# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a010503 Showing 1-1 of 1 %I A010503 #179 Feb 16 2025 08:32:32 %S A010503 7,0,7,1,0,6,7,8,1,1,8,6,5,4,7,5,2,4,4,0,0,8,4,4,3,6,2,1,0,4,8,4,9,0, %T A010503 3,9,2,8,4,8,3,5,9,3,7,6,8,8,4,7,4,0,3,6,5,8,8,3,3,9,8,6,8,9,9,5,3,6, %U A010503 6,2,3,9,2,3,1,0,5,3,5,1,9,4,2,5,1,9,3,7,6,7,1,6,3,8,2,0,7,8,6,3,6,7,5,0,6 %N A010503 Decimal expansion of 1/sqrt(2). %C A010503 The decimal expansion of sqrt(50) = 5*sqrt(2) = 7.0710678118654752440... gives essentially the same sequence. %C A010503 Also real and imaginary part of the square root of the imaginary unit. - _Alonso del Arte_, Jan 07 2011 %C A010503 1/sqrt(2) = (1/2)^(1/2) = (1/4)^(1/4) (see the comments in A072364). %C A010503 If a triangle has sides whose lengths form a harmonic progression in the ratio 1 : 1/(1 + d) : 1/(1 + 2d) then the triangle inequality condition requires that d be in the range -1 + 1/sqrt(2) < d < 1/sqrt(2). - _Frank M Jackson_, Oct 11 2011 %C A010503 Let s_2(n) be the sum of the base-2 digits of n and epsilon(n) = (-1)^s_2(n), the Thue-Morse sequence A010060, then Product_{n >= 0} ((2*n + 1)/(2*n + 2))^epsilon(n) = 1/sqrt(2). - _Jonathan Vos Post_, Jun 03 2012 %C A010503 The square root of 1/2 and thus it follows from the Pythagorean theorem that it is the sine of 45 degrees (and the cosine of 45 degrees). - _Alonso del Arte_, Sep 24 2012 %C A010503 Circumscribed sphere radius for a regular octahedron with unit edges. In electrical engineering, ratio of effective amplitude to peak amplitude of an alternating current/voltage. - _Stanislav Sykora_, Feb 10 2014 %C A010503 Radius of midsphere (tangent to edges) in a cube with unit edges. - _Stanislav Sykora_, Mar 27 2014 %D A010503 Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, Sections 1.1, 7.5.2, and 8.2, pp. 1-3, 468, 484, 487. %D A010503 Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 450. %H A010503 Harry J. Smith, Table of n, a(n) for n = 0..20000 %H A010503 P. C. Fishburn and J. A. Reeds, Bell inequalities, Grothendieck's constant and root two, SIAM J. Discrete Math., Vol. 7, No. 1, Feb. 1994, pp. 48-56. %H A010503 Ovidiu Furdui, Problem 1, Problem Corner, Research Group in Mathematical Inequalities and Applications, 2010. %H A010503 Michael Penn, A surprisingly convergent limit, YouTube video, 2022. %H A010503 Michael Penn, The infinite fraction of your dreams (nightmare?), YouTube video, 2022. %H A010503 Jonathan Sondow and D. Marques, Algebraic and transcendental solutions of some exponential equations, Annales Mathematicae et Informaticae 37 (2010) 151-164; arXiv:1108.6096 [math.NT], 2011, see p. 3 in the link. %H A010503 Eric Weisstein's World of Mathematics, Digit Product. %H A010503 Wikipedia, Platonic solid. %H A010503 Donald R. Woods, Problem E 2692, Elementary Problems, The American Mathematical Monthly, Vol. 85, No. 1 (1978), p. 48; A Transcendental Function Satisfy a Duplication Formula, by David Robbins, ibid., Vol. 86, No. 5 (1979), pp. 394-395. %H A010503 Index entries for algebraic numbers, degree 2. %F A010503 1/sqrt(2) = cos(Pi/4) = sqrt(2)/2. - _Eric Desbiaux_, Nov 05 2008 %F A010503 a(n) = 9 - A268682(n). As constants, this sequence is 1 - A268682. - _Philippe Deléham_, Feb 21 2016 %F A010503 From _Amiram Eldar_, Jun 29 2020: (Start) %F A010503 Equals sin(Pi/4) = cos(Pi/4). %F A010503 Equals Integral_{x=0..Pi/4} cos(x) dx. (End) %F A010503 Equals (1/2)*A019884 + A019824 * A010527 = A019851 * A019896 + A019812 * A019857. - _R. J. Mathar_, Jan 27 2021 %F A010503 Equals hypergeom([-1/2, -3/4], [5/4], -1). - _Peter Bala_, Mar 02 2022 %F A010503 Limit_{n->oo} (sqrt(T(n+1)) - sqrt(T(n))) = 1/sqrt(2), where T(n) = n(n+1)/2 = A000217(n) is the triangular numbers. - _Jules Beauchamp_, Sep 18 2022 %F A010503 Equals Product_{k>=0} ((2*k+1)/(2*k+2))^((-1)^A000120(k)) (Woods, 1978). - _Amiram Eldar_, Feb 04 2024 %F A010503 From _Stefano Spezia_, Oct 15 2024: (Start) %F A010503 Equals 1 + Sum_{k>=1} (-1)^k*binomial(2*k,k)/2^(2*k) [Newton]. %F A010503 Equal Product_{k>=1} 1 - 1/(4*(2*k - 1)^2). (End) %F A010503 Equals Product_{k>=0} (1 - (-1)^k/(6*k+3)). - _Amiram Eldar_, Nov 22 2024 %e A010503 0.7071067811865475... %p A010503 Digits:=100; evalf(1/sqrt(2)); _Wesley Ivan Hurt_, Mar 27 2014 %t A010503 N[ 1/Sqrt[2], 200] %t A010503 RealDigits[1/Sqrt[2],10,120][[1]] (* _Harvey P. Dale_, Mar 25 2019 *) %o A010503 (PARI) default(realprecision, 20080); x=10*(1/sqrt(2)); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b010503.txt", n, " ", d)); \\ _Harry J. Smith_, Jun 02 2009 %o A010503 (Magma) 1/Sqrt(2); // _Vincenzo Librandi_, Feb 21 2016 %Y A010503 Cf. A000120, A040042, A072364, A268682. %Y A010503 Cf. A073084 (infinite tetration limit). %Y A010503 Platonic solids circumradii: A010527 (cube), A019881 (icosahedron), A179296 (dodecahedron), A187110 (tetrahedron). %Y A010503 Platonic solids midradii: A020765 (tetrahedron), A020761 (octahedron), A019863 (icosahedron), A239798 (dodecahedron). %Y A010503 Cf. A000217, A010060, A019812, A019824, A019851, A019857, A019884, A019896. %K A010503 nonn,cons,easy,changed %O A010503 0,1 %A A010503 _N. J. A. Sloane_ %E A010503 More terms from _Harry J. Smith_, Jun 02 2009 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE