[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a019881 -id:a019881
     Sort: relevance | references | number | modified | created      Format: long | short | data
Decimal expansion of sqrt(3)/2.
+10
86
8, 6, 6, 0, 2, 5, 4, 0, 3, 7, 8, 4, 4, 3, 8, 6, 4, 6, 7, 6, 3, 7, 2, 3, 1, 7, 0, 7, 5, 2, 9, 3, 6, 1, 8, 3, 4, 7, 1, 4, 0, 2, 6, 2, 6, 9, 0, 5, 1, 9, 0, 3, 1, 4, 0, 2, 7, 9, 0, 3, 4, 8, 9, 7, 2, 5, 9, 6, 6, 5, 0, 8, 4, 5, 4, 4, 0, 0, 0, 1, 8, 5, 4, 0, 5, 7, 3, 0, 9, 3, 3, 7, 8, 6, 2, 4, 2, 8, 7, 8, 3, 7, 8, 1, 3
OFFSET
0,1
COMMENTS
This is the ratio of the height of an equilateral triangle to its base.
Essentially the same sequence arises from decimal expansion of square root of 75, which is 8.6602540378443864676372317...
Also the real part of i^(1/3), the cubic root of i. - Stanislav Sykora, Apr 25 2012
Gilbert & Pollak conjectured that this is the Steiner ratio rho_2, the least upper bound of the ratio of the length of the Steiner minimal tree to the length of the minimal tree in dimension 2. (See Ivanov & Tuzhilin for the status of this conjecture as of 2012.) - Charles R Greathouse IV, Dec 11 2012
Surface area of a regular icosahedron with unit edge is 5*sqrt(3), i.e., 10 times this constant. - Stanislav Sykora, Nov 29 2013
Circumscribed sphere radius for a cube with unit edges. - Stanislav Sykora, Feb 10 2014
Also the ratio between the height and the pitch, used in the Unified Thread Standard (UTS). - Enrique Pérez Herrero, Nov 13 2014
Area of a 30-60-90 triangle with shortest side equal to 1. - Wesley Ivan Hurt, Apr 09 2016
If a, b, c are the sides of a triangle ABC and h_a, h_b, h_c the corresponding altitudes, then (h_a+h_b+h_c) / (a+b+c) <= sqrt(3)/2; equality is obtained only when the triangle is equilateral (see Mitrinovic reference). - Bernard Schott, Sep 26 2022
REFERENCES
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 8.2, 8.3 and 8.6, pp. 484, 489, and 504.
Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), pp. 450-451.
D. S. Mitrinovic, E. S. Barnes, D. C. B. Marsh, and J. R. M. Radok, Elementary Inequalities, Tutorial Text 1 (1964), P. Noordhoff LTD, Groningen, problem 6.8, page 114.
LINKS
E. N. Gilbert and H. O. Pollak, Steiner minimal trees, SIAM J. Appl. Math. 16, (1968), pp. 1-29.
A. O. Ivanov and A. A. Tuzhilin, The Steiner ratio Gilbert-Pollak conjecture is still open, Algorithmica 62:1-2 (2012), pp. 630-632.
Matt Parker, The mystery of 0.866025403784438646763723170752936183471402626905190314027903489, Stand-up Maths, YouTube video, Feb 14 2024.
Simon Plouffe, Plouffe's Inverter, sqrt(3)/2 to 10000 digits.
Simon Plouffe, Sqrt(3)/2 to 5000 digits.
Eric Weisstein's World of Mathematics, Lebesgue Minimal Problem.
Wikipedia, Icosahedron.
Wikipedia, Platonic solid.
FORMULA
Equals cos(30 degrees). - Kausthub Gudipati, Aug 15 2011
Equals A002194/2. - Stanislav Sykora, Nov 30 2013
From Amiram Eldar, Jun 29 2020: (Start)
Equals sin(Pi/3) = cos(Pi/6).
Equals Integral_{x=0..Pi/3} cos(x) dx. (End)
Equals 1/(10*A020832). - Bernard Schott, Sep 29 2022
Equals x^(x^(x^...)) where x = (3/4)^(1/sqrt(3)) (infinite power tower). - Michal Paulovic, Jun 25 2023
EXAMPLE
0.86602540378443864676372317...
MAPLE
Digits:=100: evalf(sqrt(3)/2); # Wesley Ivan Hurt, Apr 09 2016
MATHEMATICA
RealDigits[Sqrt[3]/2, 10, 200][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 21 2011 *)
PROG
(PARI) default(realprecision, 20080); x=10*(sqrt(3)/2); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b010527.txt", n, " ", d)); \\ Harry J. Smith, Jun 02 2009
(PARI) sqrt(3)/2 \\ Michel Marcus, Apr 10 2016
(Magma) SetDefaultRealField(RealField(100)); Sqrt(3)/2; // G. C. Greubel, Nov 02 2018
CROSSREFS
Cf. A010153.
Cf. Platonic solids surfaces: A002194 (tetrahedron), A010469 (octahedron), A131595 (dodecahedron).
Cf. Platonic solids circumradii: A010503 (octahedron), A019881 (icosahedron), A179296 (dodecahedron), A187110 (tetrahedron).
Cf. A126664 (continued fraction), A144535/A144536 (convergents).
Cf. A002194, A010502, A020821, A104956, A152623 (other geometric inequalities).
KEYWORD
nonn,cons,easy,changed
EXTENSIONS
Last term corrected and more terms added by Harry J. Smith, Jun 02 2009
STATUS
approved
Decimal expansion of 1/sqrt(2).
+10
76
7, 0, 7, 1, 0, 6, 7, 8, 1, 1, 8, 6, 5, 4, 7, 5, 2, 4, 4, 0, 0, 8, 4, 4, 3, 6, 2, 1, 0, 4, 8, 4, 9, 0, 3, 9, 2, 8, 4, 8, 3, 5, 9, 3, 7, 6, 8, 8, 4, 7, 4, 0, 3, 6, 5, 8, 8, 3, 3, 9, 8, 6, 8, 9, 9, 5, 3, 6, 6, 2, 3, 9, 2, 3, 1, 0, 5, 3, 5, 1, 9, 4, 2, 5, 1, 9, 3, 7, 6, 7, 1, 6, 3, 8, 2, 0, 7, 8, 6, 3, 6, 7, 5, 0, 6
OFFSET
0,1
COMMENTS
The decimal expansion of sqrt(50) = 5*sqrt(2) = 7.0710678118654752440... gives essentially the same sequence.
Also real and imaginary part of the square root of the imaginary unit. - Alonso del Arte, Jan 07 2011
1/sqrt(2) = (1/2)^(1/2) = (1/4)^(1/4) (see the comments in A072364).
If a triangle has sides whose lengths form a harmonic progression in the ratio 1 : 1/(1 + d) : 1/(1 + 2d) then the triangle inequality condition requires that d be in the range -1 + 1/sqrt(2) < d < 1/sqrt(2). - Frank M Jackson, Oct 11 2011
Let s_2(n) be the sum of the base-2 digits of n and epsilon(n) = (-1)^s_2(n), the Thue-Morse sequence A010060, then Product_{n >= 0} ((2*n + 1)/(2*n + 2))^epsilon(n) = 1/sqrt(2). - Jonathan Vos Post, Jun 03 2012
The square root of 1/2 and thus it follows from the Pythagorean theorem that it is the sine of 45 degrees (and the cosine of 45 degrees). - Alonso del Arte, Sep 24 2012
Circumscribed sphere radius for a regular octahedron with unit edges. In electrical engineering, ratio of effective amplitude to peak amplitude of an alternating current/voltage. - Stanislav Sykora, Feb 10 2014
Radius of midsphere (tangent to edges) in a cube with unit edges. - Stanislav Sykora, Mar 27 2014
REFERENCES
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, Sections 1.1, 7.5.2, and 8.2, pp. 1-3, 468, 484, 487.
Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 450.
LINKS
P. C. Fishburn and J. A. Reeds, Bell inequalities, Grothendieck's constant and root two, SIAM J. Discrete Math., Vol. 7, No. 1, Feb. 1994, pp. 48-56.
Ovidiu Furdui, Problem 1, Problem Corner, Research Group in Mathematical Inequalities and Applications, 2010.
Michael Penn, A surprisingly convergent limit, YouTube video, 2022.
Michael Penn, The infinite fraction of your dreams (nightmare?), YouTube video, 2022.
Jonathan Sondow and D. Marques, Algebraic and transcendental solutions of some exponential equations, Annales Mathematicae et Informaticae 37 (2010) 151-164; arXiv:1108.6096 [math.NT], 2011, see p. 3 in the link.
Eric Weisstein's World of Mathematics, Digit Product.
Wikipedia, Platonic solid.
Donald R. Woods, Problem E 2692, Elementary Problems, The American Mathematical Monthly, Vol. 85, No. 1 (1978), p. 48; A Transcendental Function Satisfy a Duplication Formula, by David Robbins, ibid., Vol. 86, No. 5 (1979), pp. 394-395.
FORMULA
1/sqrt(2) = cos(Pi/4) = sqrt(2)/2. - Eric Desbiaux, Nov 05 2008
a(n) = 9 - A268682(n). As constants, this sequence is 1 - A268682. - Philippe Deléham, Feb 21 2016
From Amiram Eldar, Jun 29 2020: (Start)
Equals sin(Pi/4) = cos(Pi/4).
Equals Integral_{x=0..Pi/4} cos(x) dx. (End)
Equals (1/2)*A019884 + A019824 * A010527 = A019851 * A019896 + A019812 * A019857. - R. J. Mathar, Jan 27 2021
Equals hypergeom([-1/2, -3/4], [5/4], -1). - Peter Bala, Mar 02 2022
Limit_{n->oo} (sqrt(T(n+1)) - sqrt(T(n))) = 1/sqrt(2), where T(n) = n(n+1)/2 = A000217(n) is the triangular numbers. - Jules Beauchamp, Sep 18 2022
Equals Product_{k>=0} ((2*k+1)/(2*k+2))^((-1)^A000120(k)) (Woods, 1978). - Amiram Eldar, Feb 04 2024
From Stefano Spezia, Oct 15 2024: (Start)
Equals 1 + Sum_{k>=1} (-1)^k*binomial(2*k,k)/2^(2*k) [Newton].
Equal Product_{k>=1} 1 - 1/(4*(2*k - 1)^2). (End)
Equals Product_{k>=0} (1 - (-1)^k/(6*k+3)). - Amiram Eldar, Nov 22 2024
EXAMPLE
0.7071067811865475...
MAPLE
Digits:=100; evalf(1/sqrt(2)); Wesley Ivan Hurt, Mar 27 2014
MATHEMATICA
N[ 1/Sqrt[2], 200]
RealDigits[1/Sqrt[2], 10, 120][[1]] (* Harvey P. Dale, Mar 25 2019 *)
PROG
(PARI) default(realprecision, 20080); x=10*(1/sqrt(2)); for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b010503.txt", n, " ", d)); \\ Harry J. Smith, Jun 02 2009
(Magma) 1/Sqrt(2); // Vincenzo Librandi, Feb 21 2016
CROSSREFS
Cf. A073084 (infinite tetration limit).
Platonic solids circumradii: A010527 (cube), A019881 (icosahedron), A179296 (dodecahedron), A187110 (tetrahedron).
Platonic solids midradii: A020765 (tetrahedron), A020761 (octahedron), A019863 (icosahedron), A239798 (dodecahedron).
KEYWORD
nonn,cons,easy,changed
EXTENSIONS
More terms from Harry J. Smith, Jun 02 2009
STATUS
approved
Decimal expansion of length of edge of a regular icosahedron with radius of circumscribed sphere = 1.
+10
31
1, 0, 5, 1, 4, 6, 2, 2, 2, 4, 2, 3, 8, 2, 6, 7, 2, 1, 2, 0, 5, 1, 3, 3, 8, 1, 6, 9, 6, 9, 5, 7, 5, 3, 2, 1, 4, 5, 7, 0, 9, 9, 5, 8, 6, 4, 4, 8, 6, 6, 8, 3, 5, 6, 3, 0, 5, 7, 8, 7, 1, 0, 4, 6, 4, 8, 2, 4, 2, 2, 2, 9, 2, 8, 0, 6, 4, 2, 8, 0, 3, 6, 7, 4, 3, 2, 6, 5, 2, 5, 7, 6, 6, 3, 1, 0, 5, 1, 4, 1, 9, 1, 3, 3, 9
OFFSET
1,3
COMMENTS
Regular icosahedron: A three-dimensional figure with 20 congruent equilateral triangle faces, 12 vertices, and 30 edges.
Shorter diagonal of golden rhombus with unit edge length. - Eric W. Weisstein, Dec 11 2018
The length of the shorter side of a golden rectangle inscribed in a unit circle. - Michal Paulovic, Sep 01 2022
The side length of a square inscribed within a golden ellipse with a unit semi-major axis. - Amiram Eldar, Oct 02 2022
LINKS
J. Brandts, S. Korotov, M. Krizek, and J. Solc, On nonobtuse simplicial partitions, Siam Rev. 51 (2) (2009) 317-335.
Eric Weisstein's World of Mathematics, Golden Rhombus.
Eric Weisstein's World of Mathematics, Icosahedron.
Wikipedia, Icosahedron.
FORMULA
Equals sqrt(50-10*sqrt(5))/5.
Equals csc(2*Pi/5). - Eric W. Weisstein, Dec 11 2018
Equals 1/Im(e^(3*i*Pi/5)) = 1/Im(e^(3*i*Pi/5) - 1) = sqrt(2 - 2/sqrt(5)). - Karl V. Keller, Jr., Jun 11 2020
Equals 1/A019881. - R. J. Mathar, Jan 17 2021
From Antonio Graciá Llorente, Mar 15 2024: (Start)
Equals Product_{k >= 1} ((10*k - 1)*(10*k + 1))/((10*k - 2)*(10*k + 2)).
Equals Product_{k >= 1} 1/(1 - 1/(25*(2*k - 1)^2)). (End)
Equals Product_{k>=1} (1 - (-1)^k/A090773(k)). - Amiram Eldar, Nov 23 2024
EXAMPLE
1.051462224238267212051338169695753214570995864486683563057871046482422...
MAPLE
evalf[120](csc(2*Pi/5)); # Muniru A Asiru, Dec 11 2018
MATHEMATICA
RealDigits[Csc[2 Pi/5], 10, 110][[1]] (* Eric W. Weisstein, Dec 11 2018 *)
PROG
(Python)
from decimal import *
getcontext().prec = 110
c = Decimal.sqrt(2 - 2 / Decimal.sqrt(Decimal(5)))
print([int(i) for i in str(c) if i != '.'])
# Karl V. Keller, Jr., Jul 10 2020
(PARI) sqrt(50-10*sqrt(5))/5 \\ Charles R Greathouse IV, Jan 22 2024
CROSSREFS
Cf. A179290 (longer golden rhombus diagonal).
KEYWORD
nonn,cons,easy,changed
AUTHOR
EXTENSIONS
Partially rewritten by Charles R Greathouse IV, Feb 02 2011
STATUS
approved
Decimal expansion of 2*sin(Pi/5).
+10
21
1, 1, 7, 5, 5, 7, 0, 5, 0, 4, 5, 8, 4, 9, 4, 6, 2, 5, 8, 3, 3, 7, 4, 1, 1, 9, 0, 9, 2, 7, 8, 1, 4, 5, 5, 3, 7, 1, 9, 5, 3, 0, 4, 8, 7, 5, 2, 8, 6, 2, 9, 1, 9, 8, 2, 1, 4, 4, 5, 4, 4, 9, 6, 1, 5, 1, 4, 5, 5, 6, 9, 4, 8, 3, 2, 4, 7, 0, 3, 9, 1, 5, 0, 1, 7, 0, 0
OFFSET
1,3
COMMENTS
The golden ratio phi is the real part of 2*exp(i*Pi/5), while this constant c is the corresponding imaginary part. It is handy, for example, in simplifying metric expressions for Platonic solids (particularly for regular icosahedron and dodecahedron).
Note that c^2+A001622^2 = 4; c*A001622 = A188593 = 2*A019881; c = 2*A019845.
Edge length of a regular pentagon with unit circumradius. - Stanislav Sykora, May 07 2014
This is a constructible number (see A003401 for more details). Moreover, since phi is also constructible, (2^k)*exp(i*Pi/5), for any integer k, is a constructible complex number. - Stanislav Sykora, May 02 2016
rms(c, phi) := sqrt((c^2+phi^2)/2) = sqrt(2) = A002193.
LINKS
Eric Weisstein's World of Mathematics, Pentagon.
Wikipedia, Platonic solid.
FORMULA
Equals sqrt(3-phi).
Equals sqrt((5-sqrt(5))/2). - Jean-François Alcover, May 21 2013
Equals Product_{k>=0} ((10*k + 4)*(10*k + 6))/((10*k + 3)*(10*k + 7)). - Antonio Graciá Llorente, Mar 25 2024
Equals Product_{k>=1} (1 - (-1)^k/A063226(k)). - Amiram Eldar, Nov 23 2024
Equals 2*A019845 = 1/A300074. - Hugo Pfoertner, Nov 23 2024
EXAMPLE
1.1755705045849462583374119...
MAPLE
evalf(2*sin(Pi/5), 100); # Muniru A Asiru, Nov 02 2018
MATHEMATICA
RealDigits[2*Sin[Pi/5], 10, 120][[1]] (* Harvey P. Dale, Sep 29 2012 *)
PROG
(PARI) 2*sin(Pi/5) \\ Stanislav Sykora, May 02 2016
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); 2*Sin(Pi(R)/5); // G. C. Greubel, Nov 02 2018
KEYWORD
nonn,cons,easy,changed
AUTHOR
Stanislav Sykora, Apr 06 2012
STATUS
approved
Decimal expansion of the volume of square cupola with edge length 1.
+10
20
1, 9, 4, 2, 8, 0, 9, 0, 4, 1, 5, 8, 2, 0, 6, 3, 3, 6, 5, 8, 6, 7, 7, 9, 2, 4, 8, 2, 8, 0, 6, 4, 6, 5, 3, 8, 5, 7, 1, 3, 1, 1, 4, 5, 8, 3, 5, 8, 4, 6, 3, 2, 0, 4, 8, 7, 8, 4, 4, 5, 3, 1, 5, 8, 6, 6, 0, 4, 8, 8, 3, 1, 8, 9, 7, 4, 7, 3, 8, 0, 2, 5, 9, 0, 0, 2, 5, 8, 3, 5, 6, 2, 1, 8, 4, 2, 7, 7, 1, 5, 1, 5, 6, 6, 7
OFFSET
1,2
COMMENTS
Square cupola: 12 vertices, 20 edges, and 10 faces.
Also, decimal expansion of 1 + Product_{n>0} (1-1/(4*n+2)^2). - Bruno Berselli, Apr 02 2013
Decimal expansion of 1 + (least possible ratio of the side length of one inscribed square to the side length of another inscribed square in the same non-obtuse triangle). - L. Edson Jeffery, Nov 12 2014
2*sqrt(2)/3 is the radius of the base of the maximum-volume right cone inscribed in a unit-radius sphere. - Amiram Eldar, Sep 25 2022
FORMULA
Equals (3 + 2*sqrt(2))/3.
Equals 1 + 2*A131594. - L. Edson Jeffery, Nov 12 2014
EXAMPLE
1.942809041582063365867792482806465385713114583584632048784453158660...
MATHEMATICA
RealDigits[N[1+(2*Sqrt[2])/3, 200]]
(* From the second comment: *) RealDigits[N[1 + Product[1 - 1/(4 n + 2)^2, {n, 1, Infinity}], 110]][[1]] (* Bruno Berselli, Apr 02 2013 *)
PROG
(PARI) sqrt(8)/3+1 \\ Charles R Greathouse IV, Nov 14 2016
CROSSREFS
Cf. A131594 (decimal expansion of sqrt(2)/3).
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved
Decimal expansion of sine of 36 degrees.
+10
19
5, 8, 7, 7, 8, 5, 2, 5, 2, 2, 9, 2, 4, 7, 3, 1, 2, 9, 1, 6, 8, 7, 0, 5, 9, 5, 4, 6, 3, 9, 0, 7, 2, 7, 6, 8, 5, 9, 7, 6, 5, 2, 4, 3, 7, 6, 4, 3, 1, 4, 5, 9, 9, 1, 0, 7, 2, 2, 7, 2, 4, 8, 0, 7, 5, 7, 2, 7, 8, 4, 7, 4, 1, 6, 2, 3, 5, 1, 9, 5, 7, 5, 0, 8, 5, 0, 4, 0, 4, 9, 8, 6, 2, 7, 4, 1, 3, 3, 5
OFFSET
0,1
COMMENTS
This sequence is also decimal expansion of cosine of 54 degrees. - Mohammad K. Azarian, Jun 29 2013
The ratio of side to longer diagonal for any golden rhombus (see A019881). - Rick L. Shepherd, Apr 10 2017
Perimeter length of a regular pentagon with circumscribed unit circle. - R. J. Mathar, Aug 24 2023
FORMULA
sin 36 degrees = sin Pi/5 radians = sqrt((1/8)(5 - sqrt(5))).
Equals A019881/A001622. - Rick L. Shepherd, Apr 10 2017
This constant is (1/2)*A182007. - Wolfdieter Lang, May 08 2018
Equals 2*A019827*A019881. - R. J. Mathar, Jan 17 2021
Equals 5*A182007. - R. J. Mathar, Aug 24 2023
EXAMPLE
sin 36 degrees = 0.587785252292473129168705954639...
MATHEMATICA
RealDigits[Sin[Pi/5], 10, 100][[1]] (* Alonso del Arte, Sep 19 2017 *)
RealDigits[Sin[36 Degree], 10, 120][[1]] (* Harvey P. Dale, Aug 14 2018 *)
PROG
(PARI) sin(Pi/5) \\ Michel Marcus, Apr 25 2015
(PARI) cos(3*Pi/10) \\ Rick L. Shepherd, Apr 10 2017
(PARI) real(I^(3/5)) \\ Rick L. Shepherd, Apr 10 2017
CROSSREFS
Cf. A019827 (sine of 18 degrees), A019881 (sine of 72 degrees), A001622 (golden ratio phi). A182007.
KEYWORD
nonn,cons,easy
STATUS
approved
Decimal expansion of tangent of 72 degrees.
+10
12
3, 0, 7, 7, 6, 8, 3, 5, 3, 7, 1, 7, 5, 2, 5, 3, 4, 0, 2, 5, 7, 0, 2, 9, 0, 5, 7, 6, 0, 3, 6, 9, 0, 9, 8, 2, 4, 0, 0, 6, 7, 0, 2, 1, 4, 3, 5, 3, 7, 7, 9, 2, 4, 2, 7, 0, 3, 9, 1, 5, 6, 2, 5, 0, 3, 7, 4, 8, 6, 3, 2, 8, 8, 4, 9, 5, 0, 9, 0, 9, 1, 8, 4, 5, 4, 5, 9, 3, 7, 2, 1, 6, 6, 7, 1, 0, 5, 4, 3
OFFSET
1,1
COMMENTS
Also the decimal expansion of cotangent of 18 degrees. - Mohammad K. Azarian, Jun 30 2013
A quartic integer. - Charles R Greathouse IV, Aug 27 2017
Length of the second longest diagonal in a regular 10-gon with unit side. - Mohammed Yaseen, Nov 12 2020
FORMULA
Equals sqrt(5 + 2*sqrt(5)). - R. J. Mathar, Jun 18 2006
Equals tan(66 degrees) + tan(36 degrees) + tan(6 degrees). - Amiram Eldar, Apr 07 2022
EXAMPLE
3.077683537175253402570290576036909824006702143537792427...
