Displaying 71-80 of 85 results found.
First term of n-th difference sequence of (floor(k*r)), r = sqrt(3/4), k >= 0.
+10
2
0, 1, -1, 1, -1, 1, -1, 0, 7, -35, 119, -329, 791, -1715, 3430, -6419, 11319, -18767, 28763, -38759, 38759, 1, -149228, 572057, -1615429, 3979001, -9014851, 19251001, -39309301, 77558760, -149239771, 282712561, -532577025, 1008032953, -1934671809, 3787949521
MATHEMATICA
Table[First[Differences[Table[Floor[Sqrt[3/4]*n], {n, 0, 50}], n]], {n, 1, 50}]
Decimal expansion of the imaginary part of i^(1/16), or sin(Pi/32).
+10
2
0, 9, 8, 0, 1, 7, 1, 4, 0, 3, 2, 9, 5, 6, 0, 6, 0, 1, 9, 9, 4, 1, 9, 5, 5, 6, 3, 8, 8, 8, 6, 4, 1, 8, 4, 5, 8, 6, 1, 1, 3, 6, 6, 7, 3, 1, 6, 7, 5, 0, 0, 5, 6, 7, 2, 5, 7, 2, 6, 4, 9, 7, 9, 8, 0, 9, 3, 8, 7, 3, 0, 2, 7, 8, 9, 0, 8, 7, 5, 3, 6, 8, 0, 7, 1, 1, 1, 0, 7, 7, 1, 4, 6, 3, 1, 8, 5, 5, 9, 5, 5, 4, 0, 7, 4, 2, 0, 6, 5, 2, 6, 4, 4, 4, 1
FORMULA
Equals (1/2) * sqrt(2-sqrt(2+sqrt(2+sqrt(2)))).
EXAMPLE
0.09801714032956060199419...
MATHEMATICA
RealDigits[Sin[Pi/32], 10, 100, -1][[1]] (* Amiram Eldar, Apr 27 2021 *)
PROG
(PARI) imag(I^(1/16))
(PARI) sin(Pi/32)
(PARI) sqrt(2-sqrt(2+sqrt(2+sqrt(2))))/2
(Sage) numerical_approx(sin(pi/32), digits=123) # G. C. Greubel, Sep 30 2022
CROSSREFS
sin(Pi/m): A010527 (m=3), A010503 (m=4), A019845 (m=5), A323601 (m=7), A182168 (m=8), A019829 (m=9), A019827 (m=10), A019824 (m=12), A232736 (m=14), A019821 (m=15), A232738 (m=16), A241243 (m=17), A019819 (m=18), A019818 (m=20), A343054 (m=24), A019815 (m=30), this sequence (m=32), A019814 (m=36).
Decimal expansion of the real part of i^(1/16), or cos(Pi/32).
+10
2
9, 9, 5, 1, 8, 4, 7, 2, 6, 6, 7, 2, 1, 9, 6, 8, 8, 6, 2, 4, 4, 8, 3, 6, 9, 5, 3, 1, 0, 9, 4, 7, 9, 9, 2, 1, 5, 7, 5, 4, 7, 4, 8, 6, 8, 7, 2, 9, 8, 5, 7, 0, 6, 1, 8, 3, 3, 6, 1, 2, 9, 6, 5, 7, 8, 4, 8, 9, 0, 1, 6, 6, 8, 9, 4, 5, 8, 6, 5, 3, 7, 9, 7, 2, 5, 2, 9, 0, 8, 4, 2, 6, 9, 6, 4, 8, 3, 9, 0, 2, 8, 7, 7, 2, 4, 4, 9, 3, 1, 1, 8, 2, 9
FORMULA
Equals (1/2) * sqrt(2+sqrt(2+sqrt(2+sqrt(2)))).
EXAMPLE
0.9951847266721968862448369...
MATHEMATICA
RealDigits[Cos[Pi/32], 10, 100][[1]] (* Amiram Eldar, Apr 27 2021 *)
PROG
(PARI) real(I^(1/16))
(PARI) cos(Pi/32)
(PARI) sqrt(2+sqrt(2+sqrt(2+sqrt(2))))/2
(Magma) R:= RealField(127); Cos(Pi(R)/32) // G. C. Greubel, Sep 30 2022
(SageMath) numerical_approx(cos(pi/32), digits=122) # G. C. Greubel, Sep 30 2022
CROSSREFS
cos(Pi/m): A010503 (m=4), A019863 (m=5), A010527 (m=6), A073052 (m=7), A144981 (m=8), A019879 (m=9), A019881 (m=10), A019884 (m=12), A232735 (m=14), A019887 (m=15), A232737 (m=16), A210649 (m=17), A019889 (m=18), A019890 (m=20), A144982 (m=24), A019893 (m=30). this sequence (m=32), A019894 (m=36).
Decimal expansion of -109/121 - 82/(121*sqrt(3)) + (2*sqrt(-35139 + 28634*sqrt(3)))/121 - Pi/3 + arccos((-1 + sqrt(3))/2).
+10
1
8, 4, 4, 1, 3, 7, 1, 2, 3, 7, 9, 5, 6, 3, 7, 6, 8, 1, 0, 6, 3, 0, 8, 7, 1, 3, 8, 0, 2, 9, 5, 2, 2, 6, 5, 4, 5, 1, 8, 4, 5, 1, 7, 4, 9, 8, 6, 6, 2, 7, 5, 9, 4, 2, 6, 2, 4, 8, 4, 9, 6, 8, 1, 6, 6, 4, 9, 6, 9, 8, 2, 9, 4, 0, 1, 0, 3, 9, 4, 1, 4, 6, 2, 2, 9, 9, 8, 0, 9, 6, 7, 0, 5, 8, 1, 6, 0, 1, 9, 8, 6, 9
COMMENTS
Area of lamina found by Sprague in the Lebesgue minimal problem.
MATHEMATICA
RealDigits[-109/121-82/(121Sqrt[3])+(2Sqrt[-35139+28634Sqrt[3]])/121-Pi/3+ ArcCos[(-1+Sqrt[3])/2], 10, 120][[1]] (* Harvey P. Dale, Sep 22 2020 *)
Decimal expansion of the volume of gyroelongated pentagonal pyramid with edge length 1.
+10
1
1, 8, 8, 0, 1, 9, 2, 1, 5, 8, 2, 2, 9, 0, 8, 7, 8, 0, 2, 8, 2, 0, 1, 0, 6, 7, 9, 2, 4, 4, 0, 8, 9, 5, 2, 5, 4, 9, 5, 6, 8, 9, 8, 5, 5, 1, 5, 2, 0, 9, 8, 8, 8, 1, 3, 2, 6, 8, 2, 5, 3, 1, 3, 3, 6, 9, 5, 6, 1, 2, 0, 1, 3, 7, 8, 0, 8, 4, 3, 5, 0, 3, 9, 4, 7, 0, 7, 2, 0, 6, 9, 8, 0, 8, 7, 1, 0, 0, 1, 9, 7, 8, 0, 2, 3
COMMENTS
Gyroelongated pentagonal pyramid: 11 vertices,25 edges,and 16 faces.
FORMULA
Digits of (25+9*sqrt(5))/24.
EXAMPLE
1.88019215822908780282010679244089525495689855152098881326825313369561...
MATHEMATICA
RealDigits[N[(25+9*Sqrt[5])/24, 200]]
CROSSREFS
Cf. A001622, A010527, A102208, A179290, A179292, A179294, A179449, A179450, A179451, A179452, A179552, A179553, A179554, A179587, A179588, A179589, A179590, A179591, A179592, A179593, A179637, A179638.
Decimal expansion of the surface area of gyroelongated pentagonal pyramid with edge length 1.
