WO2015190044A1 - 表示システム、表示方法および表示装置 - Google Patents
表示システム、表示方法および表示装置 Download PDFInfo
- Publication number
- WO2015190044A1 WO2015190044A1 PCT/JP2015/002611 JP2015002611W WO2015190044A1 WO 2015190044 A1 WO2015190044 A1 WO 2015190044A1 JP 2015002611 W JP2015002611 W JP 2015002611W WO 2015190044 A1 WO2015190044 A1 WO 2015190044A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- luminance
- display
- value
- display device
- conversion
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/44—Receiver circuitry for the reception of television signals according to analogue transmission standards
- H04N5/57—Control of contrast or brightness
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/14—Digital output to display device ; Cooperation and interconnection of the display device with other functional units
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G5/00—Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
- G09G5/10—Intensity circuits
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/14—Picture signal circuitry for video frequency region
- H04N5/20—Circuitry for controlling amplitude response
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/76—Television signal recording
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/01—Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/01—Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
- H04N7/0125—Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level one of the standards being a high definition standard
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/015—High-definition television systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/79—Processing of colour television signals in connection with recording
- H04N9/7921—Processing of colour television signals in connection with recording for more than one processing mode
- H04N9/7925—Processing of colour television signals in connection with recording for more than one processing mode for more than one standard
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/79—Processing of colour television signals in connection with recording
- H04N9/87—Regeneration of colour television signals
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/0271—Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
- G09G2320/0276—Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping for the purpose of adaptation to the characteristics of a display device, i.e. gamma correction
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2370/00—Aspects of data communication
- G09G2370/04—Exchange of auxiliary data, i.e. other than image data, between monitor and graphics controller
Definitions
- the present disclosure relates to a display system, a display method, and a display device that convert and display the luminance of video.
- Patent Document 1 An image signal processing apparatus for improving the displayable luminance level has been disclosed (see, for example, Patent Document 1).
- a display system is a display system including a conversion device that converts luminance of a video and a display device that displays the video, the display device connected to the conversion device, The luminance of the video is composed of luminance values in a first luminance range, and the conversion device acquires a first luminance signal indicating a code value obtained by quantizing the luminance value of the video.
- the code value indicated by the acquired first luminance signal is a maximum value that is smaller than the maximum value of the first luminance range and greater than 100 nits, based on the luminance range of the display device
- a first luminance conversion unit for converting to a second luminance value corresponding to the second luminance range, and a third value having a maximum value of 100 nit, which is previously related to the second luminance value, with respect to the determined second luminance value The number corresponding to the brightness range
- a second luminance conversion unit that determines a luminance value and converts the second luminance value corresponding to the second luminance range to the third luminance value corresponding to the third luminance range;
- the third luminance value is quantized, the third code value obtained by the quantization is determined, and the third luminance value corresponding to the third luminance range is determined as a third luminance signal indicating the third code value.
- a quantization conversion unit that converts the output to the display device, an output unit that outputs the third luminance signal to the display device, and the display device recommends the display device to display the third luminance signal and the video.
- a second acquisition unit that acquires setting information indicating display settings; a display setting unit that sets display settings of the display device using the acquired setting information; and the third luminance signal acquired by the acquired third luminance signal
- the third code value is set to the display setting of the display device.
- a third luminance conversion unit that converts the second luminance value corresponding to the second luminance range, and a display control unit that displays the video on the display device based on the converted second luminance value.
- FIG. 1 is a diagram for explaining the evolution of video technology.
- FIG. 2 is a diagram for explaining the relationship between video production, a distribution method, and a display device when a new video expression is introduced into content.
- FIG. 3 is a diagram for explaining the relationship between the master, the distribution method, and the display device when HDR is introduced.
- FIG. 4A is a diagram for explaining the SDR display processing in SDRTV.
- FIG. 4B is a diagram for explaining the SDR display process in the SDRTV having a peak luminance of 300 nits.
- FIG. 5 is a diagram for explaining conversion from HDR to SDR.
- FIG. 6A is a diagram for describing a case 1 in which only HDR signals corresponding to HDR are stored in the HDR disk.
- FIG. 6B is a diagram for describing a case 2 in which an HDR signal corresponding to HDR and an SDR signal corresponding to SDR are stored in the HDR disk.
- FIG. 7 is a diagram for explaining a conversion process from HDR to pseudo-HDR.
- FIG. 8A is a diagram illustrating an example of EOTF (Electro-Optical Transfer Function) corresponding to each of HDR and SDR.
- FIG. 8B is a diagram illustrating an example of inverse EOTF corresponding to each of HDR and SDR.
- FIG. 9 is an explanatory diagram of a method for determining the code value of the luminance signal stored in the content and the process of restoring the luminance value from the code value during reproduction.
- FIG. 8A is a diagram illustrating an example of EOTF (Electro-Optical Transfer Function) corresponding to each of HDR and SDR.
- FIG. 8B is a diagram illustrating an example of inverse EOTF corresponding to each of HDR and SDR
- FIG. 10A is a diagram illustrating an example of display processing in which HDR display is performed by converting an HDR signal in HDRTV.
- FIG. 10B is a diagram illustrating an example of a display process for performing HDR display using an HDR-compatible playback device and SDRTV.
- FIG. 10C is a diagram illustrating an example of a display process for performing HDR display on an HDR-compatible playback device and SDRTV that are connected to each other via a standard interface.
- FIG. 11 is a block diagram illustrating configurations of the conversion device and the display device according to the embodiment.
- FIG. 12 is a flowchart illustrating a conversion method and a display method performed by the conversion device and the display device according to the embodiment.
- FIG. 13A is a diagram for describing the first luminance conversion.
- FIG. 13B is a diagram for describing another example of the first luminance conversion.
- FIG. 14 is a diagram for describing the second luminance conversion.
- FIG. 15 is a flowchart showing detailed processing for display setting.
- FIG. 16 is a diagram for describing the third luminance conversion.
- FIG. 17 is a diagram for explaining the conversion process from HDR to pseudo-HDR.
- linear luminance is calculated for each pixel based on the linear RGB value calculated from the pixels constituting the subject, and for each pixel based on the linear RGB value and the linear luminance.
- the corrected linear luminance and the corrected linear RGB value of the combined pixel obtained by synthesizing a plurality of pixels including the pixel are calculated, and the corrected linear luminance and the corrected linear RGB value are respectively gamma corrected to calculate the display luminance and the display RGB value.
- the number of gradations that can be displayed is increased by correcting the linear luminance based on the corrected linear RGB values.
- the present inventor examined the following improvement measures in order to solve the above-mentioned problems.
- a display system is a display system including a conversion device that converts luminance of a video and a display device that displays the video, the display device connected to the conversion device, The luminance of the video is composed of luminance values in a first luminance range, and the conversion device acquires a first luminance signal indicating a code value obtained by quantizing the luminance value of the video.
- the code value indicated by the acquired first luminance signal is a maximum value that is smaller than the maximum value of the first luminance range and greater than 100 nits, based on the luminance range of the display device
- a first luminance conversion unit for converting to a second luminance value corresponding to the second luminance range, and a third value having a maximum value of 100 nit, which is previously related to the second luminance value, with respect to the determined second luminance value The number corresponding to the brightness range
- a second luminance conversion unit that determines a luminance value and converts the second luminance value corresponding to the second luminance range to the third luminance value corresponding to the third luminance range;
- the third luminance value is quantized, the third code value obtained by the quantization is determined, and the third luminance value corresponding to the third luminance range is determined as a third luminance signal indicating the third code value.
- a quantization conversion unit that converts the output to the display device, an output unit that outputs the third luminance signal to the display device, and the display device recommends the display device to display the third luminance signal and the video.
- a second acquisition unit that acquires setting information indicating display settings; a display setting unit that sets display settings of the display device using the acquired setting information; and the third luminance signal acquired by the acquired third luminance signal
- the third code value is set to the display setting of the display device.
- a third luminance conversion unit that converts the second luminance value corresponding to the second luminance range, and a display control unit that displays the video on the display device based on the converted second luminance value.
- luminance conversion is performed using the display setting, so that the video can be displayed with the display setting suitable for the acquired HDR signal. it can.
- a display method is a display method for displaying an image in the display device of the display system described above, and the display device is configured to display the third luminance signal and the image.
- Setting information indicating the recommended display setting and using the acquired setting information, setting the display setting of the display device, the third code value indicated by the acquired third luminance signal, Using the display setting of the display device, the image is converted to the second luminance value corresponding to the second luminance range, and the video is displayed on the display device based on the converted second luminance value.
- an EOTF Electro-Optical Transfer Function in which the luminance value in the third luminance range and a plurality of third code values are related is used. And determining a third luminance value related to the third code value by the EOTF for the third code value indicated by the acquired third luminance signal, and regarding the determined third luminance value, A second luminance value corresponding to the second luminance range, which is associated in advance with a third luminance value, is determined, and the third luminance value corresponding to the third luminance range is associated with the second luminance range.
- a third luminance conversion for converting to the second luminance value may be performed.
- the EOTF set in the display device is set to a recommended EOTF corresponding to the acquired setting information, and in the determination of the third luminance value, the recommended EOTF is set. And the third luminance value may be determined.
- the user is prompted to switch the EOTF set in the display device to the recommended EOTF.
- the message may be displayed on the display device.
- the display parameter set in the display device may be set as a recommended display parameter according to the acquired setting information.
- the user can switch the display parameters set in the display device to the recommended display parameters.
- a message for prompting may be displayed on the display device.
- the determined third luminance value is related in advance to the third luminance value using luminance relationship information corresponding to display parameters indicating display settings of the display device.
- the brightness value may be determined as the second brightness value, and the brightness conversion process may be switched according to the display parameter.
- the second luminance value when the display parameter is in the normal mode, the second luminance value is converted into a direct proportional value that is directly proportional to the third luminance value, and the display parameter is changed from the normal mode.
- the second luminance value of the low-luminance pixel In the dynamic mode in which the high-luminance pixel is brighter and the low-luminance pixel is darker, the second luminance value of the low-luminance pixel is lower than a direct proportional value that is directly proportional to the third luminance value.
- the second luminance value of the high luminance pixel may be subjected to luminance conversion to a value higher than a direct proportional value that is directly proportional to the third luminance value.
- the display device The brightness setting may be switched to the setting that displays the brightest.
- the display device is a display method for displaying an image on the display device, and the luminance of the image includes luminance values in a first luminance range, and the luminance value of the image is quantized.
- the first luminance signal indicating the code value obtained in this way is a maximum value that is smaller than the maximum value of the first luminance range determined based on the luminance range of the display device and larger than 100 nits.
- the second luminance value is converted into a second luminance value corresponding to the second luminance range, the second luminance value is converted into a third luminance value corresponding to the third luminance range having a maximum value of 100 nit, and the third luminance value is quantized.
- the code value converted into a third luminance signal is acquired by the display device, setting information indicating a display setting recommended for the display device in displaying the video is acquired, and using the acquired setting information, Table of display devices Setting is performed, and the third code value indicated by the acquired third luminance signal is converted to the second luminance value corresponding to the second luminance range using the set display setting, and converted. Based on the second luminance value, the video is displayed on the display device.
- an EOTF Electro-Optical Transfer Function
- the luminance value in the third luminance range and a plurality of third code values are associated with each other.
- a third luminance value related to the third code value by the EOTF is determined, and for the determined third luminance value, A second luminance value corresponding to the second luminance range, which is related in advance to the third luminance value, is determined, and the third luminance value corresponding to the third luminance range is associated with the second luminance range.
- a third luminance conversion for converting to the second luminance value may be performed.
- the EOTF set in the display device is set to a recommended EOTF corresponding to the acquired setting information, and in the determination of the third luminance value, the recommended EOTF is set. And the third luminance value may be determined.
- the display parameter set in the display device may be set as a recommended display parameter according to the acquired setting information.
- the determined third luminance value is related in advance to the third luminance value using luminance relationship information corresponding to display parameters indicating display settings of the display device.
- the brightness value may be determined as the second brightness value, and the brightness conversion process may be switched according to the display parameter.
- the second luminance value when the display parameter is in the normal mode, the second luminance value is converted into a direct proportional value that is directly proportional to the third luminance value, and the display parameter is changed from the normal mode.
- the second luminance value of the low-luminance pixel In the dynamic mode in which the high-luminance pixel is brighter and the low-luminance pixel is darker, the second luminance value of the low-luminance pixel is lower than a direct proportional value that is directly proportional to the third luminance value.
- the second luminance value of the high luminance pixel may be subjected to luminance conversion to a value higher than a direct proportional value that is directly proportional to the third luminance value.
- a recording medium such as an apparatus, an integrated circuit, a computer program, or a computer-readable CD-ROM, and the apparatus, integrated circuit, computer program, or recording medium. It may be realized by any combination of the above.
- the present disclosure relates to an HDR (High Dynamic Range) signal, which is a high luminance signal having a high luminance range, and a TV or projector corresponding to an SDR (Standard Dynamic Range) signal, which is a normal luminance signal having a maximum luminance value of 100 nits.
- the present invention relates to an image conversion / playback method and apparatus for displaying on a display device such as a tablet or a smartphone.
- FIG. 1 is a diagram for explaining the evolution of video technology.
- SD Standard Definition
- HD high definition 1920 x 1080 pixels
- the dynamic range is the maximum brightness to express bright light such as specular reflection light that cannot be expressed by the current TV signal with more realistic brightness while maintaining the dark gradation in the conventional video.
- HDR High Dynamic Range
- SDR Standard Dynamic Range
- the maximum luminance value was 100 nits, whereas in HDR the maximum is 1000 nits or more. It is assumed that the luminance value is enlarged. Standardization of HDR is underway in SMPTE (Society of Motion Picture & Television Engineers) and ITU-R (International Telecommunications Union Radiocommunications Sector).
- HDR high definition video recorder
- package media Blu-ray (registered trademark) Disc, etc.
- Internet distribution etc., like HD and UHD.
- the luminance of the video is composed of luminance values in the HDR luminance range, and a luminance signal obtained by quantizing the luminance value of the video is referred to as an HDR signal.
- the luminance of the video is composed of luminance values in the luminance range of SDR, and a luminance signal obtained by quantizing the luminance value of the video is called an SDR signal.
- FIG. 2 is a diagram for explaining the relationship between video production, a distribution method, and a display device when a new video expression is introduced into content.
- HDR display TV (hereinafter referred to as “HDR display”) compatible with HDR display (hereinafter referred to as “HDR display”). It is expected that replacement for “HDRTV” will be required.
- SDRTV A TV (hereinafter referred to as “SDRTV”) that supports only video display corresponding to SDR (hereinafter referred to as “SDR display”) normally receives an input signal having a luminance value of up to 100 nits. For this reason, SDRTV is sufficient to represent the luminance value of the input signal if its display capability is 100 nits. However, SDRTV actually has a function of reproducing an image with an optimal luminance value in accordance with the viewing environment (dark room: cinema mode, bright room: dynamic mode, etc.), and the ability to express an image of 200 nits or more. There are many things that have. That is, such SDRTV can display video up to the maximum luminance (for example, 300 nits) of display capability by selecting a display mode according to the viewing environment.
- the maximum luminance for example, 300 nits
- the luminance upper limit of the input signal is determined to be 100 nits. Therefore, as long as the SDR input interface is used as usual, a high-intensity video exceeding 100 nits that SDRTV has. It is difficult to use the reproduction capability for reproducing the HDR signal (see FIGS. 4A and 4B).
- HDR ⁇ SDR conversion High-brightness video content (hereinafter referred to as “HDR content” or “HDR content” distributed by a distribution method such as HDR compatible broadcasting, video distribution via a communication network, or HDR compatible package media (eg, HDR compatible Blu-ray Disc)). It is assumed that “HDR video” is output by SDRTV via an HDR compatible playback device (for example, a communication STB (Set Top Box), Blu-ray device, IPTV playback device).
- HDR compatible playback device for example, a communication STB (Set Top Box), Blu-ray device, IPTV playback device.
- “HDR ⁇ SDR conversion” is implemented to convert HDR signals corresponding to HDR into SDR luminance range SDR signals with a maximum value of 100 nits so that images can be displayed correctly with SDRTV. To do. Thereby, SDRTV can display the SDR video obtained by converting from the HDR video using the converted SDR signal (see FIG. 5).
- HDR-compatible content for example, Blu-ray disc, HDR IPTV content
- HDR-compatible playback device for example, Blu-ray device, HDR-compatible IPTV playback device.
- SDRTV can only enjoy video in SDR video representation (SDR representation). That is, even if HDR content and a playback device that supports HDR are prepared, if there is no HDR-compatible display device (for example, HDRTV) and only SDRTV is available, the video is displayed in HDR video representation (HDR representation). Cannot watch.
- SDR representation SDR video representation
- HDR that is, superiority to SDR due to high image quality of HDR
- the spread of HDR contents and HDR compatible distribution methods is determined according to the spread rate of HDRTV.
- FIGS. 6A and 6B Two methods for realizing HDR ⁇ SDR conversion]
- FIGS. 6A and 6B Two cases can be assumed as shown in FIGS. 6A and 6B below.
- FIG. 6A is a diagram for describing Case 1 in which only an HDR signal corresponding to HDR is stored in an HDR-compatible BD.
- FIG. 6B is a diagram for describing Case 2 in which an HDR signal corresponding to HDR and an SDR signal corresponding to SDR are stored in an HDR-compatible BD.
- HDRTV when displaying a video played back by a Blu-ray device on the HDRTV in the case of the HDRTV, even when the HDR compatible BD (hereinafter referred to as “HDRBD”) is played back, Even when the corresponding BD (hereinafter referred to as “SDRBD”) is reproduced, the Blu-ray device outputs the luminance signal stored in the BD to the HDRTV as it is without conversion. Since HDRTV can display both HDR signals and SDR signals, it performs display processing according to the input luminance signal and displays HDR video or SDR video.
- HDRTV can display both HDR signals and SDR signals, it performs display processing according to the input luminance signal and displays HDR video or SDR video.
- the Blu-ray device when displaying the video reproduced from the BD by the Blu-ray device on the SDRTV, when the HDRBD is reproduced, the Blu-ray device performs a conversion process for converting the HDR signal into the SDR signal.
- the SDR signal obtained by the conversion process is output to SDRTV.
- the Blu-ray device When SDRBD is played back, the Blu-ray device outputs the SDR signal stored in the BD as it is to the SDRTV without conversion. Thereby, SDRTV displays an SDR video.
- the Blu-ray device when displaying the video reproduced from the BD by the Blu-ray device on the SDRTV, the Blu-ray device is stored in the BD regardless of whether the HDRBD is reproduced or the SDRBD is reproduced.
- the SDR signal is directly output to SDRTV without being converted.
- HDR ⁇ pseudo HDR conversion From the above, it can be said that in order to promote the spread of HDR, it is important to be able to promote the commercialization of HDR contents and distribution methods without waiting for the spread of HDRTV. For this purpose, if the HDR signal can be viewed with existing SDRTV as HDR video or pseudo HDR video closer to HDR video than SDR video, instead of SDR video, the user can view HDRTV. Even if you don't buy it, you can watch a higher quality video that is clearly different from the SDR video and is close to the HDR video.
- pseudo-HDR video can be a user's motive for purchasing HDR content and HDR distribution equipment (see FIG. 7).
- the HDR signal is displayed so that the HDR content video can be correctly displayed on SDRTV when the HDR content is played back in a configuration in which SDRTV is connected to the HDR distribution method.
- a pseudo HDR signal for displaying a video having a maximum display capability of SDRTV for example, a video of 200 nits or more, is generated by using an input of a video signal whose maximum value is 100 nits of SDRTV. Therefore, it is necessary to realize “HDR ⁇ pseudo HDR conversion processing” that enables the generated pseudo HDR signal to be sent to SDRTV.
- FIG. 8A is a diagram showing an example of EOTF (Electro-Optical Transfer Function) corresponding to each of HDR and SDR.
- EOTF Electro-Optical Transfer Function
- EOTF is generally called a gamma curve, indicates the correspondence between code values and luminance values, and converts code values into luminance values. That is, EOTF is relationship information indicating a correspondence relationship between a plurality of code values and luminance values.
- FIG. 8B is a diagram illustrating an example of reverse EOTF corresponding to each of HDR and SDR.
- Inverse EOTF indicates the correspondence between the luminance value and the code value.
- the luminance value is quantized and converted into a code value. That is, inverse EOTF is relationship information indicating a correspondence relationship between a luminance value and a plurality of code values. For example, when the luminance value of a video corresponding to HDR is expressed by a 10-bit gradation code value, the luminance values in the HDR luminance range up to 10,000 nits are quantized and 1024 from 0 to 1023 Mapped to the integer value of.
- the luminance value in the luminance range up to 10,000 nits is converted into an HDR signal that is a 10-bit code value.
- an EOTF corresponding to HDR hereinafter referred to as “HDR EOTF”
- an EOTF corresponding to SDR hereinafter referred to as “SDR EOTF”.
- SDR EOTF an EOTF corresponding to SDR
- inverse EOTF of SDR it is possible to express a luminance value, for example, FIG.
- the maximum luminance value (peak luminance) is 10,000 nits. That is, the HDR luminance range includes the entire SDR luminance range, and the HDR peak luminance is larger than the SDR peak luminance.
- the HDR luminance range is a luminance range obtained by expanding the maximum value from 100 nit, which is the maximum value of the SDR luminance range, to 10,000 nit.
- HDR EOTF and HDR inverse EOTF are, for example, SMPTE 2084 standardized by the American Film and Television Engineers Association (SMPTE).
- FIG. 9 is an explanatory diagram of a method for determining the code value of the luminance signal stored in the content and the process of restoring the luminance value from the code value during reproduction.
- the luminance signal indicating the luminance in this example is an HDR signal corresponding to HDR.
- the image after grading is quantized by the inverse EOTF of HDR, and the code value corresponding to the luminance value of the image is determined. Image coding or the like is performed based on this code value, and a video stream is generated. At the time of reproduction, the decoding result of the stream is converted into a linear signal by inverse quantization based on HDR EOTF, and the luminance value for each pixel is restored.
- quantization using the inverse EOTF of HDR is referred to as “inverse HDR EOTF conversion”.
- Inverse quantization using HDR EOTF is referred to as “HDR EOTF conversion”.
- quantization using inverse SDR EOTF is referred to as “inverse SDR EOTF conversion”.
- Inverse quantization using SDR EOTF is referred to as “SDR EOTF conversion”.
- FIG. 10A is a diagram illustrating an example of a display process in which HDR display is performed by converting an HDR signal in HDRTV.
- the maximum value of the HDR luminance range (peak luminance (HPL (HDR Peak Luminance): example 1500 nit)) is displayed as it is, even if the display device is HDRTV. May not be possible.
- the linear signal after inverse quantization using HDR EOTF is adjusted to the maximum value of the luminance range of the display device (peak luminance (DPL (Display Peak Iluminance): example 750 nit)).
- DPL Display Peak Iluminance
- FIG. 10B is a diagram illustrating an example of display processing for performing HDR display using an HDR-compatible playback device and SDRTV.
- the maximum value of the luminance range of the SDRTV to be displayed exceeds 100 nits.
- “HDR to pseudo-HDR conversion process” in the HDR-compatible playback device (Blu-ray device) in FIG. 10B “HDR EOTF conversion” and the maximum value of the SDRTV luminance range performed in HDRTV If the signal obtained by performing “luminance conversion” using DPL (eg 300 nit) and “luminance conversion” can be directly input to the “display device” of SDRTV, the same effect as HDRTV can be achieved even if SDRTV is used. Can be realized.
