[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011077932A1 - リチウムイオン電池用正極活物質、リチウムイオン電池用正極及びそれを用いたリチウムイオン電池、並びに、リチウムイオン電池用正極活物質前駆体 - Google Patents

リチウムイオン電池用正極活物質、リチウムイオン電池用正極及びそれを用いたリチウムイオン電池、並びに、リチウムイオン電池用正極活物質前駆体 Download PDF

Info

Publication number
WO2011077932A1
WO2011077932A1 PCT/JP2010/071723 JP2010071723W WO2011077932A1 WO 2011077932 A1 WO2011077932 A1 WO 2011077932A1 JP 2010071723 W JP2010071723 W JP 2010071723W WO 2011077932 A1 WO2011077932 A1 WO 2011077932A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
ion battery
active material
lithium
electrode active
Prior art date
Application number
PCT/JP2010/071723
Other languages
English (en)
French (fr)
Inventor
隆一 長瀬
保大 川橋
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to EP10839166.5A priority Critical patent/EP2518802B1/en
Priority to US13/508,887 priority patent/US20120231343A1/en
Priority to CN201080052147.5A priority patent/CN102668185B/zh
Priority to KR1020127008144A priority patent/KR20120061943A/ko
Priority to JP2011547446A priority patent/JP6285089B2/ja
Publication of WO2011077932A1 publication Critical patent/WO2011077932A1/ja
Priority to US13/856,514 priority patent/US20130221271A1/en
Priority to US14/580,318 priority patent/US9263732B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, a lithium ion battery using the same, and a positive electrode active material precursor for a lithium ion battery.
  • Lithium-containing transition metal oxides are generally used as positive electrode active materials for lithium ion batteries. Specifically, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), etc., improved characteristics (higher capacity, cycle characteristics, storage characteristics, reduced internal resistance) In order to improve the charge / discharge characteristics) and safety, it is underway to combine them.
  • lithium ion batteries for large applications such as in-vehicle use and load leveling are required to have characteristics different from those for conventional mobile phones and personal computers. Specifically, high capacity and low resistance are required for in-vehicle use, and high capacity and long life are required for load leveling.
  • the powder characteristics are important, but the homogeneity of the distribution of the transition metal, which is the main component in the positive electrode active material of the lithium ion battery, and lithium is particularly important.
  • the homogeneity of the composition is indispensable for reducing the resistance for in-vehicle use and extending the service life for load leveling.
  • Patent Document 1 relating to an application for Nikko Materials Co., Ltd. (currently JX Nippon Mining & Metals Co., Ltd.) to which the inventor belongs, as a method for producing a positive electrode active material precursor, Then, an aqueous solution of Ni, Mn or Co chloride is added to the lithium carbonate suspension, and the obtained carbonate is washed with a saturated lithium carbonate solution or ethanol, so that the molar ratio of the amount of Li to all metals is reduced. It was found and reported that it can be adjusted and its variation reduced.
  • Patent Document 2 JP-A-2001-110420 discloses a result of studying about the size of primary particles of lithium carbonate as a raw material, as well as large secondary particles obtained by agglomeration of primary particles of small crystals. It has been found that by controlling the particle size, the cohesive force is strengthened, and it is possible to obtain a positive electrode active material excellent in discharge capacity and cycle characteristics that reacts uniformly not only to the surface of the secondary particles of lithium cobaltate but also to the inside. Are listed.
  • a positive electrode active material secondary particles are formed by synthesizing so that there is no variation in composition to the inside of lithium cobaltate consisting of spherical or oval spherical secondary particles in which primary particles of small crystals are aggregated
  • a positive electrode active material for a non-aqueous electrolyte secondary battery is described, in which not only primary particles on the surface to be used but also primary particles inside can be used as a battery.
  • the spectral intensity ratio O / Co of oxygen and cobalt inside the particle is 3.0 ⁇ 0.5. It is described that it is within.
  • the present invention provides a positive electrode active material for a lithium ion battery that realizes a lithium ion battery that satisfies the basic characteristics (capacity, efficiency, load characteristics) of the battery, and has low resistance and excellent life characteristics. Is an issue.
  • the present invention also provides a positive electrode for a lithium ion battery using the positive electrode active material for a lithium ion battery, a lithium ion battery using the same, and a positive electrode active material precursor for a lithium ion battery. Let it be an issue.
  • the present inventor has paid attention to the homogeneity other than the amount of Li in the positive electrode active material, and as a result of using the positive electrode active material in which the composition variation of the transition metal as the main component is controlled within a specific range.
  • the present inventors have found that it is possible to provide a lithium ion battery that satisfies the basic characteristics (capacity, efficiency, load characteristics) of the battery, and has low resistance and excellent life characteristics.
  • a positive electrode active material for a lithium ion battery composed of at least lithium and a transition metal, and the transition of main components within or between particles of the positive electrode active material
  • the ratio of the absolute value of the difference between the composition ratio of the transition metal in the microregion within or between the particles and the composition ratio in the bulk state to the composition ratio in the bulk state of the transition metal is: It is a positive electrode active material for a lithium ion battery that is 5% or less.
  • the positive electrode active material for a lithium ion battery according to the present invention, is a lithium-containing transition metal oxide.
  • one or more transition metals in the lithium-containing transition metal oxide are selected from the group consisting of Ni, Mn, Co, and Fe. It is.
  • the positive electrode active material for lithium ion batteries according to the present invention has an average particle size of 2 to 8 ⁇ m and a specific surface area of 0.3 to 1.8 m 2 / g. And the tap density is 1.5 to 2.1 g / ml.
  • the present invention provides a positive electrode for a lithium ion battery using the positive electrode active material for a lithium ion battery according to the present invention.
  • the present invention is a lithium ion battery using the positive electrode for a lithium ion battery according to the present invention.
  • a positive electrode active material precursor for a lithium ion battery comprising secondary particles composed of at least lithium and a transition metal and formed by agglomeration of primary particles, the positive electrode active material Regarding the composition variation of the transition metal as the main component within the secondary particles of the precursor or between the secondary particles, the composition ratio of the transition metal in a minute region within or between the particles with respect to the composition ratio in the bulk state of the transition metal And the ratio of the absolute value of the difference between the composition ratios in the bulk state is a positive electrode active material precursor for a lithium ion battery having a ratio of 5% or less.
  • the positive electrode active material precursor for a lithium ion battery according to the present invention is mainly composed of lithium and a transition metal.
  • a positive electrode active material for a lithium ion battery that realizes a lithium ion battery that satisfies the basic characteristics (capacity, efficiency, load characteristics) of the battery, and has low resistance and excellent life characteristics.
  • a compound useful as a positive electrode active material for a general positive electrode for lithium ion batteries can be widely used.
  • Lithium-containing transition metal oxides such as LiCoO 2 ), lithium nickelate (LiNiO 2 ), and lithium manganate (LiMn 2 O 4 ) are preferably used.
  • the transition metal in a lithium containing transition metal oxide is 1 type, or 2 or more types selected from the group which consists of Ni, Mn, Co, and Fe.
  • the ratio of lithium to all metals in the lithium-containing transition metal oxide is preferably more than 1.0 and less than 1.3. If it is 1.0 or less, it is difficult to maintain a stable crystal structure, and if it is 1.3 or more, a high capacity of the battery cannot be secured.
  • the crystal structure of the positive electrode active material is not particularly limited as long as lithium can be inserted and extracted, but a layered structure or a spinel structure is preferable.
  • Quantitative analysis of a small region such as a field emission electron probe microanalyzer (FE-EPMA) is possible for the composition variation of the transition metal as the main component within or between secondary particles of the positive electrode active material for lithium ion batteries.
  • the content ratio of each element between the secondary particles or in the secondary particles was measured using a simple apparatus, and the content ratio of each element to the total metal content was regarded as the composition ratio of each element. Variation is used as an index.
  • the content of each element of Ni, Mn, Co, and Fe is set to N%, M%, C%, and F%, respectively, and this is divided by the respective atomic weights to obtain a numerical value converted to n, m, c, Assuming f, the Ni composition ratio (molar ratio) is expressed as n / (n + m + c + f) ⁇ 100 (%).
  • Variations in the composition of the transition metal as the main component in the secondary particles or between the secondary particles of the positive electrode active material for lithium ion batteries are within or within the transition metal particles relative to the composition ratio in the bulk state of the transition metal obtained by ICP or the like.
  • the composition variation according to the present invention is 5% or less. This is because when the composition variation exceeds 5%, the life characteristics are inferior and the resistance when used in a battery is increased.
  • the positive electrode active material for a lithium ion battery has an average secondary particle size of 2 to 8 ⁇ m, a specific surface area of 0.3 to 1.8 m 2 / g, and a tap density of 1.5 to 2 .1 g / ml is preferred. It is because it will become difficult to ensure a high capacity if each of these ranges is deviated. More preferably, the average particle size is 5 to 7 ⁇ m, the specific surface area is 0.5 to 1.5 m 2 / g, and the tap density is 1.6 to 2.1 g / ml.
  • the positive electrode for a lithium ion battery includes, for example, a positive electrode mixture prepared by mixing a positive electrode active material for a lithium ion battery having the above-described configuration, a conductive additive, and a binder from an aluminum foil or the like.
  • the current collector has a structure provided on one side or both sides.
  • the lithium ion battery which concerns on embodiment of this invention is equipped with the positive electrode for lithium ion batteries of such a structure.
  • the positive electrode active material precursor for a lithium ion battery is composed of at least lithium and a transition metal, and is composed of secondary particles formed by aggregation of primary particles.
  • the positive electrode active material precursor for a lithium ion battery is a raw material of a positive electrode active material for a lithium ion battery, and, like the positive electrode active material for a lithium ion battery, a transition metal as a main component in or between the secondary particles.
  • the ratio of the absolute value of the difference between the composition ratio in the microregion in the transition metal particles or between the particles and the composition ratio in the bulk state with respect to the composition ratio in the bulk state of the transition metal is 5% or less. ing.
  • a positive electrode active material for a lithium ion battery is prepared by adding an alkali hydroxide or an alkali carbonate to an aqueous solution of a transition metal salt as a main component to which a lithium compound is added.
  • a positive electrode active material precursor for a lithium ion battery is prepared by adding an aqueous solution of a transition metal salt as a main component to a solution or suspension of an alkali hydroxide or an alkali carbonate.
  • a region having a high pH is likely to be formed locally, which tends to cause variation in composition. Therefore, the latter is preferable.
  • the lithium compound to be added is not limited, but lithium carbonate, lithium hydroxide, lithium oxide, lithium chloride, lithium nitrate, lithium sulfate, lithium hydrogen carbonate, lithium acetate, lithium fluoride, lithium bromide, lithium iodide. And lithium peroxide.
  • lithium carbonate is preferable because it is easy to handle and inexpensive.
  • aqueous solution of a salt of a transition metal any one or more of Ni, Mn, Co and Fe
  • a nitrate solution, a sulfate solution, a chloride solution, an acetate solution, or the like can be used.
  • a nitrate solution is preferably used for the purpose of avoiding the influence of anion contamination.
  • alkali hydroxide sodium hydroxide, potassium hydroxide, lithium hydroxide or the like is preferably used.
  • alkali carbonate sodium carbonate, sodium hydrogen carbonate, potassium carbonate, lithium carbonate or the like is preferably used.
  • the addition rate of the aqueous solution of the transition metal salt as the main component described above affects the composition variation of the main component transition metal in or between the particles of the positive electrode active material precursor for lithium ion batteries. That is, when the addition rate is high, local precipitation occurs and compositional variation tends to occur. For this reason, it is preferable to carry out at a moderate speed at which local precipitation hardly occurs. It is also effective to carry out the reaction little by little using a microreactor or the like, and it is also effective to promote the dispersion of the raw material by applying ultrasonic vibration to the reaction tank during the reaction.
  • the concentration of the transition metal salt aqueous solution is adjusted to a saturation concentration or a concentration close thereto. In the case of a saturated concentration, it may be precipitated due to a change in the liquid temperature, so a concentration close to the saturated concentration is preferable.
  • the concentration of the alkali hydroxide or carbonate solution or suspension is determined in consideration of the reaction with the transition metal.
  • the rate of addition varies depending on the volume of the reaction vessel. For example, when a reaction vessel having a volume of 1 m 3 is used and 500 to 700 L of an aqueous transition metal salt solution is added to 300 to 400 L of an alkali carbonate suspension, a transition metal salt is added.
  • the addition rate of the aqueous solution is 2 to 5 L / min, more preferably 3 to 4 L / min.
  • the addition time is 2 to 5 hours, more preferably 3 to 4 hours.
  • the obtained positive electrode active material precursor is dried and subjected to oxidation treatment (such as firing in an oxidizing atmosphere) and pulverization under appropriate conditions to obtain a positive electrode active material powder.
  • oxidation treatment such as firing in an oxidizing atmosphere
  • pulverization under appropriate conditions to obtain a positive electrode active material powder.
  • a positive electrode for lithium ion battery and a lithium ion battery using the same can be produced according to known means.
  • the lithium ion battery formed in this way has high capacity, low resistance, and long life because variation in the composition of the transition metal in the positive electrode active material is suppressed. Therefore, it is particularly useful in large-scale applications that require these characteristics, such as in-vehicle use and load leveling.
  • Example A A carbonate as a precursor was prepared by a wet method using an aqueous nitrate solution of Ni, Mn and Co and lithium carbonate.
  • the prepared precursor was dried as it was without washing.
  • Drying used a fluidized bed dryer to prevent particle sticking.
  • the average particle size of the dry powder was 10 ⁇ m. This was filled in a mortar and baked. When filling, the mortar was vibrated so that the powders were in contact with each other. Firing was performed in air at 800 ° C. for 10 hours. After firing, the particles were pulverized by a pulverizer of a type in which the particles collide and pulverize. In order to eliminate the influence of moisture, the pulverization step was performed in an environment of dry air.
  • the contents of Li, Ni, Mn, and Co in any positive electrode material were measured with an inductively coupled plasma optical emission spectrometer (ICP-OES), and it was confirmed that the ratio of transition metals was the same as the preparation.
  • the composition ratio in the bulk state was 33.3% in molar ratio for Ni, Mn, and Co.
  • Tables 1 and 2 show the results of measuring the content of each element in the secondary particles and between the secondary particles by FE-EPMA for each positive electrode material. The measurement was performed at three locations in the secondary particles and at three locations between the secondary particles. Each content was converted into a mole and recalculated as a composition ratio.
  • the composition ratio was the ratio between the molar amount of the specific element and the total molar amount of all metals.
  • the variation in composition was a value obtained by dividing the absolute value of the difference between this composition ratio and the bulk composition ratio measured by ICP-OES by the bulk composition ratio.
  • the average particle size was 50% in the particle size distribution by laser diffraction, the specific surface area was the BET value, and the tap density was the density after 200 taps.
  • This positive electrode material, conductive material, and binder are weighed at a ratio of 85: 8: 7, and the binder and the binder are dissolved in an organic solvent (N-methylpyrrolidone). And dried and pressed to obtain a positive electrode.
  • a 2032 type coin cell for evaluation with Li as the counter electrode was prepared, and 1M-LiPF6 dissolved in EC-DMC (1: 1) was used as the electrolyte solution. The charge condition was 4.3 V and the discharge condition was 3. Charging / discharging was performed at 0V.
  • Example B A carbonate as a precursor was prepared by a wet method using an aqueous nitrate solution of Ni, Mn and Fe and lithium carbonate.
  • the prepared precursor was dried as it was without washing.
  • Drying used a fluidized bed dryer to prevent particle sticking.
  • the average particle size of the dry powder was 10 ⁇ m. This was filled in a mortar and baked. When filling, the mortar was vibrated so that the powders were in contact with each other. Firing was performed in air at 800 ° C. for 10 hours. After firing, the particles were pulverized by a pulverizer of a type in which the particles collide and pulverize. In order to eliminate the influence of moisture, the pulverization step was performed in an environment of dry air. (Comparative Example B) After wet mixing using nickel oxide, manganese oxide and iron oxide powders and lithium hydroxide, a dry powder was prepared by spray drying, and this was oxidized to prepare a positive electrode material.
  • the composition ratio was the ratio between the molar amount of the specific element and the total molar amount of all metals.
  • the variation in composition was a value obtained by dividing the absolute value of the difference between this composition ratio and the bulk composition ratio measured by ICP-OES by the bulk composition ratio.
  • the average particle size was 50% in the particle size distribution by laser diffraction, the specific surface area was the BET value, and the tap density was the density after 200 taps.
  • This positive electrode material, conductive material, and binder are weighed at a ratio of 85: 8: 7, and the binder and the binder are dissolved in an organic solvent (N-methylpyrrolidone). And dried and pressed to obtain a positive electrode.
  • a 2032 type coin cell for evaluation with Li as the counter electrode was prepared, and 1M-LiPF6 dissolved in EC-DMC (1: 1) was used as the electrolyte solution.
  • the charge condition was 4.3 V and the discharge condition was 3.
  • Charging / discharging was performed at 0V. Confirmation of initial capacity and initial efficiency (discharge amount / charge amount) was confirmed by charge and discharge at 0.1 C.
  • the resistance was estimated from the voltage drop from the end of charging to the beginning of discharging. Regarding the lifetime, the capacity retention after 30 cycles at room temperature was confirmed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 電池の基本特性(容量、効率、負荷特性)を満足しつつ、且つ、低抵抗で寿命特性に優れたリチウムイオン電池を実現するリチウムイオン電池用正極活物質を提供する。リチウムイオン電池用正極活物質は、正極活物質の粒子内又は粒子間の遷移金属の組成ばらつきについて、該遷移金属のバルク状態における組成比に対する、該遷移金属の該粒子内又は粒子間の微小領域における組成比と該バルク状態における組成比との差の絶対値の割合が、5%以下である。

Description

リチウムイオン電池用正極活物質、リチウムイオン電池用正極及びそれを用いたリチウムイオン電池、並びに、リチウムイオン電池用正極活物質前駆体
 本発明は、リチウムイオン電池用正極活物質、リチウムイオン電池用正極及びそれを用いたリチウムイオン電池、並びに、リチウムイオン電池用正極活物質前駆体に関する。
 リチウムイオン電池の正極活物質には、一般にリチウム含有遷移金属酸化物が用いられている。具体的には、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn24)等であり、特性改善(高容量化、サイクル特性、保存特性、内部抵抗低減、充放電特性)や安全性を高めるためにこれらを複合化することが進められている。特に、車載用やロードレベリング用といった大型用途におけるリチウムイオン電池には、これまでの携帯電話用やパソコン用とは異なった特性が求められている。具体的には、車載用では高容量及び低抵抗が、ロードレベリングでは高容量及び長寿命が要求されている。
 これらの特性を発現させるためには、粉体特性は重要であるが、リチウムイオン電池の正極活物質における主成分である遷移金属とリチウムの分布の均質性が特に重要である。特に、車載用での低抵抗化やロードレベリング用途での長寿命化には組成の均質性が不可欠である。
 そこで、発明者が所属する株式会社日鉱マテリアルズ(現:JX日鉱日石金属株式会社)の出願に係る特開2005-285572号公報(特許文献1)において、正極活物質前駆体の製造方法として、炭酸リチウム懸濁液にNi、Mn又はCoの塩化物の水溶液を投入し、且つ、得られた炭酸塩を飽和炭酸リチウム溶液又はエタノールで洗浄することにより、全金属に対するLi量のモル比を調整でき、そのばらつきを低減することを見出し、報告した。
 また、特開2001-110420号公報(特許文献2)には、小結晶の一次粒子の凝集した大きい二次粒子、ならびに原料である炭酸リチウムの粒子の大きさなどについて検討した結果、炭酸リチウムの粒径を制御することにより凝集力が強まり、コバルト酸リチウムの二次粒子表面だけでなく内部まで均一に反応した放電容量やサイクル特性に優れた正極活物質を得ることができることを見出したことが記載されている。そして、そのような正極活物質として、小結晶の一次粒子が凝集した球状あるいは楕円球状の二次粒子からなるコバルト酸リチウムの内部まで組成にばらつきがないよう合成することによって、二次粒子を形成する表面の一次粒子のみならず内部の一次粒子まで電池として利用可能であることを特徴とする非水系電解質二次電池用正極活物質が記載されている。具体的には、コバルト酸リチウムの二次粒子の内部横断面の電子線マイクロアナライザー(EPMA)による分析で、粒子内部の酸素とコバルトのスペクトル強度比O/Coとが3.0±0.5以内であることが記載されている。
特開2005-285572号公報 特開2001-110420号公報
 しかしながら、電池の基本特性(容量、効率、負荷特性)を満足しつつ、且つ、低抵抗で寿命特性に優れたリチウムイオン電池を実現する正極活物質としてはなお改善の余地がある。
 そこで、本発明は、電池の基本特性(容量、効率、負荷特性)を満足しつつ、且つ、低抵抗で寿命特性に優れたリチウムイオン電池を実現するリチウムイオン電池用正極活物質を提供することを課題とする。また、本発明は、前記リチウムイオン電池用正極活物質を用いたリチウムイオン電池用正極及びそれを用いたリチウムイオン電池、並びに、リチウムイオン電池用正極活物質前駆体を提供することをそれぞれ別の課題とする。
 本発明者は、正極活物質中のLi量以外の均質性にも着目し、鋭意検討した結果、主成分である遷移金属の組成ばらつきを特定の範囲内に制御した正極活物質を用いることで、電池の基本特性(容量、効率、負荷特性)を満足しつつ、且つ、低抵抗で寿命特性に優れたリチウムイオン電池を提供することができることを見出した。
 上記知見を基礎にして完成した本発明は一側面において、少なくともリチウム及び遷移金属で構成されたリチウムイオン電池用正極活物質であって、前記正極活物質の粒子内又は粒子間における主成分の遷移金属の組成ばらつきについて、該遷移金属のバルク状態における組成比に対する、該遷移金属の該粒子内又は粒子間の微小領域における組成比と該バルク状態における組成比との差の絶対値の割合が、5%以下であるリチウムイオン電池用正極活物質である。
 本発明に係るリチウムイオン電池用正極活物質は一実施形態において、前記正極活物質が、リチウム含有遷移金属酸化物である。
 本発明に係るリチウムイオン電池用正極活物質は別の実施形態において、前記リチウム含有遷移金属酸化物における遷移金属が、Ni、Mn、Co及びFeよりなる群から選択される1種又は2種以上である。
 本発明に係るリチウムイオン電池用正極活物質は更に別の実施形態において、前記正極活物質の粒子の平均粒径が2~8μmであり、比表面積が0.3~1.8m2/gであり、タップ密度が1.5~2.1g/mlである。
 本発明は別の一側面において、本発明に係るリチウムイオン電池用正極活物質を用いたリチウムイオン電池用正極である。
 本発明は更に別の一側面において、本発明に係るリチウムイオン電池用正極を用いたリチウムイオン電池である。
 本発明は更に別の一側面において、少なくともリチウム及び遷移金属で構成され、一次粒子が凝集して形成された二次粒子からなるリチウムイオン電池用正極活物質前駆体であって、前記正極活物質前駆体の二次粒子内又は二次粒子間における主成分の遷移金属の組成ばらつきについて、該遷移金属のバルク状態における組成比に対する、該遷移金属の該粒子内又は粒子間の微小領域における組成比と該バルク状態における組成比との差の絶対値の割合が、5%以下であるリチウムイオン電池用正極活物質前駆体である。
 本発明に係るリチウムイオン電池用正極活物質前駆体は一実施形態において、リチウム及び遷移金属を主成分とする。
 本発明によれば、電池の基本特性(容量、効率、負荷特性)を満足しつつ、且つ、低抵抗で寿命特性に優れたリチウムイオン電池を実現するリチウムイオン電池用正極活物質を提供する。
 (リチウムイオン電池用正極活物質の構成)
 本発明の実施形態に係るリチウムイオン電池用正極活物質の材料としては、一般的なリチウムイオン電池用正極用の正極活物質として有用な化合物を広く用いることができるが、特に、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn24)等のリチウム含有遷移金属酸化物を用いるのが好ましい。また、リチウム含有遷移金属酸化物における遷移金属は、Ni、Mn、Co及びFeよりなる群から選択される1種又は2種以上であるのが好ましい。また、リチウム含有遷移金属酸化物における全金属に対するリチウムの比率は、1.0超~1.3未満であるのが好ましい。1.0以下では、安定した結晶構造を保持しにくく、1.3以上では電池の高容量が確保できなくなるためである。正極活物質の結晶構造は、リチウムの挿入・脱離が可能な構造であれば特に限定されないが、層状構造又はスピネル構造が好ましい。
 リチウムイオン電池用正極活物質の二次粒子内又は二次粒子間における主成分の遷移金属の組成ばらつきについては、電界放出型電子プローブマイクロアナライザ(FE-EPMA)等の微小領域の定量分析が可能な装置を用いて、二次粒子間あるいは二次粒子内での各元素の含有率を測定し、全金属含有率に対する各元素の含有率比を各元素の組成比とみなし、この組成比のばらつきを指標とする。例えば、Ni、Mn、Co及びFeの各元素の含有率をそれぞれN%、M%、C%及びF%とし、これをそれぞれの原子量で割ってモル換算した数値を、n、m、c、fとすると、Ni組成比(モル比)は、n/(n+m+c+f)×100(%)と示される。
 リチウムイオン電池用正極活物質の二次粒子内又は二次粒子間における主成分の遷移金属の組成ばらつきは、ICP等で求められる遷移金属のバルク状態における組成比に対する、遷移金属の粒子内又は粒子間の微小領域における組成比とバルク状態における組成比との差の絶対値の割合で示す。本発明に係る当該組成ばらつきは、5%以下である。組成ばらつきが5%を超えた場合は、寿命特性が劣り、また電池で用いたときの抵抗も大きくなるからである。
 また、リチウムイオン電池用正極活物質は、その二次粒子の平均粒径が2~8μmであり、比表面積が0.3~1.8m2/gであり、タップ密度が1.5~2.1g/mlであるのが好ましい。これらの範囲をそれぞれ逸脱すると、高容量を確保し難くなるためである。また、より好ましくは、平均粒径が5~7μmであり、比表面積が0.5~1.5m2/gであり、タップ密度が1.6~2.1g/mlである。
 (リチウムイオン電池用正極及びそれを用いたリチウムイオン電池の構成)
 本発明の実施形態に係るリチウムイオン電池用正極は、例えば、上述の構成のリチウムイオン電池用正極活物質と、導電助剤と、バインダーとを混合して調製した正極合剤をアルミニウム箔等からなる集電体の片面または両面に設けた構造を有している。また、本発明の実施形態に係るリチウムイオン電池は、このような構成のリチウムイオン電池用正極を備えている。
 (リチウムイオン電池用正極活物質前駆体の構成)
 本発明の実施形態に係るリチウムイオン電池用正極活物質前駆体は、少なくともリチウム及び遷移金属で構成され、一次粒子が凝集して形成された二次粒子からなる。リチウムイオン電池用正極活物質前駆体は、リチウムイオン電池用正極活物質の原料であり、リチウムイオン電池用正極活物質と同様に、その二次粒子内又は二次粒子間における主成分の遷移金属の組成ばらつきについて、遷移金属のバルク状態における組成比に対する、遷移金属の粒子内又は粒子間の微小領域における組成比とバルク状態における組成比との差の絶対値の割合が、5%以下となっている。
 (リチウムイオン電池用正極活物質及びそれを用いたリチウムイオン電池の製造方法)
 次に、本発明の実施形態に係るリチウムイオン電池用正極活物質及びそれを用いたリチウムイオン電池の製造方法について説明する。
 まず、リチウム化合物が添加された主成分となる遷移金属塩の水溶液に、アルカリ水酸化物又はアルカリ炭酸塩を加えることによりリチウムイオン電池用正極活物質前駆体を調整する。または、アルカリ水酸化物又はアルカリ炭酸塩の溶液もしくは懸濁液に主成分となる遷移金属塩の水溶液を加えることにより、リチウムイオン電池用正極活物質前駆体を調整する。前者の場合、局所的にpHの高い領域ができやすく、組成ばらつきの原因となりやすいので、後者の方が好ましい。
 添加するリチウム化合物としては、限定的ではないが、炭酸リチウム、水酸化リチウム、酸化リチウム、塩化リチウム、硝酸リチウム、硫酸リチウム、炭酸水素リチウム、酢酸リチウム、フッ化リチウム、臭化リチウム、ヨウ化リチウム、過酸化リチウムが挙げられる。中でも、取り扱いが容易であること、安価であることの理由から、炭酸リチウムが好ましい。
 遷移金属(Ni、Mn、Co及びFeのいずれか1種又は2種以上)の塩の水溶液としては、硝酸塩溶液、硫酸塩溶液、塩化物溶液、又は、酢酸塩溶液等を使用することができる。特に、陰イオンの混入の影響を避ける目的で、硝酸塩溶液を用いるのが好ましい。
 アルカリ水酸化物としては、水酸化ナトリウム、水酸化カリウム及び水酸化リチウム等を用いるのが好ましい。アルカリ炭酸塩としては、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム及び炭酸リチウム等を用いるのが好ましい。
 上述の主成分となる遷移金属塩の水溶液の添加速度が、リチウムイオン電池用正極活物質前駆体の粒子内又は粒子間における主成分の遷移金属の組成ばらつきに影響を与える。すなわち、添加速度が速いと局所的な析出が起こり、組成ばらつきを生じやすい。このため、局所的な析出が起こり難いような緩やかな速度で行うのが好ましい。また、マイクロリアクター等を用いて反応を少量ずつ行うことも有効であるし、反応の際に反応槽に超音波振動を与えて原料の分散を促すことも有効である。
 より具体的には、遷移金属の塩の水溶液の濃度は飽和濃度もしくはそれに近い濃度に調整する。飽和濃度の場合、液温の変化によって析出することもあるため、飽和濃度に近い濃度が好ましい。
 アルカリ水酸化物又はアルカリ炭酸塩の溶液もしくは懸濁液は、遷移金属との反応を考慮して濃度を決定する。
 添加速度は反応槽の容積により異なるが、例えば容積1m3槽の反応槽を使用し、アルカリ炭酸塩懸濁液300~400Lに、遷移金属塩の水溶液500~700Lを添加する場合、遷移金属塩の水溶液の添加速度は2~5L/分で、より好ましくは3~4L/分である。添加時間は2~5時間で、より好ましくは3~4時間である。
 次に、得られた正極活物質前駆体を乾燥し、適正条件下で酸化処理(酸化雰囲気中での焼成等)及び粉砕を行うことにより正極活物質の粉体が得られる。また、前述の乾燥工程において、公知の乾燥方法で問題ないが、例えば流動層乾燥のような乾燥粉の凝集を抑えるような手法を用いると、前駆体の粒子がより均一に分散するため好ましい。さらに、前述の焼成工程において、充填時に粉末の接触を促進する手法を用いると、反応が均質に進むため好ましい。また、粉砕においても、公知の粉砕方法で問題はないが、作業にあたっては、水分の影響を避けるために乾燥空気を使用することが望ましい。
 このようにして得られたリチウムイオン電池用正極活物質を利用し、公知の手段に従い、リチウムイオン電池用正極及びそれを用いたリチウムイオン電池を作製することができる。
 このようにして形成されたリチウムイオン電池は、正極活物質において遷移金属の組成ばらつきが抑制されているため、高容量、低抵抗及び長寿命が実現されている。従って、車載用やロードレベリング用といった、これらの特性が要求される大型用途において、特に有用である。
 以下、本発明及びその利点をより良く理解するための実施例を提供するが、本発明はこれらの実施例に限られるものではない。
 (実施例A)
 Ni、Mn及びCoの硝酸塩水溶液と炭酸リチウムとを使用した湿式法によって前駆体である炭酸塩を作製した。前駆体製造時のNi、Mn及びCoの仕込みモル比率はNi:Mn:Co=1:1:1とした。これを乾燥後、酸化処理して、正極材料を作製した。
 より具体的には、プロペラ翼付きの攪拌槽内で炭酸リチウムを純水に懸濁し、pH7に調整し、硝酸塩水溶液を導入し、pH4で導入を終了した後、2時間攪拌した。反応時のばらつきを抑えるために、攪拌時は超音波分散を行った。
 作製した前駆体は洗浄せずにそのまま乾燥した。乾燥は粒子の固着を防ぐために流動層乾燥機を使用した。乾燥粉の平均粒径は10μmであった。
 これをこう鉢に充填して焼成した。充填にあたってはこう鉢に振動を与えて、粉体同士が接触するようにした。焼成は、800℃で10時間、空気中で行った。
 焼成後は、粒子同士が衝突して粉砕をする方式の粉砕機によって粉砕した。なお、水分の影響を排除するために、粉砕工程は乾燥空気の環境下で行った。
 (比較例A)
 酸化ニッケル、酸化マンガン及び酸化コバルトの粉末と水酸化リチウムとを用いて湿式混合した後、噴霧乾燥で乾燥粉を作製し、これを酸化処理して、正極材料を作製した。混合時のNi、Mn及びCoの仕込みモル比率はNi:Mn:Co=1:1:1とした。
 より具体的には、仕込み比率に合せて秤量した各原料を水による湿式ボールミルで混合した。混合時間は6時間とした。その後、ボールを除去した原料スラリーを噴霧乾燥し、水分を除去して乾燥粉とした。乾燥粉の平均粒径は30μmであった。
 乾燥粉をタッピングによりこう鉢に充填し、800℃、10時間、空気中で焼成した。焼成後は、ボールミルで粉砕を行った。
 いずれの正極材中のLi、Ni、Mn及びCo含有量は、誘導結合プラズマ発光分光分析装置(ICP-OES)で測定し、遷移金属の比率は仕込みと同じであることを確認した。(バルク状態の組成比は、Ni、Mn及びCoともモル比で33.3%であった。)
 それぞれの正極材料について、二次粒子内及び二次粒子間の各元素の含有量をFE-EPMAにて測定した結果を表1及び2に示す。測定は、二次粒子内の3箇所、及び、二次粒子間の3箇所で行った。含有率はそれぞれモル換算し、組成比として再計算した。組成比は特定元素のモル量と全金属のモル総量との比とした。組成ばらつきは、この組成比とICP-OESで測定したバルクの組成比との差の絶対値をバルクの組成比で割った数値とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 また、平均粒径はレーザー回折法による粒度分布における50%径とし、比表面積はBET値を、タップ密度は200回タップ後の密度とした。この正極材料と導電材、バインダーを85:8:7の割合で秤量し、バインダーを有機溶媒(N-メチルピロリドン)に溶解したものに、材料と導電材を混合してスラリー化し、アルミニウム箔上に塗布して乾燥後にプレスして正極とした。対極をLiとした評価用の2032型コインセルを作製し、電解液に1M-LiPF6をEC-DMC(1:1)に溶解したものを用いて、充電条件を4.3V、放電条件を3.0Vで充放電を行った。初期容量と初期効率(放電量/充電量)との確認は、0.1Cでの充放電で確認した。また、抵抗については、充電末期から放電初期の電圧低下から推定した。寿命については、室温で30サイクル後の容量保持率を確認した。これらの結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 (実施例B)
 Ni、Mn及びFeの硝酸塩水溶液と炭酸リチウムとを使用した湿式法によって前駆体である炭酸塩を作製した。前駆体製造時のNi、Mn及びFeの仕込みモル比率はNi:Mn:Fe=6:2:2とした。これを乾燥後、酸化処理して、正極材料を作製した。
 より具体的には、プロペラ翼付きの攪拌槽内で炭酸リチウムを純水に懸濁し、pH7に調整し、硝酸塩水溶液を導入し、pH4で導入を終了した後、2時間攪拌した。反応時のばらつきを抑えるために、攪拌時は超音波分散を行った。
 作製した前駆体は洗浄せずにそのまま乾燥した。乾燥は粒子の固着を防ぐために流動層乾燥機を使用した。乾燥粉の平均粒径は10μmであった。
 これをこう鉢に充填して焼成した。充填にあたってはこう鉢に振動を与えて、粉体同士が接触するようにした。焼成は、800℃で10時間、空気中で行った。
 焼成後は、粒子同士が衝突して粉砕をする方式の粉砕機によって粉砕した。なお、水分の影響を排除するために、粉砕工程は乾燥空気の環境下で行った。
 (比較例B)
 酸化ニッケル、酸化マンガン及び酸化鉄の粉末と水酸化リチウムとを用いて湿式混合した後、噴霧乾燥で乾燥粉を作製し、これを酸化処理して、正極材料を作製した。混合時のNi、Mn及びFeの仕込みモル比率はNi:Mn:Fe=6:2:2とした。
 より具体的には、仕込み比率に合せて秤量した各原料を水による湿式ボールミルで混合した。混合時間は6時間とした。その後、ボールを除去した原料スラリーを噴霧乾燥し、水分を除去して乾燥粉とした。乾燥粉の平均粒径は30μmであった。
 乾燥粉をタッピングによりこう鉢に充填し、800℃、10時間、空気中で焼成した。焼成後は、ボールミルで粉砕を行った。
 いずれの正極材中のLi、Ni、Mn及びFe含有量は、誘導結合プラズマ発光分光分析装置(ICP-OES)で測定し、遷移金属の比率は仕込みと同じであることを確認した。(バルク状態の組成比は、Ni、Mn及びFeのモル比でNi:Mn:Fe=6:2:2であった。)
 それぞれの正極材料について、二次粒子内及び二次粒子間の各元素の含有量をFE-EPMAにて測定した結果を表4及び5に示す。測定は、二次粒子内の3箇所、及び、二次粒子間の3箇所で行った。含有率はそれぞれモル換算し、組成比として再計算した。組成比は特定元素のモル量と全金属のモル総量との比とした。組成ばらつきは、この組成比とICP-OESで測定したバルクの組成比との差の絶対値をバルクの組成比で割った数値とした。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005

 また、平均粒径はレーザー回折法による粒度分布における50%径とし、比表面積はBET値を、タップ密度は200回タップ後の密度とした。この正極材料と導電材、バインダーを85:8:7の割合で秤量し、バインダーを有機溶媒(N-メチルピロリドン)に溶解したものに、材料と導電材を混合してスラリー化し、アルミニウム箔上に塗布して乾燥後にプレスして正極とした。対極をLiとした評価用の2032型コインセルを作製し、電解液に1M-LiPF6をEC-DMC(1:1)に溶解したものを用いて、充電条件を4.3V、放電条件を3.0Vで充放電を行った。初期容量と初期効率(放電量/充電量)との確認は、0.1Cでの充放電で確認した。また、抵抗については、充電末期から放電初期の電圧低下から推定した。寿命については、室温で30サイクル後の容量保持率を確認した。これらの結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006

Claims (8)

  1.  少なくともリチウム及び遷移金属で構成されたリチウムイオン電池用正極活物質であって、
     前記正極活物質の粒子内又は粒子間における主成分の遷移金属の組成ばらつきについて、該遷移金属のバルク状態における組成比に対する、該遷移金属の該粒子内又は粒子間の微小領域における組成比と該バルク状態における組成比との差の絶対値の割合が、5%以下であるリチウムイオン電池用正極活物質。
  2.  前記正極活物質が、リチウム含有遷移金属酸化物である請求項1に記載のリチウムイオン電池用正極活物質。
  3.  前記リチウム含有遷移金属酸化物における遷移金属が、Ni、Mn、Co及びFeよりなる群から選択される1種又は2種以上である請求項2に記載のリチウムイオン電池用正極活物質。
  4.  前記正極活物質の粒子の平均粒径が2~8μmであり、比表面積が0.3~1.8m2/gであり、タップ密度が1.5~2.1g/mlである請求項1~3のいずれかに記載のリチウムイオン電池用正極活物質。
  5.  請求項1~4のいずれかに記載のリチウムイオン電池用正極活物質を用いたリチウムイオン電池用正極。
  6.  請求項5に記載のリチウムイオン電池用正極を用いたリチウムイオン電池。
  7.  少なくともリチウム及び遷移金属で構成され、一次粒子が凝集して形成された二次粒子からなるリチウムイオン電池用正極活物質前駆体であって、
     前記正極活物質前駆体の二次粒子内又は二次粒子間における主成分の遷移金属の組成ばらつきについて、該遷移金属のバルク状態における組成比に対する、該遷移金属の該粒子内又は粒子間の微小領域における組成比と該バルク状態における組成比との差の絶対値の割合が、5%以下であるリチウムイオン電池用正極活物質前駆体。
  8.  リチウム及び遷移金属を主成分とする請求項7に記載のリチウムイオン電池用正極活物質前駆体。
PCT/JP2010/071723 2009-12-22 2010-12-03 リチウムイオン電池用正極活物質、リチウムイオン電池用正極及びそれを用いたリチウムイオン電池、並びに、リチウムイオン電池用正極活物質前駆体 WO2011077932A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP10839166.5A EP2518802B1 (en) 2009-12-22 2010-12-03 Positive electrode active material for a lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US13/508,887 US20120231343A1 (en) 2009-12-22 2010-12-03 Positive Electrode Active Material For A Lithium-Ion Battery, Positive Electrode For A Lithium-Ion Battery, Lithium-Ion Battery Using Same, And Precursor To A Positive Electrode Active Material For A Lithium-Ion Battery
CN201080052147.5A CN102668185B (zh) 2009-12-22 2010-12-03 锂离子电池用正极活性物质、锂离子电池用正极及使用其的锂离子电池、及锂离子电池用正极活性物质前驱体
KR1020127008144A KR20120061943A (ko) 2009-12-22 2010-12-03 리튬 이온 전지용 정극 활물질, 리튬 이온 전지용 정극 및 그것을 사용한 리튬 이온 전지, 그리고 리튬 이온 전지용 정극 활물질 전구체
JP2011547446A JP6285089B2 (ja) 2009-12-22 2010-12-03 リチウムイオン電池用正極活物質、リチウムイオン電池用正極及びそれを用いたリチウムイオン電池、並びに、リチウムイオン電池用正極活物質前駆体
US13/856,514 US20130221271A1 (en) 2009-12-22 2013-04-04 Positive Electrode Active Material For Lithium-Ion Battery, Positive Electrode For A Lithium-Ion Battery, Lithium-Ion Battery Using Same, And Precursor To A Positive Electrode Active Material For A Lithium-Ion Battery
US14/580,318 US9263732B2 (en) 2009-12-22 2014-12-23 Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-290772 2009-12-22
JP2009290772 2009-12-22

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US13/508,887 A-371-Of-International US20120231343A1 (en) 2009-12-22 2010-12-03 Positive Electrode Active Material For A Lithium-Ion Battery, Positive Electrode For A Lithium-Ion Battery, Lithium-Ion Battery Using Same, And Precursor To A Positive Electrode Active Material For A Lithium-Ion Battery
US13/856,514 Division US20130221271A1 (en) 2009-12-22 2013-04-04 Positive Electrode Active Material For Lithium-Ion Battery, Positive Electrode For A Lithium-Ion Battery, Lithium-Ion Battery Using Same, And Precursor To A Positive Electrode Active Material For A Lithium-Ion Battery
US14/580,318 Continuation US9263732B2 (en) 2009-12-22 2014-12-23 Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery

Publications (1)

Publication Number Publication Date
WO2011077932A1 true WO2011077932A1 (ja) 2011-06-30

Family

ID=44195467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071723 WO2011077932A1 (ja) 2009-12-22 2010-12-03 リチウムイオン電池用正極活物質、リチウムイオン電池用正極及びそれを用いたリチウムイオン電池、並びに、リチウムイオン電池用正極活物質前駆体

Country Status (7)

Country Link
US (3) US20120231343A1 (ja)
EP (1) EP2518802B1 (ja)
JP (1) JP6285089B2 (ja)
KR (1) KR20120061943A (ja)
CN (1) CN102668185B (ja)
TW (1) TWI459618B (ja)
WO (1) WO2011077932A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120258366A1 (en) * 2011-04-08 2012-10-11 Yu Dong-Hwan Positive active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery including same
JP2015056382A (ja) * 2013-09-13 2015-03-23 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
WO2023127290A1 (ja) * 2021-12-27 2023-07-06 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2416411B1 (en) 2009-03-31 2020-02-26 JX Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery
EP2515364A1 (en) 2009-12-18 2012-10-24 JX Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
KR20120061943A (ko) 2009-12-22 2012-06-13 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 리튬 이온 전지용 정극 활물질, 리튬 이온 전지용 정극 및 그것을 사용한 리튬 이온 전지, 그리고 리튬 이온 전지용 정극 활물질 전구체
CN102804461B (zh) 2010-02-05 2016-03-02 Jx日矿日石金属株式会社 锂离子电池用正极活性物质、锂离子电池用正极和锂离子电池
WO2011096525A1 (ja) 2010-02-05 2011-08-11 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
KR101430843B1 (ko) 2010-03-04 2014-08-18 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 리튬 이온 전지용 정극 활물질, 리튬 이온 전지용 정극, 및 리튬 이온 전지
EP2544273A4 (en) 2010-03-04 2014-06-25 Jx Nippon Mining & Metals Corp POSITIVE ACTIVE ELECTRODE MATERIAL FOR LITHIUM ION BATTERIES, POSITIVE ELECTRODE FOR LITHIUM ION BATTERIES AND LITHIUM ION BATTERY
CN102782911B (zh) 2010-03-04 2015-06-24 Jx日矿日石金属株式会社 锂离子电池用正极活性物质、锂离子电池用正极及锂离子电池
KR101450422B1 (ko) 2010-03-04 2014-10-13 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 리튬 이온 전지용 정극 활물질, 리튬 이온 전지용 정극, 및 리튬 이온 전지
WO2011108720A1 (ja) 2010-03-05 2011-09-09 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及びリチウムイオン電池
CN105514420A (zh) 2010-12-03 2016-04-20 Jx日矿日石金属株式会社 锂离子电池用正极活性物质、锂离子电池用正极及锂离子电池
WO2012098724A1 (ja) 2011-01-21 2012-07-26 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質の製造方法及びリチウムイオン電池用正極活物質
JP6023587B2 (ja) 2011-03-29 2016-11-09 Jx金属株式会社 リチウムイオン電池用正極活物質の製造方法
WO2012133434A1 (ja) 2011-03-31 2012-10-04 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP6292738B2 (ja) 2012-01-26 2018-03-14 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP6292739B2 (ja) 2012-01-26 2018-03-14 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
CN104335396B (zh) 2012-09-28 2018-01-05 Jx日矿日石金属株式会社 锂离子电池用正极活性物质、锂离子电池用正极和锂离子电池
EP3356297A4 (en) 2015-09-30 2019-05-15 Umicore PRECURSORS FOR LITHIUM TRANSITION METAL OXIDE CATHODE MATERIALS FOR RECHARGEABLE BATTERIES
CN108886144B (zh) 2016-03-30 2022-03-04 巴斯夫户田电池材料有限公司 用于非水电解质二次电池的正极活性物质及其制造方法、以及使用其的非水电解质二次电池
JP2017188428A (ja) 2016-03-30 2017-10-12 Basf戸田バッテリーマテリアルズ合同会社 非水電解質二次電池用の正極活物質及びその製造方法、並びにそれを用いた非水電解質二次電池
US10541413B2 (en) * 2016-04-11 2020-01-21 Tesla, Inc. Drying procedure in manufacturing process for cathode material
CN107785578B (zh) * 2016-08-25 2019-06-11 宁德时代新能源科技股份有限公司 正极添加剂及其制备方法、正极片及锂离子二次电池
KR102160572B1 (ko) * 2017-07-26 2020-09-28 주식회사 엘지화학 리튬이차전지용 양극 및 이를 포함하는 리튬이차전지

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10188986A (ja) * 1996-12-27 1998-07-21 Toyota Central Res & Dev Lab Inc リチウム二次電池用正極活物質の製造方法
JP2001110420A (ja) * 1999-10-13 2001-04-20 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質の製造方法および該方法により得られた非水系電解質二次電池用正極活物質
JP2001148249A (ja) * 1999-11-19 2001-05-29 Chuo Denki Kogyo Co Ltd リチウム二次電池用正極活物質材料とリチウム二次電池
JP2003151546A (ja) * 2001-11-08 2003-05-23 Nichia Chem Ind Ltd リチウムイオン二次電池用正極活物質及びその製造方法
JP2004193115A (ja) * 2002-11-27 2004-07-08 Nichia Chem Ind Ltd 非水電解質二次電池用正極活物質および非水電解質二次電池
JP2007280723A (ja) * 2006-04-05 2007-10-25 Hitachi Metals Ltd リチウム二次電池用の正極活物質の製造方法、リチウム二次電池用の正極活物質及びそれを用いた非水系リチウム二次電池

Family Cites Families (203)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2165128A (en) 1938-04-22 1939-07-04 Traylor Engineering And Mfg Co Rotary kiln
US4469654A (en) 1980-02-06 1984-09-04 Minnesota Mining And Manufacturing Company EDM Electrodes
JPS5822881A (ja) 1981-08-03 1983-02-10 川崎重工業株式会社 ロータリキルン
US4443186A (en) 1982-04-14 1984-04-17 The United States Of America As Represented By The United States Department Of Energy Solar heated rotary kiln
JP3200867B2 (ja) 1991-04-26 2001-08-20 ソニー株式会社 非水電解質二次電池
JP2002289261A (ja) 2001-01-16 2002-10-04 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP3334179B2 (ja) 1992-09-14 2002-10-15 松下電器産業株式会社 非水電解液二次電池用正極活物質の製造法
US5393622A (en) 1992-02-07 1995-02-28 Matsushita Electric Industrial Co., Ltd. Process for production of positive electrode active material
JP3276183B2 (ja) 1992-12-14 2002-04-22 東芝電池株式会社 非水溶媒二次電池
JP3188026B2 (ja) 1993-03-17 2001-07-16 三洋電機株式会社 非水系電池
DE69411637T2 (de) 1993-04-28 1998-11-05 Fuji Photo Film Co Ltd Akkumulator mit nicht-wässrigem Elektrolyt
JPH0729603A (ja) 1993-07-14 1995-01-31 Fuji Photo Film Co Ltd 非水電解質二次電池
JPH07211311A (ja) 1994-01-18 1995-08-11 Sony Corp 非水電解液二次電池
CA2114493C (en) 1994-01-28 1999-01-12 Jeffrey Raymond Dahn Method for increasing the reversible capacity of lithium transition metal oxide cathodes
JPH08138669A (ja) 1994-11-02 1996-05-31 Toray Ind Inc 正極活物質、その製造方法およびそれを用いた非水溶媒系二次電池
JPH08213015A (ja) 1995-01-31 1996-08-20 Sony Corp リチウム二次電池用正極活物質及びリチウム二次電池
JPH0982325A (ja) 1995-09-08 1997-03-28 Sony Corp 正極活物質の製造方法
JPH09120813A (ja) 1995-10-26 1997-05-06 Sony Corp 非水電解液二次電池
JP3756232B2 (ja) 1996-01-17 2006-03-15 宇部興産株式会社 非水電解質二次電池
US5817436A (en) 1996-03-05 1998-10-06 Sharp Kabushiki Kaisha Lithium nickel composite oxide preparation process therefor and application thereof
JP3420425B2 (ja) 1996-04-01 2003-06-23 松下電器産業株式会社 非水電解液二次電池
JPH1083815A (ja) 1996-09-10 1998-03-31 Toshiba Battery Co Ltd リチウム二次電池
JPH10116618A (ja) 1996-10-11 1998-05-06 Sumitomo Metal Mining Co Ltd 非水系電解質電池正極活物質用リチウムコバルト複合酸化物
WO1998029914A1 (fr) * 1996-12-25 1998-07-09 Mitsubishi Denki Kabushiki Kaisha Materiau anodique actif, son procede de production, et element d'accumulateur a ion lithium comportant ledit materiau
JPH10206322A (ja) 1997-01-20 1998-08-07 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質中の炭酸塩の定量方法
JPH10208744A (ja) 1997-01-29 1998-08-07 Hitachi Ltd 電 池
US6037095A (en) 1997-03-28 2000-03-14 Fuji Photo Film Co., Ltd. Non-aqueous lithium ion secondary battery
JP3706718B2 (ja) 1997-04-01 2005-10-19 日本化学工業株式会社 リチウムイオン二次電池用コバルト酸リチウム系正極活物質、この製造方法及びリチウムイオン二次電池
JP3769871B2 (ja) 1997-04-25 2006-04-26 ソニー株式会社 正極活物質の製造方法
JPH10321224A (ja) 1997-05-16 1998-12-04 Nikki Kagaku Kk リチウム電池正極材及びその製造方法
JPH1116573A (ja) 1997-06-26 1999-01-22 Sumitomo Metal Mining Co Ltd リチウムイオン二次電池用リチウムコバルト複酸化物およびその製造方法
JP3536611B2 (ja) 1997-08-25 2004-06-14 三菱電機株式会社 正極活物質およびその製造方法並びにそれを用いたリチウムイオン二次電池
JP3372204B2 (ja) 1998-02-12 2003-01-27 三井金属鉱業株式会社 Li−Mn複合酸化物の製造方法
JP3677992B2 (ja) 1998-03-24 2005-08-03 三菱化学株式会社 リチウムイオン二次電池
JPH11307094A (ja) 1998-04-20 1999-11-05 Chuo Denki Kogyo Co Ltd リチウム二次電池用正極活物質とリチウム二次電池
JP4171848B2 (ja) 1998-06-02 2008-10-29 宇部興産株式会社 リチウムイオン非水電解質二次電池
JP3614670B2 (ja) 1998-07-10 2005-01-26 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質およびその製造方法
JP3539223B2 (ja) 1998-08-07 2004-07-07 松下電器産業株式会社 非水電解液二次電池用正極活物質の製造方法と非水電解液二次電池用正極活物質およびそれを用いた非水電解液二次電池
JP4040184B2 (ja) 1998-08-28 2008-01-30 株式会社コンポン研究所 リチウム系金属複合酸化物の製造方法
JP2000149945A (ja) 1998-11-10 2000-05-30 Hitachi Ltd リチウムイオン二次電池
JP3754218B2 (ja) 1999-01-25 2006-03-08 三洋電機株式会社 非水電解質電池用正極及びその製造方法、ならびこの正極を用いた非水電解質電池及びその製造方法
JP3471244B2 (ja) 1999-03-15 2003-12-02 株式会社東芝 非水電解液二次電池の製造方法
JP4314676B2 (ja) 1999-06-03 2009-08-19 パナソニック株式会社 リチウム二次電池
KR100614167B1 (ko) 1999-10-22 2006-08-25 산요덴키가부시키가이샤 리튬 2차전지용 전극 및 리튬 2차전지
JP2001266851A (ja) 1999-10-22 2001-09-28 Sanyo Electric Co Ltd リチウム二次電池用電極の製造方法
WO2001031724A1 (fr) 1999-10-22 2001-05-03 Sanyo Electric Co., Ltd. Electrode pour pile au lithium et accumulateur au lithium
JP2002124261A (ja) 1999-11-29 2002-04-26 Mitsui Chemicals Inc リチウム二次電池用正極活物質および電池
JP2001223008A (ja) 1999-12-02 2001-08-17 Honjo Chemical Corp リチウムイオン二次電池、そのための正極活物質及びその製造方法
JP2002063901A (ja) 2000-08-14 2002-02-28 Mitsui Chemicals Inc リチウム二次電池用正極活物質、その製法およびそれを用いた電池
JP4280436B2 (ja) 2000-09-25 2009-06-17 三星エスディアイ株式会社 リチウム二次電池用正極活物質及びその製造方法
KR100378007B1 (ko) 2000-11-22 2003-03-29 삼성에스디아이 주식회사 리튬-황 전지용 양극 및 그를 포함하는 리튬-황 전지
JP3567131B2 (ja) 2000-12-28 2004-09-22 株式会社東芝 非水電解質電池
JP4878683B2 (ja) 2001-01-23 2012-02-15 三洋電機株式会社 リチウム二次電池
JP2002260655A (ja) 2001-02-28 2002-09-13 Nichia Chem Ind Ltd リチウムイオン二次電池用正極活物質の製造方法
JP2002298914A (ja) 2001-03-30 2002-10-11 Toshiba Corp 非水電解質二次電池
EP1391950B1 (en) 2001-04-20 2010-08-25 GS Yuasa Corporation Anode active matter and production method therefor, non- aqueous electrolyte secondary battery-use anode, and non-aqueous electrolyte secondary battery
JP4175026B2 (ja) 2001-05-31 2008-11-05 三菱化学株式会社 リチウム遷移金属複合酸化物及びリチウム二次電池用正極材料の製造方法、リチウム二次電池用正極、並びにリチウム二次電池
JP2003048719A (ja) 2001-05-31 2003-02-21 Mitsubishi Chemicals Corp リチウム遷移金属複合酸化物の製造方法、リチウム二次電池用正極材料、リチウム二次電池用正極及びリチウム二次電池
US7135251B2 (en) 2001-06-14 2006-11-14 Samsung Sdi Co., Ltd. Active material for battery and method of preparing the same
JP5079951B2 (ja) 2001-06-27 2012-11-21 株式会社三徳 非水電解液2次電池用正極活物質、その製造方法、非水電解液2次電池、並びに正極の製造方法
JP4510331B2 (ja) 2001-06-27 2010-07-21 パナソニック株式会社 非水電解質二次電池
CN100522856C (zh) 2001-08-02 2009-08-05 3M创新有限公司 Al2O3-稀土元素氧化物-ZrO2/HfO2材料以及其制造方法
JP4253142B2 (ja) 2001-09-05 2009-04-08 日本電工株式会社 二次電池用リチウムマンガン複合酸化物およびその製造方法、ならびに非水電解液二次電池
JP4070585B2 (ja) 2001-11-22 2008-04-02 日立マクセル株式会社 リチウム含有複合酸化物およびそれを用いた非水二次電池
JP3835266B2 (ja) 2001-11-29 2006-10-18 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質およびその製造方法
TW565961B (en) 2001-11-30 2003-12-11 Sanyo Electric Co Nonaqueous electrolyte secondary battery and its manufacturing method
JP4111806B2 (ja) 2001-11-30 2008-07-02 三洋電機株式会社 非水電解質二次電池及びその製造方法
JP2004006264A (ja) 2002-04-17 2004-01-08 Shin Kobe Electric Mach Co Ltd リチウム二次電池
KR100437339B1 (ko) 2002-05-13 2004-06-25 삼성에스디아이 주식회사 전지용 활물질의 제조방법 및 그로부터 제조되는 전지용활물질
JP2004047448A (ja) * 2002-05-20 2004-02-12 Nichia Chem Ind Ltd 非水電解液二次電池用正極活物質
JP4873830B2 (ja) 2002-10-04 2012-02-08 三菱化学株式会社 リチウム二次電池用負極材料、並びに、このリチウム二次電池用負極材料を用いた負極及びリチウム二次電池
JP4868703B2 (ja) 2002-10-31 2012-02-01 三菱化学株式会社 リチウム二次電池用正極材料の添加剤、リチウム二次電池用正極材料、並びに、このリチウム二次電池用正極材料を用いた正極及びリチウム二次電池
US7316862B2 (en) 2002-11-21 2008-01-08 Hitachi Maxell, Ltd. Active material for electrode and non-aqueous secondary battery using the same
JP4427314B2 (ja) 2002-12-20 2010-03-03 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質及びその製造方法、それを用いた非水系電解質二次電池およびその製造方法
EP1434288B1 (en) 2002-12-20 2007-02-28 Toyota Jidosha Kabushiki Kaisha Active material for positive electrode for non-aqueous electrolyte secondary battery and method of manufacturing the same
TWI279019B (en) 2003-01-08 2007-04-11 Nikko Materials Co Ltd Material for lithium secondary battery positive electrode and manufacturing method thereof
JP2004227790A (ja) 2003-01-20 2004-08-12 Nichia Chem Ind Ltd 非水電解液二次電池用正極活物質
JP2004253169A (ja) 2003-02-18 2004-09-09 Ngk Insulators Ltd リチウム二次電池及びそれに用いる正極活物質の製造方法
DE602004017798D1 (de) 2003-02-21 2009-01-02 Toyota Motor Co Ltd Aktives Material für die positive Elektrode einer Sekundärbatterie mit nichtwässrigem Elektrolyt
JP4427351B2 (ja) 2003-02-21 2010-03-03 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質および非水系電解質二次電池
KR100629129B1 (ko) 2003-03-14 2006-09-27 세이미 케미칼 가부시끼가이샤 리튬 2차 전지용 양극활물질 분말
NZ538480A (en) 2003-04-17 2007-12-21 Seimi Chem Kk Lithium-nickel-cobalt-manganese containing composite oxide, material for positive electrode active material for lithium secondary battery, and methods for producing these
JP4742517B2 (ja) 2003-05-08 2011-08-10 三菱化学株式会社 積層体および積層体の製造方法
EP2485306A1 (en) 2003-05-13 2012-08-08 Mitsubishi Chemical Corporation Layered lithium nickel composite oxide powder and process for producing the same
JP2007214138A (ja) 2003-05-13 2007-08-23 Mitsubishi Chemicals Corp リチウム二次電池正極材料用層状リチウムニッケル系複合酸化物粉体及びその製造方法、リチウム二次電池用正極並びにリチウム二次電池
JP2004355824A (ja) 2003-05-27 2004-12-16 Sumitomo Metal Mining Co Ltd 非水系二次電池用正極活物質および正極
JP4299065B2 (ja) 2003-06-19 2009-07-22 株式会社クレハ リチウム二次電池用正極材およびその製造方法
JP2005044743A (ja) 2003-07-25 2005-02-17 Nichia Chem Ind Ltd 非水電解液二次電池用正極活物質および非水電解液二次電池
JP2005056602A (ja) 2003-08-05 2005-03-03 Seimi Chem Co Ltd リチウム二次電池用正極活物質粉末およびその評価方法
JP4216669B2 (ja) 2003-08-07 2009-01-28 日鉱金属株式会社 リチウム・ニッケル・マンガン・コバルト複合酸化物並びにそれを正極活物質として用いたリチウムイオン二次電池
JP2005060162A (ja) 2003-08-11 2005-03-10 Sumitomo Metal Mining Co Ltd リチウムマンガンニッケル複合酸化物の製造方法、およびそれを用いた非水系電解質二次電池用正極活物質
JP2005075691A (ja) 2003-09-01 2005-03-24 Mikuni Color Ltd リチウムマンガン複合酸化物粒子、その製造方法並びにそれを用いた二次電池用正極及び二次電池
JP4850405B2 (ja) 2003-11-27 2012-01-11 パナソニック株式会社 リチウムイオン二次電池及びその製造方法
US20050118502A1 (en) 2003-11-27 2005-06-02 Matsushita Electric Industrial Co., Ltd. Energy device and method for producing the same
JP4100341B2 (ja) 2003-12-26 2008-06-11 新神戸電機株式会社 リチウム二次電池用正極材料及びそれを用いたリチウム二次電池
JP2005225734A (ja) 2004-02-16 2005-08-25 Nippon Chem Ind Co Ltd フッ素含有リチウムコバルト系複合酸化物及びその製造方法
JP2005235624A (ja) 2004-02-20 2005-09-02 Japan Storage Battery Co Ltd 非水電解液二次電池の製造方法
KR100560492B1 (ko) 2004-02-25 2006-03-13 삼성에스디아이 주식회사 리튬 이차 전지용 양극 전류 집전체 및 이를 포함하는리튬 이차 전지
JP4540041B2 (ja) 2004-03-08 2010-09-08 株式会社Gsユアサ 非水電解質二次電池
JP4916094B2 (ja) 2004-03-30 2012-04-11 Jx日鉱日石金属株式会社 リチウムイオン二次電池正極材料用前駆体とその製造方法並びにそれを用いた正極材料の製造方法
JP3983745B2 (ja) 2004-03-31 2007-09-26 三井金属鉱業株式会社 リチウム電池用リチウム遷移金属酸化物
JP4766840B2 (ja) 2004-04-12 2011-09-07 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質および非水系電解質二次電池
JP4504074B2 (ja) 2004-04-15 2010-07-14 株式会社東芝 非水電解質電池用正極活物質、正極及び非水電解質電池
KR100946610B1 (ko) 2004-04-27 2010-03-09 미쓰비시 가가꾸 가부시키가이샤 리튬 이차 전지의 양극 재료용 층상 리튬 니켈 망간코발트계 복합 산화물의 분말 및 그 제조방법과, 그것을사용한 리튬 이차 전지용 양극, 및 리튬 이차 전지
JP4617717B2 (ja) 2004-05-12 2011-01-26 三菱化学株式会社 リチウム遷移金属複合酸化物及びその製造方法と、リチウム二次電池用正極並びにリチウム二次電池
JP2005327644A (ja) * 2004-05-17 2005-11-24 Shin Kobe Electric Mach Co Ltd リチウム二次電池用正極材の製造方法、正極材及びリチウム二次電池
JP2005332707A (ja) 2004-05-20 2005-12-02 Toshiba Corp 非水電解質電池用正極及び非水電解質電池
JP2005347134A (ja) 2004-06-04 2005-12-15 Sumitomo Metal Mining Co Ltd リチウムイオン二次電池用正極活物質の製造方法
JP5021892B2 (ja) * 2004-06-17 2012-09-12 Jx日鉱日石金属株式会社 リチウムイオン二次電池正極材料用前駆体とその製造方法並びにそれを用いた正極材料の製造方法
JP4954451B2 (ja) 2004-07-05 2012-06-13 株式会社クレハ リチウム二次電池用正極材およびその製造方法
JP2006054159A (ja) 2004-07-15 2006-02-23 Sumitomo Metal Mining Co Ltd 非水系二次電池用正極活物質およびその製造方法
JP4997693B2 (ja) 2004-10-01 2012-08-08 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質およびこれを用いた非水系電解質二次電池およびその製造方法
JP4595475B2 (ja) 2004-10-01 2010-12-08 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質およびこれを用いた非水系電解質二次電池およびその製造方法
JP2006127923A (ja) 2004-10-29 2006-05-18 Shin Kobe Electric Mach Co Ltd リチウム二次電池用の正極活物質及びリチウム二次電池
JP2006127955A (ja) 2004-10-29 2006-05-18 Sumitomo Metal Mining Co Ltd 非水系二次電池用正極活物質およびその製造方法
KR100578447B1 (ko) 2004-11-04 2006-05-10 한규승 자가혼합 공융법을 이용한 고출력 리튬2차전지용 결정질나노미립자 양극 활물질의 제조방법
JP4752244B2 (ja) 2004-11-09 2011-08-17 三菱化学株式会社 リチウム二次電池正極材料用層状リチウムニッケルマンガン系複合酸化物粉体及びそれを用いたリチウム二次電池正極、並びにリチウム二次電池
JP2006156126A (ja) 2004-11-29 2006-06-15 Sumitomo Metal Mining Co Ltd 非水系二次電池用正極活物質およびその製造方法
JP2006156235A (ja) 2004-11-30 2006-06-15 Sony Corp 負極および電池
JP4582579B2 (ja) 2004-12-07 2010-11-17 Agcセイミケミカル株式会社 リチウム二次電池用正極材料
JP4593488B2 (ja) 2005-02-10 2010-12-08 昭和電工株式会社 二次電池用集電体、二次電池用正極、二次電池用負極、二次電池及びそれらの製造方法
JP4859487B2 (ja) 2005-03-09 2012-01-25 パナソニック株式会社 非水電解質二次電池
US20070298512A1 (en) 2005-04-13 2007-12-27 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US7648693B2 (en) 2005-04-13 2010-01-19 Lg Chem, Ltd. Ni-based lithium transition metal oxide
JP4854982B2 (ja) 2005-04-15 2012-01-18 Agcセイミケミカル株式会社 リチウム二次電池正極用のリチウム含有複合酸化物の製造方法
JP4824349B2 (ja) 2005-06-16 2011-11-30 パナソニック株式会社 リチウムイオン二次電池
CA2613182C (en) 2005-06-28 2014-04-15 Toda Kogyo Europe Gmbh Method for preparing inorganic compound having a single phase, hexagonal layered crystal structure that is free from cubic-spinel like phases
KR20070009447A (ko) 2005-07-14 2007-01-18 마츠시타 덴끼 산교 가부시키가이샤 리튬 2차 전지용 양극 및 이를 이용한 리튬 2차 전지
JP5032800B2 (ja) 2005-07-14 2012-09-26 パナソニック株式会社 リチウム二次電池用正極およびそれを用いたリチウム二次電池
CN100342569C (zh) 2005-07-15 2007-10-10 广州鸿森材料有限公司 回转炉煅烧合成锂离子电池正极材料的方法
JP2006019310A (ja) 2005-08-26 2006-01-19 Sumitomo Chemical Co Ltd 電池用活物質
JP4785482B2 (ja) 2005-09-28 2011-10-05 三洋電機株式会社 非水電解質二次電池
KR20220156102A (ko) 2005-10-20 2022-11-24 미쯔비시 케미컬 주식회사 리튬 2 차 전지 및 그것에 사용하는 비수계 전해액
JP5143568B2 (ja) 2005-12-20 2013-02-13 パナソニック株式会社 非水電解質二次電池
JP2007194202A (ja) 2005-12-20 2007-08-02 Sony Corp リチウムイオン二次電池
KR20070065803A (ko) 2005-12-20 2007-06-25 소니 가부시끼 가이샤 정극 활물질과 리튬 이온 2차 전지
JP5671775B2 (ja) 2006-01-27 2015-02-18 三菱化学株式会社 リチウムイオン二次電池
CN101426728B (zh) 2006-02-17 2012-10-03 株式会社Lg化学 锂金属复合氧化物和使用其的电化学装置
JP2007257890A (ja) 2006-03-20 2007-10-04 Nissan Motor Co Ltd 非水電解質リチウムイオン電池用正極材料およびこれを用いた電池
JP4996117B2 (ja) 2006-03-23 2012-08-08 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質およびその製造方法とそれを用いた非水系電解質二次電池
CN100502106C (zh) 2006-05-12 2009-06-17 盐光科技(嘉兴)有限公司 二次电池正极材料及制备方法
JP5228292B2 (ja) 2006-07-06 2013-07-03 東ソー株式会社 リチウム−ニッケル−マンガン−コバルト複合酸化物の製造方法。
US20080081258A1 (en) 2006-09-28 2008-04-03 Korea Electro Technology Research Institute Carbon-coated composite material, manufacturing method thereof, positive electrode active material, and lithium secondary battery comprising the same
JP2008103132A (ja) 2006-10-18 2008-05-01 Furukawa Sky Kk リチウムイオン電池の集電体用アルミニウム箔及びそれを用いたリチウムイオン電池
JP4287901B2 (ja) 2006-12-26 2009-07-01 株式会社三徳 非水電解質二次電池用正極活物質、正極及び二次電池
WO2008084679A1 (ja) 2006-12-28 2008-07-17 Agc Seimi Chemical Co., Ltd. リチウム含有複合酸化物及びその製造方法
JP2008181708A (ja) 2007-01-23 2008-08-07 Matsushita Electric Ind Co Ltd 非水電解質二次電池用電極の製造方法、非水電解質二次電池用電極、および非水電解質二次電池
JP2008192547A (ja) 2007-02-07 2008-08-21 Toyota Motor Corp 正電極板、電池、車両、電池搭載機器、正電極板の製造方法、および電池の製造方法
JP5303857B2 (ja) 2007-04-27 2013-10-02 株式会社Gsユアサ 非水電解質電池及び電池システム
JP5260887B2 (ja) 2007-05-09 2013-08-14 パナソニック株式会社 非水電解質二次電池
KR101159563B1 (ko) * 2007-07-19 2012-06-25 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 리튬 이온 전지용 리튬 망간 복합 산화물 및 그 제조 방법
JP5251332B2 (ja) 2007-07-30 2013-07-31 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質およびその製造方法、並びにこれを用いた非水系電解質二次電池
CN102769130A (zh) 2007-09-04 2012-11-07 三菱化学株式会社 锂过渡金属类化合物粉末
JP4883025B2 (ja) 2007-10-31 2012-02-22 ソニー株式会社 二次電池
JP5460329B2 (ja) 2007-11-01 2014-04-02 Agcセイミケミカル株式会社 リチウム二次電池正極活物質の原料用の遷移金属化合物造粒体の製造方法
JP5193189B2 (ja) 2007-11-01 2013-05-08 Agcセイミケミカル株式会社 リチウムイオン二次電池用正極活物質の製造方法
JP5489723B2 (ja) 2007-11-06 2014-05-14 パナソニック株式会社 非水電解質二次電池用正極活物質ならびにそれを用いた非水電解質二次電池
KR101017079B1 (ko) 2007-11-07 2011-02-25 한국과학기술연구원 전극활물질의 제조방법과 이에 의하여 제조된 전극활물질을포함하는 리튬전지
WO2009063838A1 (ja) * 2007-11-12 2009-05-22 Gs Yuasa Corporation リチウム二次電池用活物質、リチウム二次電池及びその製造方法
JP5213103B2 (ja) 2007-12-19 2013-06-19 日立マクセル株式会社 非水電解質二次電池用正極、非水電解質二次電池および電子機器
JP2009224307A (ja) 2008-02-22 2009-10-01 Sanyo Electric Co Ltd 非水電解質二次電池及びその製造方法
JP5669068B2 (ja) * 2008-04-17 2015-02-12 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、二次電池用正極及びリチウムイオン電池
JP5359140B2 (ja) 2008-05-01 2013-12-04 三菱化学株式会社 リチウム遷移金属系化合物粉体、その製造方法並びに、それを用いたリチウム二次電池用正極及びリチウム二次電池
JP2009277597A (ja) 2008-05-16 2009-11-26 Panasonic Corp 非水電解質二次電池
JP5451228B2 (ja) 2008-07-25 2014-03-26 三井金属鉱業株式会社 層構造を有するリチウム遷移金属酸化物
JP5231171B2 (ja) 2008-10-30 2013-07-10 パナソニック株式会社 非水電解質二次電池用正極活物質およびその製造方法
KR20100060362A (ko) 2008-11-27 2010-06-07 주식회사 에너세라믹 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
JP2010126422A (ja) 2008-11-28 2010-06-10 Panasonic Corp リチウム含有複合酸化物の製造方法および非水系二次電池
CN101478044B (zh) 2009-01-07 2012-05-30 厦门钨业股份有限公司 锂离子二次电池多元复合正极材料及其制备方法
JP5195499B2 (ja) 2009-02-17 2013-05-08 ソニー株式会社 非水電解質二次電池
EP2416411B1 (en) 2009-03-31 2020-02-26 JX Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery
CN102203988A (zh) 2009-04-03 2011-09-28 松下电器产业株式会社 锂离子二次电池用正极活性物质及其制造方法以及锂离子二次电池
JP5490458B2 (ja) 2009-07-13 2014-05-14 日本化学工業株式会社 リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池
JP5401211B2 (ja) 2009-08-21 2014-01-29 日清エンジニアリング株式会社 二次電池用正極材料の製造方法
JP2011076797A (ja) 2009-09-29 2011-04-14 Sanyo Electric Co Ltd 非水電解質二次電池
JP2011113792A (ja) 2009-11-26 2011-06-09 Nippon Chem Ind Co Ltd リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池
EP2515364A1 (en) 2009-12-18 2012-10-24 JX Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
KR20120061943A (ko) 2009-12-22 2012-06-13 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 리튬 이온 전지용 정극 활물질, 리튬 이온 전지용 정극 및 그것을 사용한 리튬 이온 전지, 그리고 리튬 이온 전지용 정극 활물질 전구체
WO2011096525A1 (ja) 2010-02-05 2011-08-11 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
CN102804461B (zh) 2010-02-05 2016-03-02 Jx日矿日石金属株式会社 锂离子电池用正极活性物质、锂离子电池用正极和锂离子电池
JPWO2011108653A1 (ja) 2010-03-04 2013-06-27 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
CN102782911B (zh) 2010-03-04 2015-06-24 Jx日矿日石金属株式会社 锂离子电池用正极活性物质、锂离子电池用正极及锂离子电池
TWI423505B (zh) 2010-03-04 2014-01-11 Jx Nippon Mining & Metals Corp A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
KR101450422B1 (ko) 2010-03-04 2014-10-13 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 리튬 이온 전지용 정극 활물질, 리튬 이온 전지용 정극, 및 리튬 이온 전지
TWI424606B (zh) 2010-03-04 2014-01-21 Jx Nippon Mining & Metals Corp A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
EP2544273A4 (en) 2010-03-04 2014-06-25 Jx Nippon Mining & Metals Corp POSITIVE ACTIVE ELECTRODE MATERIAL FOR LITHIUM ION BATTERIES, POSITIVE ELECTRODE FOR LITHIUM ION BATTERIES AND LITHIUM ION BATTERY
CN102754255B (zh) 2010-03-04 2014-11-05 Jx日矿日石金属株式会社 锂离子电池用正极活性物质、锂离子电池用正极及锂离子电池
JP5843753B2 (ja) 2010-03-04 2016-01-13 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
KR101430843B1 (ko) 2010-03-04 2014-08-18 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 리튬 이온 전지용 정극 활물질, 리튬 이온 전지용 정극, 및 리튬 이온 전지
CN104600291B (zh) 2010-03-04 2017-05-10 Jx日矿日石金属株式会社 锂离子电池用正极活性物质、锂离子电池用正极及锂离子电池
WO2011108720A1 (ja) 2010-03-05 2011-09-09 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及びリチウムイオン電池
WO2011122448A1 (ja) 2010-03-29 2011-10-06 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質の前駆体、ならびに該正極活物質を用いた非水系電解質二次電池
CN105514420A (zh) 2010-12-03 2016-04-20 Jx日矿日石金属株式会社 锂离子电池用正极活性物质、锂离子电池用正极及锂离子电池
WO2012098724A1 (ja) 2011-01-21 2012-07-26 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質の製造方法及びリチウムイオン電池用正極活物質
JP6016329B2 (ja) 2011-02-16 2016-10-26 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極及びリチウムイオン電池
TWI468367B (zh) 2011-03-29 2015-01-11 Jx Nippon Mining & Metals Corp Production method of positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
JP6023587B2 (ja) 2011-03-29 2016-11-09 Jx金属株式会社 リチウムイオン電池用正極活物質の製造方法
WO2012133434A1 (ja) 2011-03-31 2012-10-04 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP5812682B2 (ja) 2011-05-19 2015-11-17 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質及びその製造方法
JP6292738B2 (ja) 2012-01-26 2018-03-14 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP6292739B2 (ja) 2012-01-26 2018-03-14 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP6159514B2 (ja) 2012-09-19 2017-07-05 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
CN104335396B (zh) 2012-09-28 2018-01-05 Jx日矿日石金属株式会社 锂离子电池用正极活性物质、锂离子电池用正极和锂离子电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10188986A (ja) * 1996-12-27 1998-07-21 Toyota Central Res & Dev Lab Inc リチウム二次電池用正極活物質の製造方法
JP2001110420A (ja) * 1999-10-13 2001-04-20 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質の製造方法および該方法により得られた非水系電解質二次電池用正極活物質
JP2001148249A (ja) * 1999-11-19 2001-05-29 Chuo Denki Kogyo Co Ltd リチウム二次電池用正極活物質材料とリチウム二次電池
JP2003151546A (ja) * 2001-11-08 2003-05-23 Nichia Chem Ind Ltd リチウムイオン二次電池用正極活物質及びその製造方法
JP2004193115A (ja) * 2002-11-27 2004-07-08 Nichia Chem Ind Ltd 非水電解質二次電池用正極活物質および非水電解質二次電池
JP2007280723A (ja) * 2006-04-05 2007-10-25 Hitachi Metals Ltd リチウム二次電池用の正極活物質の製造方法、リチウム二次電池用の正極活物質及びそれを用いた非水系リチウム二次電池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120258366A1 (en) * 2011-04-08 2012-10-11 Yu Dong-Hwan Positive active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery including same
US10177377B2 (en) * 2011-04-08 2019-01-08 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery including same
JP2015056382A (ja) * 2013-09-13 2015-03-23 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
WO2023127290A1 (ja) * 2021-12-27 2023-07-06 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質

Also Published As

Publication number Publication date
EP2518802A1 (en) 2012-10-31
TW201125197A (en) 2011-07-16
KR20120061943A (ko) 2012-06-13
CN102668185B (zh) 2015-07-08
JP6285089B2 (ja) 2018-02-28
TWI459618B (zh) 2014-11-01
US20130221271A1 (en) 2013-08-29
US20150123029A1 (en) 2015-05-07
EP2518802A4 (en) 2014-11-26
US9263732B2 (en) 2016-02-16
JPWO2011077932A1 (ja) 2013-05-02
US20120231343A1 (en) 2012-09-13
CN102668185A (zh) 2012-09-12
EP2518802B1 (en) 2020-11-25

Similar Documents

Publication Publication Date Title
JP6285089B2 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極及びそれを用いたリチウムイオン電池、並びに、リチウムイオン電池用正極活物質前駆体
JP7176412B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
JP5505608B2 (ja) 非水電解質二次電池用Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
JP5817143B2 (ja) 正極活物質前駆体粒子粉末及び正極活物質粒子粉末、並びに非水電解質二次電池
JP5712544B2 (ja) 正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池
JP5973167B2 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極及びそれを用いたリチウムイオン電池
WO2016068263A1 (ja) ニッケル含有複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
WO2011065464A1 (ja) 非水電解質二次電池用正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池
JP6533734B2 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極及びリチウムイオン電池
TW201308732A (zh) 正極活性物質粒子粉末及其製造方法,以及非水電解質蓄電池
US11594726B2 (en) Positive electrode active material for lithium ion secondary battery, method for manufacturing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP2015122299A (ja) 非水系電解質二次電池用正極活物質の製造方法、非水系電解質二次電池用正極活物質及びこれを用いた非水系電解質二次電池
JP6438297B2 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP7238880B2 (ja) 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
JP7245422B2 (ja) 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
JPWO2012066638A1 (ja) 正極活物質及びその製造方法、並びにこれを用いたリチウム二次電池
JP6619832B2 (ja) リチウムイオン電池用酸化物系正極活物質、リチウムイオン電池用酸化物系正極活物質の前駆体の製造方法、リチウムイオン電池用酸化物系正極活物質の製造方法、リチウムイオン電池用正極及びリチウムイオン電池
WO2019087717A1 (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、リチウムイオン二次電池、電子機器及び車両
KR102533325B1 (ko) 리튬 전이 금속 복합 산화물 및 제조 방법
JP7238881B2 (ja) 金属複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池
JP4519959B2 (ja) リチウム二次電池用正極材料
JP7192397B2 (ja) リチウム-コバルト-マンガン系複合酸化物及びこれを含むリチウム二次電池
JP2016184473A (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極及びリチウムイオン電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080052147.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839166

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011547446

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127008144

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13508887

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010839166

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE