OFFSET
1,1
COMMENTS
An algebraic number with degree 4 and denominator 2; minimal polynomial 16x^4 - 1000x^2 + 3125. - Charles R Greathouse IV, Apr 25 2016
This equals in a regular pentagon inscribed in a unit circle with vertices V0 = (x, y) = (1, 0), and V1..V4 in the counterclockwise sense, one tenth of the y-coordinate of the midpoint of side (V1,V2), named M1: M1_y = (2*sqrt(3 - phi) + sqrt(7 - 4*phi))/4 = sqrt(3 + 4*phi)/4. The x-coordinate is M1_x = -1/4. - Wolfdieter Lang, Jan 09 2018
LINKS
FORMULA
Digits of 5*sqrt(5+2*sqrt(5))/2 = (5/2)*sqrt(3 + 4*phi), with phi from A001622.
EXAMPLE
7.69420884293813350642572644009227456001675535884448106759789062593715...
sqrt(3 + 4*phi)/4 = 0.769420884293813350642572644009227456001675535884... - Wolfdieter Lang, Jan 09 2018
MAPLE
evalf[120](5*sqrt(5+2*sqrt(5))/2); # Muniru A Asiru, Jan 22 2019
MATHEMATICA
RealDigits[5*Sqrt[5+2*Sqrt[5]]/2, 10, 100][[1]]
PROG
(PARI) 5*sqrt(2*sqrt(5)+5)/2 \\ Charles R Greathouse IV, Apr 25 2016
(Magma) SetDefaultRealField(RealField(100)); 5*Sqrt(2*Sqrt(5)+5)/2; // G. C. Greubel, Jan 22 2019
(Sage) numerical_approx(5*sqrt(2*sqrt(5)+5)/2, digits=100) # G. C. Greubel, Jan 22 2019
CROSSREFS
KEYWORD
AUTHOR
Vladimir Joseph Stephan Orlovsky, Jun 16 2010
STATUS
approved