형성하면, 그 오리엔테이션 플랫을 기준으로 함으로써, 개질 영역을 용이하고 정확하게 기판에 형성하는 것이 가능하게 된다.
다음으로, 본 실시형태에 관한 레이저 가공 장치에 대해 설명한다.
도 10에 나타낸 바와 같이, 레이저 가공 장치(200)는, 판 모양의 가공 대상물(1)을 지지하는 지지대(201)와, 레이저 광(L)을 출사하는 레이저 광원(202)과, 레이저 광원(202)으로부터 출사된 레이저 광(L)을 변조하는 반사형 공간 광변조기(203)와, 지지대(201)에 의해서 지지된 가공 대상물(1)의 내부에, 반사형 공간 광변조기(203)에 의해서 변조된 레이저 광(L)을 집광하는 집광 광학계(204)와, 반사형 공간 광변조기(203)를 제어하는 제어부(205)를 구비하고 있다. 레이저 가공 장치(200)는, 가공 대상물(1)의 내부에 집광점(P)을 맞추고 레이저 광(L)을 조사하는 것에 의해, 가공 대상물(1)의 절단 예정 라인(5)을 따라서 절단의 기점이 되는 개질 영역(7)을 형성하는 것이다.
반사형 공간 광변조기(203)는 케이스(231) 내에 설치되어 있고, 레이저 광원(202)은 케이스(231)의 천판(天板)에 설치되어 있다. 또, 집광 광학계(204)는 복수의 렌즈를 포함하여 구성되어 있으며, 압전 소자 등을 포함하여 구성된 구동 유니트(232)를 통하여 케이스(231)의 저판(底板)에 설치되어 있다. 그리고, 케이스(231)에 설치된 부품에 의해서 레이저 엔진(230)이 구성되어 있다. 또한, 제어부(205)는 레이저 엔진(230)의 케이스(231) 내에 설치되어도 된다.
케이스(231)에는, 케이스(231)를 가공 대상물(1)의 두께 방향으로 이동시키는 이동 기구가 설치되어 있다(도시하지 않음). 이에 의해, 가공 대상물(1)의 깊이에 따라 레이저 엔진(230)을 상하로 이동시킬 수 있기 때문에, 집광 광학계(204)의 위치를 변화시켜서 레이저 광(L)을 가공 대상물(1)의 원하는 깊이 위치에 집광하는 것이 가능해진다. 또한, 케이스(231)에 이동 기구를 설치하는 대신에, 지지대(201)에 지지대(201)를 가공 대상물(1)의 두께 방향으로 이동시키는 이동 기구를 설치해도 된다. 또, 후술하는 AF 유니트(212)를 이용하여 집광 광학계(204)를 가공 대상물(1)의 두께 방향으로 이동시켜도 된다. 그리고, 이것들을 조합하는 것도 가능하다.
제어부(205)는 반사형 공간 광변조기(203)를 제어하는 것 외, 레이저 가공 장치(200)의 전체를 제어한다. 예를 들어, 제어부(205)는 개질 영역(7)을 형성할 때에, 레이저 광(L)의 집광점(P)이 가공 대상물(1)의 표면(레이저 광 입사면)(3)으로부터 소정의 거리에 위치하며 또한 레이저 광(L)의 집광점(P)이 절단 예정 라인(5)을 따라서 상대적으로 이동하도록 집광 광학계(204)를 포함하는 레이저 엔진(230)을 제어한다. 또한, 제어부(205)는 가공 대상물(1)에 대해 레이저 광(L)의 집광점(P)을 상대적으로 이동시키기 위해서, 집광 광학계(204)를 포함하는 레이저 엔진(230)이 아닌 지지대(201)를 제어해도 되며, 또는 집광 광학계(204)를 포함하는 레이저 엔진(230) 및 지지대(201)의 양쪽 모두를 제어해도 된다.
레이저 광원(202)으로부터 출사된 레이저 광(L)은, 케이스(231) 내에 있어서, 미러(206, 207)에 의해서 순차적으로 반사된 후, 프리즘 등의 반사 부재(208)에 의해서 반사되어 반사형 공간 광변조기(203)에 입사한다. 반사형 공간 광변조기(203)에 입사한 레이저 광(L)은, 반사형 공간 광변조기(203)에 의해서 변조되어 반사형 공간 광변조기(203)로부터 출사된다. 반사형 공간 광변조기(203)로부터 출사된 레이저 광(L)은, 케이스(231) 내에 있어서, 집광 광학계(204)의 광축을 따르도록 반사 부재(208)에 의해서 반사되어 빔 스플리터(beam splitter)(209, 210)를 순차적으로 투과하여 집광 광학계(204)에 입사한다. 집광 광학계(204)에 입사한 레이저 광(L)은, 지지대(201)상에 배치된 가공 대상물(1)의 내부에 집광 광학계(204)에 의해서 집광된다.
또, 레이저 가공 장치(200)는, 가공 대상물(1)의 표면(3)을 관찰하기 위한 표면 관찰 유니트(211)를 케이스(231) 내에 구비하고 있다. 표면 관찰 유니트(211)는 빔 스플리터(209)에서 반사되며 또한 빔 스플리터(210)를 투과하는 가시광(VL)을 출사하고, 집광 광학계(204)에 의해서 집광되어 가공 대상물(1)의 표면(3)에서 반사된 가시광(VL)을 검출함으로써 가공 대상물(1)의 표면(3)의 상을 취득한다.
또한, 레이저 가공 장치(200)는 가공 대상물(1)의 표면(3)에 기복이 존재하는 경우에도, 표면(3)으로부터 소정의 거리의 위치에 레이저 광(L)의 집광점(P)을 정밀도 좋게 맞추기 위한 AF(autofocus) 유니트(212)를 케이스(231) 내에 구비하고 있다. AF 유니트(212)는 빔 스플리터(210)에서 반사되는 AF용 레이저 광(LB)을 출사하고, 집광 광학계(204)에 의해서 집광되어 가공 대상물(1)의 표면(3)에서 반사된 AF용 레이저 광(LB)을 검출함으로써, 예를 들어 비점수차법을 이용하여, 절단 예정 라인(5)을 따른 표면(3)의 변위 데이터를 취득한다. 그리고, AF 유니트(212)는 개질 영역(7)을 형성할 때에, 취득한 변위 데이터에 기초하여 구동 유니트(232)를 구동시킴으로써, 가공 대상물(1)의 표면(3)의 기복을 따르도록 집광 광학계(204)를 그 광축방향으로 왕복 이동시켜, 집광 광학계(204)와 가공 대상물(1)과의 거리를 미세조정한다.
여기에서, 반사형 공간 광변조기(203)에 대하여 설명한다. 도 11에 나타낸 바와 같이, 반사형 공간 광변조기(203)는 실리콘 기판(213)과, 실리콘 기판(213)상에 마련된 금속 전극층(214)과, 금속 전극층(214)상에 마련된 미러층(215)과, 미러층(215)상에 마련된 액정층(216)과, 액정층(216)상에 마련된 투명 전극층(217)과, 투명 전극층(217) 상에 마련된 유리판(218)을 구비하고 있다. 금속 전극층(214) 및 투명 전극층(217)은 매트릭스 모양으로 배치된 복수의 전극부(214a, 217a)를 가지고 있으며, 금속 전극층(214)의 각 전극부(214a)와 투명 전극층(217)의 각 전극부(217a)는, 반사형 공간 광변조기(203)의 적층 방향에 있어서 서로 대향하고 있다.
이상과 같이 구성된 반사형 공간 광변조기(203)에서는, 레이저 광(L)은, 외부로부터 유리판(218) 및 투명 전극층(217)을 순차적으로 투과하여 액정층(216)에 입사하고, 미러층(215)에 의해서 반사되어, 액정층(216)으로부터 투명 전극층(217) 및 유리판(218)을 순차적으로 투과하여 외부에 출사된다. 이 때, 서로 대향하는 한 쌍의 전극부(214a, 217a)마다 전압이 인가되고, 그 전압에 따라, 액정층(216)에 있어서 서로 대향하는 한 쌍의 전극부(214a, 217a)에 끼워진 부분의 굴절률이 변화하고 있다. 이에 의해, 레이저 광(L)을 구성하는 복수의 광선의 각각에 있어서, 각 광선의 진행 방향과 직교하는 소정 방향의 성분의 위상에 차이가 생겨 레이저 광(L)이 정형(위상 변조(phase modulation))되게 된다.
제어부(205)는 개질 영역(7)을 형성할 때에, 가공 대상물(1)의 내부에 집광되는 레이저 광(L)의 수차가 소정의 수차 이하가 되도록(환언하면, 가공 대상물(1)의 내부에 있어서 레이저 광(L)의 파면이 소정의 파면이 되도록), 서로 대향하는 한 쌍의 전극부(214a, 217a)마다 전압을 인가함으로써 반사형 공간 광변조기(203)를 제어한다. 제어부(205)는, 반사형 공간 광변조기(203)에 입사한 레이저 광(L)의 빔 패턴(빔 파면)을 정형(변조)시키기 위한 파면 정형(수차 보정) 패턴 정보를 반사형 공간 광변조기(203)에 입력한다. 그리고, 입력된 패턴 정보에 기초한 신호에 의해 반사형 공간 광변조기(203)의 한 쌍의 전극(214a, 217a)마다 대응하는 액정층(216)의 굴절률을 변화시킴으로써, 반사형 공간 광변조기(203)로부터 출사되는 레이저 광(L)의 빔 패턴(빔 파면)을 정형(변조)한다. 또한, 반사형 공간 광변조기(203)에 입력하는 패턴 정보는 순서대로 입력하도록 해도 되며, 미리 기억된 패턴 정보를 선택하여 입력하도록 해도 된다.
그러나, 엄밀하게 말하면, 반사형 공간 광변조기(203)에서 변조(보정)된 레이저 광(L)은, 공간을 전파하는 것에 의해 파면 형상이 변화해 버린다. 특히, 반사형 공간 광변조기(203)로부터 출사된 레이저 광(L)이나 집광 광학계(204)에 입사하는 레이저 광(L)이 소정의 확산을 가지는 광(즉, 평행 광 이외의 광)인 경우에는, 반사형 공간 광변조기(203)에서의 파면 형상과 집광 광학계(204)에서의 파면 형상이 일치하지 않아, 결과적으로, 목적으로 하는 정밀한 내부 가공을 방해할 우려가 있다. 따라서, 반사형 공간 광변조기(203)에서의 파면 형상과 집광 광학계(204)에서의 파면 형상을 일치시키는 것이 중요해진다. 그러기 위해서는, 레이저 광(L)이 반사형 공간 광변조기(203)로부터 집광 광학계(204)에 전파했을 때의 파면 형상의 변화를 계측 등에 의해 구하고, 그 파면 형상의 변화를 고려한 파면 정형(수차 보정) 패턴 정보를 반사형 공간 광변조기(203)에 입력하는 것이 보다 바람직하다.
또는, 반사형 공간 광변조기(203)에서의 파면 형상과 집광 광학계(204)에서의 파면 형상을 일치시키기 위해서, 도 23에 나타낸 바와 같이, 반사형 공간 광변조기(203)와 집광 광학계(204)와의 사이를 진행하는 레이저 광(L)의 광로 상에, 조정 광학계(240)를 마련해도 된다. 이에 의해, 정확하게 파면 정형을 실현하는 것이 가능해진다.
조정 광학계(240)는 적어도 2개의 렌즈(제1 광학 소자)(241a) 및 렌즈(제2 광학 소자)(241b)를 가지고 있다. 렌즈(241a, 241b)는, 반사형 공간 광변조기(203)에서의 파면 형상과 집광 광학계(204)에서의 파면 형상을 상사적(相似的)으로 일치시키기 위한 것이다. 렌즈(241a, 241b)는 반사형 공간 광변조기(203)와 렌즈(241a)와의 거리가 렌즈(241a)의 초점 거리(제1 초점 거리) f1이 되고, 집광 광학계(204)와 렌즈(241b)와의 거리가 렌즈(241b)의 초점 거리(제2 초점 거리) f2가 되며, 렌즈(241a)와 렌즈(241b)와의 거리가 f1+f2가 되고, 또한 렌즈(241a)와 렌즈(241b)가 양측 텔레센트릭 광학계(telecentric optical system)가 되도록, 반사형 공간 광변조기(203)와 반사 부재(208) 사이에 배치되어 있다.
이와 같이 배치함으로써, 1° 이하 정도의 작은 확산각(spread angle)을 가지는 레이저 광(L)이라도, 반사형 공간 광변조기(203)에서의 파면과 집광 광학계(204)에서의 파면을 맞출 수 있다. 또한, 보다 정확함을 요구하는 경우에는, 반사형 공간 광변조기(203)와 액정층(216)과 렌즈(241a)의 주점(主點)과의 거리를 f1로 하는 것이 바람직하다. 그렇지만, 도 11에 나타낸 바와 같이, 반사형 공간 광변조기(203)는 매우 얇고, 액정층(216)과 유리판(217)과의 거리도 매우 작기 때문에, 액정층(216)과 유리판(217)과의 사이에서의 파면 형상의 변화 정도도 매우 작다. 따라서, 간이적으로, 반사형 공간 광변조기(203)의 구성상, 초점 거리를 설정하기 쉬운 위치(예를 들어, 반사형 공간 광변조기(203)의 표면(표면 근방) 등)와 렌즈(241a)와의 거리를 f1로 설정해도 되며, 이와 같이 함으로써 조정이 용이해진다. 또, 보다 정확함을 요구하는 경우에는, 집광 광학계(204)의 주점과 렌즈(241b)의 주점과의 거리를 f2로 하는 것이 바람직하다. 그렇지만, 집광 광학계(204)는 복수의 렌즈를 포함하며 구성되어, 주점에서의 위치 맞춤이 곤란해지는 경우가 있다. 그 경우에는, 간이적으로, 집광 광학계(204)의 구성상, 초점 거리를 설정하기 쉬운 위치(예를 들어, 집광 광학계(204)의 표면(표면 근방) 등)와 렌즈(241b)와의 거리를 f2로 설정해도 되며, 이와 같이 함으로써 조정이 용이해진다.
또, 레이저 광(L)의 빔 지름은, f1과 f2와의 비로 정해진다(집광 광학계(204)에 입사하는 레이저 광(L)의 빔 지름은, 반사형 공간 광변조기(203)로부터 출사되는 레이저 광(L)의 빔 지름의 f2/f1배가 된다). 따라서, 레이저 광(L)이 평행광, 또는 작은 확산을 가지는 광 중 어느 경우라도, 반사형 공간 광변조기(203)로부터 출사되는 각도를 유지한 채로, 집광 광학계(204)에 입사하는 레이저 광(L)에 있어서 원하는 빔 지름을 얻을 수 있다.
이상과 같이, 조정 광학계(240)에 의하면, 레이저 광(L)의 빔 지름 및 확산각을 조정하는 것도 가능해진다. 절단의 기점이 되는 개질 영역(7)을 가공 대상물(1)에 형성하는 레이저 가공 방법에 있어서는, 정밀한 절단을 실현하기 위해서 표면으로부터 가공을 실시하는 레이저 가공 방법과 비교해서 레이저 광(L)의 확산각이나 빔 지름에 기초한 집광 조건은 아주 중요하며, 절단에 적합한 개질 영역(7)을 정밀도 좋게 형성하기 위해서 집광 광학계(204)에는 평행광이 아닌 작은 확산각(예를 들어, 수 mrad~수십 mrad 정도)을 가진 레이저 광(L)이 필요한 경우도 있다. 그렇기 때문에, 반사형 공간 광변조기(203)를 설치하고 있는 경우와, 반사형 공간 광변조기(203)를 설치하지 않은 경우에, 개질 영역(7)을 형성하기 위한 기본적인 가공 조건을 맞추기 위해서, 집광 광학계(204)에 입사하는 레이저 광(L)의 빔 지름 및 확산각을(반사형 공간 광변조기(203)를 설치하지 않은 경우와) 맞출 필요가 있다.
따라서, 조정 광학계(240)를 사용하는 것에 의해, 반사형 공간 광변조기(203)에서 변조된 파면(수차)을 유지한 채로, 레이저 광(L)을 집광 광학계(204)로 집광할 수 있으며, 또한 소정의 빔 지름 및 소정의 확산각을 가지는 레이저 광(L)으로 내부에 개질 영역을 형성할 수 있다. 이에 의해, 소정의 확산각을 가지는 레이저 광(L)으로 집광 광학계(204)의 유효 지름을 효율적으로 이용할 수 있어 절단에 적합한 정밀한 개질 영역을 형성하는 것이 가능해진다.
또한, 조정 광학계(240)의 렌즈(241a, 241b)는, 반사형 공간 광변조기(203)와 반사 부재(208)와의 사이의 레이저 광(L)의 광로 상에 마련하는 것이 바람직하다. 그 이유는 다음과 같다. 즉, 평판 모양의 반사 부재(208)나 빔 스플리터(209, 210)에 큰 확산을 가진 광(렌즈(241a)와 렌즈(241b)와의 사이의 광)을 입사하면 구면 수차나 비점 수차가 발생한다. 따라서, 렌즈(241b)를 반사 부재(208)의 후단에 배치하면, 렌즈(241a)로부터 출사되어 광축에 대해 각도를 가지는 광이 반사 부재(208)나 빔 스플리터(209, 210)에 입사한 후에 렌즈(241b)에 입사하게 되기 때문에, 구면 수차나 비점 수차의 영향을 받아 집광 광학계(204)에 입사하는 레이저 광(L)의 정밀도가 저하한다. 또, 조정 광학계(240)는 렌즈(241a, 241b)의 각각의 위치를 독립적으로 미세조정하는 기구를 구비하는 것이 바람직하다. 또, 반사형 공간 광변조기(203)의 유효 에리어를 유효하게 사용하기 위해서, 반사형 공간 광변조기(203)와 레이저 광원(202)과의 사이의 레이저 광(L)의 광로 상에 빔 익스팬더를 마련해도 된다.
다음으로, 본 실시형태에 관한 레이저 가공 장치의 제조 방법으로서, 상술한 레이저 가공 장치(200)의 제조 방법에 대해 설명한다.
우선, 도 12에 나타낸 바와 같이, 상술한 레이저 가공 장치(200)와 대략 동일한 구성을 가지는 기준 레이저 가공 장치(200s)를 준비한다. 기준 레이저 가공 장치(200s)는, 절단의 기점으로서의 기능이 높은 개질 영역(7)을 형성할 수 있는 레이저 가공 장치로서, 예를 들어 일정한 조건하에서 격자 모양으로 설정된 복수의 절단 예정 라인(5)을 따라서 개질 영역(7)을 형성하여 가공 대상물(1)을 절단했을 경우에, 미절단 부분이 소정의 비율 이하가 되는 레이저 가공 장치이다.
이 기준 레이저 가공 장치(200s)에 대해, 가공 대상물(1) 대신에 참조 구면 미러(221)를 그 광축이 기준 집광 광학계(204s)의 광축과 일치하도록 설치함과 아울러, AF 유니트(212) 대신에 파면 계측기(222)를 설치한다. 그리고, 기준 레이저 가공 장치(200s)의 기준 집광 광학계(204s)로부터 출사된 기준 레이저 광(Ls)의 파면을 파면 계측기(222)에 의해 계측하고, 기준 파면 데이터를 취득한다. 또한, 참조 구면 미러(221)는, 파면 계측기(222)의 정밀도를 상회하는 정밀도로 제작되어 있기 때문에, 참조 구면 미러(221)에 의해서 기준 레이저 광(Ls)이 반사함으로써 발생하는 기준 레이저 광(Ls)의 파면의 흐트러짐은 무시할 수 있다.
계속해서, 도 13에 나타낸 바와 같이, 지지대(201)와, 레이저 광원(202)과, 반사형 공간 광변조기(203)와, 집광 광학계(204)와, 제어부(205)를 구비하고 있는 최종 조정 전의 레이저 가공 장치(200)를 준비한다.
이 레이저 가공 장치(200)에 대해, 가공 대상물(1) 대신에 참조 구면 미러(221)를 그 광축이 집광 광학계(204)의 광축과 일치하도록 설치함과 아울러, AF 유니트(212) 대신에 파면 계측기(222)를 설치한다. 그리고, 레이저 가공 장치(200)의 집광 광학계(204)로부터 출사된 레이저 광(L)의 파면을 파면 계측기(222)에 의해서 계측하고, 파면 데이터를 취득한다.
계속해서, 기준 파면 데이터 및 파면 데이터에 기초하여, 레이저 광(L)의 파면이 기준 레이저 광(Ls)의 파면이 되도록 반사형 공간 광변조기(203)를 제어하기 위한 제어 신호를 산출하고, 제어부(205)에 기억시킨다. 구체적으로는, 기준 파면 데이터 및 파면 데이터를 제르니케 다항식(Zernike polynomial)으로 취득하고, 기준 파면 데이터의 제르니케 다항식과 파면 데이터의 제르니케 다항식과의 차를 취하고, 그 차를 메우는 제어 신호를 산출하여, 제어부(205)에 기억시킨다. 예를 들어, 기준 파면 데이터의 제르니케 다항식이 「(1×제1항)+(4×제2항)+(4×제3항)」이며, 파면 데이터의 제르니케 다항식이 「(1×제1항)+(2×제2항)+(4×제3항)」인 경우, 파면 데이터의 제르니케 다항식의 제2항이 추가로 2배가 되는 제어 신호를 산출하여, 제어부(205)에 기억시킨다.
또한, 집광 광학계(204)의 출사측에 파면 계측기(222)를 직접 배치하여 레이저 광(L)의 파면을 계측하지 않는 것은, 다음의 이유에서이다. 즉, 판 모양의 가공 대상물(1)의 내부에 집광점(P)을 맞추고 레이저 광(L)을 조사하는 것에 의해, 절단의 기점이 되는 개질 영역(7)을 형성하는 경우에는, 집광 광학계(204)에 의해서 가공 대상물(1)의 내부에 집광되는 레이저 광(L)의 개구 수가 예를 들어 0.55~0.80과 같이 매우 커진다. 그 때문에, 레이저 광(L)의 강도가 약해져 버리거나, 레이저 광(L)을 구성하는 복수의 광선 간의 위상차가 파면 계측기(222)의 측정 한계를 넘어 버리거나 하기 때문이다. 이것은, 기준 레이저 가공 장치(200s)에 있어서 기준 레이저 광(Ls)의 파면을 계측하는 경우에도 동일하다.
이상과 같이, 절단의 기점으로서의 기능이 높은 개질 영역(7)을 형성할 수 있는 레이저 가공 장치를 기준 레이저 가공 장치(200s)로서 준비함으로써, 장치 간의 개체차를 메워, 기준 레이저 가공 장치(200s)와 동등한 성능을 가지는 레이저 가공 장치(200)를 제조할 수 있다.
계속해서, 도 14에 나타낸 바와 같이, 레이저 가공 장치(200)에 있어서, 빔 스플리터(210)와 집광 광학계(204)와의 사이에 참조 평면 미러(223)를 레이저 광(L)의 광축과 직교하도록 설치한다. 그리고, 참조 평면 미러(223) 및 빔 스플리터(210)에 의해서 순차적으로 반사된 레이저 광(L)의 파면을 파면 계측기(222)에 의해 계측하고, 파면 데이터를 제르니케 다항식으로 취득한다. 또한, 참조 평면 미러(223)는 파면 계측기(222)의 정밀도를 상회하는 정밀도로 제작되고 있기 때문에, 참조 평면 미러(223)에 의해서 레이저 광(L)이 반사됨으로써 발생하는 레이저 광(L)의 파면의 혼란은 무시할 수 있다.
계속해서, 도 15에 나타낸 바와 같이, 가공 대상물(1)과 동일한 재료로 이루어진 소정 두께의 참조 웨이퍼(224)를 준비하고, 레이저 가공 장치(200)에 있어서, 집광 광학계(204)에 의해서 집광된 레이저 광(L)의 집광점(P)이 참조 웨이퍼(224)의 이면(레이저 광 출사면)에 위치하도록, 참조 웨이퍼(224)를 설치한다. 또한, 참조 웨이퍼(224)의 출사측에 참조 구면 미러(221)를 그 광축이 집광 광학계(204)의 광축과 일치하도록 설치한다. 그리고, 집광 광학계(204) 및 참조 웨이퍼(224)를 순차적으로 투과하고, 참조 구면 미러(221)에 의해서 반사되어 참조 웨이퍼(224) 및 집광 광학계(204)를 순차적으로 투과하며, 빔 스플리터(210)에 의해서 반사된 레이저 광(L)의 파면을 파면 계측기(222)에 의해 계측하여, 파면 데이터를 제르니케 다항식으로 취득한다. 또한, 참조 웨이퍼(224)는 파면 계측기(222)의 정밀도를 웃도는 정밀도로 제작되고 있기 때문에, 참조 웨이퍼(224)를 레이저 광(L)이 투과함으로써 발생하는 레이저 광(L)의 파면의 흐트러짐은 무시할 수 있다.
계속해서, 도 14의 상태에서 취득한 파면 데이터의 제르니케 다항식과 도 15 상태에서 취득한 파면 데이터의 제르니케 다항식과의 차를 취한다. 이에 의해, 빔 스플리터(210)에 의해서 반사됨으로써 레이저 광(L)의 파면이 흐트러졌다고 하더라도, 그 파면의 흐트러짐을 없앨 수 있다. 그리고, 제르니케 다항식간의 차가 소정의 차 이하가 되도록(즉, 레이저 광(L)의 집광점(P)을 가공 대상물(1)의 표면(3)으로부터 소정의 거리(참조 웨이퍼(224)의 소정의 두께와 동일함)에 위치시켰을 경우에, 그 위치에서 발생하는 레이저 광(L)의 수차가 소정의 수차 이하가 되도록) 반사형 공간 광변조기(203)를 제어하기 위한 제어 신호를 산출한다.
또한, 제르니케 다항식간의 차가 소정의 차 이하이면, 반사형 공간 광변조기(203)를 제어하기 위한 제어 신호는 불필요해진다. 또, 제르니케 다항식간의 차가 대략 제로가 되도록(즉, 레이저 광(L)의 집광점(P)을 가공 대상물(1)의 표면(3)으로부터 소정의 거리(참조 웨이퍼(224)의 소정의 두께와 동일함)에 위치시켰을 경우에, 그 위치에서 발생하는 레이저 광(L)의 수차가 대략 제로가 되도록) 반사형 공간 광변조기(203)를 제어하기 위한 제어 신호를 산출해도 된다.
이 반사형 공간 광변조기(203)를 제어하기 위한 제어 신호의 산출을, 예를 들어 참조 웨이퍼(224)의 소정의 두께를 50㎛에서 700㎛까지 50㎛씩 바꾸어 실행한다. 그리고, 가공 대상물(1)의 내부에 집광되는 레이저 광(L)의 수차가 소정의 수차 이하가 되도록(환언하면, 가공 대상물(1)의 내부에 있어서 레이저 광(L)의 파면이 소정의 파면이 되도록) 반사형 공간 광변조기(203)를 제어하기 위한 제어 신호를, 레이저 광(L)의 집광점(P)이 가공 대상물(1)의 표면(3)으로부터 소정의 거리에 위치하도록 집광 광학계(204)를 포함하는 레이저 엔진(230)을 제어하기 위한 제어 신호와 대응시켜서 제어부(205)에 기억시킨다.
이에 의해, 하나의 절단 예정 라인(5)에 대해, 가공 대상물(1)의 두께 방향으로 나란하도록 개질 영역(7)을 복수열 형성하는 경우에, 형성해야 할 복수열의 개질 영역(7)의 각각에 따라, 가공 대상물(1)의 내부에 집광되는 레이저 광(L)의 수차를 소정의 수차 이하로 할 수 있다(환언하면, 가공 대상물(1)의 내부에 있어서 레이저 광(L)의 파면을 소정의 파면으로 할 수 있다).
그런데, 엄밀하게 말하면, 반사형 공간 광변조기(203, 203s)에서 변조(보정)된 레이저 광(L)은, 공간을 전파하는 것에 의해 파면 형상이 변화해 버린다. 특히, 반사형 공간 광변조기(203, 203s)로부터 출사되는 레이저 광(L)이나 집광 광학계(204, 204s)에 입사하는 레이저 광(L)이 소정의 확산을 가지는 광(즉, 평행광 이외의 광)인 경우에는, 반사형 공간 광변조기(203, 203s)에서의 파면 형상과 집광 광학계(204, 204s)에서의 파면 형상이 일치하지 않아, 결과적으로 목적으로 하는 정밀한 내부 가공을 방해할 우려가 있다. 따라서, 반사형 공간 광변조기(203, 203s)에서의 파면 형상과 집광 광학계(204, 204s)에서의 파면 형상을 일치시킬 필요가 있다. 또, 집광 광학계(204, 204s)에서의 파면 형상과 파면 계측기(222)에서의 파면 형상을 일치시키는 것이나, 반사형 공간 광변조기(203, 203s)에서의 파면 형상과 파면 계측기(22)에서의 파면 형상을 일치시키는 것도 중요하다. 그러기 위해서는, 레이저 광(L)이 반사형 공간 광변조기(203, 203s)로부터 집광 광학계(204, 204s)에 전파했을 때의 파면 형상의 변화를 계측 등에 의해서 구하고, 그 파면 형상의 변화를 고려한 파면 정형(수차 정형) 패턴 정보를 반사형 공간 광변조기에 입력하는 것이 보다 바람직하다.
또는, 반사형 공간 광변조기(203, 203s)에서의 파면 형상과 집광 광학계(204, 204s)에서의 파면 형상을 일치시키기 위해서, 도 24~27에 나타낸 바와 같이, 조정 광학계(240, 250)를 마련함으로써, 보다 정확한 파면 정형을 실현하는 것이 가능해진다. 이 도 24~27에 나타낸 레이저 가공 장치의 제조 방법은, 도 12~도 15에 나타낸 레이저 가공 장치의 제조 방법과 기본적으로 같다. 다른 점은 조정 광학계(240, 250)가 존재하는 점이다.
우선, 조정 광학계(240)는 적어도 2개의 렌즈(241a, 241b)를 가지고 있다. 렌즈(241a, 241b)는, 반사형 공간 광변조기(203, 203s)에서의 파면 형상과 집광 광학계(204, 204s)에서의 파면 형상을 상사적으로 일치시키기 위한 것이다. 렌즈(241a, 241b)는 반사형 공간 광변조기(203)와 렌즈(241a)와의 거리가 렌즈(241a)의 초점 거리 f1이 되고, 집광 광학계(204)와 렌즈(241b)와의 거리가 렌즈(241b)의 초점 거리 f2가 되며, 렌즈(241a)와 렌즈(241b)와의 거리가 f1+f2가 되고, 또한 렌즈(241a)와 렌즈(241b)가 양측 텔레센트릭 광학계가 되도록, 반사형 공간 광변조기(203)와 반사 부재(208)와의 사이에 배치되어 있다.
이와 같이 배치함으로써, 작은 확산각을 가지는 레이저 광(L)이더라도, 반사형 공간 광변조기(203, 203s)에서의 파면 형상과 집광 광학계(204, 204s)에서의 파면 형상을 맞출 수 있다.
레이저 광(L)의 빔 지름은 f1과 f2와의 비로 정해진다(집광 광학계(204, 204s)에 입사하는 레이저 광(L)의 빔 지름은, 반사형 공간 광변조기(203, 203s)로부터 출사되는 레이저 광(L)의 빔 지름의 f2/f1배가 된다). 따라서, 레이저 광(L)이 평행광, 또는 작은 확산각을 가지는 광 중 어느 경우라도, 반사형 공간 광변조기(203, 203s)로부터 출사되는 각도를 유지한 채로, 집광 광학계(204, 204s)에 입사하는 레이저 광(L)에 있어서 원하는 빔 지름을 얻을 수 있다.
또, 조정 광학계(250)는 적어도 2개의 렌즈(251a, 251b)를 가지고 있다. 렌즈(251a, 251b)는, 집광 광학계(204, 204s) 또는 참조 평면 미러(223)에서의 파면 형상과 파면 계측기(222)에서의 파면 형상을 상사적으로 일치시키기 위한 것이다. 또한, 조정 광학계(250)의 배치에 대해서는, 조정 광학계(240)와 동일한 기술적 사상을 바탕으로 한다. 또, 조정 광학계(240, 250)는, 각각이 가지는 렌즈의 각각의 위치를 독립적으로 미세조정하는 기구를 구비하는 것이 바람직하다.
다음으로, 본 실시형태에 관한 레이저 가공 방법으로서, 상술한 레이저 가공 장치(200)로 실시되는 레이저 가공 방법에 대해 설명한다.
우선 가공 대상물(1)을 준비한다. 가공 대상물(1)은, 도 16에 나타낸 바와 같이, 예를 들어 실리콘으로 이루어진 두께 300㎛의 반도체 기판이다. 이 반도체 기판의 표면에는, 오리엔테이션 플랫(6)에 평행한 방향 및 수직인 방향으로 매트릭스 모양에 배치된 복수의 기능 소자(도시하지 않음)가 형성되는 것이 일반적이다. 또한, 기능 소자란, 예를 들어 결정 성장에 의해 형성된 반도체 동작층, 포토다이오드 등의 수광 소자, 레이저 다이오드 등의 발광 소자, 또는 회로로서 형성된 회로 소자 등이다.
계속해서, 가공 대상물(1)을 레이저 가공 장치(200)의 지지대(201)상에 고정한다. 그리고, 오리엔테이션 플랫(6)에 평행한 방향으로 연장되어 있는 복수 개의 절단 예정 라인(5a) 및 오리엔테이션 플랫(6)에 수직인 방향으로 연장되어 있는 복수 개의 절단 예정 라인(5b)을 서로 이웃하는 기능 소자 사이를 통과하도록 격자 모양으로 설정한다. 여기서는, 레이저 광(L)의 집광점(P)이 가공 대상물(1)의 표면(3)으로부터 270㎛, 210㎛, 150㎛, 50㎛에 위치하도록 하고, 각 절단 예정 라인(5a, 5b)을 따라서, 가공 대상물(1)의 두께 방향으로 나란하도록, 용융 처리 영역을 포함하는 개질 영역(7)을 4열 형성하는 것으로 한다.
처음에, 집광 광학계(204)를 포함하는 레이저 엔진(230)의 위치를 제어하기 위한 제어 신호를 제어부(205)가 출력하고, 도 17의 (a)에 나타낸 바와 같이, 레이저 광(L)의 집광점(P)이 가공 대상물(1)의 표면(3)으로부터 270㎛에 위치하도록 집광 광학계(204)를 포함하는 레이저 엔진(230)을 제어한다. 그리고, 레이저 광(L)의 집광점(P)이 하나의 절단 예정 라인(5a)을 따라서 상대적으로 이동하도록 집광 광학계(204)를 포함하는 레이저 엔진(230)을 제어한다. 동시에, 반사형 공간 광변조기(203)를 제어하기 위한 제어 신호를 제어부(205)가 출력하고, 가공 대상물(1)의 내부에 집광되는 레이저 광(L)의 수차가 소정의 수차 이하가 되도록 반사형 공간 광변조기(203)를 제어한다. 이에 의해, 하나의 절단 예정 라인(5a)을 따라서 절단의 기점이 되는 개질 영역(71)이 형성된다.
또한, 반사형 공간 광변조기(203)를 제어하기 위한 제어 신호는, 레이저 광(L)의 집광점(P)이 가공 대상물(1)의 표면(3)으로부터 270㎛에 위치하도록 집광 광학계(204)를 포함하는 레이저 엔진(230)의 위치를 제어하기 위한 제어 신호와 대응시켜서 제어부(205)에 기억된 것이다.
이어서, 집광 광학계(204)를 포함하는 레이저 엔진(230)을 제어하기 위한 제어 신호를 제어부(205)가 출력하고, 도 17의 (b)에 나타낸 바와 같이, 레이저 광(L)의 집광점(P)이 가공 대상물(1)의 표면(3)으로부터 210㎛에 위치하도록 집광 광학계(204)를 포함하는 레이저 엔진(230)을 제어한다. 그리고, 레이저 광(L)의 집광점(P)이 같은 하나의 절단 예정 라인(5a)을 따라서 상대적으로 이동하도록 집광 광학계(204)를 포함하는 레이저 엔진(230)을 제어한다. 동시에, 반사형 공간 광변조기(203)를 제어하기 위한 제어 신호를 제어부(205)가 출력하고, 가공 대상물(1)의 내부에 집광되는 레이저 광(L)의 수차가 소정의 수차 이하가 되도록 반사형 공간 광변조기(203)를 제어한다. 이에 의해, 같은 하나의 절단 예정 라인(5a)을 따라서 절단의 기점이 되는 개질 영역(72)이 형성된다.
또한, 반사형 공간 광변조기(203)를 제어하기 위한 제어 신호는, 레이저 광(L)의 집광점(P)이 가공 대상물(1)의 표면(3)으로부터 210㎛에 위치하도록 집광 광학계(204)를 포함하는 레이저 엔진(230)의 위치를 제어하기 위한 제어 신호와 대응시켜서 제어부(205)에 기억된 것이다. 또, 레이저 광(L)의 집광점(P)을 절단 예정 라인(5a)을 따라서 상대적으로 이동시키는 방향은, 개질 영역(72)의 형성 속도를 향상시키기 위해서, 개질 영역(71)을 형성하는 경우와 반대 방향이어도 된다.
계속해서, 집광 광학계(204)를 포함하는 레이저 엔진(230)을 제어하기 위한 제어 신호를 제어부(205)가 출력하고, 도 18의 (a)에 나타낸 바와 같이, 레이저 광(L)의 집광점(P)이 가공 대상물(1)의 표면(3)으로부터 150㎛에 위치하도록 집광 광학계(204)를 포함하는 레이저 엔진(230)을 제어한다. 그리고, 레이저 광(L)의 집광점(P)이 같은 1개의 절단 예정 라인(5a)을 따라서 상대적으로 이동하도록 집광 광학계(204)를 포함하는 레이저 엔진(230)을 제어한다. 동시에, 반사형 공간 광변조기(203)를 제어하기 위한 제어 신호를 제어부(205)가 출력하고, 가공 대상물(1)의 내부에 집광되는 레이저 광(L)의 수차가 소정의 수차 이하가 되도록 반사형 공간 광변조기(203)를 제어한다. 이에 의해, 같은 1개의 절단 예정 라인(5a)을 따라서 절단의 기점이 되는 개질 영역(73)이 형성된다.
또한, 반사형 공간 광변조기(203)를 제어하기 위한 제어 신호는, 레이저 광(L)의 집광점(P)이 가공 대상물(1)의 표면(3)으로부터 150㎛에 위치하도록 집광 광학계(204)를 포함하는 레이저 엔진(230)의 위치를 제어하기 위한 제어 신호와 대응시켜서 제어부(205)에 기억된 것이다. 또, 레이저 광(L)의 집광점(P)을 절단 예정 라인(5a)을 따라서 상대적으로 이동시키는 방향은, 개질 영역(73)의 형성 속도를 향상시키기 위해서, 개질 영역(72)을 형성하는 경우와 반대 방향이어도 된다.
이어서, 집광 광학계(204)를 포함하는 레이저 엔진(230)을 제어하기 위한 제어 신호를 제어부(205)가 출력하고, 도 18의 (b)에 나타낸 바와 같이, 레이저 광(L)의 집광점(P)이 가공 대상물(1)의 표면(3)으로부터 50㎛에 위치하도록 집광 광학계(204)를 포함하는 레이저 엔진(230)을 제어한다. 그리고, 레이저 광(L)의 집광점(P)이 같은 하나의 절단 예정 라인(5a)을 따라서 상대적으로 이동하도록 집광 광학계(204)를 포함하는 레이저 엔진(230)을 제어한다. 동시에, 반사형 공간 광변조기(203)를 제어하기 위한 제어 신호를 제어부(205)가 출력하고, 가공 대상물(1)의 내부에 집광되는 레이저 광(L)의 수차가 소정의 수차 이하가 되도록 반사형 공간 광변조기(203)를 제어한다. 이에 의해, 같은 하나의 절단 예정 라인(5a)을 따라서 절단의 기점이 되는 개질 영역(74)이 형성된다.
또한, 반사형 공간 광변조기(203)를 제어하기 위한 제어 신호는, 레이저 광(L)의 집광점(P)이 가공 대상물(1)의 표면(3)으로부터 50㎛에 위치하도록 집광 광학계(204)를 포함하는 레이저 엔진(230)의 위치를 제어하기 위한 제어 신호와 대응시켜서 제어부(205)에 기억된 것이다. 또, 레이저 광(L)의 집광점(P)을 절단 예정 라인(5a)을 따라서 상대적으로 이동시키는 방향은, 개질 영역(74)의 형성 속도를 향상시키기 위해서, 개질 영역(73)을 형성하는 경우와 반대 방향이어도 된다.
이상과 같이 해서 같은 하나의 절단 예정 라인(5a)을 따라서 4열의 개질 영역(71~74)을 형성하면, 다른 하나의 절단 예정 라인(5a)을 따라서 4열의 개질 영역(71~74)을 형성한다. 그리고, 모든 절단 예정 라인(5a)의 각각을 따라서 4열의 개질 영역(71~74)을 형성하면, 절단 예정 라인(5a)을 따라서 개질 영역(71~74)을 형성하는 경우와 동일하게, 모든 절단 예정 라인(5b)의 각각을 따라서 4열의 개질 영역(71~74)을 형성한다.
이와 같이, 절단 예정 라인(5)이 가공 대상물(1)에 대해 복수 개 설정되어 있는 경우에는, 하나의 절단 예정 라인(5)을 따라서 복수열의 개질 영역(7)을 형성한 후에, 다른 하나의 절단 예정 라인(5)을 따라서 복수열의 개질 영역(7)을 형성하면, 다음과 같은 효과가 나타난다. 즉, AF 유니트(212)는, 가공 대상물(1)의 표면(3)에 기복이 존재하는 것과 같은 경우라도, 표면(3)으로부터 소정의 거리의 위치에 레이저 광(L)의 집광점(P)을 정밀도 좋게 맞추기 위해서, 절단 예정 라인(5)을 따른 표면(3)의 변위 데이터를 취득하고, 그 변위 데이터에 기초하여 집광 광학계(204)와 가공 대상물(1)과의 거리를 미세조정한다. 따라서, 하나의 절단 예정 라인(5)을 따라서 복수열의 개질 영역(7)을 형성한 후에, 다른 하나의 절단 예정 라인(5)을 따라서 복수열의 개질 영역(7)을 형성하면, 변위 데이터의 전환 회수를 감소시킬 수 있어, 각 절단 예정 라인(5)에 있어서 복수열의 개질 영역(7)을 가공 대상물(1)의 표면(3)으로부터 소정의 거리의 위치에 정밀도 좋게 형성하는 것이 가능해진다.
이상 설명한 바와 같이, 본 실시형태에 관한 레이저 가공 방법에서는, 가공 대상물(1)의 내부에 집광되는 레이저 광(L)의 수차가 소정의 수차 이하가 되도록(또는, 가공 대상물(1)의 내부에 있어서 레이저 광(L)의 파면이 소정의 파면이 되도록) 반사형 공간 광변조기(203)에 의해서 변조된 레이저 광(L)이 가공 대상물(1)에 조사된다. 그렇기 때문에, 레이저 광(L)의 집광점(P)을 맞추는 위치에서 발생하는 레이저 광(L)의 수차를 아주 작게 하고, 그 위치에서의 레이저 광(L)의 에너지 밀도를 높여 절단의 기점으로서의 기능이 높은 개질 영역(7)을 형성할 수 있다. 게다가, 반사형 공간 광변조기(203)를 이용하기 때문에, 투과형 공간 광변조기에 비해 레이저 광(L)의 이용 효율을 향상시킬 수 있다. 이와 같은 레이저 광(L)의 이용 효율의 향상은, 절단의 기점이 되는 개질 영역(7)을 판 모양의 가공 대상물(1)에 형성하는 경우, 특히 중요하다. 따라서, 본 실시형태에 관한 레이저 가공 방법에 의하면, 절단의 기점이 되는 개질 영역(7)을 확실하게 형성하는 것이 가능해진다. 그 결과, 개질 영역(7)이 형성된 가공 대상물(1)에 대해, 확장 테이프 등을 통하여 응력을 인가하면, 개질 영역(7)이 절단의 기점으로서의 기능을 충분히 발휘하기 때문에, 가공 대상물(1)을 절단 예정 라인(5)을 따라서 정밀도 좋게 절단할 수 있어, 미절단 부분의 발생을 방지하는 것이 가능해진다.
본 발명은 상술한 실시형태로 한정되지 않는다.
예를 들어, 상기 실시형태에서는, 하나의 절단 예정 라인(5)을 따라서 복수열의 개질 영역(7)을 형성한 후에, 다른 하나의 절단 예정 라인(5)을 따라서 복수열의 개질 영역(7)을 형성하였으나, 복수 개의 절단 예정 라인(5)을 따라서 1열의 개질 영역(7)을 형성한 후에, 복수 개의 절단 예정 라인(5)을 따라서 다른 1열의 개질 영역(7)을 형성해도 된다.
그 경우, 다음과 같은 효과가 나타난다. 즉, 하나의 절단 예정 라인(5)을 따른 복수열의 개질 영역(7)의 형성에 의해서 가공 대상물(1)이 갈라지는 것과 같은 경우에는, 하나의 절단 예정 라인(5)을 따라서 복수열의 개질 영역(7)을 형성한 후에, 다른 하나의 절단 예정 라인(5)을 따라서 복수열의 개질 영역(7)을 형성하면, 가공 대상물(1)의 갈라짐에 의해서 가공 대상물(1)의 위치에 차이가 생긴다. 따라서, 절단 예정 라인(5)을 따라서 개질 영역(7)을 정밀도 좋게 형성하기 위해서는, 가공 대상물(1)의 위치를 보정할 필요가 있다. 그렇지만, 복수 개의 절단 예정 라인(5)을 따라서 1열의 개질 영역(7)을 형성한 후에, 복수 개의 절단 예정 라인(5)을 따라서 다른 1열의 개질 영역(7)을 형성하면, 가공 대상물(1)의 갈라짐에 의해서 가공 대상물(1)의 위치가 어긋나는 것을 방지할 수 있어, 가공 대상물(1)의 위치의 보정 회수를 감소시켜서, 복수 개의 절단 예정 라인(5)을 따라서 복수열의 개질 영역(7)을 단시간에 형성하는 것이 가능해진다.
또, 복수열의 개질 영역(7)중, 가공 대상물(1)의 레이저 광 입사면인 표면(3)으로부터 가장 먼 개질 영역(7)을 포함하는 1열 또는 복수열의 개질 영역(7)을 형성할 때에, 형성하는 개질 영역(7)에 따라, 가공 대상물(1)의 내부에 레이저 광(L)을 집광하는 집광 광학계(204)와 가공 대상물(1)과의 거리가 소정의 거리가 되도록 집광 광학계(204)와 가공 대상물(1)과의 거리를 변화시킴과 아울러, 가공 대상물(1)의 내부에 있어서 레이저 광(L)의 파면이 소정의 파면이 되도록(또는, 가공 대상물(1)의 내부에 집광되는 레이저 광(L)의 수차가 소정의 수차 이하가 되도록) 반사형 공간 광변조기(203)에 의해서 레이저 광(L)을 변조해도 된다.
이와 같이, 가공 대상물(1)의 레이저 광 입사면인 표면(3)으로부터 가장 먼 개질 영역(7)을 형성할 때에, 반사형 공간 광변조기(203)에 의한 레이저 광(L)의 변조를 필수로 하는 것은, 개질 영역(7)을 형성하는 위치가 레이저 광 입사면으로부터 멀어질수록, 레이저 광(L)의 집광점(P)을 맞추는 위치에서 발생하는 레이저 광(L)의 수차가 커지기 때문이다. 즉, 예를 들어, 가공 대상물(1)의 레이저 광 입사면인 표면(3)에 가장 가까운 개질 영역(7)을 형성하는 경우에 있어서, 반사형 공간 광변조기(203)에 의해서 레이저 광(L)을 변조하지 않아도, 가공 대상물(1)의 내부에 집광되는 레이저 광(L)의 수차가 소정의 수차 이하가 될 때에는, 반사형 공간 광변조기(203)에 의한 레이저 광(L)의 변조는 불필요하다. 이에 의해, 하나의 절단 예정 라인(5)에 대해 복수열의 개질 영역(7)을 형성하는 경우라도, 절단의 기점이 되는 개질 영역(7)을 확실하게 형성하는 것이 가능해진다. 또한, 반사형 공간 광변조기(203)에 의한 레이저 광(L)의 변조를 실시하지 않는 경우는, 반사형 공간 광변조기(203)를 통상의 반사 미러로 이용하도록 제어한다(즉, 패턴 정보를 미입력 상태 또는 오프(OFF) 상태에서 사용한다).
또, 레이저 엔진(230)을 이동시키는 대신에, 지지대(201)에, 지지대(201)를 가공 대상물(1)의 두께 방향으로 이동시키는 이동 기구를 설치해도 된다. 또한, AF 유니트(212)를 이용하여 집광 광학계(204)를 가공 대상물(1)의 두께 방향으로 이동시켜도 된다. 또, 이것들을 조합하는 것도 가능하다.
또, 상술한 반사형 공간 광변조기(203)나 조정 광학계(240)는, 도 29에 나타낸 바와 같이, AF 유니트(212) 대신에 광로 길이 변이 수단(300)을 구비하는 레이저 가공 장치(200)에도 적용 가능하다. 광로 길이 변이 수단(300)은, 높이 위치 검출 수단(도시하지 않음)에 의해 검출된 가공 대상물(1)의 표면(3)의 높이 위치에 기초하여 복수의 편향 미러(301)의 설치 각도를 변화시킴으로써, 렌즈(303)와 렌즈(304)와의 사이의 광로 길이를 변화시키고, 집광 광학계(204)에 의해서 집광되는 레이저 광(L)의 집광점(P)의 위치를 변화시킨다. 이것은, 집광 광학계(204)에 의해서 집광되는 레이저 광(L)의 집광점(P)의 위치까지의 거리는, 렌즈(303)로부터 렌즈(304)까지의 광로 길이의 함수로 표시되기 때문이다. 또한, 높이 위치 검출 수단으로는, 예를 들어, 소정의 입사 각도로 가공 대상물(1)의 표면(3)에 레이저 광(L)을 입사하고, 그 반사광의 높이 위치의 변화를 바탕으로 표면(3)의 높이 위치를 검출하는 것을 들 수 있다.
또, 도 19에 나타낸 바와 같이, 레이저 가공 장치(200)는, 지지대(201)와, 레이저 광원(202)과, 레이저 광원(202)으로부터 출사된 레이저 광(L)을 변조하는 복수(여기서는, 2개)의 반사형 공간 광변조기(203a, 203b)와, 집광 광학계(204)와, 제어부(205)를 구비한 것이어도 된다. 제어부(205)는, 레이저 광(L)의 광학 특성이 소정의 광학 특성이 되도록 반사형 공간 광변조기(203a, 203b)를 제어하는 기능을 가지고 있다. 또한, 도 20에 나타낸 바와 같이, 2개의 반사형 공간 광변조기(203a, 203b)는, 양측 텔레센트릭 광학계의 렌즈(403a, 403b)의 배치와 등가가 되도록 배치되어 있기 때문에, 레이저 광(L)의 광학 특성으로서 빔 지름이나 광축 등을 제어할 수 있다. 또, 적어도 하나의 반사형 공간 광변조기(203a 또는 203b)에 의해서, 가공 대상물(1)의 내부에 있어서 레이저 광(L)의 파면이 소정의 파면이 되도록(또는, 가공 대상물(1)의 내부에 집광되는 레이저 광(L)의 수차가 소정의 수차 이하가 되도록) 레이저 광(L)을 변조할 수도 있다.
이 레이저 가공 장치(200)에 의하면, 복수의 반사형 공간 광변조기(203a, 203b)를 구비하고 있기 때문에, 레이저 광(L)의 광학 특성으로서 빔 지름이나 광축 등을 제어할 수 있다. 따라서, 어떠한 원인으로 레이저 광(L)의 광축에 차이가 생겼을 경우라도, 그 차이를 용이하게 보정하여 절단의 기점이 되는 개질 영역(7)을 확실히 형성하는 것이 가능해진다.
이 때, 도 28에 나타낸 바와 같이, 조정 광학계(240)를 마련해도 된다. 조정 광학계(240)의 배치 위치는, 반사형 공간 광변조기(203a, 203b)의 어디에서 파면을 제어할지에 따라서 다르다. 반사형 공간 광변조기(203a)로 파면을 제어하는 경우는, 반사형 공간 광변조기(203a)와 렌즈(241a)와의 거리가 초점 거리 f1이 되도록 배치한다. 한편, 반사형 공간 광변조기(203b)로 파면을 제어하는 경우는, 반사형 공간 광변조기(203b)와 렌즈(241a)와의 거리가 초점 거리 f1이 되도록 배치한다. 그리고, 어느 경우라도, 렌즈(241a)와 렌즈(241b)와의 거리는 f1+f2로 하며, 렌즈(241b)와 집광 광학계(204)와의 거리는 f2로 한다.
또, 개질 영역(7)을 형성할 때에, 가공 대상물(1)의 내부에 집광되는 레이저 광(L)의 개구 수가 소정의 개구 수가 되도록 반사형 공간 광변조기(203)에 의해서 레이저 광(L)을 변조해도 된다. 이 경우, 예를 들어, 가공 대상물(1)의 재질이나 개질 영역(7)을 형성해야 할 위치까지의 거리 등에 따라 레이저 광(L)의 개구 수를 변화시켜서 절단의 기점으로서의 기능이 높은 개질 영역(7)을 형성할 수 있다.
또, 도 21, 22에 나타낸 바와 같이, 하나의 절단 예정 라인(5)에 대해, 가공 대상물(1)의 두께 방향으로 나란하도록, 절단의 기점이 되는 개질 영역(7)을 적어도 3열(여기서는, 3열) 형성하는 경우에는, 다음과 같이 개질 영역(71~73)을 형성해도 된다.
우선 도 21의 (a)에 나타낸 바와 같이, 가공 대상물(1)의 내부에 집광되는 레이저 광(L)의 개구 수가 상대적으로 커지도록 반사형 공간 광변조기(203)에 의해서 변조된 레이저 광(L)을 가공 대상물(1)에 조사함으로써, 절단 예정 라인(5)을 따라서 가공 대상물(1)의 레이저 광 입사면인 표면(3)으로부터 가장 먼 개질 영역(71)을 형성한다.
이어서, 도 21의 (b)에 나타낸 바와 같이, 가공 대상물(1)의 내부에 집광되는 레이저 광(L)의 개구 수가 상대적으로 작아지도록 반사형 공간 광변조기(203)에 의해서 변조된 레이저 광(L)을 가공 대상물(1)에 조사함으로써 절단 예정 라인(5)을 따라서 개질 영역(72)을 형성한다.
계속해서, 도 22에 나타낸 바와 같이, 가공 대상물(1)의 내부에 집광되는 레이저 광(L)의 개구 수가 상대적으로 커지도록 반사형 공간 광변조기(203)에 의해서 변조된 레이저 광(L)을 가공 대상물(1)에 조사함으로써, 절단 예정 라인(5)을 따라서 가공 대상물(1)의 레이저 광 입사면인 표면(3)에 가장 가까운 개질 영역(73)을 형성한다.
이상과 같이, 3열의 개질 영역(71~73) 중, 가공 대상물(1)의 레이저 광 입사면인 표면(3)으로부터 가장 먼 개질 영역(71) 및 표면(3)에 가장 가까운 개질 영역(73)을 제외한 개질 영역(72)을 형성할 때에는, 개질 영역(71, 73)을 형성하는 경우에 비해, 가공 대상물(1)의 내부에 집광되는 레이저 광(L)의 개구 수가 작아지도록 반사형 공간 광변조기(203)에 의해서 레이저 광(L)을 변조한다. 즉, 절단의 기점으로서 특히 중요한 개질 영역(7)으로서, 가공 대상물(1)의 레이저 광 입사면인 표면(3)으로부터 가장 먼 개질 영역(71) 및 표면(3)에 가장 가까운 개질 영역(73)을 형성할 때에, 그 사이의 개질 영역(72)을 형성하는 경우에 비해, 가공 대상물(1)의 내부에 집광되는 레이저 광(L)의 개구 수가 커지도록 반사형 공간 광변조기(203)에 의해서 변조된 레이저 광(L)이 가공 대상물(1)에 조사된다.
이에 의해, 가공 대상물(1)의 레이저 광 입사면인 표면(3)으로부터 가장 먼 개질 영역(71) 및 표면(3)에 가장 가까운 개질 영역(73)을, 절단의 기점으로서의 기능이 아주 높은 개질 영역(7)(예를 들어, 갈라짐을 포함하는 개질 영역(7))으로 할 수 있다. 또, 그 사이의 개질 영역(72)을, 가공 대상물(1)의 두께 방향으로 상대적으로 긴 개질 영역(7)(예를 들어, 용융 처리 영역을 포함하는 개질 영역(7))으로 하여, 절단 예정 라인(5)을 따라서 레이저 광(L)의 스캔 회수를 감소시킬 수 있다.
또한, 절단 예정 라인(5)을 따라서 가공 대상물(1)의 두께 방향으로 나란하도록, 개질 영역(7)을 복수 열(예를 들어, 2열) 형성하는 경우에 있어서, 복수열의 개질 영역(7) 중, 가공 대상물(1)의 레이저 광 입사면인 표면(3) 또는 가공 대상물(1)에 있어서 레이저 광 입사면과 대향하는 대향 표면인 이면(21)에 가장 가까운 개질 영역(7)을 제외한 개질 영역(7)을 형성할 때에는, 표면(3) 또는 이면(21)에 가장 가까운 개질 영역(7)을 형성하는 경우에 비해, 가공 대상물(1)의 내부에 집광되는 레이저 광(L)의 개구 수가 작아지도록 반사형 공간 광변조기(203)에 의해서 레이저 광(L)을 변조하는 것이 바람직하다.
이 레이저 가공 방법에서는, 절단의 기점으로서 특히 중요한 개질 영역(7)으로서, 가공 대상물의 표면(3) 또는 이면(21)에 가장 가까운 개질 영역(7)을 형성할 때에, 그 외의 개질 영역(7)을 형성하는 경우에 비해, 가공 대상물(1)의 내부에 집광되는 레이저 광(L)의 개구 수가 커지도록 반사형 공간 광변조기(203)에 의해서 변조된 레이저 광(L)이 가공 대상물(1)에 조사된다. 그 때문에, 가공 대상물(1)의 표면(3) 또는 이면(21)에 가장 가까운 개질 영역을, 절단의 기점으로서의 기능이 매우 높은 개질 영역(예를 들어, 갈라짐을 포함하는 개질 영역)으로 할 수 있다.
또, 집광 광학계(204)를 포함하는 레이저 엔진(230)이나 지지대(201)를 이동시키지 않고, 반사형 공간 광변조기(203)에 의해서 레이저 광(L)을 변조함으로써, 가공 대상물(1)의 레이저 광 입사면인 표면(3)으로부터 소정의 거리의 위치에 레이저 광(L)의 집광점(P)을 맞추어도 된다. 구체적으로는, 가공 대상물(1)의 표면(3)으로부터 상대적으로 깊은 위치에 집광시키는 경우에는, 반사형 공간 광변조기(203)로부터 출사되어 집광 광학계(204)에 입사하는 레이저 광(L)의 확산각이 상대적으로 작아지도록 반사형 공간 광변조기(203)를 제어하고, 가공 대상물(1)의 표면(3)으로부터 상대적으로 얕은 위치에 집광시키는 경우에는, 반사형 공간 광변조기(203)로부터 출사되어 집광 광학계(204)에 입사하는 레이저 광(L)의 확산각이 상대적으로 커지도록 반사형 공간 광변조기(203)를 제어하면 된다.
또, 상기 실시형태에서는, 파면 데이터를 제르니케 다항식으로 취득하였으나, 이것으로 한정되지 않는다. 예를 들어, 파면 데이터를 자이델의 5 수차나 르장드로 다항식(Legendre polynomial) 등으로 취득해도 된다.
또, 상기 실시형태에서는, 가공 대상물(1)의 내부에 집광되는 레이저 광(L)의 수차가 소정의 수차 이하가 되도록(또는, 가공 대상물(1)의 내부에 있어서 레이저 광(L)의 파면이 소정의 파면이 되도록) 반사형 공간 광변조기(203)를 제어하기 위한 제어 신호를 실측(實測)에 기초하여 산출하였으나, 시뮬레이션 등에 기초하여 산출해도 된다. 시뮬레이션 등에 기초하여 제어 신호를 산출하는 경우에는, 제어 신호를 제어부(205)에 기억시켜 두어도 되는 것은 물론이지만, 제어 신호를 제어부(205)에 기억시켜 두지 않고, 개질 영역(7)을 형성하기 직전에 제어 신호를 산출하도록 해도 된다.
또, 두께가 20㎛ 정도가 되면 가공 대상물(1)이 휘어지기 쉬워지기 때문에, 가공 대상물(1)의 레이저 광 입사면인 표면(3)으로부터 소정의 거리의 위치에 개질 영역(7)을 형성하기 위해서는, 유리판 등의 레이저 광 투과 부재로 가공 대상물(1)의 표면(3)을 지지대(201)측으로 누르는 것이 바람직하다. 그렇지만, 이 경우, 레이저 광 투과 부재의 영향으로 수차가 생겨 레이저 광(L)의 집광도가 열화되어 버린다. 따라서, 레이저 광 투과 부재를 고려하여, 가공 대상물(1)의 내부에 집광되는 레이저 광(L)의 수차가 소정의 수차 이하가 되도록 반사형 공간 광변조기(203)에 의해서 레이저 광(L)을 변조하면, 절단의 기점이 되는 개질 영역(7)을 확실히 형성할 수 있다.
또, 개질 영역(7)을 형성할 때에 있어서의 레이저 광 입사면은, 가공 대상물(1)의 표면(3)으로 한정되지 않고, 가공 대상물(1)의 이면(21)이어도 된다.
또, 상기 실시형태에서는, 반도체 재료로 이루어진 가공 대상물(1)의 내부에 용융 처리 영역을 포함하는 개질 영역(7)을 형성하였으나, 유리나 압전 재료 등, 다른 재료로 이루어진 가공 대상물(1)의 내부에 크랙 영역이나 굴절률 변화 영역 등 다른 개질 영역(7)을 형성해도 된다.
본 발명에 의하면, 절단의 기점이 되는 개질 영역을 확실하게 형성할 수 있다.
1…가공 대상물, 3…표면(레이저 광 입사면), 5…절단 예정 라인, 7, 71~74…개질 영역, 200…레이저 가공 장치, 200s…기준 레이저 가공 장치, 201…지지대, 202…레이저 광원, 203…반사형 공간 광변조기, 204…집광 광학계, 204s…기준 집광 광학계, 205…제어부, L…레이저 광, Ls…기준 레이저 광, P…집광점.
Claims (58)
- 가공 대상물의 내부에 집광점을 맞추어 레이저 광을 조사하는 것에 의해, 상기 가공 대상물의 절단 예정 라인을 따라서, 절단의 기점(起点)이 되는 개질(改質) 영역을 형성하는 레이저 가공 장치로서,
상기 가공 대상물을 지지하는 지지대와,
상기 레이저 광을 출사하는 레이저 광원과,
상기 레이저 광원의 파면(波面)이 소정의 파면이 되도록 상기 레이저 광을 변조하는 반사형 공간 광변조기와,
상기 지지대에 의해서 지지된 상기 가공 대상물의 내부에, 상기 반사형 공간 광변조기에 의해서 변조된 상기 레이저 광을 집광하는 집광 광학계와,
상기 가공 대상물의 내부에서 상기 레이저 광의 파면이 소정의 파면이 되도록, 상기 반사형 공간 광변조기에 입사한 레이저 광의 빔 파면을 변조시키기 위한 파면 정형(整形) 패턴 정보를 상기 반사형 공간 광변조기에 입력하고, 입력된 상기 파면 정형 패턴 정보에 기초하여 상기 반사형 공간 광변조기로부터 출사되는 상기 레이저 광의 빔 파면이 변조되도록 상기 반사형 공간 광변조기를 제어하는 제어부를 구비하며,
상기 제어부는, 상기 반사형 공간 광변조기에서 변조되어 상기 반사형 공간 광변조기로부터 출사된 직후의 레이저 광의 파면 형상과 상기 집광 광학계에서의 파면 형상이 일치하도록, 파면 계측기에 의해서 계측된 파면 형상의 변화를 고려한 파면 정형 패턴 정보를 상기 반사형 공간 광변조기에 더 입력하고,
렌즈로서의 기능을 가지는 제1 광학 소자 및 제2 광학 소자를 가짐과 아울러 상기 반사형 공간 광변조기와 상기 집광 광학계와의 사이의 광로 상에 배치되는 조정 광학계를 더 구비하며,
상기 제1 광학 소자 및 상기 제2 광학 소자는, 상기 반사형 공간 광변조기에서의 파면 형상과 상기 집광 광학계에서의 파면 형상을 상사적(相似的)으로 일치시킴과 아울러 상기 제1 광학 소자와 상기 제2 광학 소자가 양측 텔레센트릭(telecentric) 광학계가 되도록 배치되어 있는 것을 특징으로 하는 레이저 가공 장치. - 청구항 1에 있어서,
상기 반사형 공간 광변조기에는, 상기 파면 형상의 변화를 고려한 상기 파면 정형 패턴 정보로서, 상기 반사형 공간 광변조기로부터 상기 집광 광학계로 상기 레이저 광이 전파했을 때의 파면 형상의 변화를 구하고, 상기 반사형 공간 광변조기에서의 파면 형상과 상기 집광 광학계에서의 파면 형상이 일치하도록, 구해진 상기 파면 형상의 변화를 고려한 파면 정형 패턴 정보가 입력되는 것을 특징으로 하는 레이저 가공 장치. - 청구항 1에 있어서,
상기 제어부는, 상기 개질 영역을 형성할 때에, 상기 레이저 광의 집광점이 상기 가공 대상물의 레이저 광 입사면으로부터 소정의 거리에 위치하고 또한 상기 레이저 광의 집광점이 상기 절단 예정 라인을 따라서 상대적으로 이동하도록 상기 지지대 및 상기 집광 광학계 중 적어도 하나를 제어함과 아울러, 상기 가공 대상물의 내부에서 상기 레이저 광의 파면이 소정의 파면이 되도록 상기 반사형 공간 광변조기를 제어하는 것을 특징으로 하는 레이저 가공 장치. - 청구항 2에 있어서,
상기 제어부는, 상기 개질 영역을 형성할 때에, 상기 레이저 광의 집광점이 상기 가공 대상물의 레이저 광 입사면으로부터 소정의 거리에 위치하고 또한 상기 레이저 광의 집광점이 상기 절단 예정 라인을 따라서 상대적으로 이동하도록 상기 지지대 및 상기 집광 광학계 중 적어도 하나를 제어함과 아울러, 상기 가공 대상물의 내부에서 상기 레이저 광의 파면이 소정의 파면이 되도록 상기 반사형 공간 광변조기를 제어하는 것을 특징으로 하는 레이저 가공 장치. - 청구항 1 내지 청구항 4 중 어느 하나의 항에 있어서,
상기 제어부는, 상기 파면 정형 패턴 정보를 상기 반사형 공간 광변조기에 순서대로 입력하는 레이저 가공 장치. - 청구항 1 내지 청구항 4 중 어느 하나의 항에 있어서,
상기 제어부는, 미리 기억된 상기 파면 정형 패턴 정보로부터 선택한 상기 파면 정형 패턴 정보를 상기 반사형 공간 광변조기에 입력하는 레이저 가공 장치. - 가공 대상물을 지지하는 지지대와,
레이저 광을 출사하는 레이저 광원과,
상기 레이저 광원의 파면(波面)이 소정의 파면이 되도록 상기 레이저 광을 변조하는 반사형 공간 광변조기와,
상기 지지대에 의해서 지지된 상기 가공 대상물의 내부에, 상기 반사형 공간 광변조기에 의해서 변조된 상기 레이저 광을 집광하는 집광 광학계와,
상기 반사형 공간 광변조기에 입사한 레이저 광의 빔 파면을 변조시키기 위한 파면 정형 패턴 정보를 상기 반사형 공간 광변조기에 입력하는 제어부를 구비하며,
상기 가공 대상물의 내부에 집광점을 맞추어 상기 레이저 광을 조사하는 것에 의해, 상기 가공 대상물의 절단 예정 라인을 따라서, 절단의 기점이 되는 개질 영역을 형성하는 레이저 가공 장치의 제어 방법으로서,
상기 제어부가, 상기 가공 대상물의 내부에서 상기 레이저 광의 파면이 소정의 파면이 되도록, 상기 반사형 공간 광변조기에 입사한 레이저 광의 빔 파면을 변조시키기 위한 상기 파면 정형 패턴 정보와, 상기 반사형 공간 광변조기에서 변조되어 상기 반사형 공간 광변조기로부터 출사된 직후의 레이저 광의 파면 형상과 상기 집광 광학계에서의 파면 형상이 일치하도록, 파면 계측기에 의해서 계측된 파면 형상의 변화를 고려한 상기 파면 정형 패턴 정보를 상기 반사형 공간 광변조기에 입력하는 공정과,
상기 반사형 공간 광변조기가, 입력된 상기 파면 정형 패턴 정보에 기초하여 상기 반사형 공간 광변조기로부터 출사되는 상기 레이저 광의 빔 파면을 변조하는 공정을 포함하며,
상기 레이저 가공 장치는, 렌즈로서의 기능을 가지는 제1 광학 소자 및 제2 광학 소자를 가짐과 아울러 상기 반사형 공간 광변조기와 상기 집광 광학계와의 사이의 광로 상에 배치되는 조정 광학계를 더 구비하며,
상기 제1 광학 소자 및 상기 제2 광학 소자는, 상기 반사형 공간 광변조기에서의 파면 형상과 상기 집광 광학계에서의 파면 형상을 상사적(相似的)으로 일치시킴과 아울러 상기 제1 광학 소자와 상기 제2 광학 소자가 양측 텔레센트릭 광학계가 되도록 배치되어 있는 것을 특징으로 하는 레이저 가공 장치의 제어 방법. - 청구항 7에 있어서,
상기 반사형 공간 광변조기에는, 상기 파면 형상의 변화를 고려한 상기 파면 정형 패턴 정보로서, 상기 반사형 공간 광변조기로부터 상기 집광 광학계로 상기 레이저 광이 전파했을 때의 파면 형상의 변화를 구하고, 상기 반사형 공간 광변조기에서의 파면 형상과 상기 집광 광학계에서의 파면 형상이 일치하도록, 구해진 상기 파면 형상의 변화를 고려한 파면 정형 패턴 정보가 입력되는 것을 특징으로 하는 레이저 가공 장치의 제어 방법. - 청구항 8에 있어서,
상기 레이저 광의 파면 형상을 계측하는 파면 계측기에 의해서, 상기 반사형 공간 광변조기로부터 상기 집광 광학계로 상기 레이저 광이 전파했을 때의 파면 형상의 변화를 계측하는 공정을 더 포함하며,
상기 반사형 공간 광변조기에는, 상기 반사형 공간 광변조기에서의 파면 형상과 상기 집광 광학계에서의 파면 형상이 일치하도록, 상기 파면 계측기의 계측 결과에 기초하여 구해진 상기 파면 형상의 변화를 고려한 파면 정형 패턴 정보가 입력되는 레이저 가공 장치의 제어 방법. - 청구항 7에 있어서,
상기 제어부가, 상기 개질 영역을 형성할 때에, 상기 레이저 광의 집광점이 상기 가공 대상물의 레이저 광 입사면으로부터 소정의 거리에 위치하고 또한 상기 레이저 광의 집광점이 상기 절단 예정 라인을 따라서 상대적으로 이동하도록 상기 지지대 및 상기 집광 광학계 중 적어도 하나를 제어함과 아울러, 상기 가공 대상물의 내부에서 상기 레이저 광의 파면이 소정의 파면이 되도록 상기 반사형 공간 광변조기를 제어하는 공정을 더 포함하는 것을 특징으로 하는 레이저 가공 장치의 제어 방법. - 청구항 8에 있어서,
상기 제어부가, 상기 개질 영역을 형성할 때에, 상기 레이저 광의 집광점이 상기 가공 대상물의 레이저 광 입사면으로부터 소정의 거리에 위치하고 또한 상기 레이저 광의 집광점이 상기 절단 예정 라인을 따라서 상대적으로 이동하도록 상기 지지대 및 상기 집광 광학계 중 적어도 하나를 제어함과 아울러, 상기 가공 대상물의 내부에서 상기 레이저 광의 파면이 소정의 파면이 되도록 상기 반사형 공간 광변조기를 제어하는 공정을 더 포함하는 것을 특징으로 하는 레이저 가공 장치의 제어 방법. - 청구항 9에 있어서,
상기 제어부가, 상기 개질 영역을 형성할 때에, 상기 레이저 광의 집광점이 상기 가공 대상물의 레이저 광 입사면으로부터 소정의 거리에 위치하고 또한 상기 레이저 광의 집광점이 상기 절단 예정 라인을 따라서 상대적으로 이동하도록 상기 지지대 및 상기 집광 광학계 중 적어도 하나를 제어함과 아울러, 상기 가공 대상물의 내부에서 상기 레이저 광의 파면이 소정의 파면이 되도록 상기 반사형 공간 광변조기를 제어하는 공정을 더 포함하는 것을 특징으로 하는 레이저 가공 장치의 제어 방법. - 청구항 7 내지 청구항 12 중 어느 하나의 항에 있어서,
상기 제어부는, 상기 파면 정형 패턴 정보를 상기 반사형 공간 광변조기에 순서대로 입력하는 레이저 가공 장치의 제어 방법. - 청구항 7 내지 청구항 12 중 어느 하나의 항에 있어서,
상기 제어부는, 미리 기억된 상기 파면 정형 패턴 정보로부터 선택한 상기 파면 정형 패턴 정보를 상기 반사형 공간 광변조기에 입력하는 레이저 가공 장치의 제어 방법. - 가공 대상물의 내부에 집광점을 맞추어 레이저 광을 조사하는 것에 의해, 상기 가공 대상물의 절단 예정 라인을 따라서, 절단의 기점이 되는 개질 영역을 형성하는 레이저 장치의 제어 방법으로서,
상기 레이저 장치는,
상기 가공 대상물을 지지하는 지지대와,
상기 레이저 광을 출사하는 레이저 광원과,
상기 레이저 광원의 파면(波面)이 소정의 파면이 되도록 상기 레이저 광을 변조하는 반사형 공간 광변조기와,
상기 지지대에 의해서 지지된 상기 가공 대상물의 내부에, 상기 반사형 공간 광변조기에 의해서 변조된 상기 레이저 광을 집광하는 집광 광학계와,
상기 가공 대상물의 내부에서 상기 레이저 광의 파면이 소정의 파면이 되도록, 상기 반사형 공간 광변조기에 입사한 레이저 광의 빔 파면을 변조시키기 위한 파면 정형(整形) 패턴 정보를 상기 반사형 공간 광변조기에 입력하는 제어부와,
레이저 광의 광축 상에 배치된 파면 계측기를 구비하며,
상기 제어부가, 상기 반사형 공간 광변조기에서 변조되어 상기 반사형 공간 광변조기로부터 출사된 직후의 레이저 광의 파면 형상과 상기 파면 계측기에서의 파면 형상이 일치하도록, 파면 형상의 변화를 고려한 파면 정형 패턴 정보를 상기 반사형 공간 광변조기에 입력하고, 입력된 상기 파면 정형 패턴 정보에 기초하여 상기 반사형 공간 광변조기로부터 출사되는 상기 레이저 광의 빔 파면이 변조되도록 상기 반사형 공간 광변조기를 제어하는 공정을 포함하며,
상기 레이저 장치는, 렌즈로서의 기능을 가지는 제1 광학 소자 및 제2 광학 소자를 가짐과 아울러 상기 반사형 공간 광변조기와 상기 집광 광학계와의 사이의 광로 상에 배치되는 조정 광학계를 더 구비하며,
상기 제1 광학 소자 및 상기 제2 광학 소자는, 상기 반사형 공간 광변조기에서의 파면 형상과 상기 집광 광학계에서의 파면 형상을 상사적(相似的)으로 일치시킴과 아울러 상기 제1 광학 소자와 상기 제2 광학 소자가 양측 텔레센트릭 광학계가 되도록 배치되어 있는 것을 특징으로 하는 레이저 장치의 제어 방법. - 청구항 15에 있어서,
상기 제어부가, 상기 개질 영역을 형성할 때에, 상기 레이저 광의 집광점이 상기 가공 대상물의 레이저 광 입사면으로부터 소정의 거리에 위치하고 또한 상기 레이저 광의 집광점이 상기 절단 예정 라인을 따라서 상대적으로 이동하도록 상기 지지대 및 상기 집광 광학계 중 적어도 하나를 제어함과 아울러, 상기 가공 대상물의 내부에서 상기 레이저 광의 파면이 소정의 파면이 되도록 상기 반사형 공간 광변조기를 제어하는 공정을 더 포함하는 것을 특징으로 하는 레이저 장치의 제어 방법. - 청구항 15 또는 청구항 16에 있어서,
상기 제어부는, 상기 파면 정형 패턴 정보를 상기 반사형 공간 광변조기에 순서대로 입력하는 레이저 장치의 제어 방법. - 청구항 15 또는 청구항 16에 있어서,
상기 제어부는, 미리 기억된 상기 파면 정형 패턴 정보로부터 선택한 상기 파면 정형 패턴 정보를 상기 반사형 공간 광변조기에 입력하는 레이저 장치의 제어 방법. - 가공 대상물을 지지하는 지지대와,
레이저 광을 출사하는 레이저 광원과,
상기 레이저 광원의 파면(波面)이 소정의 파면이 되도록 상기 레이저 광을 변조하는 반사형 공간 광변조기와,
상기 지지대에 의해서 지지된 상기 가공 대상물의 내부에, 상기 반사형 공간 광변조기에 의해서 변조된 상기 레이저 광을 집광하는 집광 광학계와,
상기 가공 대상물의 내부에서 상기 레이저 광의 파면이 소정의 파면이 되도록, 상기 반사형 공간 광변조기에 입사한 레이저 광의 빔 파면을 변조시키기 위한 파면 정형(整形) 패턴 정보를 상기 반사형 공간 광변조기에 입력하는 제어부를 구비하며,
상기 가공 대상물의 내부에 집광점을 맞추어 상기 레이저 광을 조사하는 것에 의해, 상기 가공 대상물의 절단 예정 라인을 따라서, 절단의 기점이 되는 개질 영역을 형성하는 레이저 장치의 조정 방법으로서,
상기 레이저 광의 광축 상에 파면 계측기를 배치하는 공정과,
상기 제어부가, 상기 반사형 공간 광변조기에서 변조되어 상기 반사형 공간 광변조기로부터 출사된 직후의 레이저 광의 파면 형상과 상기 파면 계측기에서의 파면 형상이 일치하도록, 파면 형상의 변화를 고려한 상기 파면 정형 패턴 정보를 상기 반사형 공간 광변조기에 입력하고, 입력된 상기 파면 정형 패턴 정보에 기초하여 상기 반사형 공간 광변조기로부터 출사되는 상기 레이저 광의 빔 파면이 변조되도록 상기 반사형 공간 광변조기를 제어하는 공정을 포함하며,
상기 레이저 장치는, 렌즈로서의 기능을 가지는 제1 광학 소자 및 제2 광학 소자를 가짐과 아울러 상기 반사형 공간 광변조기와 상기 집광 광학계와의 사이의 광로 상에 배치되는 조정 광학계를 더 구비하며,
상기 제1 광학 소자 및 상기 제2 광학 소자는, 상기 반사형 공간 광변조기에서의 파면 형상과 상기 집광 광학계에서의 파면 형상을 상사적(相似的)으로 일치시킴과 아울러 상기 제1 광학 소자와 상기 제2 광학 소자가 양측 텔레센트릭(telecentric) 광학계가 되도록 배치되어 있는 것을 특징으로 하는 레이저 장치의 조정 방법. - 청구항 19에 있어서,
상기 제어부가, 상기 개질 영역을 형성할 때에, 상기 레이저 광의 집광점이 상기 가공 대상물의 레이저 광 입사면으로부터 소정의 거리에 위치하고 또한 상기 레이저 광의 집광점이 상기 절단 예정 라인을 따라서 상대적으로 이동하도록 상기 지지대 및 상기 집광 광학계 중 적어도 하나를 제어함과 아울러, 상기 가공 대상물의 내부에서 상기 레이저 광의 파면이 소정의 파면이 되도록 상기 반사형 공간 광변조기를 제어하는 공정을 더 포함하는 것을 특징으로 하는 레이저 장치의 조정 방법. - 청구항 19 또는 청구항 20에 있어서,
상기 제어부는, 상기 파면 정형 패턴 정보를 상기 반사형 공간 광변조기에 순서대로 입력하는 레이저 장치의 조정 방법. - 청구항 19 또는 청구항 20에 있어서,
상기 제어부는, 미리 기억된 상기 파면 정형 패턴 정보로부터 선택한 상기 파면 정형 패턴 정보를 상기 반사형 공간 광변조기에 입력하는 레이저 장치의 조정 방법. - 가공 대상물의 내부에 집광점을 맞추어 레이저 광을 조사하는 것에 의해, 상기 가공 대상물의 절단 예정 라인을 따라서, 절단의 기점(起点)이 되는 개질(改質) 영역을 형성하는 레이저 가공 장치로서,
상기 가공 대상물을 지지하는 지지대와,
상기 레이저 광을 출사하는 레이저 광원과,
상기 레이저 광원의 파면(波面)이 소정의 파면이 되도록 상기 레이저 광을 변조하는 반사형 공간 광변조기와,
상기 지지대에 의해서 지지된 상기 가공 대상물의 내부에, 상기 반사형 공간 광변조기에 의해서 변조된 상기 레이저 광을 집광하는 집광 렌즈와,
상기 가공 대상물의 내부에 집광되는 상기 레이저 광의 수차가 소정의 수차이하가 되도록, 상기 반사형 공간 광변조기에 입사한 레이저 광의 빔 파면을 변조시키기 위한 파면 정형(整形) 패턴 정보를 상기 반사형 공간 광변조기에 입력하고, 입력된 상기 파면 정형 패턴 정보에 기초하여 상기 반사형 공간 광변조기로부터 출사되는 상기 레이저 광의 빔 파면이 변조되도록 상기 반사형 공간 광변조기를 제어하는 제어부를 구비하며,
상기 제어부는, 상기 반사형 공간 광변조기에 입력하는 상기 파면 정형 패턴 정보로서, 상기 반사형 공간 광변조기에서 변조되어 상기 반사형 공간 광변조기로부터 출사된 직후의 레이저 광의 파면 형상과 상기 집광 렌즈에서의 파면 형상이 일치하도록, 파면 계측기에 의해서 계측된 파면 형상의 변화를 더 고려한 상기 파면 정형 패턴 정보를 입력하고,
렌즈로서의 기능을 가지는 제1 광학 소자 및 제2 광학 소자를 가짐과 아울러 상기 반사형 공간 광변조기와 상기 집광 렌즈와의 사이의 광로 상에 배치되는 조정 광학계를 더 구비하며,
상기 제1 광학 소자 및 상기 제2 광학 소자는, 상기 반사형 공간 광변조기에서의 파면 형상과 상기 집광 렌즈에서의 파면 형상을 상사적(相似的)으로 일치시킴과 아울러 상기 제1 광학 소자와 상기 제2 광학 소자가 양측 텔레센트릭(telecentric) 광학계가 되도록 배치되어 있는 것을 특징으로 하는 레이저 가공 장치. - 청구항 23에 있어서,
상기 반사형 공간 광변조기에는, 상기 파면 형상의 변화를 더 고려한 상기 파면 정형 패턴 정보로서, 상기 반사형 공간 광변조기로부터 상기 집광 렌즈로 상기 레이저 광이 전파했을 때의 파면 형상의 변화를 구하고, 상기 반사형 공간 광변조기에서의 파면 형상과 상기 집광 렌즈에서의 파면 형상이 일치하도록, 구해진 상기 파면 형상의 변화를 고려한 상기 파면 정형 패턴 정보가 입력되는 것을 특징으로 하는 레이저 가공 장치. - 삭제
- 삭제
- 청구항 23에 있어서,
상기 제어부는, 상기 개질 영역을 형성할 때에, 상기 레이저 광의 집광점이 상기 가공 대상물의 레이저 광 입사면으로부터 소정의 거리에 위치하고 또한 상기 레이저 광의 집광점이 상기 절단 예정 라인을 따라서 상대적으로 이동하도록 상기 지지대 및 상기 집광 렌즈 중 적어도 하나를 제어함과 아울러, 상기 파면 정형 패턴 정보를 입력하는 것에 의해서 상기 반사형 공간 광변조기를 제어하는 것을 특징으로 하는 레이저 가공 장치. - 삭제
- 삭제
- 삭제
- 청구항 23, 청구항 24 및 청구항 27 중 어느 하나의 항에 있어서,
상기 제어부는, 상기 파면 정형 패턴 정보를 상기 반사형 공간 광변조기에 순서대로 입력하는 레이저 가공 장치. - 청구항 23, 청구항 24 및 청구항 27 중 어느 하나의 항에 있어서,
상기 제어부는, 미리 기억된 상기 파면 정형 패턴 정보로부터 선택한 상기 파면 정형 패턴 정보를 상기 반사형 공간 광변조기에 입력하는 레이저 가공 장치. - 가공 대상물을 지지하는 지지대와,
레이저 광을 출사하는 레이저 광원과,
상기 레이저 광원의 파면(波面)이 소정의 파면이 되도록 상기 레이저 광을 변조하는 반사형 공간 광변조기와,
상기 지지대에 의해서 지지된 상기 가공 대상물의 내부에, 상기 반사형 공간 광변조기에 의해서 변조된 상기 레이저 광을 집광하는 집광 렌즈와,
상기 반사형 공간 광변조기에 입사한 레이저 광의 빔 파면을 변조시키기 위한 파면 정형 패턴 정보를 상기 반사형 공간 광변조기에 입력하는 제어부를 구비하며,
상기 가공 대상물의 내부에 집광점을 맞추어 상기 레이저 광을 조사하는 것에 의해, 상기 가공 대상물의 절단 예정 라인을 따라서, 절단의 기점이 되는 개질 영역을 형성하는 레이저 가공 장치의 제어 방법으로서,
상기 제어부가, 상기 가공 대상물의 내부에 집광되는 상기 레이저 광의 수차가 소정의 수차이하가 되도록 상기 반사형 공간 광변조기에 입사한 상기 레이저 광의 빔 파면을 변조시키기 위한 상기 파면 정형 패턴 정보로서, 상기 반사형 공간 광변조기에서 변조되어 상기 반사형 공간 광변조기로부터 출사된 직후의 레이저 광의 파면 형상과 상기 집광 렌즈에서의 파면 형상이 일치하도록, 파면 계측기에 의해서 계측된 파면 형상의 변화를 더 고려한 상기 파면 정형 패턴 정보를 상기 반사형 공간 광변조기에 입력하는 공정과,
상기 반사형 공간 광변조기가, 입력된 상기 파면 정형 패턴 정보에 기초하여 상기 반사형 공간 광변조기로부터 출사되는 상기 레이저 광의 빔 파면을 변조하는 공정을 포함하며,
상기 레이저 가공 장치는, 렌즈로서의 기능을 가지는 제1 광학 소자 및 제2 광학 소자를 가짐과 아울러 상기 반사형 공간 광변조기와 상기 집광 렌즈와의 사이의 광로 상에 배치되는 조정 광학계를 더 구비하며,
상기 제1 광학 소자 및 상기 제2 광학 소자는, 상기 반사형 공간 광변조기에서의 파면 형상과 상기 집광 렌즈에서의 파면 형상을 상사적(相似的)으로 일치시킴과 아울러 상기 제1 광학 소자와 상기 제2 광학 소자가 양측 텔레센트릭 광학계가 되도록 배치되어 있는 것을 특징으로 하는 레이저 가공 장치의 제어 방법. - 청구항 33에 있어서,
상기 반사형 공간 광변조기에는, 상기 파면 형상의 변화를 고려한 상기 파면 정형 패턴 정보로서, 상기 반사형 공간 광변조기로부터 상기 집광 렌즈로 상기 레이저 광이 전파했을 때의 파면 형상의 변화를 구하고, 상기 반사형 공간 광변조기에서의 파면 형상과 상기 집광 렌즈에서의 파면 형상이 일치하도록, 구해진 상기 파면 형상의 변화를 고려한 파면 정형 패턴 정보가 입력되는 것을 특징으로 하는 레이저 가공 장치의 제어 방법. - 청구항 34에 있어서,
상기 레이저 광의 파면 형상을 계측하는 파면 계측기에 의해서, 상기 반사형 공간 광변조기로부터 상기 집광 렌즈로 상기 레이저 광이 전파했을 때의 파면 형상의 변화를 계측하는 공정을 더 포함하며,
상기 반사형 공간 광변조기에는, 상기 파면 형상의 변화를 더 고려한 상기 파면 정형 패턴 정보로서, 상기 반사형 공간 광변조기에서의 파면 형상과 상기 집광 렌즈에서의 파면 형상이 일치하도록, 상기 파면 계측기의 계측 결과에 기초하여 구해진 상기 파면 정형 패턴 정보가 입력되는 레이저 가공 장치의 제어 방법. - 삭제
- 삭제
- 삭제
- 청구항 33에 있어서,
상기 제어부가, 상기 개질 영역을 형성할 때에, 상기 레이저 광의 집광점이 상기 가공 대상물의 레이저 광 입사면으로부터 소정의 거리에 위치하고 또한 상기 레이저 광의 집광점이 상기 절단 예정 라인을 따라서 상대적으로 이동하도록 상기 지지대 및 상기 집광 렌즈 중 적어도 하나를 제어함과 아울러, 상기 파면 정형 패턴 정보를 입력하는 것에 의해서 상기 반사형 공간 광변조기를 제어하는 공정을 더 포함하는 것을 특징으로 하는 레이저 가공 장치의 제어 방법. - 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 청구항 33, 청구항 34, 청구항 35 및 청구항 39 중 어느 하나의 항에 있어서,
상기 제어부는, 상기 파면 정형 패턴 정보를 상기 반사형 공간 광변조기에 순서대로 입력하는 레이저 가공 장치의 제어 방법. - 청구항 33, 청구항 34, 청구항 35 및 청구항 39 중 어느 하나의 항에 있어서,
상기 제어부는, 미리 기억된 상기 파면 정형 패턴 정보로부터 선택한 상기 파면 정형 패턴 정보를 상기 반사형 공간 광변조기에 입력하는 레이저 가공 장치의 제어 방법. - 가공 대상물의 내부에 집광점을 맞추어 레이저 광을 조사하는 것에 의해, 상기 가공 대상물의 절단 예정 라인을 따라서, 절단의 기점이 되는 개질 영역을 형성하는 레이저 장치의 제어 방법으로서,
상기 레이저 장치는,
상기 가공 대상물을 지지하는 지지대와,
상기 레이저 광을 출사하는 레이저 광원과,
상기 레이저 광원의 파면(波面)이 소정의 파면이 되도록 상기 레이저 광을 변조하는 반사형 공간 광변조기와,
상기 지지대에 의해서 지지된 상기 가공 대상물의 내부에, 상기 반사형 공간 광변조기에 의해서 변조된 상기 레이저 광을 집광하는 집광 렌즈와,
상기 가공 대상물의 내부에 집광되는 상기 레이저 광의 수차가 소정의 수차이하가 되도록, 상기 반사형 공간 광변조기에 입사한 레이저 광의 빔 파면을 변조시키기 위한 파면 정형(整形) 패턴 정보를 상기 반사형 공간 광변조기에 입력하는 제어부와,
레이저 광의 광축 상에 배치된 파면 계측기를 구비하며,
상기 제어부가, 상기 반사형 공간 광변조기에 입력하는 상기 파면 정형 패턴 정보로서, 상기 반사형 공간 광변조기에서 변조되어 상기 반사형 공간 광변조기로부터 출사된 직후의 레이저 광의 파면 형상과 상기 파면 계측기에서의 파면 형상이 일치하도록, 파면 형상의 변화를 고려한 파면 정형 패턴 정보를 상기 반사형 공간 광변조기에 입력하고, 입력된 상기 파면 정형 패턴 정보에 기초하여 상기 반사형 공간 광변조기로부터 출사되는 상기 레이저 광의 빔 파면이 변조되도록 상기 반사형 공간 광변조기를 제어하는 공정을 포함하며,
상기 레이저 장치는, 렌즈로서의 기능을 가지는 제1 광학 소자 및 제2 광학 소자를 가짐과 아울러 상기 반사형 공간 광변조기와 상기 집광 렌즈와의 사이의 광로 상에 배치되는 조정 광학계를 더 구비하며,
상기 제1 광학 소자 및 상기 제2 광학 소자는, 상기 반사형 공간 광변조기에서의 파면 형상과 상기 집광 렌즈에서의 파면 형상을 상사적(相似的)으로 일치시킴과 아울러 상기 제1 광학 소자와 상기 제2 광학 소자가 양측 텔레센트릭 광학계가 되도록 배치되어 있는 것을 특징으로 하는 레이저 장치의 제어 방법. - 삭제
- 청구항 47에 있어서,
상기 제어부가, 상기 개질 영역을 형성할 때에, 상기 레이저 광의 집광점이 상기 가공 대상물의 레이저 광 입사면으로부터 소정의 거리에 위치하고 또한 상기 레이저 광의 집광점이 상기 절단 예정 라인을 따라서 상대적으로 이동하도록 상기 지지대 및 상기 집광 렌즈 중 적어도 하나를 제어함과 아울러, 상기 파면 정형 패턴 정보를 입력하는 것에 의해서 상기 반사형 공간 광변조기를 제어하는 공정을 더 포함하는 것을 특징으로 하는 레이저 장치의 제어 방법. - 삭제
- 청구항 47 또는 청구항 49에 있어서,
상기 제어부는, 상기 파면 정형 패턴 정보를 상기 반사형 공간 광변조기에 순서대로 입력하는 레이저 장치의 제어 방법. - 청구항 47 또는 청구항 49에 있어서,
상기 제어부는, 미리 기억된 상기 파면 정형 패턴 정보로부터 선택한 상기 파면 정형 패턴 정보를 상기 반사형 공간 광변조기에 입력하는 레이저 장치의 제어 방법. - 가공 대상물을 지지하는 지지대와,
레이저 광을 출사하는 레이저 광원과,
상기 레이저 광원의 파면(波面)이 소정의 파면이 되도록 상기 레이저 광을 변조하는 반사형 공간 광변조기와,
상기 지지대에 의해서 지지된 상기 가공 대상물의 내부에, 상기 반사형 공간 광변조기에 의해서 변조된 상기 레이저 광을 집광하는 집광 렌즈와,
상기 가공 대상물의 내부에서 상기 레이저 광의 수차가 소정의 수차이하가 되도록, 상기 반사형 공간 광변조기에 입사한 레이저 광의 빔 파면을 변조시키기 위한 파면 정형(整形) 패턴 정보를 상기 반사형 공간 광변조기에 입력하는 제어부를 구비하며,
상기 가공 대상물의 내부에 집광점을 맞추어 상기 레이저 광을 조사하는 것에 의해, 상기 가공 대상물의 절단 예정 라인을 따라서, 절단의 기점이 되는 개질 영역을 형성하는 레이저 장치의 조정 방법으로서,
상기 레이저 광의 광축 상에 파면 계측기를 배치하는 공정과,
상기 제어부가, 상기 반사형 공간 광변조기에 입력하는 상기 파면 정형 패턴 정보로서, 상기 반사형 공간 광변조기에서 변조되어 상기 반사형 공간 광변조기로부터 출사된 직후의 레이저 광의 파면 형상과 상기 파면 계측기에서의 파면 형상이 일치하도록, 파면 형상의 변화를 고려한 상기 파면 정형 패턴 정보를 상기 반사형 공간 광변조기에 입력하고, 입력된 상기 파면 정형 패턴 정보에 기초하여 상기 반사형 공간 광변조기로부터 출사되는 상기 레이저 광의 빔 파면이 변조되도록 상기 반사형 공간 광변조기를 제어하는 공정을 포함하며,
상기 레이저 장치는, 렌즈로서의 기능을 가지는 제1 광학 소자 및 제2 광학 소자를 가짐과 아울러 상기 반사형 공간 광변조기와 상기 집광 렌즈와의 사이의 광로 상에 배치되는 조정 광학계를 더 구비하며,
상기 제1 광학 소자 및 상기 제2 광학 소자는, 상기 반사형 공간 광변조기에서의 파면 형상과 상기 집광 렌즈에서의 파면 형상을 상사적(相似的)으로 일치시킴과 아울러 상기 제1 광학 소자와 상기 제2 광학 소자가 양측 텔레센트릭(telecentric) 광학계가 되도록 배치되어 있는 것을 특징으로 하는 레이저 장치의 조정 방법. - 삭제
- 청구항 53에 있어서,
상기 제어부가, 상기 개질 영역을 형성할 때에, 상기 레이저 광의 집광점이 상기 가공 대상물의 레이저 광 입사면으로부터 소정의 거리에 위치하고 또한 상기 레이저 광의 집광점이 상기 절단 예정 라인을 따라서 상대적으로 이동하도록 상기 지지대 및 상기 집광 렌즈 중 적어도 하나를 제어함과 아울러, 상기 파면 정형 패턴 정보를 입력하는 것에 의해서 상기 반사형 공간 광변조기를 제어하는 공정을 더 포함하는 것을 특징으로 하는 레이저 장치의 조정 방법. - 삭제
- 청구항 53 또는 청구항 55에 있어서,
상기 제어부는, 상기 파면 정형 패턴 정보를 상기 반사형 공간 광변조기에 순서대로 입력하는 레이저 장치의 조정 방법. - 청구항 53 또는 청구항 55에 있어서,
상기 제어부는, 미리 기억된 상기 파면 정형 패턴 정보로부터 선택한 상기 파면 정형 패턴 정보를 상기 반사형 공간 광변조기에 입력하는 레이저 장치의 조정 방법.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007203529A JP4402708B2 (ja) | 2007-08-03 | 2007-08-03 | レーザ加工方法、レーザ加工装置及びその製造方法 |
JPJP-P-2007-203529 | 2007-08-03 | ||
PCT/JP2008/063531 WO2009020004A1 (ja) | 2007-08-03 | 2008-07-28 | レーザ加工方法、レーザ加工装置及びその製造方法 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020147017879A Division KR101564523B1 (ko) | 2007-08-03 | 2008-07-28 | 레이저 가공 방법, 레이저 가공 장치 및 그 제조 방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20150039875A KR20150039875A (ko) | 2015-04-13 |
KR101711311B1 true KR101711311B1 (ko) | 2017-02-28 |
Family
ID=40341239
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020107001324A KR101013286B1 (ko) | 2007-08-03 | 2008-07-28 | 레이저 가공 방법, 레이저 가공 장치 및 그 제조 방법 |
KR1020127010532A KR101302336B1 (ko) | 2007-08-03 | 2008-07-28 | 레이저 가공 방법, 레이저 가공 장치 및 그 제조 방법 |
KR1020157007615A KR101711311B1 (ko) | 2007-08-03 | 2008-07-28 | 레이저 가공 방법, 레이저 가공 장치 및 그 제조 방법 |
KR1020137026492A KR101711247B1 (ko) | 2007-08-03 | 2008-07-28 | 레이저 가공 방법, 레이저 가공 장치 및 그 제조 방법 |
KR1020107020140A KR101212936B1 (ko) | 2007-08-03 | 2008-07-28 | 레이저 가공 방법, 레이저 가공 장치 및 그 제조 방법 |
KR1020137001188A KR101402475B1 (ko) | 2007-08-03 | 2008-07-28 | 레이저 가공 방법, 레이저 가공 장치 및 그 제조 방법 |
KR1020147017879A KR101564523B1 (ko) | 2007-08-03 | 2008-07-28 | 레이저 가공 방법, 레이저 가공 장치 및 그 제조 방법 |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020107001324A KR101013286B1 (ko) | 2007-08-03 | 2008-07-28 | 레이저 가공 방법, 레이저 가공 장치 및 그 제조 방법 |
KR1020127010532A KR101302336B1 (ko) | 2007-08-03 | 2008-07-28 | 레이저 가공 방법, 레이저 가공 장치 및 그 제조 방법 |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020137026492A KR101711247B1 (ko) | 2007-08-03 | 2008-07-28 | 레이저 가공 방법, 레이저 가공 장치 및 그 제조 방법 |
KR1020107020140A KR101212936B1 (ko) | 2007-08-03 | 2008-07-28 | 레이저 가공 방법, 레이저 가공 장치 및 그 제조 방법 |
KR1020137001188A KR101402475B1 (ko) | 2007-08-03 | 2008-07-28 | 레이저 가공 방법, 레이저 가공 장치 및 그 제조 방법 |
KR1020147017879A KR101564523B1 (ko) | 2007-08-03 | 2008-07-28 | 레이저 가공 방법, 레이저 가공 장치 및 그 제조 방법 |
Country Status (7)
Country | Link |
---|---|
US (3) | US8134099B2 (ko) |
EP (1) | EP2186596B1 (ko) |
JP (1) | JP4402708B2 (ko) |
KR (7) | KR101013286B1 (ko) |
CN (4) | CN102019508B (ko) |
TW (3) | TWI573649B (ko) |
WO (1) | WO2009020004A1 (ko) |
Families Citing this family (139)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4659300B2 (ja) * | 2000-09-13 | 2011-03-30 | 浜松ホトニクス株式会社 | レーザ加工方法及び半導体チップの製造方法 |
WO2003076119A1 (en) * | 2002-03-12 | 2003-09-18 | Hamamatsu Photonics K.K. | Method of cutting processed object |
TWI326626B (en) * | 2002-03-12 | 2010-07-01 | Hamamatsu Photonics Kk | Laser processing method |
EP3664131A3 (en) | 2002-03-12 | 2020-08-19 | Hamamatsu Photonics K. K. | Substrate dividing method |
TWI520269B (zh) | 2002-12-03 | 2016-02-01 | Hamamatsu Photonics Kk | Cutting method of semiconductor substrate |
FR2852250B1 (fr) * | 2003-03-11 | 2009-07-24 | Jean Luc Jouvin | Fourreau de protection pour canule, un ensemble d'injection comportant un tel fourreau et aiguille equipee d'un tel fourreau |
EP1609559B1 (en) * | 2003-03-12 | 2007-08-08 | Hamamatsu Photonics K. K. | Laser beam machining method |
US7605344B2 (en) * | 2003-07-18 | 2009-10-20 | Hamamatsu Photonics K.K. | Laser beam machining method, laser beam machining apparatus, and laser beam machining product |
JP4563097B2 (ja) | 2003-09-10 | 2010-10-13 | 浜松ホトニクス株式会社 | 半導体基板の切断方法 |
JP4509578B2 (ja) | 2004-01-09 | 2010-07-21 | 浜松ホトニクス株式会社 | レーザ加工方法及びレーザ加工装置 |
JP4598407B2 (ja) * | 2004-01-09 | 2010-12-15 | 浜松ホトニクス株式会社 | レーザ加工方法及びレーザ加工装置 |
JP4601965B2 (ja) * | 2004-01-09 | 2010-12-22 | 浜松ホトニクス株式会社 | レーザ加工方法及びレーザ加工装置 |
JP5138219B2 (ja) | 2004-03-30 | 2013-02-06 | 浜松ホトニクス株式会社 | レーザ加工方法 |
CN100548564C (zh) * | 2004-08-06 | 2009-10-14 | 浜松光子学株式会社 | 激光加工方法及半导体装置 |
JP4762653B2 (ja) * | 2005-09-16 | 2011-08-31 | 浜松ホトニクス株式会社 | レーザ加工方法及びレーザ加工装置 |
JP4907965B2 (ja) * | 2005-11-25 | 2012-04-04 | 浜松ホトニクス株式会社 | レーザ加工方法 |
JP4804911B2 (ja) * | 2005-12-22 | 2011-11-02 | 浜松ホトニクス株式会社 | レーザ加工装置 |
JP4907984B2 (ja) | 2005-12-27 | 2012-04-04 | 浜松ホトニクス株式会社 | レーザ加工方法及び半導体チップ |
JP5183892B2 (ja) | 2006-07-03 | 2013-04-17 | 浜松ホトニクス株式会社 | レーザ加工方法 |
US7897487B2 (en) | 2006-07-03 | 2011-03-01 | Hamamatsu Photonics K.K. | Laser processing method and chip |
JP4954653B2 (ja) | 2006-09-19 | 2012-06-20 | 浜松ホトニクス株式会社 | レーザ加工方法 |
CN102489883B (zh) * | 2006-09-19 | 2015-12-02 | 浜松光子学株式会社 | 激光加工方法和激光加工装置 |
JP5101073B2 (ja) * | 2006-10-02 | 2012-12-19 | 浜松ホトニクス株式会社 | レーザ加工装置 |
JP5132911B2 (ja) * | 2006-10-03 | 2013-01-30 | 浜松ホトニクス株式会社 | レーザ加工方法 |
JP4964554B2 (ja) * | 2006-10-03 | 2012-07-04 | 浜松ホトニクス株式会社 | レーザ加工方法 |
EP2070636B1 (en) * | 2006-10-04 | 2015-08-05 | Hamamatsu Photonics K.K. | Laser processing method |
JP5336054B2 (ja) * | 2007-07-18 | 2013-11-06 | 浜松ホトニクス株式会社 | 加工情報供給装置を備える加工情報供給システム |
JP4402708B2 (ja) | 2007-08-03 | 2010-01-20 | 浜松ホトニクス株式会社 | レーザ加工方法、レーザ加工装置及びその製造方法 |
JP5449665B2 (ja) * | 2007-10-30 | 2014-03-19 | 浜松ホトニクス株式会社 | レーザ加工方法 |
JP5054496B2 (ja) * | 2007-11-30 | 2012-10-24 | 浜松ホトニクス株式会社 | 加工対象物切断方法 |
JP5134928B2 (ja) * | 2007-11-30 | 2013-01-30 | 浜松ホトニクス株式会社 | 加工対象物研削方法 |
JP5692969B2 (ja) | 2008-09-01 | 2015-04-01 | 浜松ホトニクス株式会社 | 収差補正方法、この収差補正方法を用いたレーザ加工方法、この収差補正方法を用いたレーザ照射方法、収差補正装置、及び、収差補正プログラム |
JP5254761B2 (ja) | 2008-11-28 | 2013-08-07 | 浜松ホトニクス株式会社 | レーザ加工装置 |
JP5241527B2 (ja) | 2009-01-09 | 2013-07-17 | 浜松ホトニクス株式会社 | レーザ加工装置 |
JP5241525B2 (ja) | 2009-01-09 | 2013-07-17 | 浜松ホトニクス株式会社 | レーザ加工装置 |
WO2010090111A1 (ja) | 2009-02-09 | 2010-08-12 | 浜松ホトニクス株式会社 | 加工対象物切断方法 |
CN102317030B (zh) | 2009-04-07 | 2014-08-20 | 浜松光子学株式会社 | 激光加工装置以及激光加工方法 |
JP5491761B2 (ja) * | 2009-04-20 | 2014-05-14 | 浜松ホトニクス株式会社 | レーザ加工装置 |
JP5451238B2 (ja) * | 2009-08-03 | 2014-03-26 | 浜松ホトニクス株式会社 | レーザ加工方法 |
JP5775265B2 (ja) * | 2009-08-03 | 2015-09-09 | 浜松ホトニクス株式会社 | レーザ加工方法及び半導体装置の製造方法 |
US8932510B2 (en) | 2009-08-28 | 2015-01-13 | Corning Incorporated | Methods for laser cutting glass substrates |
US8946590B2 (en) | 2009-11-30 | 2015-02-03 | Corning Incorporated | Methods for laser scribing and separating glass substrates |
JP5479925B2 (ja) * | 2010-01-27 | 2014-04-23 | 浜松ホトニクス株式会社 | レーザ加工システム |
JP5479924B2 (ja) * | 2010-01-27 | 2014-04-23 | 浜松ホトニクス株式会社 | レーザ加工方法 |
JP5980471B2 (ja) * | 2010-02-26 | 2016-08-31 | 浜松ホトニクス株式会社 | 収差補正方法、この収差補正方法を用いた顕微鏡観察方法、この収差補正方法を用いたレーザ照射方法、収差補正装置、及び、収差補正プログラム |
JP2011201759A (ja) * | 2010-03-05 | 2011-10-13 | Namiki Precision Jewel Co Ltd | 多層膜付き単結晶基板、多層膜付き単結晶基板の製造方法および素子製造方法 |
US8939766B2 (en) * | 2010-04-19 | 2015-01-27 | Alan Wong | Dental tools for photo-curing of dental fillings |
US20120264077A1 (en) * | 2011-04-13 | 2012-10-18 | Alan Wong | Dental Tools for Photo-Curing of Dental Filings |
DE112011100039B4 (de) * | 2010-06-14 | 2014-01-02 | Mitsubishi Electric Corp. | Laserbearbeitungsvorrichtung und Laserbearbeitungsverfahren |
JP5597051B2 (ja) * | 2010-07-21 | 2014-10-01 | 浜松ホトニクス株式会社 | レーザ加工方法 |
JP5597052B2 (ja) * | 2010-07-21 | 2014-10-01 | 浜松ホトニクス株式会社 | レーザ加工方法 |
WO2012014709A1 (ja) * | 2010-07-26 | 2012-02-02 | 浜松ホトニクス株式会社 | レーザ加工方法 |
JP2012037572A (ja) | 2010-08-03 | 2012-02-23 | Hamamatsu Photonics Kk | レーザ光整形及び波面制御用光学系 |
TWI513670B (zh) | 2010-08-31 | 2015-12-21 | Corning Inc | 分離強化玻璃基板之方法 |
US8722516B2 (en) | 2010-09-28 | 2014-05-13 | Hamamatsu Photonics K.K. | Laser processing method and method for manufacturing light-emitting device |
KR101124347B1 (ko) * | 2011-01-25 | 2012-03-23 | 주식회사아톤 | 사각 방향으로 조사되는 스캔된 레이저 빔을 이용한 대상물의 가공 방법 및 그 장치 |
JP5848877B2 (ja) | 2011-02-14 | 2016-01-27 | 浜松ホトニクス株式会社 | レーザ光整形及び波面制御用光学系 |
WO2013039162A1 (ja) * | 2011-09-16 | 2013-03-21 | 浜松ホトニクス株式会社 | レーザ加工方法及びレーザ加工装置 |
JP2013063454A (ja) * | 2011-09-16 | 2013-04-11 | Hamamatsu Photonics Kk | レーザ加工方法及びレーザ加工装置 |
JP5775811B2 (ja) * | 2011-12-26 | 2015-09-09 | 浜松ホトニクス株式会社 | レーザ加工装置及びレーザ加工方法 |
US10357850B2 (en) * | 2012-09-24 | 2019-07-23 | Electro Scientific Industries, Inc. | Method and apparatus for machining a workpiece |
TW201343296A (zh) * | 2012-03-16 | 2013-11-01 | Ipg Microsystems Llc | 使一工件中具有延伸深度虛飾之雷射切割系統及方法 |
JP6009225B2 (ja) * | 2012-05-29 | 2016-10-19 | 浜松ホトニクス株式会社 | 強化ガラス板の切断方法 |
US9938180B2 (en) | 2012-06-05 | 2018-04-10 | Corning Incorporated | Methods of cutting glass using a laser |
TWI606880B (zh) * | 2012-09-13 | 2017-12-01 | Hamamatsu Photonics Kk | Optical modulation control method, control program, control device, and laser light irradiation device |
CN104620163B (zh) * | 2012-09-13 | 2018-03-27 | 浜松光子学株式会社 | 光调制控制方法、控制程序、控制装置和激光照射装置 |
US9610653B2 (en) | 2012-09-21 | 2017-04-04 | Electro Scientific Industries, Inc. | Method and apparatus for separation of workpieces and articles produced thereby |
JP6036173B2 (ja) * | 2012-10-31 | 2016-11-30 | 三星ダイヤモンド工業株式会社 | レーザー加工装置 |
JP6121733B2 (ja) | 2013-01-31 | 2017-04-26 | 浜松ホトニクス株式会社 | レーザ加工装置及びレーザ加工方法 |
DE112014001653B4 (de) * | 2013-03-27 | 2024-06-06 | Hamamatsu Photonics K.K. | Laserbearbeitungsvorrichtung und Laserbearbeitungsverfahren |
JP6382797B2 (ja) | 2013-03-27 | 2018-08-29 | 浜松ホトニクス株式会社 | レーザ加工装置及びレーザ加工方法 |
CN105102179B (zh) | 2013-03-27 | 2017-04-26 | 浜松光子学株式会社 | 激光加工装置及激光加工方法 |
KR102219653B1 (ko) | 2013-03-27 | 2021-02-25 | 하마마츠 포토닉스 가부시키가이샤 | 레이저 가공 장치 및 레이저 가공 방법 |
US9764978B2 (en) * | 2013-04-04 | 2017-09-19 | Lpkf Laser & Electronics Ag | Method and device for separating a substrate |
US9812361B2 (en) * | 2013-09-11 | 2017-11-07 | Nxp B.V. | Combination grinding after laser (GAL) and laser on-off function to increase die strength |
JP6353683B2 (ja) * | 2014-04-04 | 2018-07-04 | 浜松ホトニクス株式会社 | レーザ加工装置及びレーザ加工方法 |
JP6272145B2 (ja) | 2014-05-29 | 2018-01-31 | 浜松ホトニクス株式会社 | レーザ加工装置及びレーザ加工方法 |
JP6258787B2 (ja) | 2014-05-29 | 2018-01-10 | 浜松ホトニクス株式会社 | レーザ加工装置及びレーザ加工方法 |
DE102014108259A1 (de) * | 2014-06-12 | 2015-12-17 | Scanlab Ag | Vorrichtung zur Lasermaterialbearbeitung |
JP2016054204A (ja) | 2014-09-03 | 2016-04-14 | 株式会社ディスコ | ウエーハの加工方法 |
JP2016055319A (ja) * | 2014-09-10 | 2016-04-21 | 浜松ホトニクス株式会社 | 光照射装置および光照射方法 |
JP6320261B2 (ja) * | 2014-09-26 | 2018-05-09 | 株式会社ディスコ | ウエーハの加工方法 |
JP2016072274A (ja) * | 2014-09-26 | 2016-05-09 | 株式会社ディスコ | ウエーハの加工方法 |
JP6347714B2 (ja) | 2014-10-02 | 2018-06-27 | 株式会社ディスコ | ウエーハの加工方法 |
CN107000125B (zh) | 2014-11-27 | 2022-08-12 | 西尔特克特拉有限责任公司 | 基于激光器的分离方法 |
JP6632203B2 (ja) * | 2014-11-27 | 2020-01-22 | 株式会社東京精密 | レーザー加工装置及びレーザー加工方法 |
JP6399913B2 (ja) * | 2014-12-04 | 2018-10-03 | 株式会社ディスコ | ウエーハの生成方法 |
JP6358941B2 (ja) * | 2014-12-04 | 2018-07-18 | 株式会社ディスコ | ウエーハの生成方法 |
JP2016129202A (ja) | 2015-01-09 | 2016-07-14 | 株式会社ディスコ | ウエーハの加工方法 |
JP2016129203A (ja) | 2015-01-09 | 2016-07-14 | 株式会社ディスコ | ウエーハの加工方法 |
DE102015003193A1 (de) * | 2015-03-12 | 2016-09-15 | Siltectra Gmbh | Vorrichtung und Verfahren zum kontinuierlichen Behandeln eines Festkörpers mittels Laserstrahlen |
JP6478821B2 (ja) * | 2015-06-05 | 2019-03-06 | 株式会社ディスコ | ウエーハの生成方法 |
BR112018002737B1 (pt) * | 2015-08-14 | 2022-08-30 | Laser Engineering Applications | Dispositivo de usinagem e método para usinagem de um alvo |
KR101825923B1 (ko) * | 2015-09-03 | 2018-03-22 | 주식회사 이오테크닉스 | 레이저 가공장치 및 레이저 가공방법 |
DE102016215473B4 (de) * | 2015-09-10 | 2023-10-26 | Disco Corporation | Verfahren zum Bearbeiten eines Substrats |
JP6531345B2 (ja) * | 2015-09-29 | 2019-06-19 | 株式会社東京精密 | レーザー加工装置及びレーザー加工方法 |
JP6620976B2 (ja) * | 2015-09-29 | 2019-12-18 | 株式会社東京精密 | レーザー加工装置及びレーザー加工方法 |
CN105598594A (zh) * | 2015-12-18 | 2016-05-25 | 中国电子科技集团公司第五十五研究所 | 一种复合结构SiC芯片的激光分离方法 |
US9984918B2 (en) * | 2015-12-31 | 2018-05-29 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor structure and manufacturing method thereof |
JP6654435B2 (ja) * | 2016-01-07 | 2020-02-26 | 株式会社ディスコ | ウエーハ生成方法 |
US10518358B1 (en) | 2016-01-28 | 2019-12-31 | AdlOptica Optical Systems GmbH | Multi-focus optics |
JP6689631B2 (ja) | 2016-03-10 | 2020-04-28 | 浜松ホトニクス株式会社 | レーザ光照射装置及びレーザ光照射方法 |
TWI725133B (zh) * | 2016-03-10 | 2021-04-21 | 日商濱松赫德尼古斯股份有限公司 | 雷射光照射裝置及雷射光照射方法 |
KR20190019125A (ko) * | 2016-06-14 | 2019-02-26 | 에바나 테크놀로지스, 유에이비 | 웨이퍼 다이싱 또는 커팅을 위한 다중-세그먼트 포커싱 렌즈 및 레이저 가공 시스템 |
JP6768444B2 (ja) * | 2016-10-14 | 2020-10-14 | 浜松ホトニクス株式会社 | レーザ加工装置、及び、動作確認方法 |
JP6786374B2 (ja) * | 2016-12-16 | 2020-11-18 | 株式会社スミテック | レーザ加工装置及びレーザ加工方法 |
JP6831253B2 (ja) * | 2017-01-27 | 2021-02-17 | 株式会社ディスコ | レーザー加工装置 |
KR102356415B1 (ko) * | 2017-03-06 | 2022-02-08 | 엘피케이에프 레이저 앤드 일렉트로닉스 악티엔게젤샤프트 | 전자기 방사선과 후속 에칭공정을 이용해 재료 안으로 적어도 하나의 리세스를 도입하기 위한 방법 |
CN107186364B (zh) * | 2017-07-11 | 2024-02-02 | 华侨大学 | 无机械运动实现精确激光切割轨迹和显微细胞切割方法 |
JP7034621B2 (ja) * | 2017-07-25 | 2022-03-14 | 浜松ホトニクス株式会社 | レーザ加工装置 |
JP6955932B2 (ja) * | 2017-08-25 | 2021-10-27 | 株式会社ディスコ | レーザービームプロファイラユニット及びレーザー加工装置 |
JP2019051529A (ja) * | 2017-09-13 | 2019-04-04 | 東芝メモリ株式会社 | 半導体製造装置 |
IT201700114962A1 (it) * | 2017-10-12 | 2019-04-12 | Automotive Lighting Italia Spa | Attrezzatura di saldatura laser simultanea di un fanale automobilistico e metodo di saldatura laser simultanea di un fanale automobilistico |
JP7222906B2 (ja) * | 2017-11-07 | 2023-02-15 | 浜松ホトニクス株式会社 | レーザ加工方法、及び、レーザ加工装置 |
JP7105058B2 (ja) | 2017-12-05 | 2022-07-22 | 株式会社ディスコ | ウェーハの加工方法 |
JP7088761B2 (ja) * | 2018-07-05 | 2022-06-21 | 浜松ホトニクス株式会社 | レーザ加工装置 |
JP7105639B2 (ja) * | 2018-07-05 | 2022-07-25 | 浜松ホトニクス株式会社 | レーザ加工装置 |
JP7404336B2 (ja) * | 2018-07-25 | 2023-12-25 | ノヴァ リミテッド | 材料特性評価のための光学技術 |
JP7139050B2 (ja) * | 2018-08-02 | 2022-09-20 | 株式会社ディスコ | ウェーハの加工方法 |
KR102158106B1 (ko) * | 2018-09-28 | 2020-09-21 | 주식회사 이솔 | 레이저 가공 방법 |
JP7319770B2 (ja) * | 2018-10-04 | 2023-08-02 | 浜松ホトニクス株式会社 | 撮像装置、レーザ加工装置、及び、撮像方法 |
US10589445B1 (en) * | 2018-10-29 | 2020-03-17 | Semivation, LLC | Method of cleaving a single crystal substrate parallel to its active planar surface and method of using the cleaved daughter substrate |
US10562130B1 (en) | 2018-12-29 | 2020-02-18 | Cree, Inc. | Laser-assisted method for parting crystalline material |
US11024501B2 (en) | 2018-12-29 | 2021-06-01 | Cree, Inc. | Carrier-assisted method for parting crystalline material along laser damage region |
US10576585B1 (en) | 2018-12-29 | 2020-03-03 | Cree, Inc. | Laser-assisted method for parting crystalline material |
JP2020163432A (ja) * | 2019-03-29 | 2020-10-08 | 株式会社東京精密 | レーザ加工装置の収差調整方法及び収差制御方法 |
US10611052B1 (en) | 2019-05-17 | 2020-04-07 | Cree, Inc. | Silicon carbide wafers with relaxed positive bow and related methods |
JP6719074B2 (ja) * | 2019-05-21 | 2020-07-08 | 株式会社東京精密 | レーザー加工領域の確認装置及び確認方法 |
JP7334065B2 (ja) * | 2019-05-28 | 2023-08-28 | 株式会社ディスコ | チップの製造方法 |
JP7286464B2 (ja) * | 2019-08-02 | 2023-06-05 | 株式会社ディスコ | レーザー加工装置 |
JP7303078B2 (ja) * | 2019-09-11 | 2023-07-04 | 浜松ホトニクス株式会社 | レーザ加工装置及びレーザ加工方法 |
JP7386672B2 (ja) * | 2019-11-15 | 2023-11-27 | 株式会社ディスコ | レーザー加工装置及び位相パターンの調整方法 |
KR102235761B1 (ko) * | 2019-12-31 | 2021-04-02 | 한국과학기술원 | 3d 프린팅 공정의 펨토초 레이저 기반 초음파 계측 장치 및 이를 구비한 3d 프린팅 시스템 |
KR102691408B1 (ko) * | 2020-02-07 | 2024-08-05 | 살바그니니 이탈리아 에스.피.에이. | 기계 공구를 위한 레이저 절단 헤드 |
CN112025088B (zh) * | 2020-08-06 | 2022-04-15 | 武汉华工激光工程有限责任公司 | 一种激光光束像散补偿方法及激光加工系统 |
DE102020123785A1 (de) | 2020-09-11 | 2022-03-17 | Trumpf Laser- Und Systemtechnik Gmbh | Verfahren zum Bearbeiten eines Materials |
JPWO2022254844A1 (ko) * | 2021-06-01 | 2022-12-08 | ||
WO2023101861A2 (en) * | 2021-11-30 | 2023-06-08 | Corning Incorporated | Systems and methods for fabricating an article with an angled edge using a laser beam focal line |
KR20240015188A (ko) | 2022-07-26 | 2024-02-05 | 주식회사 메디포 | 소양증 완화 및 피부장벽 회복용 조성물 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002273583A (ja) * | 2001-03-19 | 2002-09-25 | Inst Of Physical & Chemical Res | 透明媒質加工装置 |
JP2007029959A (ja) * | 2005-07-22 | 2007-02-08 | Olympus Corp | レーザ加工機 |
WO2007023940A1 (ja) * | 2005-08-26 | 2007-03-01 | Matsushita Electric Industrial Co., Ltd. | アクチュエータ、光ヘッド装置および光情報装置 |
Family Cites Families (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6384789A (ja) * | 1986-09-26 | 1988-04-15 | Semiconductor Energy Lab Co Ltd | 光加工方法 |
GB8819351D0 (en) * | 1988-08-15 | 1988-09-14 | Gersan Anstalt | Making elongate cut using high energy radiation |
JP3475947B2 (ja) | 1991-05-21 | 2003-12-10 | セイコーエプソン株式会社 | 光学装置 |
US5619381A (en) * | 1995-06-02 | 1997-04-08 | Texas Instruments Incorporated | Offset zoom lens for reflective light modulators |
JPH0919784A (ja) * | 1995-07-03 | 1997-01-21 | Nec Corp | レーザパターニング加工装置および加工方法 |
US6075656A (en) * | 1998-11-09 | 2000-06-13 | Eastman Kodak Company | High numerical aperture objective lens |
JP2001228449A (ja) * | 2000-02-14 | 2001-08-24 | Hamamatsu Photonics Kk | レーザ集光装置及びレーザ加工装置 |
JP2002182174A (ja) | 2000-12-14 | 2002-06-26 | Pioneer Electronic Corp | 収差補正装置及び方法 |
JP2002049002A (ja) | 2000-08-03 | 2002-02-15 | Hamamatsu Photonics Kk | レーザ加工装置 |
JP4659300B2 (ja) * | 2000-09-13 | 2011-03-30 | 浜松ホトニクス株式会社 | レーザ加工方法及び半導体チップの製造方法 |
US6625181B1 (en) * | 2000-10-23 | 2003-09-23 | U.C. Laser Ltd. | Method and apparatus for multi-beam laser machining |
US6624880B2 (en) * | 2001-01-18 | 2003-09-23 | Micronic Laser Systems Ab | Method and apparatus for microlithography |
JP4880820B2 (ja) * | 2001-01-19 | 2012-02-22 | 株式会社レーザーシステム | レーザ支援加工方法 |
US6717104B2 (en) * | 2001-06-13 | 2004-04-06 | The Regents Of The University Of California | Programmable phase plate for tool modification in laser machining applications |
JP3775250B2 (ja) | 2001-07-12 | 2006-05-17 | セイコーエプソン株式会社 | レーザー加工方法及びレーザー加工装置 |
GB0121308D0 (en) * | 2001-09-03 | 2001-10-24 | Thomas Swan & Company Ltd | Optical processing |
JP4420672B2 (ja) | 2001-10-25 | 2010-02-24 | 浜松ホトニクス株式会社 | 位相変調装置及び位相変調方法 |
WO2003076119A1 (en) * | 2002-03-12 | 2003-09-18 | Hamamatsu Photonics K.K. | Method of cutting processed object |
WO2004068553A2 (en) * | 2003-01-29 | 2004-08-12 | The Regents Of The University Of Michigan | Method for forming nanoscale features |
DE10325867B4 (de) * | 2003-06-06 | 2013-08-01 | Eberhard Piehler | Projektionsvorrichtung |
JP2005019667A (ja) | 2003-06-26 | 2005-01-20 | Disco Abrasive Syst Ltd | レーザ光線を利用した半導体ウエーハの分割方法 |
JP2005103630A (ja) * | 2003-10-02 | 2005-04-21 | Matsushita Electric Ind Co Ltd | レーザ加工装置及びレーザ加工方法 |
JP2005138143A (ja) * | 2003-11-06 | 2005-06-02 | Disco Abrasive Syst Ltd | レーザ光線を利用する加工装置 |
JP2005189434A (ja) | 2003-12-25 | 2005-07-14 | Asahi Glass Co Ltd | 波面制御素子及び液晶レンズ並びに収差補正素子 |
JP4456881B2 (ja) | 2004-01-28 | 2010-04-28 | 株式会社リコー | レーザ加工装置 |
JP4477893B2 (ja) | 2004-02-13 | 2010-06-09 | 株式会社リコー | レーザ加工方法及び装置、並びに、レーザ加工方法を使用した構造体の製造方法 |
JP2005268752A (ja) * | 2004-02-19 | 2005-09-29 | Canon Inc | レーザ割断方法、被割断部材および半導体素子チップ |
JP4576137B2 (ja) | 2004-03-19 | 2010-11-04 | オリンパス株式会社 | 顕微鏡 |
JP4536407B2 (ja) | 2004-03-30 | 2010-09-01 | 浜松ホトニクス株式会社 | レーザ加工方法及び加工対象物 |
JP4531431B2 (ja) | 2004-04-02 | 2010-08-25 | 浜松ホトニクス株式会社 | 波面補償装置、波面補償方法、プログラム、及び、記録媒体 |
TWI348408B (en) | 2004-04-28 | 2011-09-11 | Olympus Corp | Laser processing device |
JP4634089B2 (ja) * | 2004-07-30 | 2011-02-16 | 浜松ホトニクス株式会社 | レーザ加工方法 |
CN100548564C (zh) * | 2004-08-06 | 2009-10-14 | 浜松光子学株式会社 | 激光加工方法及半导体装置 |
JP2006068762A (ja) | 2004-08-31 | 2006-03-16 | Univ Of Tokushima | レーザー加工方法およびレーザー加工装置 |
DE502004001824D1 (de) * | 2004-09-30 | 2006-11-30 | Trumpf Laser Gmbh & Co Kg | Vorrichtung zur Fokussierung eines Laserstrahls |
JP4761432B2 (ja) | 2004-10-13 | 2011-08-31 | 株式会社リコー | レーザ加工装置 |
JP4647965B2 (ja) | 2004-10-22 | 2011-03-09 | 株式会社リコー | レーザ加工方法及びレーザ加工装置及びにこれよって作製された構造体 |
JP2006131443A (ja) * | 2004-11-04 | 2006-05-25 | Shibuya Kogyo Co Ltd | 脆性材料の割断方法とその装置 |
US8093530B2 (en) * | 2004-11-19 | 2012-01-10 | Canon Kabushiki Kaisha | Laser cutting apparatus and laser cutting method |
US7893384B2 (en) * | 2004-12-07 | 2011-02-22 | Chosen Technologies, Inc. | Systems and methods for laser material manipulation |
FR2884743B1 (fr) * | 2005-04-20 | 2007-07-20 | Impulsion Soc Par Actions Simp | Dispositif de micro-usinage par laser femtoseconde avec conformation dynamique de faisceau |
JP4407584B2 (ja) | 2005-07-20 | 2010-02-03 | セイコーエプソン株式会社 | レーザ照射装置およびレーザスクライブ方法 |
JP4749799B2 (ja) | 2005-08-12 | 2011-08-17 | 浜松ホトニクス株式会社 | レーザ加工方法 |
CN100496855C (zh) * | 2005-08-19 | 2009-06-10 | 中国科学院光电技术研究所 | 精密加工激光切割机 |
US7626138B2 (en) * | 2005-09-08 | 2009-12-01 | Imra America, Inc. | Transparent material processing with an ultrashort pulse laser |
JP4867293B2 (ja) | 2005-11-04 | 2012-02-01 | セイコーエプソン株式会社 | レーザ加工装置 |
JP4424302B2 (ja) * | 2005-11-16 | 2010-03-03 | 株式会社デンソー | 半導体チップの製造方法 |
CN1966197B (zh) * | 2005-11-18 | 2010-11-10 | 鸿富锦精密工业(深圳)有限公司 | 一种激光加工系统及加工方法 |
JP2007250598A (ja) * | 2006-03-14 | 2007-09-27 | Renesas Technology Corp | 半導体装置の製造方法 |
US20070298529A1 (en) * | 2006-05-31 | 2007-12-27 | Toyoda Gosei, Co., Ltd. | Semiconductor light-emitting device and method for separating semiconductor light-emitting devices |
US8731013B2 (en) * | 2007-01-24 | 2014-05-20 | Raytheon Company | Linear adaptive optics system in low power beam path and method |
JP4402708B2 (ja) * | 2007-08-03 | 2010-01-20 | 浜松ホトニクス株式会社 | レーザ加工方法、レーザ加工装置及びその製造方法 |
US20090212030A1 (en) * | 2008-02-25 | 2009-08-27 | Optisolar, Inc., A Delaware Corporation | Autofocus for Ablation Laser |
JP5479924B2 (ja) * | 2010-01-27 | 2014-04-23 | 浜松ホトニクス株式会社 | レーザ加工方法 |
-
2007
- 2007-08-03 JP JP2007203529A patent/JP4402708B2/ja active Active
-
2008
- 2008-07-28 CN CN201010525444.9A patent/CN102019508B/zh active Active
- 2008-07-28 KR KR1020107001324A patent/KR101013286B1/ko active IP Right Grant
- 2008-07-28 CN CN201410002145.5A patent/CN103706950B/zh active Active
- 2008-07-28 KR KR1020127010532A patent/KR101302336B1/ko active IP Right Grant
- 2008-07-28 KR KR1020157007615A patent/KR101711311B1/ko active IP Right Grant
- 2008-07-28 CN CN200880101826.XA patent/CN101772398B/zh active Active
- 2008-07-28 US US12/671,820 patent/US8134099B2/en active Active
- 2008-07-28 KR KR1020137026492A patent/KR101711247B1/ko active IP Right Grant
- 2008-07-28 EP EP08791766.2A patent/EP2186596B1/en active Active
- 2008-07-28 KR KR1020107020140A patent/KR101212936B1/ko active IP Right Grant
- 2008-07-28 CN CN201210046724.0A patent/CN102528294B/zh active Active
- 2008-07-28 KR KR1020137001188A patent/KR101402475B1/ko active IP Right Grant
- 2008-07-28 KR KR1020147017879A patent/KR101564523B1/ko active IP Right Grant
- 2008-07-28 WO PCT/JP2008/063531 patent/WO2009020004A1/ja active Application Filing
- 2008-08-01 TW TW101145955A patent/TWI573649B/zh active
- 2008-08-01 TW TW097129384A patent/TWI394627B/zh active
- 2008-08-01 TW TW102106933A patent/TWI595953B/zh active
-
2012
- 2012-01-31 US US13/362,781 patent/US9428413B2/en active Active
-
2016
- 2016-07-19 US US15/213,723 patent/US10622254B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002273583A (ja) * | 2001-03-19 | 2002-09-25 | Inst Of Physical & Chemical Res | 透明媒質加工装置 |
JP2007029959A (ja) * | 2005-07-22 | 2007-02-08 | Olympus Corp | レーザ加工機 |
WO2007023940A1 (ja) * | 2005-08-26 | 2007-03-01 | Matsushita Electric Industrial Co., Ltd. | アクチュエータ、光ヘッド装置および光情報装置 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101711311B1 (ko) | 레이저 가공 방법, 레이저 가공 장치 및 그 제조 방법 | |
JP5148575B2 (ja) | レーザ加工方法、及び、レーザ加工装置 | |
KR101549271B1 (ko) | 레이저 가공 방법 | |
KR102380747B1 (ko) | 레이저 가공 장치 및 레이저 가공 방법 | |
JP2019527466A (ja) | 多分割レンズ及びウェハをダイシングまたは切断するためのレーザー加工システム | |
JP5863891B2 (ja) | レーザ加工装置、レーザ加工装置の制御方法、レーザ装置の制御方法、及び、レーザ装置の調整方法 | |
KR20110099091A (ko) | 레이저 가공장치 | |
CN102470484A (zh) | 激光加工装置及激光加工方法 | |
JP5255109B2 (ja) | レーザ加工方法、レーザ加工装置及びその製造方法 | |
JP5575200B2 (ja) | レーザ加工装置及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E90F | Notification of reason for final refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20200205 Year of fee payment: 4 |