[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a010527 -id:a010527
     Sort: relevance | references | number | modified | created      Format: long | short | data
Egyptian fraction representation of sqrt(75) (A010527) using a greedy function.
+20
0
8, 2, 7, 58, 6431, 53009387, 13524645787537549, 1142628380301529129095399568249405, 1570973545691471437706583067806558638094352380787686966365249029961, 30132697563946080563252698610167018391060692836650929258987357511120069113850317439674328461143709736843885017809313776112531985178378
OFFSET
0,1
MATHEMATICA
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 75]]
CROSSREFS
Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Oct 04 2014
STATUS
approved
Decimal expansion of sqrt(3).
(Formerly M4326 N1812)
+10
167
1, 7, 3, 2, 0, 5, 0, 8, 0, 7, 5, 6, 8, 8, 7, 7, 2, 9, 3, 5, 2, 7, 4, 4, 6, 3, 4, 1, 5, 0, 5, 8, 7, 2, 3, 6, 6, 9, 4, 2, 8, 0, 5, 2, 5, 3, 8, 1, 0, 3, 8, 0, 6, 2, 8, 0, 5, 5, 8, 0, 6, 9, 7, 9, 4, 5, 1, 9, 3, 3, 0, 1, 6, 9, 0, 8, 8, 0, 0, 0, 3, 7, 0, 8, 1, 1, 4, 6, 1, 8, 6, 7, 5, 7, 2, 4, 8, 5, 7, 5, 6, 7, 5, 6, 2, 6, 1, 4, 1, 4, 1, 5, 4
OFFSET
1,2
COMMENTS
"The square root of 3, the 2nd number, after root 2, to be proved irrational, by Theodorus."
Length of a diagonal between any vertex of the unit cube and the one corresponding (opposite) vertex not part of the three faces meeting at the original vertex. (Diagonal is hypotenuse of a triangle with sides 1 and sqrt(2)). Hence the diameter of the sphere circumscribed around the unit cube; the ratio of the diameter of any sphere to the edge length of its inscribed cube. - Rick L. Shepherd, Jun 09 2005
The square root of 3 is the length of the minimal Y-shaped (symmetrical) network linking three points unit distance apart. - Lekraj Beedassy, Apr 12 2006
Continued fraction expansion is 1 followed by {1, 2} repeated. - Harry J. Smith, Jun 01 2009
Also, tan(Pi/3) = 2 sin(Pi/3). - M. F. Hasler, Oct 27 2011
Surface of regular tetrahedron with unit edge. - Stanislav Sykora, May 31 2012
This is the case n=6 of Gamma(1/n)*Gamma((n-1)/n)/(Gamma(2/n)*Gamma((n-2)/n)) = 2*cos(Pi/n), therefore sqrt(3) = A175379*A203145/(A073005*A073006). - Bruno Berselli, Dec 13 2012
Ratio of base length to leg length in the isosceles "vampire" triangle, that is, the only isosceles triangle without reflection triangle. The product of cosines of the internal angles of a triangle with sides 1, 1 and sqrt(3) and all similar triangles is -3/8. Hence its reflection triangle is degenerate. See the link below. - Martin Janecke, May 09 2013
Half of the surface of regular octahedron with unit edge (A010469), and one fifth that of a regular icosahedron with unit edge (i.e., 2*A010527). - Stanislav Sykora, Nov 30 2013
Diameter of a sphere whose surface area equals 3*Pi. More generally, the square root of x is also the diameter of a sphere whose surface area equals x*Pi. - Omar E. Pol, Nov 11 2018
Sometimes called Theodorus's constant, after the ancient Greek mathematician Theodorus of Cyrene (5th century BC). - Amiram Eldar, Apr 02 2022
For any triangle ABC, cotan(A) + cotan(B) + cotan(C) >= sqrt(3); equality is obtained only when the triangle is equilateral (see the Kiran S. Kedlaya link). - Bernard Schott, Sep 13 2022
REFERENCES
Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.4 Irrational Numbers and §12.4 Theorems and Formulas (Solid Geometry), pp. 84, 450.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, Penguin Books, London, England, 1997, page 23.
LINKS
Madeleine Bonsma-Fisher and Kent Bonsma-Fisher, How big a table do you need for your jigsaw puzzle?, arXiv:2312.04588 [math.HO], 2023.
M. F. Jones, 22900D approximations to the square roots of the primes less than 100, Math. Comp., Vol. 22, No. 101 (1968), pp. 234-235.
Kiran S. Kedlaya, A < B, (1999) Problem 6.4, p. 6.
Robert J. Nemiroff and Jerry Bonnell, The first 1 million digits of the square root of 3.
Simon Plouffe, Plouffe's Inverter, The square root of 3 to 10 million digits.
Horace S. Uhler, Approximations exceeding 1300 decimals for sqrt 3, 1/sqrt 3, sin(pi/3) and distribution of digits in them, Proc. Nat. Acad. Sci. U. S. A., Vol. 37, No. 7 (1951), pp. 443-447.
Eric Weisstein's World of Mathematics, Reflection Triangle.
Eric Weisstein's World of Mathematics, Square Root.
Eric Weisstein's World of Mathematics, Theodorus's Constant.
Wikipedia, Platonic solid.
FORMULA
Equals Sum_{k>=0} binomial(2*k,k)/6^k = Sum_{k>=0} binomial(2*k,k) * k/6^k. - Amiram Eldar, Aug 03 2020
sqrt(3) = 1 + 1/2 + 1/(2*3) + 1/(2*3*4) + 1/(2*3*4*2) + 1/(2*3*4*2*8) + 1/(2*3*4*2*8*14) + 1/(2*3*4*2*8*14*2) + 1/(2*3*4*2*8*14*2*98) + 1/(2*3*4*2*8*14*2*98*194) + .... (Define F(n) = (n-1)*sqrt(n^2 - 1) - (n^2 - n - 1). Show F(n) = 1/2 + 1/(2*(n+1)) + 1/(2*(n+1)*(2*n)) + 1/(2*(n+1)*(2*n))*F(2*n^2 - 1) for n >= 0; then iterate this identity at n = 2. See A220335.) - Peter Bala, Mar 18 2022
Equals i^(1/3) + i^(-1/3). - Gary W. Adamson, Jul 06 2022
Equals Product_{n>=1} 3^(1/3^n). - Michal Paulovic, Feb 24 2023
Equals Product_{n>=0} ((6*n + 2)*(6*n + 4))/((6*n + 1)*(6*n + 5)). - Antonio Graciá Llorente, Feb 22 2024
EXAMPLE
1.73205080756887729352744634150587236694280525381038062805580697945193...
MAPLE
evalf(sqrt(3), 100); # Michal Paulovic, Feb 24 2023
MATHEMATICA
RealDigits[Sqrt[3], 10, 100][[1]]
PROG
(PARI) default(realprecision, 20080); x=(sqrt(3)); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b002194.txt", n, " ", d)); \\ Harry J. Smith, Jun 01 2009
(Magma) SetDefaultRealField(RealField(100)); Sqrt(3); // G. C. Greubel, Aug 21 2018
CROSSREFS
Cf. A040001 (continued fraction), A220335.
Cf. A010469 (double), A010527 (half), A131595 (surface of regular dodecahedron).
KEYWORD
cons,nonn,easy,changed
EXTENSIONS
More terms from Robert G. Wilson v, Dec 07 2000
STATUS
approved
Decimal expansion of 1/sqrt(2).
+10
76
7, 0, 7, 1, 0, 6, 7, 8, 1, 1, 8, 6, 5, 4, 7, 5, 2, 4, 4, 0, 0, 8, 4, 4, 3, 6, 2, 1, 0, 4, 8, 4, 9, 0, 3, 9, 2, 8, 4, 8, 3, 5, 9, 3, 7, 6, 8, 8, 4, 7, 4, 0, 3, 6, 5, 8, 8, 3, 3, 9, 8, 6, 8, 9, 9, 5, 3, 6, 6, 2, 3, 9, 2, 3, 1, 0, 5, 3, 5, 1, 9, 4, 2, 5, 1, 9, 3, 7, 6, 7, 1, 6, 3, 8, 2, 0, 7, 8, 6, 3, 6, 7, 5, 0, 6
OFFSET
0,1
COMMENTS
The decimal expansion of sqrt(50) = 5*sqrt(2) = 7.0710678118654752440... gives essentially the same sequence.
Also real and imaginary part of the square root of the imaginary unit. - Alonso del Arte, Jan 07 2011
1/sqrt(2) = (1/2)^(1/2) = (1/4)^(1/4) (see the comments in A072364).
If a triangle has sides whose lengths form a harmonic progression in the ratio 1 : 1/(1 + d) : 1/(1 + 2d) then the triangle inequality condition requires that d be in the range -1 + 1/sqrt(2) < d < 1/sqrt(2). - Frank M Jackson, Oct 11 2011
Let s_2(n) be the sum of the base-2 digits of n and epsilon(n) = (-1)^s_2(n), the Thue-Morse sequence A010060, then Product_{n >= 0} ((2*n + 1)/(2*n + 2))^epsilon(n) = 1/sqrt(2). - Jonathan Vos Post, Jun 03 2012
The square root of 1/2 and thus it follows from the Pythagorean theorem that it is the sine of 45 degrees (and the cosine of 45 degrees). - Alonso del Arte, Sep 24 2012
Circumscribed sphere radius for a regular octahedron with unit edges. In electrical engineering, ratio of effective amplitude to peak amplitude of an alternating current/voltage. - Stanislav Sykora, Feb 10 2014
Radius of midsphere (tangent to edges) in a cube with unit edges. - Stanislav Sykora, Mar 27 2014
REFERENCES
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, Sections 1.1, 7.5.2, and 8.2, pp. 1-3, 468, 484, 487.
Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 450.
LINKS
P. C. Fishburn and J. A. Reeds, Bell inequalities, Grothendieck's constant and root two, SIAM J. Discrete Math., Vol. 7, No. 1, Feb. 1994, pp. 48-56.
Ovidiu Furdui, Problem 1, Problem Corner, Research Group in Mathematical Inequalities and Applications, 2010.
Michael Penn, A surprisingly convergent limit, YouTube video, 2022.
Michael Penn, The infinite fraction of your dreams (nightmare?), YouTube video, 2022.
Jonathan Sondow and D. Marques, Algebraic and transcendental solutions of some exponential equations, Annales Mathematicae et Informaticae 37 (2010) 151-164; arXiv:1108.6096 [math.NT], 2011, see p. 3 in the link.
Eric Weisstein's World of Mathematics, Digit Product.
Wikipedia, Platonic solid.
Donald R. Woods, Problem E 2692, Elementary Problems, The American Mathematical Monthly, Vol. 85, No. 1 (1978), p. 48; A Transcendental Function Satisfy a Duplication Formula, by David Robbins, ibid., Vol. 86, No. 5 (1979), pp. 394-395.
FORMULA
1/sqrt(2) = cos(Pi/4) = sqrt(2)/2. - Eric Desbiaux, Nov 05 2008
a(n) = 9 - A268682(n). As constants, this sequence is 1 - A268682. - Philippe Deléham, Feb 21 2016
From Amiram Eldar, Jun 29 2020: (Start)
Equals sin(Pi/4) = cos(Pi/4).
Equals Integral_{x=0..Pi/4} cos(x) dx. (End)
Equals (1/2)*A019884 + A019824 * A010527 = A019851 * A019896 + A019812 * A019857. - R. J. Mathar, Jan 27 2021
Equals hypergeom([-1/2, -3/4], [5/4], -1). - Peter Bala, Mar 02 2022
Limit_{n->oo} (sqrt(T(n+1)) - sqrt(T(n))) = 1/sqrt(2), where T(n) = n(n+1)/2 = A000217(n) is the triangular numbers. - Jules Beauchamp, Sep 18 2022
Equals Product_{k>=0} ((2*k+1)/(2*k+2))^((-1)^A000120(k)) (Woods, 1978). - Amiram Eldar, Feb 04 2024
From Stefano Spezia, Oct 15 2024: (Start)
Equals 1 + Sum_{k>=1} (-1)^k*binomial(2*k,k)/2^(2*k) [Newton].
Equal Product_{k>=1} 1 - 1/(4*(2*k - 1)^2). (End)
Equals Product_{k>=0} (1 - (-1)^k/(6*k+3)). - Amiram Eldar, Nov 22 2024
EXAMPLE
0.7071067811865475...
MAPLE
Digits:=100; evalf(1/sqrt(2)); Wesley Ivan Hurt, Mar 27 2014
MATHEMATICA
N[ 1/Sqrt[2], 200]
RealDigits[1/Sqrt[2], 10, 120][[1]] (* Harvey P. Dale, Mar 25 2019 *)
PROG
(PARI) default(realprecision, 20080); x=10*(1/sqrt(2)); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b010503.txt", n, " ", d)); \\ Harry J. Smith, Jun 02 2009
(Magma) 1/Sqrt(2); // Vincenzo Librandi, Feb 21 2016
CROSSREFS
Cf. A073084 (infinite tetration limit).
Platonic solids circumradii: A010527 (cube), A019881 (icosahedron), A179296 (dodecahedron), A187110 (tetrahedron).
Platonic solids midradii: A020765 (tetrahedron), A020761 (octahedron), A019863 (icosahedron), A239798 (dodecahedron).
KEYWORD
nonn,cons,easy,changed
EXTENSIONS
More terms from Harry J. Smith, Jun 02 2009
STATUS
approved
Decimal expansion of real root of x^3 - x - 1 (the plastic constant).
+10
75
1, 3, 2, 4, 7, 1, 7, 9, 5, 7, 2, 4, 4, 7, 4, 6, 0, 2, 5, 9, 6, 0, 9, 0, 8, 8, 5, 4, 4, 7, 8, 0, 9, 7, 3, 4, 0, 7, 3, 4, 4, 0, 4, 0, 5, 6, 9, 0, 1, 7, 3, 3, 3, 6, 4, 5, 3, 4, 0, 1, 5, 0, 5, 0, 3, 0, 2, 8, 2, 7, 8, 5, 1, 2, 4, 5, 5, 4, 7, 5, 9, 4, 0, 5, 4, 6, 9, 9, 3, 4, 7, 9, 8, 1, 7, 8, 7, 2, 8, 0, 3, 2, 9, 9, 1
OFFSET
1,2
COMMENTS
Has been also called the silver number, also the plastic number.
This is the smallest Pisot-Vijayaraghavan number.
The name "plastic number" goes back to the Dutch Benedictine monk and architect Dom Hans van der Laan, who gave this name 4 years after the discovery of the number by the French engineer Gérard Cordonnier in 1924, who used the name "radiant number". - Hugo Pfoertner, Oct 07 2018
Sometimes denoted by the symbol rho. - Ed Pegg Jr, Feb 01 2019
Also the solution of 1/x + 1/(1+x+x^2) = 1. - Clark Kimberling, Jan 02 2020
Given any complex p such that real(p)>-1, this constant is the only real solution of the equation z^p+z^(p+1)=z^(p+3), and the only attractor of the complex mapping z->M(z,p), where M(z,p)=(z^p+z^(p+1))^(1/(p+3)), convergent from any complex plane point. - Stanislav Sykora, Oct 14 2021
The Pisot-Vijayaraghavan numbers were named after the French mathematician Charles Pisot (1910-1984) and the Indian mathematician Tirukkannapuram Vijayaraghavan (1902-1955). - Amiram Eldar, Apr 02 2022
The sequence a(n) = v_3^floor(n^2/4) where v_n is the smallest, positive, real solution to the equation (v_n)^n = v_n + 1 satisfies the Somos-5 recursion a(n+3)*a(n-2) = a(n+2)*a(n-1) + a(n+1)*a(n) for all n in Z. Also true if floor is removed. - Michael Somos, Mar 24 2023
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.2.
Midhat J. Gazalé, Gnomon: From Pharaohs to Fractals, Princeton University Press, Princeton, NJ, 1999, see Chap. VII.
Donald E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.4, p. 236.
Ian Stewart, A Guide to Computer Dating (Feedback), Scientific American, Vol. 275 No. 5, November 1996, p. 118.
LINKS
Gamaliel Cerda-Morales, New Identities for Padovan Numbers, arXiv:1904.05492 [math.CO], 2019.
Brady Haran and Edmund Harriss, The Plastic Ratio, Numberphile video (2019).
F. Rothelius, Formulae.
Ian Stewart, Tales of a Neglected Number, Mathematical Recreations, Scientific American, Vol. 274, No. 6 (1996), pp. 102-103.
Ian Stewart, Tales of a Neglected Number, Mathematical Recreations, Scientific American, Vol. 274, No. 6 (1996), pp. 102-103.
Dom Hans van der Laan, Le nombre plastique: Quinze leçons sur l’ordonnance architectonique, Brill Academic Pub., Leiden, 1960.
Michel Waldschmidt, Lectures on Multiple Zeta Values, IMSC 2011.
Eric Weisstein's World of Mathematics, Maverick Graph.
Eric Weisstein's World of Mathematics, Pisot Number.
Eric Weisstein's World of Mathematics, Plastic Constant.
Wikipedia, Plastic number.
FORMULA
Equals (1/2+sqrt(23/108))^(1/3) + (1/2-sqrt(23/108))^(1/3). - Henry Bottomley, May 22 2003
Equals CubeRoot(1 + CubeRoot(1 + CubeRoot(1 + CubeRoot(1 + ...)))). - Gerald McGarvey, Nov 26 2004
Equals sqrt(1+1/sqrt(1+1/sqrt(1+1/sqrt(1+...)))). - Gerald McGarvey, Mar 18 2006
Equals (1/2 +sqrt(23/3)/6)^(1/3) + (1/2-sqrt(23/3)/6)^(1/3). - Eric Desbiaux, Oct 17 2008
Equals Sum_{k >= 0} 27^(-k)/k!*(Gamma(2*k+1/3)/(9*Gamma(k+4/3)) - Gamma(2*k-1/3)/(3*Gamma(k+2/3))). - Robert Israel, Jan 13 2015
Equals sqrt(Phi) = sqrt(1.754877666246...) (see A109134). - Philippe Deléham, Sep 29 2020
Equals cosh(arccosh(3*c)/3)/c, where c = sqrt(3)/2 (A010527). - Amiram Eldar, May 15 2021
EXAMPLE
1.32471795724474602596090885447809734...
MAPLE
(1/2 +sqrt(23/3)/6)^(1/3) + (1/2-sqrt(23/3)/6)^(1/3) ; evalf(%, 130) ; # R. J. Mathar, Jan 22 2013
MATHEMATICA
RealDigits[ Solve[x^3 - x - 1 == 0, x][[1, 1, 2]], 10, 111][[1]] (* Robert G. Wilson v, Sep 30 2009 *)
s = Sqrt[23/108]; RealDigits[(1/2 + s)^(1/3) + (1/2 - s)^(1/3), 10, 111][[1]] (* Robert G. Wilson v, Dec 12 2017 *)
RealDigits[Root[x^3-x-1, 1], 10, 120][[1]] (* or *) RealDigits[(Surd[9-Sqrt[69], 3]+Surd[9+Sqrt[69], 3])/(Surd[2, 3]Surd[9, 3]), 10, 120][[1]] (* Harvey P. Dale, Sep 04 2018 *)
PROG
(PARI) allocatemem(932245000); default(realprecision, 20080); x=solve(x=1, 2, x^3 - x - 1); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b060006.txt", n, " ", d)); \\ Harry J. Smith, Jul 01 2009
(PARI) (1/2 +sqrt(23/3)/6)^(1/3) + (1/2-sqrt(23/3)/6)^(1/3) \\ Altug Alkan, Apr 10 2016
(PARI) polrootsreal(x^3-x-1)[1] \\ Charles R Greathouse IV, Aug 28 2016
(PARI) default(realprecision, 110); digits(floor(solve(x=1, 2, x^3 - x - 1)*10^105)) /* Michael Somos, Mar 24 2023 */
(Magma) SetDefaultRealField(RealField(100)); ((3+Sqrt(23/3))/6)^(1/3) + ((3-Sqrt(23/3))/6)^(1/3); // G. C. Greubel, Mar 15 2019
(Sage) numerical_approx(((3+sqrt(23/3))/6)^(1/3) + ((3-sqrt(23/3))/6)^(1/3), digits=100) # G. C. Greubel, Mar 15 2019
CROSSREFS
Cf. A001622. A072117 gives continued fraction.
Other Pisot numbers: A086106, A092526, A228777, A293506, A293508, A293509, A293557.
KEYWORD
cons,nice,nonn,changed
AUTHOR
Fabian Rothelius, Mar 14 2001
EXTENSIONS
Edited and extended by Robert G. Wilson v, Aug 03 2002
Removed incorrect comments, Joerg Arndt, Apr 10 2016
STATUS
approved
Decimal expansion of length of edge of a regular icosahedron with radius of circumscribed sphere = 1.
+10
31
1, 0, 5, 1, 4, 6, 2, 2, 2, 4, 2, 3, 8, 2, 6, 7, 2, 1, 2, 0, 5, 1, 3, 3, 8, 1, 6, 9, 6, 9, 5, 7, 5, 3, 2, 1, 4, 5, 7, 0, 9, 9, 5, 8, 6, 4, 4, 8, 6, 6, 8, 3, 5, 6, 3, 0, 5, 7, 8, 7, 1, 0, 4, 6, 4, 8, 2, 4, 2, 2, 2, 9, 2, 8, 0, 6, 4, 2, 8, 0, 3, 6, 7, 4, 3, 2, 6, 5, 2, 5, 7, 6, 6, 3, 1, 0, 5, 1, 4, 1, 9, 1, 3, 3, 9
OFFSET
1,3
COMMENTS
Regular icosahedron: A three-dimensional figure with 20 congruent equilateral triangle faces, 12 vertices, and 30 edges.
Shorter diagonal of golden rhombus with unit edge length. - Eric W. Weisstein, Dec 11 2018
The length of the shorter side of a golden rectangle inscribed in a unit circle. - Michal Paulovic, Sep 01 2022
The side length of a square inscribed within a golden ellipse with a unit semi-major axis. - Amiram Eldar, Oct 02 2022
LINKS
J. Brandts, S. Korotov, M. Krizek, and J. Solc, On nonobtuse simplicial partitions, Siam Rev. 51 (2) (2009) 317-335.
Eric Weisstein's World of Mathematics, Golden Rhombus.
Eric Weisstein's World of Mathematics, Icosahedron.
Wikipedia, Icosahedron.
FORMULA
Equals sqrt(50-10*sqrt(5))/5.
Equals csc(2*Pi/5). - Eric W. Weisstein, Dec 11 2018
Equals 1/Im(e^(3*i*Pi/5)) = 1/Im(e^(3*i*Pi/5) - 1) = sqrt(2 - 2/sqrt(5)). - Karl V. Keller, Jr., Jun 11 2020
Equals 1/A019881. - R. J. Mathar, Jan 17 2021
From Antonio Graciá Llorente, Mar 15 2024: (Start)
Equals Product_{k >= 1} ((10*k - 1)*(10*k + 1))/((10*k - 2)*(10*k + 2)).
Equals Product_{k >= 1} 1/(1 - 1/(25*(2*k - 1)^2)). (End)
Equals Product_{k>=1} (1 - (-1)^k/A090773(k)). - Amiram Eldar, Nov 23 2024
EXAMPLE
1.051462224238267212051338169695753214570995864486683563057871046482422...
MAPLE
evalf[120](csc(2*Pi/5)); # Muniru A Asiru, Dec 11 2018
MATHEMATICA
RealDigits[Csc[2 Pi/5], 10, 110][[1]] (* Eric W. Weisstein, Dec 11 2018 *)
PROG
(Python)
from decimal import *
getcontext().prec = 110
c = Decimal.sqrt(2 - 2 / Decimal.sqrt(Decimal(5)))
print([int(i) for i in str(c) if i != '.'])
# Karl V. Keller, Jr., Jul 10 2020
(PARI) sqrt(50-10*sqrt(5))/5 \\ Charles R Greathouse IV, Jan 22 2024
CROSSREFS
Cf. A179290 (longer golden rhombus diagonal).
KEYWORD
nonn,cons,easy,changed
AUTHOR
EXTENSIONS
Partially rewritten by Charles R Greathouse IV, Feb 02 2011
STATUS
approved
Decimal expansion of sin(2*Pi/5) (sine of 72 degrees).
+10
30
9, 5, 1, 0, 5, 6, 5, 1, 6, 2, 9, 5, 1, 5, 3, 5, 7, 2, 1, 1, 6, 4, 3, 9, 3, 3, 3, 3, 7, 9, 3, 8, 2, 1, 4, 3, 4, 0, 5, 6, 9, 8, 6, 3, 4, 1, 2, 5, 7, 5, 0, 2, 2, 2, 4, 4, 7, 3, 0, 5, 6, 4, 4, 4, 3, 0, 1, 5, 3, 1, 7, 0, 0, 8, 5, 1, 9, 3, 5, 0, 1, 7, 1, 8, 7, 9, 2, 8, 1, 0, 9, 7, 0, 8, 1, 1, 3, 8, 1
OFFSET
0,1
COMMENTS
Circumradius of pentagonal pyramid (Johnson solid 2) with edge 1. - Vladimir Joseph Stephan Orlovsky, Jul 19 2010
Circumscribed sphere radius for a regular icosahedron with unit edges. - Stanislav Sykora, Feb 10 2014
Side length of the particular golden rhombus with diagonals 1 and phi (A001622); area is phi/2 (A019863). Thus, also the ratio side/(shorter diagonal) for any golden rhombus. Interior angles of a golden rhombus are always A105199 and A137218. - Rick L. Shepherd, Apr 10 2017
An algebraic number of degree 4; minimal polynomial is 16x^4 - 20x^2 + 5, which has these smaller, other solutions (conjugates): -A019881 < -A019845 < A019845 (sine of 36 degrees). - Rick L. Shepherd, Apr 11 2017
This is length ratio of one half of any diagonal in the regular pentagon and the circumscribing radius. - Wolfdieter Lang, Jan 07 2018
Quartic number of denominator 2 and minimal polynomial 16x^4 - 20x^2 + 5. - Charles R Greathouse IV, May 13 2019
This gives the imaginary part of one of the members of a conjugate pair of roots of x^5 - 1, with real part (-1 + phi)/2 = A019827, where phi = A001622. A member of the other conjugte pair of roots is (-phi + sqrt(3 - phi)*i)/2 = (-A001622 + A182007*i)/2 = -A001622/2 + A019845*i. - Wolfdieter Lang, Aug 30 2022
REFERENCES
Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 451.
LINKS
Eric Weisstein's World of Mathematics, Golden Rhombus.
Wikipedia, Platonic solid.
Wolfram Alpha, Johnson solid 2.
FORMULA
Equals sqrt((5+sqrt(5))/8) = cos(Pi/10). - Zak Seidov, Nov 18 2006
Equals 2F1(13/20,7/20;1/2;3/4) / 2. - R. J. Mathar, Oct 27 2008
Equals the real part of i^(1/5). - Stanislav Sykora, Apr 25 2012
Equals A001622*A182007/2. - Stanislav Sykora, Feb 10 2014
Equals sin(2*Pi/5) = sqrt(2 + phi)/2 = sin(3*Pi/5), with phi = A001622 - Wolfdieter Lang, Jan 07 2018
Equals 2*A019845*A019863. - R. J. Mathar, Jan 17 2021
EXAMPLE
0.95105651629515357211643933337938214340569863412575022244730564443015317008...
MAPLE
Digits:=100: evalf(sin(2*Pi/5)); # Wesley Ivan Hurt, Sep 01 2014
MATHEMATICA
RealDigits[Sqrt[(5 + Sqrt[5])/8], 10, 111] (* Robert G. Wilson v *)
RealDigits[Sin[2 Pi/5], 10, 111][[1]] (* Robert G. Wilson v, Jan 07 2018 *)
PROG
(PARI)
default(realprecision, 120);
real(I^(1/5)) \\ Rick L. Shepherd, Apr 10 2017
(Magma) SetDefaultRealField(RealField(100)); Sqrt((5 + Sqrt(5))/8); // G. C. Greubel, Nov 02 2018
CROSSREFS
Cf. Platonic solids circumradii: A010503 (octahedron), A010527 (cube), A179296 (dodecahedron), A187110 (tetrahedron). - Stanislav Sykora, Feb 10 2014
KEYWORD
nonn,cons,easy,changed
STATUS
approved
Decimal expansion of sqrt(3)/4.
+10
26
4, 3, 3, 0, 1, 2, 7, 0, 1, 8, 9, 2, 2, 1, 9, 3, 2, 3, 3, 8, 1, 8, 6, 1, 5, 8, 5, 3, 7, 6, 4, 6, 8, 0, 9, 1, 7, 3, 5, 7, 0, 1, 3, 1, 3, 4, 5, 2, 5, 9, 5, 1, 5, 7, 0, 1, 3, 9, 5, 1, 7, 4, 4, 8, 6, 2, 9, 8, 3, 2, 5, 4, 2, 2, 7, 2, 0, 0, 0, 0, 9, 2, 7, 0, 2, 8, 6, 5, 4, 6, 6, 8, 9, 3, 1, 2, 1, 4, 3
OFFSET
0,1
COMMENTS
Area of equilateral triangle of side 1.
Quadratic number with denominator 4 and minimal polynomial 16x^2 - 3. - Charles R Greathouse IV, Jun 30 2021
EXAMPLE
0.43301270189221932338186158537646809173570131345259515701395....
MATHEMATICA
RealDigits[Sqrt[3]/4, 10, 120][[1]] (* Harvey P. Dale, Feb 18 2016 *)
PROG
(PARI) sqrt(3)/4 \\ Charles R Greathouse IV, Jun 26 2013
CROSSREFS
Cf. A010527.
Cf. Areas of higher regular polygons: A102771, A104956, A178817, A090488, A256853, A178816, A256854, A178809.
KEYWORD
nonn,cons
AUTHOR
Eric Desbiaux, Jul 04 2008
STATUS
approved
Decimal expansion of radius of inscribed sphere about a regular icosahedron with edge = 1.
+10
26
7, 5, 5, 7, 6, 1, 3, 1, 4, 0, 7, 6, 1, 7, 0, 7, 3, 0, 4, 8, 0, 1, 3, 3, 7, 0, 2, 0, 2, 5, 0, 0, 1, 3, 9, 2, 6, 3, 8, 4, 4, 4, 7, 8, 8, 8, 9, 3, 5, 6, 1, 0, 5, 9, 2, 2, 9, 5, 8, 2, 8, 9, 2, 0, 3, 9, 1, 0, 6, 8, 4, 5, 2, 2, 1, 9, 4, 8, 2, 6, 2, 0, 6, 3, 5, 6, 0, 4, 9, 4, 7, 6, 0, 8, 6, 8, 2, 7, 0, 4, 1, 1, 9, 3, 1
OFFSET
0,1
COMMENTS
Icosahedron: A three-dimensional figure with 20 equilateral triangle faces, 12 vertices, and 30 edges.
REFERENCES
Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 451.
FORMULA
Equals sqrt(42 + 18*sqrt(5))/12.
EXAMPLE
0.75576131407617073048013370202500139263844478889356105922958289203910...
MATHEMATICA
RealDigits[(Sqrt[42+18Sqrt[5]]/12), 10, 175][[1]]
PROG
(PARI) sqrt((7+3*sqrt(5))/6)/2 \\ Stefano Spezia, Jan 27 2025
CROSSREFS
Cf. Platonic solids inradii: A020781 (tetrahedron), A020763 (octahedron), A237603 (dodecahedron).
KEYWORD
nonn,cons,easy,changed
AUTHOR
EXTENSIONS
Partially rewritten by Charles R Greathouse IV, Feb 03 2011
STATUS
approved
Decimal expansion of square root of 12.
+10
23
3, 4, 6, 4, 1, 0, 1, 6, 1, 5, 1, 3, 7, 7, 5, 4, 5, 8, 7, 0, 5, 4, 8, 9, 2, 6, 8, 3, 0, 1, 1, 7, 4, 4, 7, 3, 3, 8, 8, 5, 6, 1, 0, 5, 0, 7, 6, 2, 0, 7, 6, 1, 2, 5, 6, 1, 1, 1, 6, 1, 3, 9, 5, 8, 9, 0, 3, 8, 6, 6, 0, 3, 3, 8, 1, 7, 6, 0, 0, 0, 7, 4, 1, 6, 2, 2, 9, 2, 3, 7, 3, 5, 1, 4, 4, 9, 7, 1, 5
OFFSET
1,1
COMMENTS
3+sqrt(12) is the ratio of the radii of the three identical kissing circles to that of their inner Soddy circle. - Lekraj Beedassy, Mar 04 2006
sqrt(12)-3 = 2*sqrt(3)-3 is the area of the largest equilateral triangle that can be inscribed in a unit square (as stated in MathWorld/Weisstein link). - Rick L. Shepherd, Jun 24 2006
Continued fraction expansion is 3 followed by {2, 6} repeated (A040008). - Harry J. Smith, Jun 02 2009
Surface of a regular octahedron with unit edge, and twice the surface of a regular tetrahedron with unit edge. - Stanislav Sykora, Nov 21 2013
Imaginary part of the square of a complex cubic root of 64 (real part is -2). - Alonso del Arte, Jan 13 2014
REFERENCES
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 2.31.4 and 2.31.5, pp. 201-202.
Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 450.
LINKS
Eric Weisstein's World of Mathematics, Equilateral Triangle.
Wikipedia, Octahedron.
Wikipedia, Platonic solid.
FORMULA
Equals 2*sqrt(3) = 2*A002194. - Rick L. Shepherd, Jun 24 2006
EXAMPLE
3.4641016151377545870548926830...
MAPLE
evalf[100](sqrt(12)); # Muniru A Asiru, Feb 12 2019
MATHEMATICA
RealDigits[N[Sqrt[12], 200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 21 2011 *)
PROG
(PARI) default(realprecision, 20080); x=sqrt(12); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b010469.txt", n, " ", d)); \\ Harry J. Smith, Jun 02 2009
CROSSREFS
Cf. A120683.
Cf. A040008 (continued fraction), A041016 (numerators of convergents), A041017 (denominators).
Cf. A002194 (surface of tetrahedron), A010527 (surface of icosahedron/10), A131595 (surface of dodecahedron).
KEYWORD
nonn,cons,easy,changed
STATUS
approved
Decimal expansion of radius of inscribed sphere of an icosahedron with radius of circumscribed sphere = 1.
+10
23
7, 9, 4, 6, 5, 4, 4, 7, 2, 2, 9, 1, 7, 6, 6, 1, 2, 2, 9, 5, 5, 5, 3, 0, 9, 2, 8, 3, 2, 7, 5, 9, 4, 0, 4, 2, 0, 2, 6, 5, 9, 0, 5, 8, 8, 3, 0, 9, 2, 6, 4, 8, 0, 1, 7, 5, 4, 9, 5, 5, 7, 7, 5, 0, 0, 8, 4, 3, 8, 6, 4, 4, 9, 7, 1, 7, 3, 7, 1, 1, 6, 7, 9, 3, 0, 2, 7, 2, 9, 9, 4, 8, 4, 8, 7, 0, 8, 7, 1, 3, 7, 8, 5, 2, 8
OFFSET
0,1
COMMENTS
Icosahedron: A three-dimensional figure with 20 equilateral triangle faces, 12 vertices, and 30 edges.
FORMULA
Sqrt(75 + 30*sqrt(5))/15.
EXAMPLE
0.794654472291766122955530928327594042026590588309264801754955775008438...
MATHEMATICA
R=1; RealDigits[N[(Sqrt[75+30*Sqrt[5]]/15)*R, 175]]
PROG
(PARI) polrootsreal(45*x^4-30*x^2+1)[4] \\ Charles R Greathouse IV, Sep 02 2024
(PARI) sqrt(6/sqrt(5)+3)/3 \\ Charles R Greathouse IV, Sep 02 2024
CROSSREFS
KEYWORD
nonn,cons,easy,changed
AUTHOR
EXTENSIONS
Offset corrected, keyword:cons added by R. J. Mathar, Jul 11 2010
STATUS
approved

Search completed in 0.040 seconds