- FIG. 10C is a diagram showing an example of display processing for performing HDR display using an HDR-compatible playback device and SDRTV connected to each other via a standard interface.
- a signal input via an input interface passes through “SDR EOTF conversion”, “brightness conversion for each mode”, and “display device” in order, and an image that matches the maximum luminance range of the display device. Is displayed. For this reason, a signal (pseudo HDR signal) that can cancel the “SDR EOTF conversion” and “brightness conversion for each mode” that passes immediately after the input interface in SDRTV in the HDR-compatible Blu-ray device.
- an input interface such as HDMI (registered trademark)
- FIG. 11 is a block diagram illustrating configurations of the conversion device and the display device according to the embodiment.
- FIG. 12 is a flowchart illustrating a conversion method and a display method performed by the conversion device and the display device according to the embodiment.
- the conversion apparatus 100 includes an HDR EOTF conversion unit 101, a luminance conversion unit 102, an inverse luminance conversion unit 103, and an inverse SDR EOTF conversion unit 104.
- the display device 200 includes a display setting unit 201, an SDR EOTF conversion unit 202, a luminance conversion unit 203, and a display unit 204.
- the HDR luminance range (0 to HPL [nit]) is referred to as a “first luminance range”.
- the luminance range (0 to DPL [nit]) of the display is indicated as “second luminance range”.
- the SDR luminance range (0 to 100 [nit]) is referred to as a “third luminance range”.
- a conversion method performed by the conversion apparatus 100 will be described with reference to FIG.
- the conversion method includes steps S101 to S104 described below.
- the HDR EOTF conversion unit 101 of the conversion apparatus 100 acquires an HDR video that has been subjected to reverse HDR EOTF conversion.
- the HDR EOTF conversion unit 101 of the conversion device 100 performs HDR EOTF conversion on the HDR signal of the acquired HDR video (S101).
- the HDR EOTF converter 101 converts the acquired HDR signal into a linear signal indicating a luminance value.
- HDR EOTF is, for example, SMPTE 2084.
- the luminance conversion unit 102 of the conversion device 100 performs first luminance conversion that converts the linear signal converted by the HDR EOTF conversion unit 101 using display characteristic information and content luminance information (S102). .
- the luminance value corresponding to the HDR luminance range which is the first luminance range (hereinafter referred to as “HDR luminance value”) is used as the luminance value corresponding to the luminance range of the display which is the second luminance range. (Hereinafter referred to as “display luminance value”). Details will be described later.
- the HDR EOTF converter 101 functions as an acquisition unit that acquires the HDR signal as the first luminance signal indicating the code value obtained by quantizing the luminance value of the video.
- the HDR EOTF conversion unit 101 and the luminance conversion unit 102 determine the code value indicated by the HDR signal acquired by the acquisition unit based on the luminance range of the display (display device 200). It functions as a conversion unit that converts to a display luminance value corresponding to the luminance range of the display that is a maximum value (DPL) that is smaller than the value (HPL) and larger than 100 nits.
- DPL maximum value
- the HDR EOTF conversion unit 101 uses the acquired HDR signal and the HDR EOTF in step S101 to determine the HDR code value as the first code value indicated by the acquired HDR signal.
- An HDR luminance value associated with the HDR code value in the HDR EOTF is determined.
- the HDR signal is obtained by quantizing the luminance value of the video (content) using the HDR inverse EOTF that associates the luminance value in the HDR luminance range with a plurality of HDR code values.
- the code value of HDR is shown.
- step S102 the luminance conversion unit 102 determines a display luminance value corresponding to the luminance range of the display, which is associated with the HDR luminance value in advance in the HDR luminance value determined in step S101.
- the first luminance conversion is performed to convert the HDR luminance value corresponding to the luminance range of the display into the display luminance value corresponding to the luminance range of the display.
- the conversion apparatus 100 includes content luminance information including at least one of a maximum luminance value (CPL: Content Peak luminance) and an average luminance value (CAL: Content Average luminance) of video (content) before step S102. Is acquired as information relating to the HDR signal.
- CPL first maximum luminance value
- CAL is an average luminance value that is an average of luminance values for a plurality of images constituting an HDR video, for example.
- the conversion device 100 acquires the display characteristic information of the display device 200 from the display device 200 before step S102.
- the display characteristic information refers to the maximum value (DPL) of luminance that can be displayed on the display device 200, the display mode of the display device 200 (see later), the input / output characteristics (EOTF corresponding to the display device), and the like. This is information indicating display characteristics.
- the conversion apparatus 100 may transmit recommended display setting information (referred to below-mentioned, hereinafter also referred to as “setting information”) to the display apparatus 200.
- recommended display setting information referred to below-mentioned, hereinafter also referred to as “setting information”.
- the reverse luminance conversion unit 103 of the conversion device 100 performs reverse luminance conversion according to the display mode of the display device 200. Accordingly, the inverse luminance conversion unit 103 performs the second luminance conversion for converting the luminance value corresponding to the luminance range of the display that is the second luminance range into the luminance value corresponding to the luminance range of the SDR that is the third luminance range. Perform (S103). Details will be described later. That is, the inverse luminance conversion unit 103 uses the display luminance value obtained in step S102 as the third luminance value corresponding to the luminance range of SDR, which is associated with the display luminance value in advance and has a maximum value of 100 nits.
- SDR luminance value Luminance value corresponding to SDR
- the luminance value of SDR is determined, and the display luminance value corresponding to the luminance range of the display is changed to the luminance value of SDR corresponding to the luminance range of SDR.
- a second luminance conversion for conversion is performed.
- the inverse SDR EOTF converter 104 of the conversion device 100 performs pseudo SDR EOTF conversion to generate a pseudo HDR video (S104). That is, the inverse SDR EOTF conversion unit 104 performs the inverse dynamic EOTF (Electro-Optical) of SDR (Standard Dynamic Range), which is the third relational information that associates the luminance value in the HDR luminance range with a plurality of third code values.
- the determined SDR brightness value is quantized using Transfer Function), the third code value obtained by the quantization is determined, and the SDR brightness value corresponding to the SDR brightness range is indicated as the third code value.
- a pseudo HDR signal is generated by converting the SDR signal as the third luminance signal.
- the third code value is a code value corresponding to SDR, and is hereinafter referred to as “SDR code value”. That is, the SDR signal is obtained by quantizing the luminance value of the video using the SDR inverse EOTF that associates the luminance value in the luminance range of the SDR and a plurality of SDR code values. Expressed as a code value. Then, conversion device 100 outputs the pseudo HDR signal (SDR signal) generated in step S104 to display device 200.
- SDR code value a code value corresponding to SDR
- the conversion apparatus 100 generates the SDR luminance value corresponding to the pseudo HDR by performing the first luminance conversion and the second luminance conversion on the HDR luminance value obtained by dequantizing the HDR signal. Then, the SDR luminance value is quantized using the SDR EOTF to generate an SDR signal corresponding to the pseudo HDR.
- the SDR luminance value is a numerical value in the luminance range of 0 to 100 nits corresponding to the SDR.
- the HDR EOTF and the SDR are converted to the HDR luminance value. This is a numerical value different from the luminance value in the luminance range of 0 to 100 nit corresponding to the SDR obtained by performing luminance conversion using the EOTF.
- the display method includes steps S105 to S108 described below.
- the display setting unit 201 of the display device 200 sets the display setting of the display device 200 using the setting information acquired from the conversion device 100 (S105).
- the display device 200 is an SDRTV.
- the setting information is information indicating display settings recommended for the display device, and information indicating how to perform pseudo-HDR video EOTF and display at which setting a beautiful video can be displayed (that is, Information for switching the display setting of the display device 200 to the optimal display setting).
- the setting information includes, for example, a gamma curve characteristic at the time of output in the display device, a display mode such as a living mode (normal mode) and a dynamic mode, a numerical value of backlight (brightness), and the like.
- a message that prompts the user to change the display setting of the display device 200 by a manual operation may be displayed on the display device 200 (hereinafter also referred to as “SDR display”). Details will be described later.
- the display device 200 acquires an SDR signal (pseudo HDR signal) and setting information indicating display settings recommended for the display device 200 in displaying a video before step S105.
- the display device 200 may acquire the SDR signal (pseudo HDR signal) before step S106, or after step S105.
- the SDR EOTF converter 202 of the display device 200 performs SDR EOTF conversion on the acquired pseudo-HDR signal (S106). That is, the SDR EOTF converter 202 performs inverse quantization on the SDR signal (pseudo HDR signal) using the SDR EOTF. Accordingly, the SDR EOTF converter 202 converts the SDR code value indicated by the SDR signal into an SDR luminance value.
- the luminance conversion unit 203 of the display device 200 performs luminance conversion according to the display mode set in the display device 200. Thereby, the luminance conversion unit 203 converts the SDR luminance value corresponding to the SDR luminance range (0 to 100 [nit]) into the display luminance value corresponding to the display luminance range (0 to DPL [nit]). The third luminance conversion is performed (S107). Details will be described later.
- the display device 200 uses the setting information acquired in step S105 to obtain the third code value indicated by the acquired SDR signal (pseudo HDR signal) in step S106 and step S107. 0 to DPL [nit]).
- step S106 in the conversion from the SDR signal (pseudo HDR signal) to the display luminance value, in step S106, using the EOTF that associates the luminance value in the luminance range of the SDR with a plurality of third code values. Then, for the SDR code value indicated by the acquired SDR signal, the SDR luminance value related to the SDR code value by the SDR EOTF is determined.
- step S107 the display brightness value corresponding to the brightness range of the display, which is related in advance to the determined brightness value of the SDR, is determined, and the SDR value corresponding to the SDR brightness range is determined.
- a third luminance conversion is performed for converting the luminance value into a display luminance value corresponding to the luminance range of the display.
- the display unit 204 of the display device 200 displays the pseudo HDR video on the display device 200 based on the converted display luminance value (S108).
- FIG. 13A is a diagram for describing an example of the first luminance conversion.
- the luminance conversion unit 102 of the conversion device 100 performs first luminance conversion that converts the linear signal (HDR luminance value) obtained in step S101 using display characteristic information and content luminance information of the HDR video. .
- the HDR luminance value input luminance value
- the display luminance value output luminance value
- the DPL is determined using the maximum brightness and display mode of the SDR display, which is display characteristic information.
- the display mode is, for example, mode information such as a theater mode that is displayed dark on the SDR display and a dynamic mode that is displayed brightly.
- DPL second maximum luminance value
- DPL is the maximum luminance value that can be displayed in the display mode in which the SDR display is currently set. That is, in the first luminance conversion, DPL as the second maximum luminance value is determined using display characteristic information that is information indicating display characteristics of the SDR display.
- the first luminance conversion CAL and CPL in the content luminance information are used, luminance values below the CAL are the same before and after the conversion, and the luminance value is changed only for luminance values near the CPL.
- the first luminance conversion when the HDR luminance value is CAL or less, the HDR luminance value is not converted, and the HDR luminance value is determined as the display luminance value.
- the DPL as the second maximum luminance value is determined as the display luminance value.
- the peak luminance (CPL) of the HDR video in the luminance information is used, and when the HDR luminance value is CPL, DPL is determined as the display luminance value.
- the linear signal (HDR luminance value) obtained in step S101 may be converted so as to be clipped to a value not exceeding DPL.
- the processing in the conversion device 100 can be simplified, and the device can be reduced, the power consumption can be reduced, and the processing speed can be increased.
- FIG. 13B is a diagram for describing another example of the first luminance conversion.
- FIG. 14 is a diagram for describing the second luminance conversion.
- the inverse luminance conversion unit 103 of the conversion device 100 performs inverse luminance conversion corresponding to the display mode on the display luminance value in the display luminance range (0 to DPL [nit]) converted by the first luminance conversion in step S102. Apply.
- the reverse luminance conversion when the luminance conversion processing (step S107) according to the display mode by the SDR display is performed, the display luminance value of the display luminance range (0 to DPL [nit]) after the processing of step S102 is acquired. This is a process for making it possible. That is, the second luminance conversion is an inverse luminance conversion of the third luminance conversion.
- the second luminance conversion is performed by converting the display luminance value (input luminance value) of the display luminance range which is the second luminance range into the SDR luminance value (output luminance) of the SDR luminance range which is the third luminance range. Value).
- the conversion formula is switched depending on the display mode of the SDR display. For example, when the display mode of the SDR display is the normal mode, the luminance is converted to a directly proportional value that is directly proportional to the display display luminance value.
- the second luminance conversion when the display mode of the SDR display is a dynamic mode in which a high luminance pixel is brighter and a low luminance pixel is darker than in the normal mode, the inverse function is used to obtain the low luminance pixel.
- the luminance value of the SDR is converted to a value higher than the direct proportional value directly proportional to the display luminance value, and the luminance value of the SDR of the high luminance pixel is converted to a value lower than the direct proportional value directly proportional to the display luminance value. That is, in the second luminance conversion, the display luminance value determined in step S102 is related to the display luminance value using luminance relationship information corresponding to the display characteristic information that is information indicating the display characteristic of the SDR display. The brightness value is determined as the brightness value of the SDR, and the brightness conversion process is switched according to the display characteristic information.
- the luminance-related information according to the display characteristic information includes, for example, a display luminance value (input luminance value) determined for each display parameter (display mode) of the SDR display as shown in FIG. This is information relating brightness values (output brightness values).
- FIG. 15 is a flowchart showing detailed processing for display setting.
- the display setting unit 201 of the SDR display performs the following steps S201 to S208 in step S105.
- the display setting unit 201 uses the setting information to determine whether the EOTF set for the SDR display (EOF for SDR display) matches the EOTF assumed when the pseudo HDR video (SDR signal) is generated. Determine (S201).
- the display setting unit 201 determines that the EOTF set in the SDR display is different from the EOTF indicated by the setting information (EOTF matching the pseudo HDR video) (Yes in S201), the display setting unit 201 sets the EOTF for the SDR display in the system. It is determined whether switching is possible on the side (S202).
- the display setting unit 201 determines that switching is possible, the setting information is used to switch the SDR display EOTF to an appropriate EOTF (S203).
- step S105 in the display setting setting (S105), the EOTF set in the SDR display is set to the recommended EOTF corresponding to the acquired setting information. Accordingly, in step S106 performed after step S105, the luminance value of SDR can be determined using the recommended EOTF.
- a message prompting the user to change the EOTF manually is displayed on the screen (S204). For example, a message “Please set the display gamma to 2.4” is displayed on the screen. That is, if the EOTF set for the SDR display cannot be switched in the display setting setting (S105), the display setting unit 201 switches the EOTF set for the SDR display (EOF for SDR display) to the recommended EOTF. A message for prompting the user to do so is displayed on the SDR display.
- the pseudo-HDR image (SDR signal) is displayed on the SDR display, but it is determined whether or not the display parameters of the SDR display match the setting information using the setting information before display (S205).
- the display setting unit 201 determines whether the display parameter of the SDR display can be switched (S206). .
- the display setting unit 201 determines that the display parameter of the SDR display can be switched (Yes in S206)
- the display setting unit 201 switches the display parameter of the SDR display according to the setting information (S207).
- step S105 in the display setting setting (S105), the display parameter set in the SDR display is set to the recommended display parameter corresponding to the acquired setting information.
- a message prompting the user to manually change the display parameters set in the SDR display is displayed on the screen (S208). For example, a message “Please set the display mode to dynamic mode and maximize the backlight” is displayed on the screen. That is, in the setting (S105), when the display parameter set in the SDR display cannot be switched, a message for prompting the user to switch the display parameter set in the SDR display to the recommended display parameter is displayed. To display.
- FIG. 16 is a diagram for describing the third luminance conversion.
- the luminance conversion unit 203 of the display device 200 converts the SDR luminance value in the SDR luminance range (0 to 100 [nit]) into (0 to DPL [nit]) according to the display mode set in step S105. .
- This processing is performed so as to be an inverse function of inverse luminance conversion for each mode in S103.
- the conversion formula is switched depending on the display mode of the SDR display. For example, when the display mode of the SDR display is the normal mode (that is, when the set display parameter is a parameter corresponding to the normal mode), the display luminance value is converted into a direct proportional value that is directly proportional to the luminance value of the SDR. .
- the display mode of the SDR display is the dynamic mode in which the high luminance pixel is brighter and the low luminance pixel is darker than the normal mode, the display luminance value of the low luminance pixel is SDR.
- the luminance value of the display luminance value of the high luminance pixel is converted to a value that is higher than the directly proportional value that is directly proportional to the luminance value of the SDR, to a value lower than the directly proportional value that is directly proportional to the luminance value. That is, in the third luminance conversion, for the luminance value of the SDR determined in step S106, luminance related in advance to the luminance value of the SDR using luminance relationship information corresponding to the display parameter indicating the display setting of the SDR display. The value is determined as the display luminance value, and the luminance conversion processing is switched according to the display parameter.
- the brightness-related information according to the display parameter is, for example, as shown in FIG. 16, the SDR brightness value (input brightness value) determined for each display parameter (display mode) of the SDR display, and the display brightness. This is information that relates values (output luminance values).
- a normal SDRTV has an input signal of 100 nits, but has an ability to express an image of 200 nits or more according to the viewing environment (dark room: cinema mode, bright room: dynamic mode, etc.). However, since the upper limit of the luminance of the input signal to SDRTV was determined to be 100 nits, it was not possible to directly use this capability.
- HDR video in SDRTV When displaying HDR video in SDRTV, using the fact that the peak brightness of SDRTV to be displayed exceeds 100 nits (usually 200 nits or more), the HDR video is not converted to SDR video of 100 nits or less, but luminance exceeding 100 nits. “HDR ⁇ pseudo HDR conversion processing” is performed so as to maintain the gradation of the range to some extent. For this reason, it can be displayed on SDRTV as a pseudo HDR video close to the original HDR.
- HDR signals sent by Internet distribution such as OTT are converted into pseudo HDR signals by performing HDR-pseudo HDR conversion processing.
- HDR-pseudo HDR conversion processing it is possible to display the HDR signal as a pseudo HDR video with the existing SDRTV.
- HDR video is, for example, video in a Blu-ray disc, DVD, Internet video distribution site, broadcast, HDD.
- the conversion device 100 may exist inside a disk player, a disk recorder, a set top box, a television, a personal computer, or a smartphone.
- the conversion device 100 may exist inside a server device in the Internet.
- the display device 200 (SDR display unit) is, for example, a television, a personal computer, or a smartphone.
- the display characteristic information acquired by the conversion apparatus 100 may be acquired from the display apparatus 200 via an HDMI cable or a LAN cable using HDMI or another communication protocol.
- the display characteristic information acquired by the conversion apparatus 100 may acquire display characteristic information included in the model information of the display apparatus 200 via the Internet.
- the user may perform a manual operation to set display characteristic information in the conversion device 100.
- the display characteristic information of the conversion device 100 may be acquired immediately before the pseudo HDR video generation (steps S101 to S104), or may be at the time of initial setting of the device or at the time of display connection.
- the display characteristic information may be acquired immediately before the conversion to the display luminance value, or may be performed at the timing when the conversion device 100 is first connected to the display device 200 with the HDMI cable.
- HDR video CPL or CAL there may be one HDR video CPL or CAL per content, or there may be one for each scene. That is, in the conversion method, the luminance information corresponding to each of the plurality of scenes of the video, and for each scene, the first maximum luminance value that is the maximum value among the luminance values for the plurality of images constituting the scene. And luminance information (CPL, CAL) including at least one of average luminance values that are averages of luminance values for a plurality of images constituting the scene, and in the first luminance conversion, for each of the plurality of scenes, The display brightness value may be determined according to the brightness information corresponding to the scene.
- CPL and CAL may be included in the same medium (Blu-ray disc, DVD, etc.) as the HDR video, or acquired from a different location from the HDR video, such as the conversion device 100 acquiring from the Internet. May be. That is, luminance information including at least one of CPL and CAL may be acquired as video meta information or may be acquired via a network.
- a fixed value may be used without using CPL, CAL, and display peak luminance (DPL). Further, the fixed value may be changed from the outside.
- CPL, CAL, and DPL may be switched in several types. For example, DPL may be set to only three types of 200 nit, 400 nit, and 800 nit, and the value closest to the display characteristic information is used. You may make it do.
- the HDR EOTF may not be SMPTE 2084, but other types of HDR EOTF may be used.
- the maximum luminance (HPL) of the HDR video may not be 10,000 nits, for example, 4,000 nits or 1,000 nits.
- the bit width of the code value may be 16, 14, 12, 10, 8 bits, for example.
- inverse SDR EOTF conversion is determined from the display characteristic information, a fixed conversion function (which can be changed from the outside) may be used. Inverse SDR EOTF conversion is performed in, for example, Rec. ITU-R BT. A function defined in 1886 may be used. Also, the types of inverse SDR EOTF conversion may be limited to several types, and the one closest to the input / output characteristics of the display device 200 may be selected and used.
- the display mode may be a fixed mode and may not be included in the display characteristic information.
- the conversion device 100 may not transmit the setting information, and the display device 200 may have a fixed display setting or may not change the display setting.
- the display setting unit 201 is not necessary.
- the setting information may be flag information indicating whether or not the image is a pseudo HDR video.
- the setting information may be changed to a setting that displays the brightest image. That is, in the display setting setting (S105), when the acquired setting information indicates that the signal indicates a pseudo-HDR image converted using DPL, the brightness setting of the display device 200 is set to display the brightest. You may switch to.
- the first luminance conversion (HPL ⁇ DPL) of the conversion device 100 is converted by the following formula, for example.
- L indicates a luminance value normalized to 0 to 1
- S1, S2, a, b, and M are values set based on CAL, CPL, and DPL.
- V is a luminance value after conversion normalized to 0 to 1.
- CAL is set to 300 nits
- CPL is set to 2,000 nits
- DPL is set to 750 nits
- conversion is not performed up to CAL + 50 nits. It becomes a value like this.
- the conversion formula can be changed according to the content, and conversion can be performed so as to keep the HDR gradation as much as possible. It becomes.
- adverse effects such as being too dark and too bright can be suppressed.
- the gradation is kept as much as possible by mapping the content peak luminance of the HDR video to the display peak luminance.
- the overall brightness is prevented from changing by not changing the pixel values below the average luminance.
- the conversion formula can be changed according to the display environment of the SDR display, and there is a sense of HDR according to the performance of the SDR display.
- Video can be displayed with the same gradation and brightness as the original HDR video.
- the display peak brightness is determined according to the maximum brightness of the SDR display and the display mode, and the HDR video is converted so as not to exceed the peak brightness value.
- the display is performed with almost no gradation reduction, and the brightness that cannot be displayed is reduced to the displayable brightness.
- the brightness information that cannot be displayed can be reduced, and the display can be displayed in a form close to the original HDR video without reducing the gradation of the displayable brightness.
- the overall brightness is maintained by converting to a pseudo HDR video with a peak luminance of 1,000 nits, and the luminance value changes depending on the display mode of the display. For this reason, the luminance conversion formula is changed according to the display mode of the display. If the pseudo-HDR image allows a luminance larger than the peak luminance of the display, the high luminance may be replaced with the peak luminance on the display side, and in that case, it is darker than the original HDR video. Become.
- the display gradation performance is not used to the maximum extent.
- the pseudo HDR video can be better displayed by switching the display setting using the setting information. For example, when the brightness is set to dark, high brightness display cannot be performed, so that the HDR feeling is impaired. In that case, by changing the display setting or displaying a message prompting the user to change the display setting, the display performance can be maximized and a high gradation video can be displayed.
- the HDR video when HDR video is displayed in SDRTV, the HDR video is converted to SDR video of 100 nit or less by using the peak brightness of SDRTV to be displayed exceeds 100 nit (usually 200 nit or more). Instead, it realizes a “HDR ⁇ pseudo HDR conversion process” that can be converted to maintain a certain level of gradation in a region exceeding 100 nits, converted into pseudo HDR video close to the original HDR, and displayed on SDRTV.
- the conversion method of “HDR ⁇ pseudo HDR conversion processing” may be switched depending on the display characteristics (maximum luminance, input / output characteristics, and display mode) of SDRTV.
- the display characteristic information can be acquired by (1) automatic acquisition through HDMI or a network, (2) generation by allowing the user to input information such as manufacturer name and product number, and (3) manufacturer name and product number. It is conceivable to obtain information from the cloud using this information.
- the display characteristic information acquisition timing of the conversion device 100 includes (1) acquisition immediately before pseudo-HDR conversion, and (2) when connecting to the display device 200 (such as SDRTV) for the first time (when connection is established). ) Can be considered.
- the conversion method may be switched according to the luminance information (CAL, CPL) of the HDR video.
- the method of acquiring the luminance information of the HDR video of the conversion device 100 (1) acquiring as meta information attached to the HDR video, (2) acquiring by causing the user to input content title information, And (3) It is conceivable to acquire from the cloud or the like using input information that has been instructed by the user.
- the details of the conversion method are as follows: (1) Conversion so as not to exceed DPL; (2) Conversion so that CPL becomes DPL; (3) CAL and its surrounding luminance are not changed; 4) Conversion using natural logarithm, (5) Clip processing by DPL.
- display settings such as the SDRTV display mode and display parameters can be transmitted to the display device 200 and switched. For example, the user is prompted to perform display settings. A message may be displayed on the screen.
- each component may be configured by dedicated hardware or may be realized by executing a software program suitable for each component.
- Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
- the present disclosure is useful as a display method, a display device, a playback system, and the like that can display video with display settings suitable for HDR signals.
- SYMBOLS 100 Conversion apparatus 101 Conversion part 102 Brightness conversion part 103 Reverse brightness conversion part 104 Inverse SDR EOTF conversion part 200 Display apparatus 201 Display setting part 202 SDR EOTF conversion part 203 Brightness conversion part 204 Display part
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Human Computer Interaction (AREA)
- General Engineering & Computer Science (AREA)
- Controls And Circuits For Display Device (AREA)
- Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
- Picture Signal Circuits (AREA)
- Transforming Electric Information Into Light Information (AREA)
- Image Processing (AREA)
- Processing Of Color Television Signals (AREA)
Abstract
Description
本発明者は、「背景技術」の欄において記載した、画像信号処理装置に関し、以下の課題が生じることを見出した。
本開示は、輝度範囲が高い高輝度信号であるHDR(High Dynamic Range)信号を、最大輝度値が100nitである輝度範囲の通常輝度信号であるSDR(Standard Dynamic Range)信号に対応したTV、プロジェクタ、タブレット、スマートフォン等のディスプレイ装置で表示させるための画像変換・再生方法、装置に関する。
まず、映像技術の変遷について、図1を用いて説明する。図1は、映像技術の進化について説明するための図である。
図2は、コンテンツに新たな映像表現を導入するときの、映像制作、配信方式、および表示装置の関係について説明するための図である。
ユーザが新たな映像表現に対応したコンテンツ(例えば、高輝度映像コンテンツ(HDRコンテンツ))を家庭内で楽しむためには、HDR対応配信方式およびHDR対応表示装置の両方を新たに導入する必要がある。つまり、新たな映像表現に対応したコンテンツを家庭内で楽しむためには、ユーザは、新たな映像表現に対応した配信方式および表示装置を用意する必要がある。このことは、SDの映像からHDの映像、HDの映像から3Dの映像、HDの映像からUHD(4K)の映像に代わったときのような新たな映像表現が導入された場合にも避けることができなかった。
SDRに対応した映像の表示(以下、「SDR表示」という。)のみに対応したTV(以下、「SDRTV」という。)は、通常、輝度値が100nitまでの入力信号が入力される。このため、SDRTVは、その表示能力が100nitであれば入力信号の輝度値を表現するのに十分である。しかし、SDRTVは、実際は、視聴環境(暗い部屋:シネマモード、明るい部屋:ダイナミックモード等)に合わせて、最適な輝度値の映像を再生する機能を有し、200nit以上の映像表現が可能な能力を持っているものが多い。つまり、このようなSDRTVは、視聴環境に応じた表示モードを選択することで、表示能力の最大輝度(例えば、300nit)までの映像を表示できる。
HDR対応の放送、通信ネットワークを介した動画配信、あるいは、HDR対応のパッケージメディア(例えば、HDR対応のBlu-rayDisc)等の配信方式により配信された高輝度映像コンテンツ(以下、「HDRコンテンツ」または「HDR映像」ともいう。)は、HDR対応の再生装置(例えば、通信STB(Set Top Box)、Blu-ray機器、IPTV再生機器)を介して、SDRTVにより出力される場合が想定される。SDRTVでHDRコンテンツを再生する場合、SDRTVで映像が正しく表示できるように、HDRに対応するHDR信号を、100nitを最大値とするSDR輝度範囲のSDR信号に変換する「HDR→SDR変換」を実現する。これにより、SDRTVは、変換されたSDR信号を用いて、HDR映像から変換されることで得られたSDR映像の表示を行うことが可能となる(図5参照)。
Blu-rayディスク(BD)を用いてHDR信号をTVに送る場合、下記の図6Aおよび図6Bに示すように2つのケースが想定できる。図6Aは、HDR対応のBDに、HDRに対応したHDR信号のみが格納されているケース1について説明するための図である。図6Bは、HDR対応のBDにHDRに対応したHDR信号およびSDRに対応したSDR信号が格納されているケース2について説明するための図である。
以上のことからHDRの普及を促進するためには、HDRTVの普及を待たずに、HDRコンテンツや配信方式の事業化を推進できることが重要であると言える。このためには、既存のSDRTVで、HDR信号を、SDR映像としてではなく、HDR映像または、SDR映像よりもHDR映像に近づけた疑似HDR映像として視聴可能にすることができれば、ユーザは、HDRTVを買わなくても、SDR映像とは明らかに異なる、HDR映像に近いより高画質な映像を視聴できる。つまり、ユーザは、SDRTVで疑似HDR映像を視聴できれば、HDRTVを用意しなくてもHDRコンテンツやHDR配信機器を用意するだけで、SDR映像よりも高画質な映像を視聴することができるようになる。要するに、疑似HDR映像をSDRTVで視聴できるようにすることは、HDRコンテンツやHDR配信機器を購入するためのユーザの動機になり得る(図7参照)。
ここで、EOTFについて、図8Aおよび図8Bを用いて説明する。
図9は、コンテンツに格納される輝度信号のコード値の決定方法、および、再生時にコード値から輝度値を復元するプロセスの説明図である。
次に、疑似HDRの必要性について図10A~図10Cを用いて説明する。
図11は、実施の形態の変換装置および表示装置の構成を示すブロック図である。図12は、実施の形態の変換装置および表示装置により行われる変換方法および表示方法を示すフローチャートである。
変換装置100が行う変換方法について、図12を用いて説明する。なお、変換方法は、以下で説明するステップS101~ステップS104を含む。
次に、ステップS102の第1輝度変換(HPL→DPL)の詳細について、図13Aを用いて説明する。図13Aは、第1輝度変換の一例について説明するための図である。
次に、ステップS103の第2輝度変換(DPL→100〔nit〕)の詳細について、図14を用いて説明する。図14は、第2輝度変換について説明するための図である。
次に、ステップS105の表示設定の詳細について、図15を用いて説明する。図15は、表示設定の詳細な処理を示すフローチャートである。
次に、ステップS107の第3輝度変換(100→DPL〔nit〕)の詳細について、図16を用いて説明する。図16は、第3輝度変換について説明するための図である。
通常のSDRTVは入力信号が100nitであるが、視聴環境(暗い室:シネマモード、明るい部屋:ダイナミックモード等)に合わせて200nit以上の映像表現が可能な能力を持つ。しかし、SDRTVへの入力信号の輝度上限が100nitに決められていたため、その能力を直接つかうことはできなかった。
以上のように、本出願において開示する技術の例示として、実施の形態を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。また、上記実施の形態で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
S2 = 2000/10000
M = 750/10000
a = 0.023
b = S1 - a*ln(S1) = 0.112105
つまり、第1輝度変換では、SDRの輝度値が、平均輝度値(CAL)と第1最大輝度値(CPL)との間である場合、自然対数を用いて、当該HDRの輝度値に対応するディスプレイ輝度値を決定する。
101 変換部
102 輝度変換部
103 逆輝度変換部
104 逆SDRのEOTF変換部
200 表示装置
201 表示設定部
202 SDRのEOTF変換部
203 輝度変換部
204 表示部
Claims (18)
- 映像の輝度を変換する変換装置と、前記映像を表示する表示装置とを備えた表示システムであって、前記表示装置は、前記変換装置と接続し、
前記映像の輝度は、第1輝度範囲の輝度値からなり、
前記変換装置は、
前記映像の輝度値が量子化されることで得られたコード値を示す第1輝度信号を取得する第1取得部と、
取得した前記第1輝度信号が示すコード値を、前記表示装置の輝度範囲に基づいて決定する、前記第1輝度範囲の最大値よりも小さく、かつ、100nitよりも大きい最大値である第2輝度範囲に対応する第2輝度値へ変換する第1輝度変換部と、
決定した前記第2輝度値について、当該第2輝度値に予め関係付けられた、100nitを最大値とする第3輝度範囲に対応する第3輝度値を決定し、前記第2輝度範囲に対応する前記第2輝度値を、前記第3輝度範囲に対応する前記第3輝度値へ変換する第2輝度変換する第2輝度変換部と、
決定した前記第3輝度値を量子化し、量子化により得られた第3コード値を決定し、前記第3輝度範囲に対応する前記第3輝度値を、前記第3コード値を示す第3輝度信号へ変換する量子化変換部と、
前記第3輝度信号を前記表示装置へ出力する出力部と、
前記表示装置は、
前記第3輝度信号と、前記映像の表示にあたって前記表示装置に対して推奨する表示設定を示す設定情報とを取得する第2取得部と、
取得した前記設定情報を用いて、前記表示装置の表示設定の設定を行う表示設定部と、
取得した前記第3輝度信号が示す前記第3コード値を、前記表示装置の前記表示設定を用いて、前記第2輝度範囲に対応する前記第2輝度値へ変換する第3輝度変換部と、
変換した前記第2輝度値に基づいて、前記映像を前記表示装置に表示する表示制御部と、を備える
表示システム。 - 請求項1に記載の表示システムの表示装置における映像を表示する表示方法であって、
前記第3輝度信号と、前記映像の表示にあたって前記表示装置に対して推奨する表示設定を示す設定情報とを取得し、
取得した前記設定情報を用いて、前記表示装置の表示設定の設定を行い、
取得した前記第3輝度信号が示す前記第3コード値を、前記表示装置の表示設定を用いて、前記第2輝度範囲に対応する前記第2輝度値へ変換し、
変換した前記第2輝度値に基づいて、前記映像を前記表示装置に表示する
表示方法。 - 前記第3輝度信号から前記第2輝度値への変換では、
前記第3輝度範囲における輝度値と、複数の第3コード値とが関係付けたEOTF(Electro-Optical Transfer Function)を用いて、取得した前記第3輝度信号が示す前記第3コード値について、前記第3コード値に前記EOTFで関係付けられた第3輝度値を決定し、
決定した前記第3輝度値について、当該第3輝度値に予め関係付けられた、前記第2輝度範囲に対応する第2輝度値を決定し、前記第3輝度範囲に対応する前記第3輝度値を、前記第2輝度範囲に対応する前記第2輝度値へ変換する第3輝度変換を行う
請求項2に記載の表示方法。 - 前記表示設定の設定では、前記表示装置に設定されている前記EOTFを、取得した前記設定情報に応じた推奨EOTFに設定し、
前記第3輝度値の決定では、前記推奨EOTFを用いて、前記第3輝度値を決定する
請求項3に記載の表示方法。 - 前記表示設定の設定では、前記表示装置に設定されている前記EOTFを切り替えできない場合、前記表示装置に設定されている前記EOTFを、前記推奨EOTFに切り替えることをユーザに促すためのメッセージを、前記表示装置に表示する
請求項4に記載の表示方法。 - 前記表示設定の設定では、前記表示装置に設定されている表示パラメータを、取得した前記設定情報に応じた推奨表示パラメータに設定する
請求項3から5のいずれか1項に記載の表示方法。 - 前記表示設定の設定では、前記表示装置に設定されている前記表示パラメータを切り替えできない場合、前記表示装置に設定されている前記表示パラメータを、前記推奨表示パラメータに切り替えることをユーザに促すためのメッセージを、前記表示装置に表示する
請求項6に記載の表示方法。 - 前記第3輝度変換では、
決定した前記第3輝度値について、前記表示装置の表示設定を示す表示パラメータに応じた輝度関係情報を用いて、当該第3輝度値に予め関係付けられた輝度値を前記第2輝度値として決定し、前記表示パラメータに応じて輝度変換処理を切り替える
請求項3から7のいずれか1項に記載の表示方法。 - 前記第3輝度変換では、
前記表示パラメータがノーマルモードの場合、第2輝度値は、前記第3輝度値に正比例する正比例値に輝度変換し、
前記表示パラメータが、前記ノーマルモードよりも高輝度画素をより明るく、かつ、低輝度画素をより暗くするダイナミックモードの場合、前記低輝度画素の前記第2輝度値は、前記第3輝度値に正比例する正比例値より低い値に、前記高輝度画素の前記第2輝度値は、前記第3輝度値に正比例する正比例値より高い値に輝度変換する
請求項8に記載の表示方法。 - 前記表示設定の設定では、
取得した前記設定情報が、取得した輝度信号が、前記第2輝度範囲を用いて変換された前記第3輝度信号であることを示す場合、前記表示装置の明るさ設定を最も明るく表示する設定に切り替える
請求項6に記載の表示方法。 - 表示装置における映像を表示する表示方法であって、
前記映像の輝度は、第1輝度範囲の輝度値からなり、
前記映像の輝度値が量子化されることで得られたコード値を示す第1輝度信号を、前記表示装置の輝度範囲に基づいて決定する前記第1輝度範囲の最大値よりも小さく、かつ、100nitよりも大きい最大値である第2輝度範囲に対応する第2輝度値へ変換し、前記第2輝度値を、100nitを最大値とする第3輝度範囲に対応する第3輝度値に変換し、前記第3輝度値を量子化したコード値を第3輝度信号として、前記表示装置が取得し、
前記映像の表示にあたって前記表示装置に対して推奨する表示設定を示す設定情報を取得し、
取得した前記設定情報を用いて、前記表示装置の表示設定の設定を行い、
取得した前記第3輝度信号が示す前記第3コード値を、設定した前記表示設定を用いて、前記第2輝度範囲に対応する前記第2輝度値へ変換し、
変換した前記第2輝度値に基づいて、前記映像を前記表示装置に表示する
表示方法。 - 前記第3輝度信号から前記第2輝度値への変換では、
前記第3輝度範囲における輝度値と、複数の第3コード値とが関係付けられたEOTF(Electro-Optical Transfer Function)を用いて、取得した前記第3輝度信号が示す前記第3コード値について、前記第3コード値に前記EOTFで関係付けられた第3輝度値を決定し、
決定した前記第3輝度値について、当該第3輝度値に予め関係付けられた、前記第2輝度範囲に対応する第2輝度値を決定し、前記第3輝度範囲に対応する前記第3輝度値を、前記第2輝度範囲に対応する前記第2輝度値へ変換する第3輝度変換を行う
請求項11に記載の表示方法。 - 前記表示設定の設定では、前記表示装置に設定されている前記EOTFを、取得した前記設定情報に応じた推奨EOTFに設定し、
前記第3輝度値の決定では、前記推奨EOTFを用いて、前記第3輝度値を決定する
請求項12に記載の表示方法。 - 前記表示設定の設定では、前記表示装置に設定されている表示パラメータを、取得した前記設定情報に応じた推奨表示パラメータに設定する
請求項12又は13のいずれか1項に記載の表示方法。 - 前記第3輝度変換では、
決定した前記第3輝度値について、前記表示装置の表示設定を示す表示パラメータに応じた輝度関係情報を用いて、当該第3輝度値に予め関係付けられた輝度値を前記第2輝度値として決定し、前記表示パラメータに応じて輝度変換処理を切り替える
請求項12から14のいずれか1項に記載の表示方法。 - 前記第3輝度変換では、
前記表示パラメータがノーマルモードの場合、第2輝度値は、前記第3輝度値に正比例する正比例値に輝度変換し、
前記表示パラメータが、前記ノーマルモードよりも高輝度画素をより明るく、かつ、低輝度画素をより暗くするダイナミックモードの場合、前記低輝度画素の前記第2輝度値は、前記第3輝度値に正比例する正比例値より低い値に、前記高輝度画素の前記第2輝度値は、前記第3輝度値に正比例する正比例値より高い値に輝度変換する
請求項15に記載の表示方法。 - 請求項1に記載の表示システムの表示装置。
- 映像を表示する表示装置であって、
前記映像の輝度は、第1輝度範囲(0~HPL〔nit〕)の輝度値からなり、
前記映像の輝度値が量子化されることで得られたコード値を示す第1輝度信号を、前記表示装置の輝度範囲に基づいて決定する前記第1輝度範囲の最大値よりも小さく、かつ、100nitよりも大きい最大値である第2輝度範囲(0~DPL〔nit〕)に対応する第2輝度値へ変換し、前記第2輝度値を、100nitを最大値とする第3輝度範囲に対応する第3輝度値に変換し、前記第3輝度値を量子化したコード値を第3輝度信号として取得し、前記映像の表示にあたって前記表示装置に対して推奨する表示設定を示す設定情報を取得する第2取得部と、
取得した前記設定情報を用いて、前記表示装置の設定を行う表示設定部と、
取得した前記第3輝度信号が示す前記第3コード値を、設定した前記設定情報を用いて、前記第2輝度範囲に対応する前記第2輝度値へ変換する第3輝度変換部と、
変換した前記第2輝度値に基づいて、前記映像を前記表示装置に表示する表示制御部と、を備える
表示装置。
Priority Applications (28)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580014010.3A CN106134172B (zh) | 2014-06-10 | 2015-05-25 | 显示系统、显示方法及显示装置 |
EP19172987.0A EP3562135A1 (en) | 2014-06-10 | 2015-05-25 | Display system, display method, and display apparatus |
JP2015545586A JP5948619B2 (ja) | 2014-06-10 | 2015-05-25 | 表示システム、表示方法および表示装置 |
MX2018006468A MX366029B (es) | 2014-06-10 | 2015-05-25 | Sistema de visualización, método de visualización y aparato de visualización. |
MX2018006465A MX366032B (es) | 2014-06-10 | 2015-05-25 | Sistema de visualización, método de visualización y aparato de visualización. |
EP15806125.9A EP3157242B1 (en) | 2014-06-10 | 2015-05-25 | Display system, display method, and display device |
MX2018006469A MX366030B (es) | 2014-06-10 | 2015-05-25 | Sistema de visualización, método de visualización y aparato de visualización. |
MX2016015283A MX357792B (es) | 2014-06-10 | 2015-05-25 | Sistema de visualizacion, metodo de visualizacion y aparato de visualizacion. |
US15/367,222 US9762843B2 (en) | 2014-06-10 | 2016-12-02 | Display system, display method, and display apparatus |
US15/583,050 US10097786B2 (en) | 2014-06-10 | 2017-05-01 | Display system, display method, and display apparatus |
US15/583,071 US10033958B2 (en) | 2014-06-10 | 2017-05-01 | Display apparatus and display method that converts the luminance value of an input SDR signal into a luminance value in a different luminance range |
US15/583,090 US9973724B2 (en) | 2014-06-10 | 2017-05-01 | Playback apparatus and conversion method that converts the luminance value of an input SDR signal into a luminance value in a different luminance range |
US16/111,710 US10491853B2 (en) | 2014-06-10 | 2018-08-24 | Display system, display method, and display apparatus |
US16/575,633 US10791300B2 (en) | 2014-06-10 | 2019-09-19 | Display system, display method, and display apparatus |
US16/575,701 US10687014B2 (en) | 2014-06-10 | 2019-09-19 | Display system, display method, and display apparatus |
US16/921,218 US11115616B2 (en) | 2014-06-10 | 2020-07-06 | Display system, display method, and display apparatus |
US17/098,712 US11202029B2 (en) | 2014-06-10 | 2020-11-16 | Display system, display method, and display apparatus |
US17/099,050 US11240463B2 (en) | 2014-06-10 | 2020-11-16 | Display system, display method, and display apparatus |
US17/098,725 US11228730B2 (en) | 2014-06-10 | 2020-11-16 | Display system, display method, and display apparatus |
US17/098,732 US11196957B2 (en) | 2014-06-10 | 2020-11-16 | Display system, display method, and display apparatus |
US16/950,250 US11245868B2 (en) | 2014-06-10 | 2020-11-17 | Display system, display method, and display apparatus |
US16/950,261 US11290676B2 (en) | 2014-06-10 | 2020-11-17 | Display system, display method, and display apparatus |
US16/950,205 US11233969B2 (en) | 2014-06-10 | 2020-11-17 | Display system, display method, and display apparatus |
US16/951,212 US11240462B2 (en) | 2014-06-10 | 2020-11-18 | Display system, display method, and display apparatus |
US16/951,346 US11297278B2 (en) | 2014-06-10 | 2020-11-18 | Display system, display method, and display apparatus |
US17/682,198 US11647148B2 (en) | 2014-06-10 | 2022-02-28 | Display system, display method, and display apparatus |
US17/682,180 US11968470B2 (en) | 2014-06-10 | 2022-02-28 | Display system, display method, and display apparatus |
US17/682,139 US11812191B2 (en) | 2014-06-10 | 2022-02-28 | Display system, display method, and display apparatus |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462009978P | 2014-06-10 | 2014-06-10 | |
US62/009,978 | 2014-06-10 | ||
JP2015-089812 | 2015-04-24 | ||
JP2015089812 | 2015-04-24 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/367,222 Continuation US9762843B2 (en) | 2014-06-10 | 2016-12-02 | Display system, display method, and display apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015190044A1 true WO2015190044A1 (ja) | 2015-12-17 |
Family
ID=54833162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/002611 WO2015190044A1 (ja) | 2014-06-10 | 2015-05-25 | 表示システム、表示方法および表示装置 |
Country Status (6)
Country | Link |
---|---|
US (20) | US9762843B2 (ja) |
EP (2) | EP3157242B1 (ja) |
JP (9) | JP5948619B2 (ja) |
CN (4) | CN110460744B (ja) |
MX (1) | MX357792B (ja) |
WO (1) | WO2015190044A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105930123A (zh) * | 2016-04-29 | 2016-09-07 | 联想(北京)有限公司 | 一种显示调节方法及电子设备 |
WO2016181819A1 (ja) * | 2015-05-12 | 2016-11-17 | ソニー株式会社 | 画像処理装置、および画像処理方法、並びにプログラム |
WO2017110823A1 (ja) * | 2015-12-25 | 2017-06-29 | シャープ株式会社 | 表示装置、表示装置の制御方法、制御プログラム、および記録媒体 |
WO2017203942A1 (ja) * | 2016-05-25 | 2017-11-30 | ソニー株式会社 | 画像処理装置、および画像処理方法、並びにプログラム |
WO2018012244A1 (ja) * | 2016-07-11 | 2018-01-18 | シャープ株式会社 | 映像信号変換装置、映像信号変換方法、映像信号変換システム、制御プログラム、および記録媒体 |
JP2018046556A (ja) * | 2016-09-09 | 2018-03-22 | パナソニックIpマネジメント株式会社 | 表示装置および信号処理方法 |
WO2018055945A1 (ja) * | 2016-09-20 | 2018-03-29 | ソニー株式会社 | 映像信号処理装置、映像信号処理方法および映像信号処理システム |
WO2018159125A1 (ja) * | 2017-02-28 | 2018-09-07 | ソニー株式会社 | 画像処理装置及び画像処理方法 |
WO2018164527A1 (en) * | 2017-03-09 | 2018-09-13 | Samsung Electronics Co., Ltd. | Display apparatus and control method thereof |
JP2019041269A (ja) * | 2017-08-25 | 2019-03-14 | シャープ株式会社 | 映像処理装置、表示装置、映像処理方法、制御プログラム、および記録媒体 |
JP2021529339A (ja) * | 2018-07-05 | 2021-10-28 | ホアウェイ・テクノロジーズ・カンパニー・リミテッド | ビデオ信号の処理方法及び装置 |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3145167B1 (en) * | 2014-05-16 | 2020-04-01 | Panasonic Intellectual Property Management Co., Ltd. | Conversion method and conversion device |
EP3157242B1 (en) | 2014-06-10 | 2019-07-03 | Panasonic Intellectual Property Management Co., Ltd. | Display system, display method, and display device |
WO2016039169A1 (ja) * | 2014-09-12 | 2016-03-17 | ソニー株式会社 | 再生装置、再生方法、情報処理装置、情報処理方法、プログラム、および記録媒体 |
JP6552228B2 (ja) | 2015-03-17 | 2019-07-31 | キヤノン株式会社 | 画像表示装置及びその制御方法 |
WO2017051808A1 (ja) * | 2015-09-25 | 2017-03-30 | 日立マクセル株式会社 | 放送受信装置 |
US12108091B2 (en) * | 2016-05-16 | 2024-10-01 | Zte Corporation | Media data processing method, apparatus and system |
CN107395950B (zh) * | 2016-05-16 | 2021-11-09 | 西安电子科技大学 | 媒体数据处理方法和装置及系统 |
TWI631505B (zh) * | 2016-08-26 | 2018-08-01 | 晨星半導體股份有限公司 | 應用於播放裝置的影像處理方法及相關的電路 |
JP7117558B2 (ja) * | 2017-07-07 | 2022-08-15 | パナソニックIpマネジメント株式会社 | 映像表示装置及び映像表示方法 |
CN109982007B (zh) * | 2017-12-27 | 2021-11-19 | 联发科技股份有限公司 | 应用在机顶盒的格式转换电路及相关的方法 |
JP6712822B2 (ja) * | 2017-12-27 | 2020-06-24 | パナソニックIpマネジメント株式会社 | 表示装置および表示方法 |
US10609424B2 (en) * | 2018-03-09 | 2020-03-31 | Dolby Laboratories Licensing Corporation | Single-layer progressive coding for supporting multi-capability HDR composition |
US10917583B2 (en) * | 2018-04-27 | 2021-02-09 | Apple Inc. | Standard and high dynamic range display systems and methods for high dynamic range displays |
TW201946474A (zh) * | 2018-04-30 | 2019-12-01 | 圓剛科技股份有限公司 | 影像錄製設定方法 |
TWI808970B (zh) * | 2018-04-30 | 2023-07-21 | 圓剛科技股份有限公司 | 影像訊號轉換裝置 |
CN111526345B (zh) * | 2019-02-01 | 2021-12-14 | 中国电影器材有限责任公司 | 一种数字电影放映方法及系统 |
KR20200095651A (ko) * | 2019-02-01 | 2020-08-11 | 삼성전자주식회사 | 고 동적 범위 콘텐트를 재생하는 전자 장치 및 그 방법 |
IT201900018731A1 (it) | 2019-10-14 | 2021-04-14 | Leonardo Spa | Sistema di airbag di tipo auto-adattativo per velivolo |
CN112153314B (zh) * | 2020-09-27 | 2023-04-07 | 中影环球(北京)科技有限公司 | 一种影院放映方法及系统 |
US11544826B2 (en) * | 2021-04-30 | 2023-01-03 | Realnetworks, Inc. | Intelligent metadata service for video enhancement |
CN114727029B (zh) * | 2022-03-21 | 2024-03-22 | 北京百度网讯科技有限公司 | 视频的处理方法、装置、电子设备及存储介质 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012153224A1 (en) * | 2011-05-10 | 2012-11-15 | Koninklijke Philips Electronics N.V. | High dynamic range image signal generation and processing |
WO2013046095A1 (en) * | 2011-09-27 | 2013-04-04 | Koninklijke Philips Electronics N.V. | Apparatus and method for dynamic range transforming of images |
Family Cites Families (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4192418B2 (ja) * | 2000-10-27 | 2008-12-10 | ソニー株式会社 | 画像処理装置および方法、並びに記録媒体 |
JP4078649B2 (ja) * | 2004-01-28 | 2008-04-23 | 日本ビクター株式会社 | 映像信号処理装置及び方法 |
US8218625B2 (en) * | 2004-04-23 | 2012-07-10 | Dolby Laboratories Licensing Corporation | Encoding, decoding and representing high dynamic range images |
JP4812282B2 (ja) * | 2004-11-05 | 2011-11-09 | 富士フイルム株式会社 | 画像処理方法及び装置並びに撮像装置 |
JP4372747B2 (ja) | 2005-01-25 | 2009-11-25 | シャープ株式会社 | 輝度レベル変換装置、輝度レベル変換方法、固体撮像装置、輝度レベル変換プログラム、および記録媒体 |
JP3957730B2 (ja) * | 2005-06-02 | 2007-08-15 | シャープ株式会社 | 画像表示装置 |
JP2007082181A (ja) * | 2005-08-16 | 2007-03-29 | Konica Minolta Holdings Inc | 撮像装置及び画像処理方法 |
JP4736939B2 (ja) * | 2005-08-16 | 2011-07-27 | コニカミノルタホールディングス株式会社 | 撮像装置及び画像処理方法 |
US7791656B2 (en) | 2005-08-16 | 2010-09-07 | Konica Minolta Holdings, Inc. | Image sensing apparatus and image processing method |
US8014445B2 (en) * | 2006-02-24 | 2011-09-06 | Sharp Laboratories Of America, Inc. | Methods and systems for high dynamic range video coding |
US7639394B2 (en) * | 2006-03-31 | 2009-12-29 | Microsoft Corporation | Dynamically generating darker and lighter color options from a base color in a color picker user interface |
JP5145017B2 (ja) | 2006-12-05 | 2013-02-13 | 日本放送協会 | 画像信号処理装置 |
US8135230B2 (en) * | 2007-07-30 | 2012-03-13 | Dolby Laboratories Licensing Corporation | Enhancing dynamic ranges of images |
JP4544319B2 (ja) * | 2008-03-11 | 2010-09-15 | 富士フイルム株式会社 | 画像処理装置、方法及びプログラム |
US8165393B2 (en) * | 2008-06-05 | 2012-04-24 | Microsoft Corp. | High dynamic range texture compression |
EP2329487B1 (en) * | 2008-09-30 | 2016-05-25 | Dolby Laboratories Licensing Corporation | Systems and methods for applying adaptive gamma in image processing for high brightness and high dynamic range displays |
BRPI1009443B1 (pt) * | 2009-03-13 | 2021-08-24 | Dolby Laboratories Licensing Corporation | Método de geração de parâmetros de mapeamento de tons inverso, método de compactação de dados de vídeo e método para geração de um fluxo de bits de saída a partir de um fluxo de bits de entrada |
US8305401B1 (en) * | 2009-04-27 | 2012-11-06 | Maxim Integrated, Inc. | Digital light management controller |
JP4660617B2 (ja) | 2009-09-10 | 2011-03-30 | 株式会社東芝 | 映像処理装置及び映像処理方法 |
GB2473615A (en) * | 2009-09-16 | 2011-03-23 | Sharp Kk | Display privacy image processing method with main image compression depending on off-axis luminance |
US9509935B2 (en) * | 2010-07-22 | 2016-11-29 | Dolby Laboratories Licensing Corporation | Display management server |
TWI479898B (zh) * | 2010-08-25 | 2015-04-01 | Dolby Lab Licensing Corp | 擴展影像動態範圍 |
WO2012127401A1 (en) * | 2011-03-24 | 2012-09-27 | Koninklijke Philips Electronics N.V. | Apparatuses and methods for analyzing image gradings |
WO2012142285A2 (en) * | 2011-04-12 | 2012-10-18 | Dolby Laboratories Licensing Corporation | Quality assessment for images that have extended dynamic ranges or wide color gamuts |
TWI521973B (zh) * | 2011-04-15 | 2016-02-11 | 杜比實驗室特許公司 | 高動態範圍影像的編碼、解碼及表示 |
US9066070B2 (en) * | 2011-04-25 | 2015-06-23 | Dolby Laboratories Licensing Corporation | Non-linear VDR residual quantizer |
KR20240046317A (ko) * | 2011-05-27 | 2024-04-08 | 돌비 레버러토리즈 라이쎈싱 코오포레이션 | 변하는 레벨들의 메타데이터을 포함하는 컬러 관리를 제어하기 위한 스케일러블 시스템들 |
CN102324910B (zh) * | 2011-05-30 | 2016-03-02 | 天津大学 | 一种电光双向可调fir滤波器各级分立电压确定方法 |
WO2012172460A1 (en) * | 2011-06-14 | 2012-12-20 | Koninklijke Philips Electronics N.V. | Graphics processing for high dynamic range video |
WO2013038596A1 (ja) * | 2011-09-13 | 2013-03-21 | シャープ株式会社 | 画像表示装置及び信号処理プログラム |
JP5877693B2 (ja) * | 2011-11-18 | 2016-03-08 | 株式会社キーエンス | 画像処理センサ、画像処理方法及びコンピュータプログラム |
ES2584681T3 (es) * | 2011-12-06 | 2016-09-28 | Dolby Laboratories Licensing Corporation | Dispositivo y procedimiento para mejorar el intercambio de datos de imágenes basado en una no linealidad de luminancia perceptual a través de diferentes capacidades de visualización |
CN102636888A (zh) * | 2012-04-13 | 2012-08-15 | 天津大学 | 电光调谐多波长fir滤波器及各级电压确定方法 |
CN104471939B (zh) * | 2012-07-13 | 2018-04-24 | 皇家飞利浦有限公司 | 改进的hdr图像编码和解码方法和设备 |
EP3011741B1 (en) * | 2013-06-17 | 2018-03-07 | Dolby Laboratories Licensing Corporation | Adaptive reshaping for layered coding of enhanced dynamic range signals |
CN105379260B (zh) * | 2013-07-16 | 2019-11-01 | 皇家飞利浦有限公司 | 线性照度值与亮度代码之间的映射 |
EP3022895B1 (en) * | 2013-07-18 | 2019-03-13 | Koninklijke Philips N.V. | Methods and apparatuses for creating code mapping functions for encoding an hdr image, and methods and apparatuses for use of such encoded images |
JP6202330B2 (ja) * | 2013-10-15 | 2017-09-27 | ソニー株式会社 | 復号装置および復号方法、並びに符号化装置および符号化方法 |
JP2015170905A (ja) * | 2014-03-05 | 2015-09-28 | ソニー株式会社 | 画像処理装置及び画像処理方法、並びに画像表示装置 |
EP3145167B1 (en) * | 2014-05-16 | 2020-04-01 | Panasonic Intellectual Property Management Co., Ltd. | Conversion method and conversion device |
EP3157242B1 (en) * | 2014-06-10 | 2019-07-03 | Panasonic Intellectual Property Management Co., Ltd. | Display system, display method, and display device |
CN110213459B (zh) * | 2014-06-10 | 2021-11-30 | 松下知识产权经营株式会社 | 显示方法和显示装置 |
CN110460897B (zh) * | 2014-06-16 | 2021-11-26 | 松下知识产权经营株式会社 | 显示装置、显示方法、再现装置及再现方法 |
CN110572605B (zh) * | 2014-06-20 | 2022-01-07 | 松下知识产权经营株式会社 | 再现方法及再现装置及存储介质 |
CN105493490B (zh) * | 2014-06-23 | 2019-11-29 | 松下知识产权经营株式会社 | 变换方法和变换装置 |
EP3713247A1 (en) * | 2014-06-26 | 2020-09-23 | Panasonic Intellectual Property Management Co., Ltd. | Data output device, data output method, and data generation method |
WO2015198560A1 (ja) * | 2014-06-27 | 2015-12-30 | パナソニックIpマネジメント株式会社 | データ出力装置、データ出力方法及びデータ生成方法 |
WO2016002154A1 (ja) * | 2014-06-30 | 2016-01-07 | パナソニックIpマネジメント株式会社 | データ再生方法及び再生装置 |
JP6421504B2 (ja) * | 2014-07-28 | 2018-11-14 | ソニー株式会社 | 画像処理装置及び画像処理方法 |
US10368144B2 (en) * | 2014-07-29 | 2019-07-30 | Lg Electronics Inc. | Method and device for transmitting and receiving broadcast signal |
WO2016027423A1 (ja) * | 2014-08-19 | 2016-02-25 | パナソニックIpマネジメント株式会社 | 伝送方法、再生方法及び再生装置 |
JP2016058848A (ja) * | 2014-09-08 | 2016-04-21 | ソニー株式会社 | 画像処理装置及び画像処理方法 |
US20170007073A1 (en) | 2015-07-06 | 2017-01-12 | Gioni Bianchini | Bbq grill insert and bbq grill assembly using the same |
EP3329673A1 (en) * | 2015-08-28 | 2018-06-06 | ARRIS Enterprises LLC | Color volume transforms in coding of high dynamic range and wide color gamut sequences |
US10536695B2 (en) * | 2015-09-09 | 2020-01-14 | Qualcomm Incorporated | Colour remapping information supplemental enhancement information message processing |
US10043251B2 (en) * | 2015-10-09 | 2018-08-07 | Stmicroelectronics Asia Pacific Pte Ltd | Enhanced tone mapper for high dynamic range images and video |
US10200701B2 (en) * | 2015-10-14 | 2019-02-05 | Qualcomm Incorporated | HDR and WCG coding architecture with SDR backwards compatibility in a single bitstream for video coding |
WO2017108906A1 (en) * | 2015-12-21 | 2017-06-29 | Koninklijke Philips N.V. | Optimizing high dynamic range images for particular displays |
JP7440235B2 (ja) * | 2019-09-26 | 2024-02-28 | フォルシアクラリオン・エレクトロニクス株式会社 | 表示制御装置、及び表示制御方法 |
-
2015
- 2015-05-25 EP EP15806125.9A patent/EP3157242B1/en active Active
- 2015-05-25 EP EP19172987.0A patent/EP3562135A1/en active Pending
- 2015-05-25 MX MX2016015283A patent/MX357792B/es active IP Right Grant
- 2015-05-25 CN CN201910850968.6A patent/CN110460744B/zh active Active
- 2015-05-25 CN CN201910851599.2A patent/CN110460745B/zh active Active
- 2015-05-25 JP JP2015545586A patent/JP5948619B2/ja active Active
- 2015-05-25 CN CN201910850914.XA patent/CN110460743B/zh active Active
- 2015-05-25 WO PCT/JP2015/002611 patent/WO2015190044A1/ja active Application Filing
- 2015-05-25 CN CN201580014010.3A patent/CN106134172B/zh active Active
-
2016
- 2016-05-24 JP JP2016103186A patent/JP2016189010A/ja active Pending
- 2016-12-02 US US15/367,222 patent/US9762843B2/en active Active
-
2017
- 2017-04-03 JP JP2017073887A patent/JP6706846B2/ja active Active
- 2017-04-07 JP JP2017076966A patent/JP6604556B2/ja active Active
- 2017-04-07 JP JP2017076961A patent/JP6704171B2/ja active Active
- 2017-05-01 US US15/583,050 patent/US10097786B2/en active Active
- 2017-05-01 US US15/583,090 patent/US9973724B2/en active Active
- 2017-05-01 US US15/583,071 patent/US10033958B2/en active Active
-
2018
- 2018-08-24 US US16/111,710 patent/US10491853B2/en active Active
-
2019
- 2019-09-19 US US16/575,633 patent/US10791300B2/en active Active
- 2019-09-19 US US16/575,701 patent/US10687014B2/en active Active
-
2020
- 2020-04-30 JP JP2020080153A patent/JP7018573B2/ja active Active
- 2020-07-06 US US16/921,218 patent/US11115616B2/en active Active
- 2020-11-16 US US17/098,725 patent/US11228730B2/en active Active
- 2020-11-16 US US17/098,732 patent/US11196957B2/en active Active
- 2020-11-16 US US17/098,712 patent/US11202029B2/en active Active
- 2020-11-16 US US17/099,050 patent/US11240463B2/en active Active
- 2020-11-17 US US16/950,261 patent/US11290676B2/en active Active
- 2020-11-17 US US16/950,205 patent/US11233969B2/en active Active
- 2020-11-17 US US16/950,250 patent/US11245868B2/en active Active
- 2020-11-18 US US16/951,212 patent/US11240462B2/en active Active
- 2020-11-18 US US16/951,346 patent/US11297278B2/en active Active
-
2022
- 2022-01-13 JP JP2022003742A patent/JP7065376B2/ja active Active
- 2022-02-28 US US17/682,198 patent/US11647148B2/en active Active
- 2022-02-28 US US17/682,139 patent/US11812191B2/en active Active
- 2022-02-28 US US17/682,180 patent/US11968470B2/en active Active
- 2022-03-30 JP JP2022055595A patent/JP7126184B2/ja active Active
- 2022-08-04 JP JP2022124552A patent/JP7407373B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012153224A1 (en) * | 2011-05-10 | 2012-11-15 | Koninklijke Philips Electronics N.V. | High dynamic range image signal generation and processing |
WO2013046095A1 (en) * | 2011-09-27 | 2013-04-04 | Koninklijke Philips Electronics N.V. | Apparatus and method for dynamic range transforming of images |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016181819A1 (ja) * | 2015-05-12 | 2016-11-17 | ソニー株式会社 | 画像処理装置、および画像処理方法、並びにプログラム |
US10565694B2 (en) | 2015-05-12 | 2020-02-18 | Sony Corporation | Image processing apparatus, image processing method, and program for reproducing tone of a high dynamic range (HDR) image |
JPWO2016181819A1 (ja) * | 2015-05-12 | 2018-03-01 | ソニー株式会社 | 画像処理装置、および画像処理方法、並びにプログラム |
EP3396945B1 (en) * | 2015-12-25 | 2024-05-08 | Sharp Kabushiki Kaisha | Display device, method for controlling display device, control program, and recording medium |
WO2017110823A1 (ja) * | 2015-12-25 | 2017-06-29 | シャープ株式会社 | 表示装置、表示装置の制御方法、制御プログラム、および記録媒体 |
CN105930123A (zh) * | 2016-04-29 | 2016-09-07 | 联想(北京)有限公司 | 一种显示调节方法及电子设备 |
CN105930123B (zh) * | 2016-04-29 | 2020-02-21 | 联想(北京)有限公司 | 一种显示调节方法及电子设备 |
WO2017203942A1 (ja) * | 2016-05-25 | 2017-11-30 | ソニー株式会社 | 画像処理装置、および画像処理方法、並びにプログラム |
CN109155060A (zh) * | 2016-05-25 | 2019-01-04 | 索尼公司 | 图像处理装置、图像处理方法及程序 |
JPWO2017203942A1 (ja) * | 2016-05-25 | 2019-03-22 | ソニー株式会社 | 画像処理装置、および画像処理方法、並びにプログラム |
WO2018012244A1 (ja) * | 2016-07-11 | 2018-01-18 | シャープ株式会社 | 映像信号変換装置、映像信号変換方法、映像信号変換システム、制御プログラム、および記録媒体 |
JP7054851B2 (ja) | 2016-09-09 | 2022-04-15 | パナソニックIpマネジメント株式会社 | 表示装置および信号処理方法 |
JP2018046556A (ja) * | 2016-09-09 | 2018-03-22 | パナソニックIpマネジメント株式会社 | 表示装置および信号処理方法 |
JPWO2018055945A1 (ja) * | 2016-09-20 | 2019-08-29 | ソニー株式会社 | 映像信号処理装置、映像信号処理方法および映像信号処理システム |
US11356633B2 (en) | 2016-09-20 | 2022-06-07 | Sony Corporation | Video signal processing apparatus, video signal processing method, and video signal processing system |
WO2018055945A1 (ja) * | 2016-09-20 | 2018-03-29 | ソニー株式会社 | 映像信号処理装置、映像信号処理方法および映像信号処理システム |
US11956568B2 (en) | 2016-09-20 | 2024-04-09 | Sony Corporation | Video signal processing apparatus, video signal processing method, and video signal processing system |
CN109891869A (zh) * | 2016-09-20 | 2019-06-14 | 索尼公司 | 视频信号处理设备、视频信号处理方法和视频信号处理系统 |
CN109891869B (zh) * | 2016-09-20 | 2021-12-07 | 索尼公司 | 视频信号处理设备、视频信号处理方法和视频信号处理系统 |
JP7020417B2 (ja) | 2016-09-20 | 2022-02-16 | ソニーグループ株式会社 | 映像信号処理装置、映像信号処理方法および映像信号処理システム |
JPWO2018159125A1 (ja) * | 2017-02-28 | 2020-01-09 | ソニー株式会社 | 画像処理装置及び画像処理方法 |
US11100682B2 (en) | 2017-02-28 | 2021-08-24 | Sony Corporation | Image processing device and image processing method |
JP7143838B2 (ja) | 2017-02-28 | 2022-09-29 | ソニーグループ株式会社 | 画像処理装置及び画像処理方法 |
WO2018159125A1 (ja) * | 2017-02-28 | 2018-09-07 | ソニー株式会社 | 画像処理装置及び画像処理方法 |
US10868968B2 (en) | 2017-03-09 | 2020-12-15 | Samsung Electronics Co., Ltd. | Display apparatus and control method thereof |
WO2018164527A1 (en) * | 2017-03-09 | 2018-09-13 | Samsung Electronics Co., Ltd. | Display apparatus and control method thereof |
JP2019041269A (ja) * | 2017-08-25 | 2019-03-14 | シャープ株式会社 | 映像処理装置、表示装置、映像処理方法、制御プログラム、および記録媒体 |
US11317071B2 (en) | 2018-07-05 | 2022-04-26 | Huawei Technologies Co., Ltd. | Video signal processing method and apparatus |
JP7115776B2 (ja) | 2018-07-05 | 2022-08-09 | ホアウェイ・テクノロジーズ・カンパニー・リミテッド | ビデオ信号の処理方法及び装置 |
JP2021529339A (ja) * | 2018-07-05 | 2021-10-28 | ホアウェイ・テクノロジーズ・カンパニー・リミテッド | ビデオ信号の処理方法及び装置 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7065376B2 (ja) | 表示装置、変換装置、表示方法、および、コンピュータプログラム | |
JP6573237B2 (ja) | 表示装置、変換装置、表示方法、および、コンピュータプログラム | |
JP5991502B2 (ja) | 変換方法および変換装置 | |
JP6655799B2 (ja) | 表示装置および表示方法 | |
JP6643669B2 (ja) | 表示装置および表示方法 | |
WO2017037971A1 (ja) | 変換方法および変換装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015545586 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15806125 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2016/015283 Country of ref document: MX |
|
REEP | Request for entry into the european phase |
Ref document number: 2015806125 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015806125 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |