Displaying 11-20 of 85 results found.
Decimal expansion of sqrt(5 + 2*sqrt(5))/2, the height of a regular pentagon and midradius of an icosidodecahedron with side length 1.
+10
22
1, 5, 3, 8, 8, 4, 1, 7, 6, 8, 5, 8, 7, 6, 2, 6, 7, 0, 1, 2, 8, 5, 1, 4, 5, 2, 8, 8, 0, 1, 8, 4, 5, 4, 9, 1, 2, 0, 0, 3, 3, 5, 1, 0, 7, 1, 7, 6, 8, 8, 9, 6, 2, 1, 3, 5, 1, 9, 5, 7, 8, 1, 2, 5, 1, 8, 7, 4, 3, 1, 6, 4, 4, 2, 4, 7, 5, 4, 5, 4, 5, 9, 2, 2, 7, 2, 9, 6, 8, 6, 0, 8, 3, 3, 5, 5, 2, 7, 1, 7, 6, 3, 5, 9, 5
COMMENTS
Icosidodecahedron: 32 faces, 30 vertices, and 60 edges.
Height of a regular pentagon with side length 1. - Jared Kish, Oct 16 2014
Volume of a regular decagonal prism with unit side length and height 2. - Wesley Ivan Hurt, May 04 2021
LINKS
Eric Weisstein's World of Mathematics, Pentagon
FORMULA
Equals sqrt(5+2*sqrt(5))/2.
EXAMPLE
1.53884176858762670128514528801845491200335107176889621351957812518743...
MATHEMATICA
RealDigits[Sqrt[5+2Sqrt[5]]/2, 10, 120][[1]] (* Harvey P. Dale, Jun 23 2017 *)
PROG
(PARI) sqrt(5+2*sqrt(5))/2
Decimal expansion of the volume of square cupola with edge length 1.
+10
20
1, 9, 4, 2, 8, 0, 9, 0, 4, 1, 5, 8, 2, 0, 6, 3, 3, 6, 5, 8, 6, 7, 7, 9, 2, 4, 8, 2, 8, 0, 6, 4, 6, 5, 3, 8, 5, 7, 1, 3, 1, 1, 4, 5, 8, 3, 5, 8, 4, 6, 3, 2, 0, 4, 8, 7, 8, 4, 4, 5, 3, 1, 5, 8, 6, 6, 0, 4, 8, 8, 3, 1, 8, 9, 7, 4, 7, 3, 8, 0, 2, 5, 9, 0, 0, 2, 5, 8, 3, 5, 6, 2, 1, 8, 4, 2, 7, 7, 1, 5, 1, 5, 6, 6, 7
COMMENTS
Square cupola: 12 vertices, 20 edges, and 10 faces.
Also, decimal expansion of 1 + Product_{n>0} (1-1/(4*n+2)^2). - Bruno Berselli, Apr 02 2013
Decimal expansion of 1 + (least possible ratio of the side length of one inscribed square to the side length of another inscribed square in the same non-obtuse triangle). - L. Edson Jeffery, Nov 12 2014
2*sqrt(2)/3 is the radius of the base of the maximum-volume right cone inscribed in a unit-radius sphere. - Amiram Eldar, Sep 25 2022
FORMULA
Equals (3 + 2*sqrt(2))/3.
EXAMPLE
1.942809041582063365867792482806465385713114583584632048784453158660...
MATHEMATICA
RealDigits[N[1+(2*Sqrt[2])/3, 200]]
(* From the second comment: *) RealDigits[N[1 + Product[1 - 1/(4 n + 2)^2, {n, 1, Infinity}], 110]][[1]] (* Bruno Berselli, Apr 02 2013 *)
CROSSREFS
Cf. A001622, A010527, A102208, A179290, A179292, A179294, A179449, A179450, A179451, A179452, A179552, A179553, A019881, A224268.
Cf. A131594 (decimal expansion of sqrt(2)/3).
Decimal expansion of the volume of great icosahedron with edge length 1.
+10
19
3, 1, 8, 3, 0, 5, 0, 0, 9, 3, 7, 5, 0, 8, 7, 6, 2, 6, 4, 9, 6, 1, 7, 7, 6, 3, 8, 0, 2, 8, 6, 3, 4, 9, 0, 1, 8, 9, 9, 7, 4, 2, 3, 5, 0, 1, 6, 1, 8, 6, 4, 2, 8, 1, 5, 5, 3, 7, 9, 2, 8, 1, 4, 4, 1, 2, 2, 8, 2, 9, 4, 7, 6, 5, 0, 9, 1, 4, 6, 2, 5, 2, 4, 3, 9, 9, 3, 9, 9, 6, 5, 0, 8, 8, 4, 0, 7, 1, 8, 7, 6, 2, 7, 0, 4
COMMENTS
Great icosahedron: 20 faces, 12 vertices, and 30 edges.
FORMULA
Digits of 5/12 * (3-sqrt(5)).
EXAMPLE
0.31830500937508762649617763802863490189974235016186428155379281441228294...
MATHEMATICA
RealDigits[N[5*(Sqrt[5]-3)/12, 105]][[1]]
Decimal expansion of the volume of an icosidodecahedron with edge length 1.
+10
17
1, 3, 8, 3, 5, 5, 2, 5, 9, 3, 6, 2, 4, 9, 4, 0, 4, 1, 3, 9, 8, 2, 5, 9, 9, 2, 0, 6, 1, 4, 0, 5, 2, 8, 2, 6, 6, 7, 0, 8, 1, 7, 5, 2, 0, 1, 8, 8, 9, 9, 3, 2, 2, 8, 8, 5, 4, 3, 4, 2, 0, 8, 8, 6, 1, 9, 9, 6, 4, 7, 5, 9, 5, 5, 9, 7, 3, 7, 8, 0, 5, 4, 8, 3, 4, 0, 8, 4, 0, 8, 2, 3, 7, 3, 9, 8, 8, 3, 1, 1, 2, 4, 1, 3, 6
COMMENTS
Icosidodecahedron: 32 faces, 30 vertices, and 60 edges.
EXAMPLE
13.83552593624940413982599206140528266708175201889932288543420886199647...
MATHEMATICA
RealDigits[N[(45+17*Sqrt[5])/6, 200]]
Decimal expansion of the surface area of an icosidodecahedron with side length 1.
+10
17
2, 9, 3, 0, 5, 9, 8, 2, 8, 4, 4, 9, 1, 1, 9, 8, 9, 5, 4, 0, 7, 4, 5, 3, 7, 5, 4, 3, 6, 1, 9, 2, 6, 7, 7, 0, 2, 7, 6, 0, 2, 5, 1, 6, 3, 0, 9, 1, 7, 4, 2, 8, 3, 0, 9, 0, 7, 6, 4, 1, 7, 1, 3, 8, 1, 5, 4, 6, 0, 9, 2, 9, 9, 1, 0, 5, 1, 5, 9, 4, 9, 6, 1, 3, 9, 5, 0, 2, 5, 8, 3, 0, 4, 3, 7, 2, 9, 5, 7, 6, 4, 3, 0, 4, 6
COMMENTS
Icosidodecahedron: 32 faces, 30 vertices, and 60 edges.
FORMULA
Sqrt(30*(10+3*sqrt(5)+sqrt(75+30*sqrt(5))))
EXAMPLE
29.3059828449119895407453754361926770276025163091742830907641713815460...
MATHEMATICA
RealDigits[N[Sqrt[30*(10+3*Sqrt[5]+Sqrt[75+30*Sqrt[5]])], 200]]
PROG
(PARI) polrootsreal(x^8 - 1200*x^6 + 324000*x^4 - 27000000*x^2 + 324000000)[8] \\ Charles R Greathouse IV, Oct 30 2023
Decimal expansion of the volume of pentagonal pyramid with edge length 1.
+10
15
3, 0, 1, 5, 0, 2, 8, 3, 2, 3, 9, 5, 8, 2, 4, 5, 7, 0, 6, 8, 3, 7, 1, 5, 5, 6, 9, 5, 3, 0, 4, 6, 9, 8, 4, 3, 1, 4, 3, 3, 5, 9, 0, 9, 8, 3, 1, 7, 1, 4, 6, 9, 0, 5, 1, 7, 7, 9, 5, 4, 0, 5, 1, 8, 9, 2, 1, 0, 5, 0, 3, 8, 5, 6, 8, 2, 4, 1, 8, 7, 0, 8, 0, 8, 9, 3, 3, 9, 3, 3, 6, 8, 2, 4, 4, 9, 2, 6, 1, 4, 5, 7, 0, 6, 2
COMMENTS
Pentagonal pyramid: 6 faces, 6 vertices, and 10 edges.
FORMULA
Digits of (5+sqrt(5))/24.
EXAMPLE
0.3015028323958245706837155695304698431433590983171469051779540518921...
MATHEMATICA
RealDigits[N[(5+Sqrt[5])/24, 200]]
Decimal expansion of square root of 48.
+10
14
6, 9, 2, 8, 2, 0, 3, 2, 3, 0, 2, 7, 5, 5, 0, 9, 1, 7, 4, 1, 0, 9, 7, 8, 5, 3, 6, 6, 0, 2, 3, 4, 8, 9, 4, 6, 7, 7, 7, 1, 2, 2, 1, 0, 1, 5, 2, 4, 1, 5, 2, 2, 5, 1, 2, 2, 2, 3, 2, 2, 7, 9, 1, 7, 8, 0, 7, 7, 3, 2, 0, 6, 7, 6, 3, 5, 2, 0, 0, 1, 4, 8, 3, 2, 4, 5, 8, 4, 7, 4, 7, 0, 2, 8, 9, 9, 4, 3, 0
COMMENTS
sqrt(48)/10 is the area enclosed by Koch's fractal snowflake based on unit-sided equilateral triangle (actually 8/5 times the latter's area). - Lekraj Beedassy, Jan 06 2005
7+sqrt(48) is the ratio of outer to inner Soddy circles' radii for three identical kissing circles (see Soddy circles link). - Lekraj Beedassy, Feb 14 2006
Continued fraction expansion is 6 followed by {1, 12} repeated. - Harry J. Smith, Jun 06 2009
Let a, b, c the sides of a triangle ABC of area S, then 4*sqrt(3) <= (a^2+b^2+c^2) / S; equality is obtained only when the triangle is equilateral (see Mitrinovic reference). - Bernard Schott, Sep 27 2022
REFERENCES
J. N. Kapur, Mathematics Enjoyment For The Millions, Problem 47 pp. 64-67, Arya Book Depot, New Delhi 2000.
D. S. Mitrinovic, E. S. Barnes, D. C. B. Marsh, J. R. M. Radok, Elementary Inequalities, Tutorial Text 1 (1964), P. Noordhoff LTD, Groningen, problem 6.3, page 112.
EXAMPLE
6.928203230275509174109785366023489467771221015241522512223227917807732...
PROG
(PARI) default(realprecision, 20080); x=sqrt(48); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b010502.txt", n, " ", d)); \\ Harry J. Smith, Jun 06 2009
Decimal expansion of 3*(sqrt(25 + 10*sqrt(5))), the surface area of a regular dodecahedron with edges of unit length.
+10
14
2, 0, 6, 4, 5, 7, 2, 8, 8, 0, 7, 0, 6, 7, 6, 0, 3, 0, 7, 3, 1, 0, 8, 1, 4, 3, 7, 2, 8, 6, 6, 3, 3, 1, 5, 1, 9, 2, 8, 8, 8, 4, 9, 0, 0, 4, 0, 1, 2, 2, 3, 7, 9, 9, 5, 0, 4, 8, 5, 1, 3, 6, 4, 8, 4, 2, 8, 6, 4, 2, 7, 9, 0, 6, 5, 0, 7, 5, 9, 4, 7, 7, 5, 9, 8, 9, 2, 9, 4, 8, 9, 6, 6, 5, 1, 0, 5, 2, 8, 8, 5, 9, 2, 6, 5, 1, 3, 7, 0, 5, 5, 4, 1, 7, 7, 0, 0, 3, 1, 9
COMMENTS
Surface area of a regular dodecahedron: A = 3*(sqrt(25 + 10*sqrt(5)))* a^2, where 'a' is the edge.
REFERENCES
Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, ยง12.4 Theorems and Formulas (Solid Geometry), p. 451.
FORMULA
Equals 15/tan(Pi/5).
Equals 15*phi/xi, where phi is the golden ratio ( A001622) and xi its associate ( A182007). (End)
EXAMPLE
20.64572880706760307310814372866331519288849004012237995...
MATHEMATICA
RealDigits[3*Sqrt[25+10*Sqrt[5]], 10, 120][[1]] (* Harvey P. Dale, Jun 21 2011 *)
PROG
(PARI) default(realprecision, 100); 3*(sqrt(25 + 10*sqrt(5))) \\ G. C. Greubel, Nov 02 2018
(Magma) SetDefaultRealField(RealField(100)); 3*(Sqrt(25 + 10*Sqrt(5))); // G. C. Greubel, Nov 02 2018
Decimal expansion of cos(Pi/8) = cos(22.5 degrees).
+10
12
9, 2, 3, 8, 7, 9, 5, 3, 2, 5, 1, 1, 2, 8, 6, 7, 5, 6, 1, 2, 8, 1, 8, 3, 1, 8, 9, 3, 9, 6, 7, 8, 8, 2, 8, 6, 8, 2, 2, 4, 1, 6, 6, 2, 5, 8, 6, 3, 6, 4, 2, 4, 8, 6, 1, 1, 5, 0, 9, 7, 7, 3, 1, 2, 8, 0, 5, 3, 5, 0, 0, 7, 5, 0, 1, 1, 0, 2, 3, 5, 8, 7, 1, 4, 8, 3, 9, 9, 3, 4, 8, 5, 0, 3, 4, 4, 5, 9, 6, 0, 9, 7, 9, 6, 3
COMMENTS
Width of a regular octagon of unit diameter. See Bingane and Audet. - Michel Marcus, Oct 04 2021
FORMULA
Equals sqrt(2 + sqrt(2))/2 = sqrt(3.41421...)/2 = 1.8477759.../2.
Equals Hypergeometric2F1([11/16, 5/16], [1/2], 3/4) / 2. - R. J. Mathar, Oct 27 2008
EXAMPLE
Equals 0.923879532511286756128183189396788286822416625863642486115097...
MAPLE
evalf(sqrt(2+sqrt(2))/2) ;
MATHEMATICA
RealDigits[ Sqrt[2 + Sqrt[2]]/2, 10, 111][[1]] (* Or *) RealDigits[ Cos[Pi/8], 10, 111][[1]] (* Robert G. Wilson v *)
PROG
(SageMath) numerical_approx(sqrt(2+sqrt(2))/2, digits=120) # G. C. Greubel, Sep 04 2022
Decimal expansion of the surface area of pentagonal pyramid with edge length 1.
+10
11
3, 8, 8, 5, 5, 4, 0, 9, 1, 0, 0, 5, 0, 0, 6, 3, 5, 3, 9, 6, 6, 8, 3, 1, 9, 9, 0, 4, 2, 7, 0, 9, 5, 0, 0, 5, 8, 0, 8, 5, 8, 8, 0, 7, 3, 7, 2, 7, 3, 1, 7, 4, 1, 1, 4, 2, 7, 6, 8, 5, 3, 4, 3, 1, 3, 3, 8, 7, 8, 5, 2, 6, 3, 3, 4, 4, 9, 6, 6, 2, 7, 7, 6, 8, 3, 8, 7, 3, 9, 7, 4, 8, 3, 4, 1, 4, 8, 4, 6, 0, 0, 8, 8, 4, 0
COMMENTS
Pentagonal pyramid: 6 faces, 6 vertices, and 10 edges.
FORMULA
Digits of sqrt(5/2*(10+sqrt(5)+sqrt(75+30sqrt(5))))/2.
EXAMPLE
3.885540910050063539668319904270950058085880737273174114276853431338785...
MATHEMATICA
RealDigits[N[Sqrt[5/2*(10+Sqrt[5]+Sqrt[75+30*Sqrt[5]])]/2, 200]]
CROSSREFS
Cf. A001622, A010527, A102208, A179290, A179292, A179294, A179449, A179450, A179451, A179452, A179552.
Search completed in 0.037 seconds
|