MATHEMATICA
RealDigits[Tan[72 Degree], 10, 120][[1]] (* Harvey P. Dale, Apr 30 2012 *)
RealDigitis[Sqrt[5 + 2*Sqrt[5]], 10, 100][[1]] (* G. C. Greubel, Nov 21 2018 *)
PROG
(PARI) tan(2*Pi/5) \\ Charles R Greathouse IV, Aug 27 2017
(Magma) SetDefaultRealField(RealField(100)); Sqrt(5+2*Sqrt(5)); // G. C. Greubel, Nov 21 2018
(Sage) numerical_approx(tan(2*pi/5), digits=100) # G. C. Greubel, Nov 21 2018
CROSSREFS
Cf. A019881 (sine of 72 degrees).
KEYWORD
nonn,cons
STATUS
approved
Decimal expansion of sine of 75 degrees.
+10
11
9, 6, 5, 9, 2, 5, 8, 2, 6, 2, 8, 9, 0, 6, 8, 2, 8, 6, 7, 4, 9, 7, 4, 3, 1, 9, 9, 7, 2, 8, 8, 9, 7, 3, 6, 7, 6, 3, 3, 9, 0, 4, 8, 3, 9, 0, 0, 8, 4, 0, 4, 5, 5, 0, 4, 0, 2, 3, 4, 3, 0, 7, 6, 3, 1, 0, 4, 2, 3, 2, 1, 3, 9, 7, 9, 8, 5, 5, 5, 1, 6, 3, 4, 7, 5, 6, 1, 7, 4, 1, 8, 5, 8, 0, 7, 0, 4, 5, 1
OFFSET
0,1
COMMENTS
Also the real part of i^(1/6). - Stanislav Sykora, Apr 25 2012
Length of one side of the new Type 15 Convex Pentagon. - Michel Marcus, Aug 04 2015
FORMULA
Equals cos(Pi/12) = [1+sqrt(3)]/[2*sqrt(2)] = A090388 * A020765. - R. J. Mathar, Jun 18 2006
Equals A019859 * A019874 + A019834 * A019849 = A019881 * A019896 + A019812 * A019827 . - R. J. Mathar, Jan 27 2021
Equals 1/(sqrt(6) - sqrt(2)) = 1/A120683. - Amiram Eldar, Aug 04 2022
EXAMPLE
0.96592582628906828674974319972889736763390483900840455040234307631042...
MATHEMATICA
RealDigits[Sin[75 Degree], 10, 100][[1]] (* Vincenzo Librandi, Aug 11 2014 *)
PROG
(PARI) cos(Pi/12) \\ Charles R Greathouse IV, Apr 25 2012
CROSSREFS
Cf. A120683.
KEYWORD
nonn,cons
STATUS
approved
Decimal expansion of circumradius of a regular dodecahedron with edge length 1.
+10
10
1, 4, 0, 1, 2, 5, 8, 5, 3, 8, 4, 4, 4, 0, 7, 3, 5, 4, 4, 6, 7, 6, 6, 7, 7, 9, 3, 5, 3, 2, 2, 0, 6, 7, 9, 9, 4, 4, 4, 3, 9, 3, 1, 7, 3, 9, 7, 7, 5, 4, 9, 2, 8, 6, 3, 6, 6, 0, 8, 4, 5, 1, 8, 6, 3, 9, 1, 3, 5, 4, 0, 2, 7, 2, 1, 1, 4, 4, 4, 7, 6, 7, 6, 5, 0, 1, 0, 8, 3, 9, 0, 9, 0, 3, 9, 8, 0, 5, 2, 3, 3, 9, 7, 9, 8
OFFSET
1,2
COMMENTS
Dodecahedron: A three-dimensional figure with 12 faces, 20 vertices, and 30 edges.
Appears as a coordinate in a degree-7 quadrature formula on 12 points over the unit circle [Stroud & Secrest]. - R. J. Mathar, Oct 12 2011
REFERENCES
Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 451.
FORMULA
Equals (sqrt(3) + sqrt(15))/4 = sqrt((9 + 3*sqrt(5))/8).
The minimal polynomial is 16*x^4 - 36*x^2 + 9. - Joerg Arndt, Feb 05 2014
Equals (sqrt(3)/2) * phi = A010527 * A001622. - Amiram Eldar, Jun 02 2023
EXAMPLE
1.40125853844407354467667793532206799444393173977549286366084518639135...
MATHEMATICA
RealDigits[(Sqrt[3]+Sqrt[15])/4, 10, 175][[1]]
PROG
(PARI) (1+sqrt(5))*sqrt(3)/4 \\ Stefano Spezia, Jan 27 2025
CROSSREFS
Cf. Platonic solids circumradii: A010503 (octahedron), A010527 (cube), A019881 (icosahedron), A187110 (tetrahedron). - Stanislav Sykora, Feb 10 2014
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved
Decimal expansion of (diagonal)/(shortest side) of a golden rectangle.
+10
10
1, 9, 0, 2, 1, 1, 3, 0, 3, 2, 5, 9, 0, 3, 0, 7, 1, 4, 4, 2, 3, 2, 8, 7, 8, 6, 6, 6, 7, 5, 8, 7, 6, 4, 2, 8, 6, 8, 1, 1, 3, 9, 7, 2, 6, 8, 2, 5, 1, 5, 0, 0, 4, 4, 4, 8, 9, 4, 6, 1, 1, 2, 8, 8, 8, 6, 0, 3, 0, 6, 3, 4, 0, 1, 7, 0, 3, 8, 7, 0, 0, 3, 4, 3, 7, 5, 8, 5, 6, 2, 1, 9, 4, 1, 6, 2, 2, 7, 6, 3, 3, 5, 1, 7, 9, 9, 4, 3, 5, 1, 0, 2, 8, 0, 6, 0, 0, 8, 4, 1, 7, 9, 7, 4, 1, 3, 2, 3, 8, 7
OFFSET
1,2
COMMENTS
A rectangle of length L and width W is a golden rectangle if L/W = r = (1+sqrt(5))/2. The diagonal has length D = sqrt(L^2+W^2), so D/W = sqrt(r^2+1) = sqrt(r+2).
Largest root of x^4 - 5x^2 + 5. - Charles R Greathouse IV, May 07 2011
This is the case n=10 of (Gamma(1/n)/Gamma(2/n))*(Gamma((n-1)/n)/Gamma((n-2)/n)) = 2*cos(Pi/n). - Bruno Berselli, Dec 13 2012
Edge length of a pentagram (regular star pentagon) with unit circumradius. - Stanislav Sykora, May 07 2014
The ratio diagonal/side of the shortest diagonal in a regular 10-gon. - Mohammed Yaseen, Nov 04 2020
LINKS
Michael Penn, On the fifth root of the identity matrix., YouTube video, 2022.
Eric Weisstein's World of Mathematics, Golden Rectangle.
Eric Weisstein's World of Mathematics, Pentagram.
FORMULA
Equals 2*A019881. - Mohammed Yaseen, Nov 04 2020
Equals csc(A195693) = sec(A195723). - Amiram Eldar, May 28 2021
Equals i^(1/5) + i^(-1/5). - Gary W. Adamson, Jul 08 2022
Equals sqrt(2 + phi) = sqrt(A296184), with phi = A001622. - Wolfdieter Lang, Aug 28 2022
Equals Product_{k>=0} ((10*k + 2)*(10*k + 8))/((10*k + 1)*(10*k + 9)). - Antonio Graciá Llorente, Feb 24 2024
Equals Product_{k>=1} (1 - (-1)^k/A090771(k)). - Amiram Eldar, Nov 23 2024
EXAMPLE
1.902113032590307144232878666758764286811397268251...
MATHEMATICA
r = (1 + 5^(1/2))/2; RealDigits[(2 + r)^(1/2), 10, 130]][[1]]
RealDigits[Sqrt[GoldenRatio+2], 10, 130][[1]] (* Harvey P. Dale, Oct 27 2023 *)
PROG
(PARI) sqrt((5+sqrt(5))/2)
(Magma) SetDefaultRealField(RealField(100)); Sqrt((5+Sqrt(5))/2); // G. C. Greubel, Nov 02 2018
CROSSREFS
Cf. A001622 (decimal expansion of the golden ratio), A019881.
Cf. A188594 (D/W for the silver rectangle, r=1+sqrt(2)).
KEYWORD
nonn,cons,easy,changed
AUTHOR
Clark Kimberling, Apr 04 2011
STATUS
approved

Search completed in 0.018 seconds