OFFSET
0,1
COMMENTS
Decimal expansion of cos(2*Pi/5) (angle of 72 degrees).
Also the imaginary part of i^(1/5). - Stanislav Sykora, Apr 25 2012
One of the two roots of 4x^2 + 2x - 1 (the other is the sine of 54 degrees times -1). - Alonso del Arte, Apr 25 2015
This is the height h of the isosceles triangle in a regular pentagon inscribed in a unit circle, formed by a diagonal as base and two adjacent radii. h = cos(2*Pi/5) = sin(Pi/10). - Wolfdieter Lang, Jan 08 2018
Quadratic number of denominator 2 and minimal polynomial 4x^2 + 2x - 1. - Charles R Greathouse IV, May 13 2019
Largest superstable width of the logistic map (see Finch). - Stefano Spezia, Nov 23 2024
REFERENCES
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 1.9 and 8.19, pp. 66, 535.
LINKS
Zak Seidov, Table of n, a(n) for n = 0..999
Hideyuki Ohtsuka, Problem B-1237, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 56, No. 4 (2018), p. 366; A Telescoping Product, Solution to Problem B-1237 by Steve Edwards, ibid., Vol. 57, No. 4 (2019), pp. 369-370.
Wikipedia, Exact trigonometric constants.
FORMULA
Equals (sqrt(5) - 1)/4 = (phi - 1)/2 = 1/(2*phi), with phi from A001622.
Equals 1/(1 + sqrt(5)). - Omar E. Pol, Nov 15 2007
Equals 1/A134945. - R. J. Mathar, Jan 17 2021
Equals Product_{k>=1} 1 - 1/(phi + phi^k), where phi is the golden ratio (A001622) (Ohtsuka, 2018). - Amiram Eldar, Dec 02 2021
Equals Product_{k>=1} (1 - 1/A055588(k)). - Amiram Eldar, Nov 28 2024
EXAMPLE
0.30901699437494742410229341718281905886015458990288143106772431135263...
MATHEMATICA
RealDigits[Sin[18 Degree], 10, 108][[1]] (* Alonso del Arte, Apr 20 2015 *)
PROG
(PARI) sin(Pi/10) \\ Charles R Greathouse IV, Feb 03 2015
(PARI) polrootsreal(4*x^2 + 2*x - 1)[2] \\ Charles R Greathouse IV, Feb 03 2015
CROSSREFS
KEYWORD
AUTHOR
STATUS
approved