[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A178816
Decimal expansion of the area of the regular 10-gon (decagon) of edge length 1.
11
7, 6, 9, 4, 2, 0, 8, 8, 4, 2, 9, 3, 8, 1, 3, 3, 5, 0, 6, 4, 2, 5, 7, 2, 6, 4, 4, 0, 0, 9, 2, 2, 7, 4, 5, 6, 0, 0, 1, 6, 7, 5, 5, 3, 5, 8, 8, 4, 4, 4, 8, 1, 0, 6, 7, 5, 9, 7, 8, 9, 0, 6, 2, 5, 9, 3, 7, 1, 5, 8, 2, 2, 1, 2, 3, 7, 7, 2, 7, 2, 9, 6, 1, 3, 6, 4, 8, 4, 3, 0, 4, 1, 6, 7, 7, 6, 3, 5, 8, 8, 1, 7, 9, 7, 6
OFFSET
1,1
COMMENTS
An algebraic number with degree 4 and denominator 2; minimal polynomial 16x^4 - 1000x^2 + 3125. - Charles R Greathouse IV, Apr 25 2016
This equals in a regular pentagon inscribed in a unit circle with vertices V0 = (x, y) = (1, 0), and V1..V4 in the counterclockwise sense, one tenth of the y-coordinate of the midpoint of side (V1,V2), named M1: M1_y = (2*sqrt(3 - phi) + sqrt(7 - 4*phi))/4 = sqrt(3 + 4*phi)/4. The x-coordinate is M1_x = -1/4. - Wolfdieter Lang, Jan 09 2018
FORMULA
Digits of 5*sqrt(5+2*sqrt(5))/2 = (5/2)*sqrt(3 + 4*phi), with phi from A001622.
EXAMPLE
7.69420884293813350642572644009227456001675535884448106759789062593715...
sqrt(3 + 4*phi)/4 = 0.769420884293813350642572644009227456001675535884... - Wolfdieter Lang, Jan 09 2018
MAPLE
evalf[120](5*sqrt(5+2*sqrt(5))/2); # Muniru A Asiru, Jan 22 2019
MATHEMATICA
RealDigits[5*Sqrt[5+2*Sqrt[5]]/2, 10, 100][[1]]
PROG
(PARI) 5*sqrt(2*sqrt(5)+5)/2 \\ Charles R Greathouse IV, Apr 25 2016
(Magma) SetDefaultRealField(RealField(100)); 5*Sqrt(2*Sqrt(5)+5)/2; // G. C. Greubel, Jan 22 2019
(Sage) numerical_approx(5*sqrt(2*sqrt(5)+5)/2, digits=100) # G. C. Greubel, Jan 22 2019
CROSSREFS
Cf. Areas of other regular polygons: A120011, A102771, A104956, A178817, A090488, A256853, A256854, A178809.
Cf. A001622.
Sequence in context: A219705 A273066 A257964 * A200106 A201766 A307951
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved