[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a179292 -id:a179292
     Sort: relevance | references | number | modified | created      Format: long | short | data
Decimal expansion of sin(2*Pi/5) (sine of 72 degrees).
+10
30
9, 5, 1, 0, 5, 6, 5, 1, 6, 2, 9, 5, 1, 5, 3, 5, 7, 2, 1, 1, 6, 4, 3, 9, 3, 3, 3, 3, 7, 9, 3, 8, 2, 1, 4, 3, 4, 0, 5, 6, 9, 8, 6, 3, 4, 1, 2, 5, 7, 5, 0, 2, 2, 2, 4, 4, 7, 3, 0, 5, 6, 4, 4, 4, 3, 0, 1, 5, 3, 1, 7, 0, 0, 8, 5, 1, 9, 3, 5, 0, 1, 7, 1, 8, 7, 9, 2, 8, 1, 0, 9, 7, 0, 8, 1, 1, 3, 8, 1
OFFSET
0,1
COMMENTS
Circumradius of pentagonal pyramid (Johnson solid 2) with edge 1. - Vladimir Joseph Stephan Orlovsky, Jul 19 2010
Circumscribed sphere radius for a regular icosahedron with unit edges. - Stanislav Sykora, Feb 10 2014
Side length of the particular golden rhombus with diagonals 1 and phi (A001622); area is phi/2 (A019863). Thus, also the ratio side/(shorter diagonal) for any golden rhombus. Interior angles of a golden rhombus are always A105199 and A137218. - Rick L. Shepherd, Apr 10 2017
An algebraic number of degree 4; minimal polynomial is 16x^4 - 20x^2 + 5, which has these smaller, other solutions (conjugates): -A019881 < -A019845 < A019845 (sine of 36 degrees). - Rick L. Shepherd, Apr 11 2017
This is length ratio of one half of any diagonal in the regular pentagon and the circumscribing radius. - Wolfdieter Lang, Jan 07 2018
Quartic number of denominator 2 and minimal polynomial 16x^4 - 20x^2 + 5. - Charles R Greathouse IV, May 13 2019
This gives the imaginary part of one of the members of a conjugate pair of roots of x^5 - 1, with real part (-1 + phi)/2 = A019827, where phi = A001622. A member of the other conjugte pair of roots is (-phi + sqrt(3 - phi)*i)/2 = (-A001622 + A182007*i)/2 = -A001622/2 + A019845*i. - Wolfdieter Lang, Aug 30 2022
REFERENCES
Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 451.
LINKS
Eric Weisstein's World of Mathematics, Golden Rhombus.
Wikipedia, Platonic solid.
Wolfram Alpha, Johnson solid 2.
FORMULA
Equals sqrt((5+sqrt(5))/8) = cos(Pi/10). - Zak Seidov, Nov 18 2006
Equals 2F1(13/20,7/20;1/2;3/4) / 2. - R. J. Mathar, Oct 27 2008
Equals the real part of i^(1/5). - Stanislav Sykora, Apr 25 2012
Equals A001622*A182007/2. - Stanislav Sykora, Feb 10 2014
Equals sin(2*Pi/5) = sqrt(2 + phi)/2 = sin(3*Pi/5), with phi = A001622 - Wolfdieter Lang, Jan 07 2018
Equals 2*A019845*A019863. - R. J. Mathar, Jan 17 2021
EXAMPLE
0.95105651629515357211643933337938214340569863412575022244730564443015317008...
MAPLE
Digits:=100: evalf(sin(2*Pi/5)); # Wesley Ivan Hurt, Sep 01 2014
MATHEMATICA
RealDigits[Sqrt[(5 + Sqrt[5])/8], 10, 111] (* Robert G. Wilson v *)
RealDigits[Sin[2 Pi/5], 10, 111][[1]] (* Robert G. Wilson v, Jan 07 2018 *)
PROG
(PARI)
default(realprecision, 120);
real(I^(1/5)) \\ Rick L. Shepherd, Apr 10 2017
(Magma) SetDefaultRealField(RealField(100)); Sqrt((5 + Sqrt(5))/8); // G. C. Greubel, Nov 02 2018
CROSSREFS
Cf. Platonic solids circumradii: A010503 (octahedron), A010527 (cube), A179296 (dodecahedron), A187110 (tetrahedron). - Stanislav Sykora, Feb 10 2014
KEYWORD
nonn,cons,easy,changed
STATUS
approved
Decimal expansion of radius of inscribed sphere about a regular icosahedron with edge = 1.
+10
26
7, 5, 5, 7, 6, 1, 3, 1, 4, 0, 7, 6, 1, 7, 0, 7, 3, 0, 4, 8, 0, 1, 3, 3, 7, 0, 2, 0, 2, 5, 0, 0, 1, 3, 9, 2, 6, 3, 8, 4, 4, 4, 7, 8, 8, 8, 9, 3, 5, 6, 1, 0, 5, 9, 2, 2, 9, 5, 8, 2, 8, 9, 2, 0, 3, 9, 1, 0, 6, 8, 4, 5, 2, 2, 1, 9, 4, 8, 2, 6, 2, 0, 6, 3, 5, 6, 0, 4, 9, 4, 7, 6, 0, 8, 6, 8, 2, 7, 0, 4, 1, 1, 9, 3, 1
OFFSET
0,1
COMMENTS
Icosahedron: A three-dimensional figure with 20 equilateral triangle faces, 12 vertices, and 30 edges.
REFERENCES
Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 451.
FORMULA
Equals sqrt(42 + 18*sqrt(5))/12.
EXAMPLE
0.75576131407617073048013370202500139263844478889356105922958289203910...
MATHEMATICA
RealDigits[(Sqrt[42+18Sqrt[5]]/12), 10, 175][[1]]
PROG
(PARI) sqrt((7+3*sqrt(5))/6)/2 \\ Stefano Spezia, Jan 27 2025
CROSSREFS
Cf. Platonic solids inradii: A020781 (tetrahedron), A020763 (octahedron), A237603 (dodecahedron).
KEYWORD
nonn,cons,easy,changed
AUTHOR
EXTENSIONS
Partially rewritten by Charles R Greathouse IV, Feb 03 2011
STATUS
approved
Decimal expansion of sqrt(5 + 2*sqrt(5))/2, the height of a regular pentagon and midradius of an icosidodecahedron with side length 1.
+10
22
1, 5, 3, 8, 8, 4, 1, 7, 6, 8, 5, 8, 7, 6, 2, 6, 7, 0, 1, 2, 8, 5, 1, 4, 5, 2, 8, 8, 0, 1, 8, 4, 5, 4, 9, 1, 2, 0, 0, 3, 3, 5, 1, 0, 7, 1, 7, 6, 8, 8, 9, 6, 2, 1, 3, 5, 1, 9, 5, 7, 8, 1, 2, 5, 1, 8, 7, 4, 3, 1, 6, 4, 4, 2, 4, 7, 5, 4, 5, 4, 5, 9, 2, 2, 7, 2, 9, 6, 8, 6, 0, 8, 3, 3, 5, 5, 2, 7, 1, 7, 6, 3, 5, 9, 5
OFFSET
1,2
COMMENTS
Icosidodecahedron: 32 faces, 30 vertices, and 60 edges.
Height of a regular pentagon with side length 1. - Jared Kish, Oct 16 2014
Volume of a regular decagonal prism with unit side length and height 2. - Wesley Ivan Hurt, May 04 2021
LINKS
Eric Weisstein's World of Mathematics, Icosidodecahedron
Eric Weisstein's World of Mathematics, Pentagon
FORMULA
Equals sqrt(5+2*sqrt(5))/2.
EXAMPLE
1.53884176858762670128514528801845491200335107176889621351957812518743...
MAPLE
sqrt(5+2*sqrt(5.))/2
MATHEMATICA
RealDigits[Sqrt[5+2Sqrt[5]]/2, 10, 120][[1]] (* Harvey P. Dale, Jun 23 2017 *)
PROG
(PARI) sqrt(5+2*sqrt(5))/2
KEYWORD
nonn,cons,easy,changed
AUTHOR
EXTENSIONS
Partially rewritten by Charles R Greathouse IV, Feb 03 2011
Edited by M. F. Hasler, Oct 16 2014
STATUS
approved
Decimal expansion of the volume of square cupola with edge length 1.
+10
20
1, 9, 4, 2, 8, 0, 9, 0, 4, 1, 5, 8, 2, 0, 6, 3, 3, 6, 5, 8, 6, 7, 7, 9, 2, 4, 8, 2, 8, 0, 6, 4, 6, 5, 3, 8, 5, 7, 1, 3, 1, 1, 4, 5, 8, 3, 5, 8, 4, 6, 3, 2, 0, 4, 8, 7, 8, 4, 4, 5, 3, 1, 5, 8, 6, 6, 0, 4, 8, 8, 3, 1, 8, 9, 7, 4, 7, 3, 8, 0, 2, 5, 9, 0, 0, 2, 5, 8, 3, 5, 6, 2, 1, 8, 4, 2, 7, 7, 1, 5, 1, 5, 6, 6, 7
OFFSET
1,2
COMMENTS
Square cupola: 12 vertices, 20 edges, and 10 faces.
Also, decimal expansion of 1 + Product_{n>0} (1-1/(4*n+2)^2). - Bruno Berselli, Apr 02 2013
Decimal expansion of 1 + (least possible ratio of the side length of one inscribed square to the side length of another inscribed square in the same non-obtuse triangle). - L. Edson Jeffery, Nov 12 2014
2*sqrt(2)/3 is the radius of the base of the maximum-volume right cone inscribed in a unit-radius sphere. - Amiram Eldar, Sep 25 2022
FORMULA
Equals (3 + 2*sqrt(2))/3.
Equals 1 + 2*A131594. - L. Edson Jeffery, Nov 12 2014
EXAMPLE
1.942809041582063365867792482806465385713114583584632048784453158660...
MATHEMATICA
RealDigits[N[1+(2*Sqrt[2])/3, 200]]
(* From the second comment: *) RealDigits[N[1 + Product[1 - 1/(4 n + 2)^2, {n, 1, Infinity}], 110]][[1]] (* Bruno Berselli, Apr 02 2013 *)
PROG
(PARI) sqrt(8)/3+1 \\ Charles R Greathouse IV, Nov 14 2016
CROSSREFS
Cf. A131594 (decimal expansion of sqrt(2)/3).
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved
Decimal expansion of the volume of great icosahedron with edge length 1.
+10
19
3, 1, 8, 3, 0, 5, 0, 0, 9, 3, 7, 5, 0, 8, 7, 6, 2, 6, 4, 9, 6, 1, 7, 7, 6, 3, 8, 0, 2, 8, 6, 3, 4, 9, 0, 1, 8, 9, 9, 7, 4, 2, 3, 5, 0, 1, 6, 1, 8, 6, 4, 2, 8, 1, 5, 5, 3, 7, 9, 2, 8, 1, 4, 4, 1, 2, 2, 8, 2, 9, 4, 7, 6, 5, 0, 9, 1, 4, 6, 2, 5, 2, 4, 3, 9, 9, 3, 9, 9, 6, 5, 0, 8, 8, 4, 0, 7, 1, 8, 7, 6, 2, 7, 0, 4
OFFSET
1,1
COMMENTS
Great icosahedron: 20 faces, 12 vertices, and 30 edges.
FORMULA
Digits of 5/12 * (3-sqrt(5)).
EXAMPLE
0.31830500937508762649617763802863490189974235016186428155379281441228294...
MATHEMATICA
RealDigits[N[5*(Sqrt[5]-3)/12, 105]][[1]]
CROSSREFS
KEYWORD
nonn,cons,easy,changed
AUTHOR
EXTENSIONS
Partially rewritten by Charles R Greathouse IV, Feb 02 2011
STATUS
approved
Decimal expansion of the volume of an icosidodecahedron with edge length 1.
+10
17
1, 3, 8, 3, 5, 5, 2, 5, 9, 3, 6, 2, 4, 9, 4, 0, 4, 1, 3, 9, 8, 2, 5, 9, 9, 2, 0, 6, 1, 4, 0, 5, 2, 8, 2, 6, 6, 7, 0, 8, 1, 7, 5, 2, 0, 1, 8, 8, 9, 9, 3, 2, 2, 8, 8, 5, 4, 3, 4, 2, 0, 8, 8, 6, 1, 9, 9, 6, 4, 7, 5, 9, 5, 5, 9, 7, 3, 7, 8, 0, 5, 4, 8, 3, 4, 0, 8, 4, 0, 8, 2, 3, 7, 3, 9, 8, 8, 3, 1, 1, 2, 4, 1, 3, 6
OFFSET
2,2
COMMENTS
Icosidodecahedron: 32 faces, 30 vertices, and 60 edges.
FORMULA
(45 + 17*sqrt(5))/6.
EXAMPLE
13.83552593624940413982599206140528266708175201889932288543420886199647...
MATHEMATICA
RealDigits[N[(45+17*Sqrt[5])/6, 200]]
PROG
(PARI) (45 + 17*sqrt(5))/6 \\ Charles R Greathouse IV, Oct 30 2023
KEYWORD
nonn,cons,easy
AUTHOR
EXTENSIONS
Partially rewritten by Charles R Greathouse IV, Feb 03 2011
STATUS
approved
Decimal expansion of the surface area of an icosidodecahedron with side length 1.
+10
17
2, 9, 3, 0, 5, 9, 8, 2, 8, 4, 4, 9, 1, 1, 9, 8, 9, 5, 4, 0, 7, 4, 5, 3, 7, 5, 4, 3, 6, 1, 9, 2, 6, 7, 7, 0, 2, 7, 6, 0, 2, 5, 1, 6, 3, 0, 9, 1, 7, 4, 2, 8, 3, 0, 9, 0, 7, 6, 4, 1, 7, 1, 3, 8, 1, 5, 4, 6, 0, 9, 2, 9, 9, 1, 0, 5, 1, 5, 9, 4, 9, 6, 1, 3, 9, 5, 0, 2, 5, 8, 3, 0, 4, 3, 7, 2, 9, 5, 7, 6, 4, 3, 0, 4, 6
OFFSET
2,1
COMMENTS
Icosidodecahedron: 32 faces, 30 vertices, and 60 edges.
FORMULA
Sqrt(30*(10+3*sqrt(5)+sqrt(75+30*sqrt(5))))
EXAMPLE
29.3059828449119895407453754361926770276025163091742830907641713815460...
MATHEMATICA
RealDigits[N[Sqrt[30*(10+3*Sqrt[5]+Sqrt[75+30*Sqrt[5]])], 200]]
PROG
(PARI) polrootsreal(x^8 - 1200*x^6 + 324000*x^4 - 27000000*x^2 + 324000000)[8] \\ Charles R Greathouse IV, Oct 30 2023
KEYWORD
nonn,cons,easy
AUTHOR
EXTENSIONS
Partially rewritten by Charles R Greathouse IV, Feb 03 2011
STATUS
approved
Decimal expansion of the volume of pentagonal pyramid with edge length 1.
+10
15
3, 0, 1, 5, 0, 2, 8, 3, 2, 3, 9, 5, 8, 2, 4, 5, 7, 0, 6, 8, 3, 7, 1, 5, 5, 6, 9, 5, 3, 0, 4, 6, 9, 8, 4, 3, 1, 4, 3, 3, 5, 9, 0, 9, 8, 3, 1, 7, 1, 4, 6, 9, 0, 5, 1, 7, 7, 9, 5, 4, 0, 5, 1, 8, 9, 2, 1, 0, 5, 0, 3, 8, 5, 6, 8, 2, 4, 1, 8, 7, 0, 8, 0, 8, 9, 3, 3, 9, 3, 3, 6, 8, 2, 4, 4, 9, 2, 6, 1, 4, 5, 7, 0, 6, 2
OFFSET
0,1
COMMENTS
Pentagonal pyramid: 6 faces, 6 vertices, and 10 edges.
FORMULA
Digits of (5+sqrt(5))/24.
EXAMPLE
0.3015028323958245706837155695304698431433590983171469051779540518921...
MATHEMATICA
RealDigits[N[(5+Sqrt[5])/24, 200]]
PROG
(PARI) (5+sqrt(5))/24 \\ Charles R Greathouse IV, Oct 30 2023
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved
Decimal expansion of the surface area of pentagonal pyramid with edge length 1.
+10
11
3, 8, 8, 5, 5, 4, 0, 9, 1, 0, 0, 5, 0, 0, 6, 3, 5, 3, 9, 6, 6, 8, 3, 1, 9, 9, 0, 4, 2, 7, 0, 9, 5, 0, 0, 5, 8, 0, 8, 5, 8, 8, 0, 7, 3, 7, 2, 7, 3, 1, 7, 4, 1, 1, 4, 2, 7, 6, 8, 5, 3, 4, 3, 1, 3, 3, 8, 7, 8, 5, 2, 6, 3, 3, 4, 4, 9, 6, 6, 2, 7, 7, 6, 8, 3, 8, 7, 3, 9, 7, 4, 8, 3, 4, 1, 4, 8, 4, 6, 0, 0, 8, 8, 4, 0
OFFSET
1,1
COMMENTS
Pentagonal pyramid: 6 faces, 6 vertices, and 10 edges.
FORMULA
Digits of sqrt(5/2*(10+sqrt(5)+sqrt(75+30sqrt(5))))/2.
EXAMPLE
3.885540910050063539668319904270950058085880737273174114276853431338785...
MATHEMATICA
RealDigits[N[Sqrt[5/2*(10+Sqrt[5]+Sqrt[75+30*Sqrt[5]])]/2, 200]]
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved
Decimal expansion of circumradius of a regular dodecahedron with edge length 1.
+10
10
1, 4, 0, 1, 2, 5, 8, 5, 3, 8, 4, 4, 4, 0, 7, 3, 5, 4, 4, 6, 7, 6, 6, 7, 7, 9, 3, 5, 3, 2, 2, 0, 6, 7, 9, 9, 4, 4, 4, 3, 9, 3, 1, 7, 3, 9, 7, 7, 5, 4, 9, 2, 8, 6, 3, 6, 6, 0, 8, 4, 5, 1, 8, 6, 3, 9, 1, 3, 5, 4, 0, 2, 7, 2, 1, 1, 4, 4, 4, 7, 6, 7, 6, 5, 0, 1, 0, 8, 3, 9, 0, 9, 0, 3, 9, 8, 0, 5, 2, 3, 3, 9, 7, 9, 8
OFFSET
1,2
COMMENTS
Dodecahedron: A three-dimensional figure with 12 faces, 20 vertices, and 30 edges.
Appears as a coordinate in a degree-7 quadrature formula on 12 points over the unit circle [Stroud & Secrest]. - R. J. Mathar, Oct 12 2011
REFERENCES
Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 451.
FORMULA
Equals (sqrt(3) + sqrt(15))/4 = sqrt((9 + 3*sqrt(5))/8).
The minimal polynomial is 16*x^4 - 36*x^2 + 9. - Joerg Arndt, Feb 05 2014
Equals (sqrt(3)/2) * phi = A010527 * A001622. - Amiram Eldar, Jun 02 2023
EXAMPLE
1.40125853844407354467667793532206799444393173977549286366084518639135...
MATHEMATICA
RealDigits[(Sqrt[3]+Sqrt[15])/4, 10, 175][[1]]
PROG
(PARI) (1+sqrt(5))*sqrt(3)/4 \\ Stefano Spezia, Jan 27 2025
CROSSREFS
Cf. Platonic solids circumradii: A010503 (octahedron), A010527 (cube), A019881 (icosahedron), A187110 (tetrahedron). - Stanislav Sykora, Feb 10 2014
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved

Search completed in 0.014 seconds