本書は、データサイエンスの4人のエキスパートがSparkでの高度な分析方法を解説するとともに、より実践的なデータサイエンスを学ぶ書籍です。ビッグデータ分析におけるSparkの位置づけを紹介し、ベストな結果を得るためのデータの準備やモデルのチューニングについて解説します。またデータクレンジングのユースケースを通じてSparkとScalaによるデータ処理の基本を学習し、Sparkを使った機械学習の基礎や応用分野における広く使われる一般的なアルゴリズムを紹介します。日本語版では付録として高柳慎一氏と牧山幸史氏による「SparkRについて」と千葉立寛氏、小野寺民也氏による「SparkのJVM、システムレベルのチューニングによる高速化」を掲載。高度なデータ解析を習得したいデータサイエンティスト必携の一冊です。 目次 序文 訳者まえがき はじめに 1章 ビッグデータの分析 1.1 データサイエンスの挑