OFFSET
1,3
COMMENTS
Side length of the largest equilateral triangle that can be inscribed in a unit square (as stated in MathWorld/Weisstein link).
A quartic integer. - Charles R Greathouse IV, Aug 27 2017
REFERENCES
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.2, p. 487.
LINKS
Eric Weisstein's World of Mathematics, Equilateral Triangle.
FORMULA
Equals sec(Pi/12) = sec(A019679) = sqrt(6) - sqrt(2) = A010464 - A002193 = csc(5*Pi/12) = 1/sin(5*Pi/12) = 1/sin(10*A019691) = 1/A019884.
Equals Product_{k >= 1} 1/(1 - 1/(36*(2*k - 1)^2)). - Antonio GraciĆ” Llorente, Mar 20 2024
From Amiram Eldar, Nov 24 2024: (Start)
Equals 2*A101263.
Equals Product_{k>=1} (1 - (-1)^k/A092242(k)). (End)
EXAMPLE
1.03527618041008304939559535049619331339627560527972...
MATHEMATICA
RealDigits[Sec[15 Degree], 10, 120][[1]] (* Harvey P. Dale, Jun 03 2015 *)
PROG
(PARI) sqrt(6) - sqrt(2) \\ Charles R Greathouse IV, Aug 27 2017
CROSSREFS
KEYWORD
AUTHOR
Rick L. Shepherd, Jun 24 2006
STATUS
approved