+10
1
8, 2, 1, 5, 6, 6, 7, 9, 2, 8, 9, 7, 2, 2, 5, 6, 7, 7, 3, 4, 8, 6, 9, 3, 5, 7, 5, 8, 0, 3, 5, 6, 3, 0, 9, 7, 5, 4, 4, 2, 8, 9, 3, 8, 7, 1, 7, 9, 9, 1, 2, 5, 6, 8, 4, 4, 1, 6, 3, 7, 0, 8, 7, 9, 9, 6, 8, 6, 1, 7, 8, 0, 5, 6, 1, 6, 9, 6, 6, 3, 7, 0, 3, 8, 6, 7, 3, 9, 4, 4, 1, 7, 2, 7, 2, 6, 9, 8, 9, 9, 2, 7, 7, 4, 7
COMMENTS
Gyroelongated pentagonal pyramid: 11 vertices, 25 edges, and 16 faces.
FORMULA
Digits of sqrt(5/2*(70+sqrt(5)+3*sqrt(75+30*sqrt(5))))/2.
EXAMPLE
8.21566792897225677348693575803563097544289387179912568441637087996861...
MATHEMATICA
RealDigits[N[Sqrt[5/2*(70+Sqrt[5]+3*Sqrt[75+30*Sqrt[5]])]/2, 200]]
CROSSREFS
Cf. A001622, A010527, A102208, A179290, A179292, A179294, A179449, A179450, A179451, A179452, A179552, A179553, A179554, A179587, A179588, A179589, A179590, A179591, A179592, A179593, A179637, A179638, A179639.
Sum{floor(sqrt(3)*k/2) : 1<=k<=n}
+10
1
0, 1, 3, 6, 10, 15, 21, 27, 34, 42, 51, 61, 72, 84, 96, 109, 123, 138, 154, 171, 189, 208, 227, 247, 268, 290, 313, 337, 362, 387, 413, 440, 468, 497, 527, 558, 590, 622, 655, 689, 724, 760, 797, 835, 873, 912, 952, 993, 1035, 1078, 1122, 1167, 1212
COMMENTS
a(n-1) is the number of unit squares regularly packed into the isosceles triangle of edge length n.
The triangle may be aligned with the Cartesian axes by putting its bottom edge on the horizontal axis, so its vertices are at (x,y) = (0,0), (n,0) and (n/2,sqrt(3)*n/2), see A010527.
The area inside the triangle is sqrt(3)*n^2/4 = A120011*n^2. There is an obvious upper limit of floor(sqrt(3)*n^2/4) = A171971(n) to the count of non-overlapping unit squares inside this triangle.
Regular packing: We place the first row of unit squares so they touch the bottom edge of the triangle. Their number is limited by the length of the horizontal section of the line y=1 inside the triangle, n-2*y/sqrt(3), which touches all of these first-row squares at their top.
The number of unit squares in the next row, between y=1 and y=2, is limited by the length of the horizontal section of the line y=2 inside the triangle, n-2*y/sqrt(3). Continuing, in row y=1, 2, ... we insert floor(n-2*y/sqrt(3)) unit squares, all with the same orientation.
The total number of squares is sum_{ y=1, 2, ..., floor(n*sqrt(3)/2) } floor( n-2*y/sqrt(3) ), and resummation yields, up to an index shift, this sequence here.
(End)
MATHEMATICA
r = Sqrt[3]/2;
c[k_] := Sum[Floor[j*r], {j, 1, k}];
Table[c[k], {k, 1, 90}]
Decimal expansion of (3/8) * sqrt(3).
+10
1
6, 4, 9, 5, 1, 9, 0, 5, 2, 8, 3, 8, 3, 2, 8, 9, 8, 5, 0, 7, 2, 7, 9, 2, 3, 7, 8, 0, 6, 4, 7, 0, 2, 1, 3, 7, 6, 0, 3, 5, 5, 1, 9, 7, 0, 1, 7, 8, 8, 9, 2, 7, 3, 5, 5, 2, 0, 9, 2, 7, 6, 1, 7, 2, 9, 4, 4, 7, 4, 8, 8, 1, 3, 4, 0, 8, 0, 0, 0, 1, 3, 9, 0, 5, 4, 2, 9, 8, 2, 0, 0, 3, 3, 9, 6, 8, 2, 1, 5, 8, 7, 8, 3, 5, 9, 8, 0, 3, 0, 3, 0, 7, 7, 7, 5, 1, 3, 6, 3, 6
COMMENTS
This is the area of the regular hexagon of diameter 1.
For any triangle ABC, where (A,B,C) are the angles:
sin(A) * sin(B) * sin(C) <= (3/8) * sqrt(3) [Bottema reference],
cos(A/2) * cos(B/2) * cos(C/2) <= (3/8) * sqrt(3) [Mitrinovic reference],
and if (ha,hb,hc) are the altitude lengths and (a,b,c) the side lengths of this triangle [Scott Brown link]:
(ha+hb) * (hb+hc) * (hc+ha) / (a+b) * (b+c) * (c+a) <= (3/8) * sqrt(3).
The equalities are obtained only when triangle ABC is equilateral. (End)
REFERENCES
O. Bottema et al., Geometric Inequalities, Groningen, 1969, item 2.7, page 19.
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.15, p. 526.
D. S. Mitrinovic, E. S. Barnes, D. C. B. Marsh, J. R. M. Radok, Elementary Inequalities, Tutorial Text 1 (1964), P. Noordhoff LTD, Groningen, problem 6.2.2, page 111.
LINKS
Scott Brown, Problem 3453, Crux Mathematicorum, Vol. 36, No. 5 (2010), pp. 342 and 343.
MATHEMATICA
RealDigits[(3/8) * Sqrt[3], 10, 120][[1]]
Decimal expansion of the inradius of an icosidodecahedron with edge length 1.
+10
0
1, 4, 6, 3, 5, 2, 5, 4, 9, 1, 5, 6, 2, 4, 2, 1, 1, 3, 6, 1, 5, 3, 4, 4, 0, 1, 2, 5, 7, 7, 4, 2, 2, 8, 5, 8, 8, 2, 9, 0, 2, 3, 1, 8, 8, 4, 8, 5, 4, 3, 2, 2, 1, 4, 6, 6, 0, 1, 5, 8, 6, 4, 6, 7, 0, 2, 8, 9, 4, 5, 3, 4, 7, 1, 1, 4, 1, 7, 6, 8, 3, 7, 2, 8, 0, 4, 0, 5, 4, 0, 3, 1, 4, 2, 0, 4, 3, 3, 5, 3, 1, 1, 3, 5, 6
COMMENTS
Icosidodecahedron: 32 faces, 30 vertices, and 60 edges.
FORMULA
Digits of (5+3*sqrt(5))/8.
EXAMPLE
1.46352549156242113615344012577422858829023188485432214660158646702894...
MATHEMATICA
RealDigits[N[(5+3*Sqrt[5])/8, 200]]
Decimal expansion of the volume of pentagonal dipyramid with edge length 1.
+10
0
6, 0, 3, 0, 0, 5, 6, 6, 4, 7, 9, 1, 6, 4, 9, 1, 4, 1, 3, 6, 7, 4, 3, 1, 1, 3, 9, 0, 6, 0, 9, 3, 9, 6, 8, 6, 2, 8, 6, 7, 1, 8, 1, 9, 6, 6, 3, 4, 2, 9, 3, 8, 1, 0, 3, 5, 5, 9, 0, 8, 1, 0, 3, 7, 8, 4, 2, 1, 0, 0, 7, 7, 1, 3, 6, 4, 8, 3, 7, 4, 1, 6, 1, 7, 8, 6, 7, 8, 6, 7, 3, 6, 4, 8, 9, 8, 5, 2, 2, 9, 1, 4, 1, 2, 5
COMMENTS
Pentagonal dipyramid: 7 vertices, 15 edges, and 10 faces.
FORMULA
Digits of (5+sqrt(5))/12.
EXAMPLE
0.60300566479164914136743113906093968628671819663429381035590810378421...
MATHEMATICA
RealDigits[N[(5+Sqrt[5])/12, 200]]
Search completed in 0.039 seconds
|