[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a010527 -id:a010527
     Sort: relevance | references | number | modified | created      Format: long | short | data
First term of n-th difference sequence of (floor(k*r)), r = sqrt(3/4), k >= 0.
+10
2
0, 1, -1, 1, -1, 1, -1, 0, 7, -35, 119, -329, 791, -1715, 3430, -6419, 11319, -18767, 28763, -38759, 38759, 1, -149228, 572057, -1615429, 3979001, -9014851, 19251001, -39309301, 77558760, -149239771, 282712561, -532577025, 1008032953, -1934671809, 3787949521
OFFSET
1,9
LINKS
MATHEMATICA
Table[First[Differences[Table[Floor[Sqrt[3/4]*n], {n, 0, 50}], n]], {n, 1, 50}]
CROSSREFS
Cf. A325664. Inverse binomial Transform of A171970 and A172475.
Cf. A010527 (sqrt(3/4)).
KEYWORD
easy,sign
AUTHOR
Clark Kimberling, May 20 2019
STATUS
approved
Decimal expansion of the imaginary part of i^(1/16), or sin(Pi/32).
+10
2
0, 9, 8, 0, 1, 7, 1, 4, 0, 3, 2, 9, 5, 6, 0, 6, 0, 1, 9, 9, 4, 1, 9, 5, 5, 6, 3, 8, 8, 8, 6, 4, 1, 8, 4, 5, 8, 6, 1, 1, 3, 6, 6, 7, 3, 1, 6, 7, 5, 0, 0, 5, 6, 7, 2, 5, 7, 2, 6, 4, 9, 7, 9, 8, 0, 9, 3, 8, 7, 3, 0, 2, 7, 8, 9, 0, 8, 7, 5, 3, 6, 8, 0, 7, 1, 1, 1, 0, 7, 7, 1, 4, 6, 3, 1, 8, 5, 5, 9, 5, 5, 4, 0, 7, 4, 2, 0, 6, 5, 2, 6, 4, 4, 4, 1
OFFSET
0,2
COMMENTS
An algebraic number of degree 16 and denominator 2. - Charles R Greathouse IV, Jan 09 2022
FORMULA
Equals (1/2) * sqrt(2-sqrt(2+sqrt(2+sqrt(2)))).
EXAMPLE
0.09801714032956060199419...
MATHEMATICA
RealDigits[Sin[Pi/32], 10, 100, -1][[1]] (* Amiram Eldar, Apr 27 2021 *)
PROG
(PARI) imag(I^(1/16))
(PARI) sin(Pi/32)
(PARI) sqrt(2-sqrt(2+sqrt(2+sqrt(2))))/2
(Sage) numerical_approx(sin(pi/32), digits=123) # G. C. Greubel, Sep 30 2022
CROSSREFS
sin(Pi/m): A010527 (m=3), A010503 (m=4), A019845 (m=5), A323601 (m=7), A182168 (m=8), A019829 (m=9), A019827 (m=10), A019824 (m=12), A232736 (m=14), A019821 (m=15), A232738 (m=16), A241243 (m=17), A019819 (m=18), A019818 (m=20), A343054 (m=24), A019815 (m=30), this sequence (m=32), A019814 (m=36).
KEYWORD
nonn,cons,easy
AUTHOR
Seiichi Manyama, Apr 04 2021
STATUS
approved
Decimal expansion of the real part of i^(1/16), or cos(Pi/32).
+10
2
9, 9, 5, 1, 8, 4, 7, 2, 6, 6, 7, 2, 1, 9, 6, 8, 8, 6, 2, 4, 4, 8, 3, 6, 9, 5, 3, 1, 0, 9, 4, 7, 9, 9, 2, 1, 5, 7, 5, 4, 7, 4, 8, 6, 8, 7, 2, 9, 8, 5, 7, 0, 6, 1, 8, 3, 3, 6, 1, 2, 9, 6, 5, 7, 8, 4, 8, 9, 0, 1, 6, 6, 8, 9, 4, 5, 8, 6, 5, 3, 7, 9, 7, 2, 5, 2, 9, 0, 8, 4, 2, 6, 9, 6, 4, 8, 3, 9, 0, 2, 8, 7, 7, 2, 4, 4, 9, 3, 1, 1, 8, 2, 9
OFFSET
0,1
LINKS
Leon D. Fairbanks, Powers of Cosine and Sine, arXiv:2308.04437 [math.GM], 2023. See p. 3.
FORMULA
Equals (1/2) * sqrt(2+sqrt(2+sqrt(2+sqrt(2)))).
EXAMPLE
0.9951847266721968862448369...
MATHEMATICA
RealDigits[Cos[Pi/32], 10, 100][[1]] (* Amiram Eldar, Apr 27 2021 *)
PROG
(PARI) real(I^(1/16))
(PARI) cos(Pi/32)
(PARI) sqrt(2+sqrt(2+sqrt(2+sqrt(2))))/2
(Magma) R:= RealField(127); Cos(Pi(R)/32) // G. C. Greubel, Sep 30 2022
(SageMath) numerical_approx(cos(pi/32), digits=122) # G. C. Greubel, Sep 30 2022
CROSSREFS
cos(Pi/m): A010503 (m=4), A019863 (m=5), A010527 (m=6), A073052 (m=7), A144981 (m=8), A019879 (m=9), A019881 (m=10), A019884 (m=12), A232735 (m=14), A019887 (m=15), A232737 (m=16), A210649 (m=17), A019889 (m=18), A019890 (m=20), A144982 (m=24), A019893 (m=30). this sequence (m=32), A019894 (m=36).
KEYWORD
nonn,cons,easy
AUTHOR
Seiichi Manyama, Apr 04 2021
STATUS
approved
Decimal expansion of -109/121 - 82/(121*sqrt(3)) + (2*sqrt(-35139 + 28634*sqrt(3)))/121 - Pi/3 + arccos((-1 + sqrt(3))/2).
+10
1
8, 4, 4, 1, 3, 7, 1, 2, 3, 7, 9, 5, 6, 3, 7, 6, 8, 1, 0, 6, 3, 0, 8, 7, 1, 3, 8, 0, 2, 9, 5, 2, 2, 6, 5, 4, 5, 1, 8, 4, 5, 1, 7, 4, 9, 8, 6, 6, 2, 7, 5, 9, 4, 2, 6, 2, 4, 8, 4, 9, 6, 8, 1, 6, 6, 4, 9, 6, 9, 8, 2, 9, 4, 0, 1, 0, 3, 9, 4, 1, 4, 6, 2, 2, 9, 9, 8, 0, 9, 6, 7, 0, 5, 8, 1, 6, 0, 1, 9, 8, 6, 9
OFFSET
0,1
COMMENTS
Area of lamina found by Sprague in the Lebesgue minimal problem.
LINKS
Eric Weisstein's World of Mathematics, Lebesgue Minimal Problem
EXAMPLE
0.844137123...
MATHEMATICA
RealDigits[-109/121-82/(121Sqrt[3])+(2Sqrt[-35139+28634Sqrt[3]])/121-Pi/3+ ArcCos[(-1+Sqrt[3])/2], 10, 120][[1]] (* Harvey P. Dale, Sep 22 2020 *)
CROSSREFS
KEYWORD
nonn,cons,easy,changed
AUTHOR
Eric W. Weisstein, Apr 16 2004
STATUS
approved
Decimal expansion of the volume of gyroelongated pentagonal pyramid with edge length 1.
+10
1
1, 8, 8, 0, 1, 9, 2, 1, 5, 8, 2, 2, 9, 0, 8, 7, 8, 0, 2, 8, 2, 0, 1, 0, 6, 7, 9, 2, 4, 4, 0, 8, 9, 5, 2, 5, 4, 9, 5, 6, 8, 9, 8, 5, 5, 1, 5, 2, 0, 9, 8, 8, 8, 1, 3, 2, 6, 8, 2, 5, 3, 1, 3, 3, 6, 9, 5, 6, 1, 2, 0, 1, 3, 7, 8, 0, 8, 4, 3, 5, 0, 3, 9, 4, 7, 0, 7, 2, 0, 6, 9, 8, 0, 8, 7, 1, 0, 0, 1, 9, 7, 8, 0, 2, 3
OFFSET
1,2
COMMENTS
Gyroelongated pentagonal pyramid: 11 vertices,25 edges,and 16 faces.
FORMULA
Digits of (25+9*sqrt(5))/24.
EXAMPLE
1.88019215822908780282010679244089525495689855152098881326825313369561...
MATHEMATICA
RealDigits[N[(25+9*Sqrt[5])/24, 200]]
KEYWORD
cons,nonn,easy
AUTHOR
STATUS
approved
Decimal expansion of the surface area of gyroelongated pentagonal pyramid with edge length 1.
+10
1
8, 2, 1, 5, 6, 6, 7, 9, 2, 8, 9, 7, 2, 2, 5, 6, 7, 7, 3, 4, 8, 6, 9, 3, 5, 7, 5, 8, 0, 3, 5, 6, 3, 0, 9, 7, 5, 4, 4, 2, 8, 9, 3, 8, 7, 1, 7, 9, 9, 1, 2, 5, 6, 8, 4, 4, 1, 6, 3, 7, 0, 8, 7, 9, 9, 6, 8, 6, 1, 7, 8, 0, 5, 6, 1, 6, 9, 6, 6, 3, 7, 0, 3, 8, 6, 7, 3, 9, 4, 4, 1, 7, 2, 7, 2, 6, 9, 8, 9, 9, 2, 7, 7, 4, 7
OFFSET
1,1
COMMENTS
Gyroelongated pentagonal pyramid: 11 vertices, 25 edges, and 16 faces.
FORMULA
Digits of sqrt(5/2*(70+sqrt(5)+3*sqrt(75+30*sqrt(5))))/2.
EXAMPLE
8.21566792897225677348693575803563097544289387179912568441637087996861...
MATHEMATICA
RealDigits[N[Sqrt[5/2*(70+Sqrt[5]+3*Sqrt[75+30*Sqrt[5]])]/2, 200]]
KEYWORD
cons,nonn,easy
AUTHOR
STATUS
approved
Sum{floor(sqrt(3)*k/2) : 1<=k<=n}
+10
1
0, 1, 3, 6, 10, 15, 21, 27, 34, 42, 51, 61, 72, 84, 96, 109, 123, 138, 154, 171, 189, 208, 227, 247, 268, 290, 313, 337, 362, 387, 413, 440, 468, 497, 527, 558, 590, 622, 655, 689, 724, 760, 797, 835, 873, 912, 952, 993, 1035, 1078, 1122, 1167, 1212
OFFSET
1,3
COMMENTS
Partial sums of A171970.
Comment from R. J. Mathar, Dec 02 2012 (Start):
a(n-1) is the number of unit squares regularly packed into the isosceles triangle of edge length n.
The triangle may be aligned with the Cartesian axes by putting its bottom edge on the horizontal axis, so its vertices are at (x,y) = (0,0), (n,0) and (n/2,sqrt(3)*n/2), see A010527.
The area inside the triangle is sqrt(3)*n^2/4 = A120011*n^2. There is an obvious upper limit of floor(sqrt(3)*n^2/4) = A171971(n) to the count of non-overlapping unit squares inside this triangle.
Regular packing: We place the first row of unit squares so they touch the bottom edge of the triangle. Their number is limited by the length of the horizontal section of the line y=1 inside the triangle, n-2*y/sqrt(3), which touches all of these first-row squares at their top.
The number of unit squares in the next row, between y=1 and y=2, is limited by the length of the horizontal section of the line y=2 inside the triangle, n-2*y/sqrt(3). Continuing, in row y=1, 2, ... we insert floor(n-2*y/sqrt(3)) unit squares, all with the same orientation.
The total number of squares is sum_{ y=1, 2, ..., floor(n*sqrt(3)/2) } floor( n-2*y/sqrt(3) ), and resummation yields, up to an index shift, this sequence here.
(End)
MATHEMATICA
r = Sqrt[3]/2;
c[k_] := Sum[Floor[j*r], {j, 1, k}];
Table[c[k], {k, 1, 90}]
PROG
(PARI) a(n)=sum(k=1, n, sqrtint(3*k^2\4)) \\ Charles R Greathouse IV, Jan 06 2013
CROSSREFS
Cf. A171970.
KEYWORD
nonn
AUTHOR
Clark Kimberling, Aug 17 2011
STATUS
approved
Decimal expansion of (3/8) * sqrt(3).
+10
1
6, 4, 9, 5, 1, 9, 0, 5, 2, 8, 3, 8, 3, 2, 8, 9, 8, 5, 0, 7, 2, 7, 9, 2, 3, 7, 8, 0, 6, 4, 7, 0, 2, 1, 3, 7, 6, 0, 3, 5, 5, 1, 9, 7, 0, 1, 7, 8, 8, 9, 2, 7, 3, 5, 5, 2, 0, 9, 2, 7, 6, 1, 7, 2, 9, 4, 4, 7, 4, 8, 8, 1, 3, 4, 0, 8, 0, 0, 0, 1, 3, 9, 0, 5, 4, 2, 9, 8, 2, 0, 0, 3, 3, 9, 6, 8, 2, 1, 5, 8, 7, 8, 3, 5, 9, 8, 0, 3, 0, 3, 0, 7, 7, 7, 5, 1, 3, 6, 3, 6
OFFSET
0,1
COMMENTS
This is the area of the regular hexagon of diameter 1.
From Bernard Schott, Apr 09 2022 and Oct 01 2022: (Start)
For any triangle ABC, where (A,B,C) are the angles:
sin(A) * sin(B) * sin(C) <= (3/8) * sqrt(3) [Bottema reference],
cos(A/2) * cos(B/2) * cos(C/2) <= (3/8) * sqrt(3) [Mitrinovic reference],
and if (ha,hb,hc) are the altitude lengths and (a,b,c) the side lengths of this triangle [Scott Brown link]:
(ha+hb) * (hb+hc) * (hc+ha) / (a+b) * (b+c) * (c+a) <= (3/8) * sqrt(3).
The equalities are obtained only when triangle ABC is equilateral. (End)
REFERENCES
O. Bottema et al., Geometric Inequalities, Groningen, 1969, item 2.7, page 19.
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.15, p. 526.
D. S. Mitrinovic, E. S. Barnes, D. C. B. Marsh, J. R. M. Radok, Elementary Inequalities, Tutorial Text 1 (1964), P. Noordhoff LTD, Groningen, problem 6.2.2, page 111.
LINKS
Scott Brown, Problem 3453, Crux Mathematicorum, Vol. 36, No. 5 (2010), pp. 342 and 343.
FORMULA
Equals A104954/2 or A104956/4.
EXAMPLE
0.649519052838328985...
MATHEMATICA
RealDigits[(3/8) * Sqrt[3], 10, 120][[1]]
PROG
(PARI) sqrt(27)/8 \\ Charles R Greathouse IV, Apr 09 2022
CROSSREFS
Cf. A002194 (sqrt(3)), A104954.
Cf. A010527, A020821, A104956, A152623 (other geometric inequalities).
KEYWORD
cons,nonn
AUTHOR
Kritsada Moomuang, Mar 15 2020
STATUS
approved
Decimal expansion of the inradius of an icosidodecahedron with edge length 1.
+10
0
1, 4, 6, 3, 5, 2, 5, 4, 9, 1, 5, 6, 2, 4, 2, 1, 1, 3, 6, 1, 5, 3, 4, 4, 0, 1, 2, 5, 7, 7, 4, 2, 2, 8, 5, 8, 8, 2, 9, 0, 2, 3, 1, 8, 8, 4, 8, 5, 4, 3, 2, 2, 1, 4, 6, 6, 0, 1, 5, 8, 6, 4, 6, 7, 0, 2, 8, 9, 4, 5, 3, 4, 7, 1, 1, 4, 1, 7, 6, 8, 3, 7, 2, 8, 0, 4, 0, 5, 4, 0, 3, 1, 4, 2, 0, 4, 3, 3, 5, 3, 1, 1, 3, 5, 6
OFFSET
1,2
COMMENTS
Icosidodecahedron: 32 faces, 30 vertices, and 60 edges.
FORMULA
Digits of (5+3*sqrt(5))/8.
EXAMPLE
1.46352549156242113615344012577422858829023188485432214660158646702894...
MATHEMATICA
RealDigits[N[(5+3*Sqrt[5])/8, 200]]
PROG
(PARI) (sqrt(45)+5)/8 \\ Charles R Greathouse IV, Apr 25 2016
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved
Decimal expansion of the volume of pentagonal dipyramid with edge length 1.
+10
0
6, 0, 3, 0, 0, 5, 6, 6, 4, 7, 9, 1, 6, 4, 9, 1, 4, 1, 3, 6, 7, 4, 3, 1, 1, 3, 9, 0, 6, 0, 9, 3, 9, 6, 8, 6, 2, 8, 6, 7, 1, 8, 1, 9, 6, 6, 3, 4, 2, 9, 3, 8, 1, 0, 3, 5, 5, 9, 0, 8, 1, 0, 3, 7, 8, 4, 2, 1, 0, 0, 7, 7, 1, 3, 6, 4, 8, 3, 7, 4, 1, 6, 1, 7, 8, 6, 7, 8, 6, 7, 3, 6, 4, 8, 9, 8, 5, 2, 2, 9, 1, 4, 1, 2, 5
OFFSET
0,1
COMMENTS
Pentagonal dipyramid: 7 vertices, 15 edges, and 10 faces.
FORMULA
Digits of (5+sqrt(5))/12.
EXAMPLE
0.60300566479164914136743113906093968628671819663429381035590810378421...
MATHEMATICA
RealDigits[N[(5+Sqrt[5])/12, 200]]
PROG
(PARI) (sqrt(5)+5)/12 \\ Charles R Greathouse IV, Apr 25 2016
KEYWORD
cons,nonn,easy
AUTHOR
EXTENSIONS
Offset corrected by R. J. Mathar, Aug 15 2010
STATUS
approved

Search completed in 0.039 seconds