[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2963367A1 - Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft mit variablem Energieverbrauch - Google Patents

Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft mit variablem Energieverbrauch Download PDF

Info

Publication number
EP2963367A1
EP2963367A1 EP14002307.8A EP14002307A EP2963367A1 EP 2963367 A1 EP2963367 A1 EP 2963367A1 EP 14002307 A EP14002307 A EP 14002307A EP 2963367 A1 EP2963367 A1 EP 2963367A1
Authority
EP
European Patent Office
Prior art keywords
pressure
compressor
air
compressed
stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14002307.8A
Other languages
English (en)
French (fr)
Inventor
Dimitri Goloubev
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to EP14002307.8A priority Critical patent/EP2963367A1/de
Priority to RU2017103099A priority patent/RU2691210C2/ru
Priority to EP15733625.6A priority patent/EP3164653A1/de
Priority to CN201580036844.4A priority patent/CN106662394B/zh
Priority to PCT/EP2015/001285 priority patent/WO2016005031A1/de
Priority to EP15735849.0A priority patent/EP3164654B1/de
Priority to RU2017103309A priority patent/RU2690550C2/ru
Priority to CN201580036802.0A priority patent/CN106489059B/zh
Priority to US15/322,740 priority patent/US10215489B2/en
Priority to PCT/EP2015/001284 priority patent/WO2016005030A1/de
Priority to US15/322,468 priority patent/US10458702B2/en
Priority to TW104121752A priority patent/TW201607599A/zh
Priority to TW104121751A priority patent/TW201607598A/zh
Publication of EP2963367A1 publication Critical patent/EP2963367A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04024Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/0403Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04175Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/042Division of the main heat exchange line in consecutive sections having different functions having an intermediate feed connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04339Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air
    • F25J3/04345Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • F25J2240/42Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen

Definitions

  • the invention relates to a method and apparatus for variable recovery of a compressed gas product by cryogenic separation of air.
  • the distillation column system of such a system can be designed as a two-column system (for example as a classic Linde double column system), or as a three or more column system. It may in addition to the columns for nitrogen-oxygen separation, further devices for obtaining highly pure products and / or other air components, in particular of noble gases have, for example, an argon production and / or a krypton-xenon recovery.
  • a product stream brought to liquid pressure is vaporized against a heat carrier and finally recovered as an internally compressed compressed gas product.
  • This method is also called internal compression. It serves to obtain gaseous printed product.
  • the product stream is then "pseudo-evaporated".
  • the product stream may be, for example, an oxygen product from the low-pressure column of a two-column system or a nitrogen product from the high-pressure column of a two-column system or from the liquefaction space of a main condenser via which the high-pressure column and low-pressure column are in heat-exchanging connection
  • a high-pressure heat carrier is liquefied (or pseudo-liquefied when it is under supercritical pressure).
  • the heat transfer medium is frequently replaced by a part of Air formed, in the present case of the "second partial flow" of the compressed feed air.
  • EP 1139046 A1 EP 1146301 A1 .
  • DE 10213212 A1 DE 10213211 A1 .
  • EP 1357342 A1 or DE 10238282 A1 DE 10302389 A1 .
  • DE 10332863 A1 EP 1544559 A1 .
  • EP 1666824 A1 EP 1672301 A1 .
  • DE 102005028012 A1 .
  • WO 2007033838 A1 WO 2007104449 A1 .
  • EP 1845324 A1 is
  • the invention relates to systems in which all of the feed air is at a pressure well above the highest distillation pressure prevailing inside the columns of the distillation column system (normally, this compresses the high pressure column pressure.)
  • Such systems are also referred to as HAP processes
  • the "first pressure”, ie the outlet pressure of the main air compressor (MAC), in which the total air is compressed, is for example more than 4 bar, in particular 6 to 16 bar above that absolutely, the "first pressure” is, for example, between 17 and 25 bar.
  • the main air compressor is regularly the only external-energy-driven machine for compressing air.
  • a "single machine” is understood here to mean a single-stage or multistage compressor whose stages are all connected to the same drive, all stages being accommodated in the same housing or connected to the same gear.
  • MAC-BAC processes in which the air in the main air compressor is compressed to a relatively low total air pressure, for example the operating pressure of the high-pressure column (plus line losses). Part of the air from the main air compressor is compressed to a higher pressure in an external energy driven air booster (BAC).
  • BAC external energy driven air booster
  • This higher pressure air component (often called the choke flow) provides the majority of the heat required for (pseudo) evaporation of the internally compressed product in the main heat exchanger. It is depressurised downstream of the main air compressor in a throttle valve or in a liquid turbine (DLE) to the pressure required in the distillation column system.
  • DLE liquid turbine
  • the invention has for its object to provide a method and a corresponding device, which combine the advantages of HAP method with a flexibility, as is similar in MAC-BAC method known.
  • "Flexibility" is understood here in particular that the system can be operated not only energetically favorable at a certain production amount of internally compressed product, but in a relatively wide load range at approximately constant low specific energy consumption. In particular, the production of other air separation products should remain the same or at least change less than the product quantity of the internal compaction product.
  • a portion of the feed air amount or a nitrogen-enriched process stream bypasses the low pressure column or the entire distillation column system, respectively. This amount then does not participate in the production of the first product stream, but can still be passed through the first turbine, so as to produce enough cold or to supply enough energy into the system to maintain liquid production, or at least relatively less as the amount of the first print production.
  • a low-pressure GAN compressor is provided as a nitrogen product compressor in the process, for example because of large amounts of nitrogen product, this can be relieved by interim feeding of pressure GAN from the high-pressure column.
  • this pressure GAN is fed into the nitrogen product compressor at an appropriate point (for example after the second or third compressor stage).
  • the proportion of low-pressure GAN (the amount of gas to be compressed from approximately atmospheric pressure to approximately 5 bar) can be correspondingly reduced.
  • the second process stream can also be mixed with the first process stream at the inlet of a nitrogen product compressor. In many cases, however, it is favorable if the mixing of the second with the first process stream or the fourth with the second process stream is carried out at an intermediate stage of the multistage compressor or the nitrogen product compressor.
  • an oxygen gas stream may be withdrawn from the lower region of the low pressure column, mixed with a nitrogen-enriched stream from the top of the low pressure column, and the mixture heated in the main heat exchanger.
  • a second air turbine can be used, wherein a third part of the stream compressed in the main air compressor feed air is cooled to an intermediate temperature in a main heat exchanger and expanded work in the second air turbine and at least a first part of the working expanded third partial flow in the Distillation column system is initiated.
  • the second part-stream of the feed air compressed in the main air compressor can be cooled to an intermediate temperature in the main heat exchanger, be recompressed to a third pressure that is higher than the first pressure in a second after-compressor, operated as a cold compressor and driven by the second turbine, cooled in the main heat exchanger, (pseudo) liquefied and then released and introduced into the distillation column system.
  • a second after-compressor operated as a cold compressor and driven by the second turbine
  • cooled in the main heat exchanger cooled in the main heat exchanger, (pseudo) liquefied and then released and introduced into the distillation column system.
  • a fourth substream of the compressed air in the main air compressor can be cooled below the first pressure in the main heat exchanger and then released and introduced into the distillation column system.
  • the third partial flow is relaxed in the second air turbine to a pressure which is at least 1 bar higher than the operating pressure of the high-pressure column, and the working expanded third partial stream in the main heat exchanger further cooled and then depressurized and introduced into the distillation column system.
  • a third throttle flow of the heat exchange process in the main heat exchanger is further optimized.
  • the amount of feed air in the cold box is "artificially" raised, that is, more air is driven into the cryogenic part of the system than is necessary to obtain the specified for this operating case pressure oxygen products. If one moves the feed air in the "excess", the pressure at the compressor outlet can be reduced, since the energy supply for the (Pseudo-) evaporation of the GOXIV product is then done not with the air pressure, but with the amount of air.
  • the first partial flow of the feed air compressed in the main air compressor is recompressed upstream of its introduction into the main heat exchanger in a first after-compressor which is operated warm and in particular is driven by the first turbine.
  • the inlet pressure of the first turbine is significantly higher than the first pressure to which the total air is compressed.
  • the air for the second turbine is not recompressed, that is, its inlet pressure is at the lower level of the first pressure.
  • the invention also relates to a device according to claim 13.
  • the device according to the invention can be supplemented by device features which correspond to the features of the dependent method claims.
  • the "means for switching between a first and a second mode of operation" are complex control devices which, in conjunction, enable at least partial automatic switching between the two modes of operation, for example by means of a suitably programmed operational control system.
  • Atmospheric air is drawn in via a filter 1 from a main air compressor 2.
  • the main air compressor has five stages in the example and compresses the total air flow to a "first pressure" of for example 22 bar.
  • the total air flow 3 downstream of the main air compressor 2 is cooled under the first pressure in a pre-cooling 4.
  • the pre-cooled total air flow 5 is purified in a cleaning device 6, which is formed in particular by a pair of switchable molecular sieve adsorber.
  • the purified total air flow 7 is recompressed to a first part 8 in a hot air compressor 9 with aftercooler 10 to a second pressure of, for example, 28 bar and then into a "first partial flow” 11 (first turbine air flow) and a "second partial flow” 12 (FIG. first inductor current) divided.
  • the first partial flow 11 is cooled in a main heat exchanger 13 to a first intermediate temperature.
  • the cooled first partial flow 14 is expanded in a first air turbine 15 from the second pressure to about 5.5 bar to perform work.
  • the first air turbine 15 drives the warm air compressor 9.
  • the work-performing relaxed first partial flow 16 is introduced in a separator (phase separator) 17.
  • the liquid portion 18 is introduced via lines 19 and 20 into the low-pressure column 22 of the distillation column system.
  • the distillation column system comprises a high-pressure column 21, the low-pressure column 22 and a main condenser 23 and a conventional argon production 24 with crude argon column 25 and pure argon column 26.
  • the main condenser 23 is designed as a condenser-evaporator, in the concrete Example as a cascade evaporator.
  • the operating pressure at the top of the high pressure column is in the example 5.3 bar, the one at the top of the low pressure column 1.35 bar.
  • the second partial stream 12 of the feed air is cooled in the main heat exchanger 13 to a second intermediate temperature, which is higher than the first intermediate temperature, fed via line 27 to a cold compressor 28 and there recompressed to a "third pressure" of about 40 bar.
  • the recompressed second partial stream 29 is at a third intermediate temperature, which is higher than the second intermediate temperature, again introduced into the main heat exchanger 13 and cooled there to the cold end.
  • the cold second partial stream 30 is expanded in a throttle valve 31 to approximately the operating pressure of the high-pressure column and fed via line 32 to the high-pressure column 21.
  • a part 33 is removed again, cooled in a supercooling countercurrent 34 and fed via the lines 35 and 20 in the low-pressure column 22.
  • a "third substream" 36 of the feed air is introduced under the first pressure in the main heat exchanger 13 and cooled there to a fourth intermediate temperature, which is slightly lower than the first intermediate temperature in the example.
  • the cooled third partial flow 37 is expanded in a second air turbine 37 from the first pressure to about high-pressure column pressure to perform work.
  • the second air turbine 38 drives the cold compressor 28.
  • the working expanded third partial stream 39 is supplied via line 40 of the high-pressure column 21 at the bottom.
  • a "fourth partial flow” 41 (second throttle flow) flows through the main heat exchanger 13 from the hot to the cold end under the first pressure.
  • the cold fourth partial stream 42 is expanded in a throttle valve 43 to approximately the operating pressure of the high-pressure column and fed via line 32 to the high-pressure column 21.
  • the oxygen-enriched bottom liquid of the high pressure column 21 is cooled in the subcooling countercurrent 34 and introduced via line 45 into the optional argon recovery 24. Resulting vapor 46 and remaining liquid 47 are fed into the low-pressure column 22.
  • a first part 49 of the top nitrogen 48 of the high pressure column 21 is in the liquefaction space of the main condenser 23 against evaporating in the evaporation space liquid oxygen from the bottom of the low pressure column completely or substantially completely liquefied.
  • a first part 51 of the liquid nitrogen 51 produced in this process is introduced as reflux to the high-pressure column 21.
  • a second part 52 is cooled in the subcooling countercurrent 34, fed via line 53 into the low pressure column 22. At least a portion of the liquid low pressure nitrogen 53 serves as reflux in the low pressure column 21; another part 54 can be obtained as liquid nitrogen product (LIN).
  • gaseous low-pressure nitrogen 55 is withdrawn, warmed in the supercooling countercurrent 34 and in the main heat exchanger 13.
  • the warm low-pressure nitrogen 56 is compressed in a two-section nitrogen product compressor (57, 59) with intermediate and after-cooling (58, 60) to the desired product pressure, which in the example is 12 bar.
  • the first section 57 of the nitrogen product compressor consists for example of two or three stages with associated aftercoolers; the second section 59 has at least one step and is preferably also intermediate and post-cooled.
  • gaseous impurity nitrogen 55 is withdrawn, warmed in the subcooling countercurrent 34 and the main heat exchanger 13.
  • the warm impure nitrogen 62 may be vented (63) into the atmosphere (ATM) and / or used as the regeneration gas 64 for the purifier 6.
  • the lines 67 and 68 connect the low-pressure column 21 with the crude argon column 25 of argon recovery 24th
  • a first portion 70 of the liquid oxygen 69 from the bottom of the low-pressure column 21 is withdrawn as the "first product stream", brought to a "first product pressure” of, for example, 37 bar in an oxygen pump 71 and vaporized under the first product pressure in the main heat exchanger 13 and finally via line 72 as "first compressed gas product” (GOX IC - compressed gas internal oxygen) won.
  • a second portion 73 of the liquid oxygen 69 from the bottom of the low-pressure column 21 is optionally cooled in the subcooling countercurrent 34 and recovered via line 74 as a liquid oxygen product (LOX).
  • LOX liquid oxygen product
  • a third part 75 of the liquid nitrogen 50 from the high-pressure column 21 and the main condenser 23 is also subjected to internal compression by being brought in a nitrogen pump 76 to a second product pressure of 37 bar, for example, under the second product pressure in the main heat exchanger 13 pseudo and finally recovered via line 77 as internally compressed gaseous nitrogen pressure product (GAN IC).
  • GAN IC internally compressed gaseous nitrogen pressure product
  • a second part 78 of the gaseous top nitrogen 48 of the high-pressure column 21 is warmed in the main heat exchanger and recovered via line 79 either as a gaseous medium pressure product or - as shown - used as a sealing gas (seal gas) for one or more of the illustrated process pumps.
  • a lower oxygen production (for example 75%) may then be considered a "second mode of operation".
  • part of the gaseous portion 17 of the work-performing expanded first partial flow 16 is returned as "second process stream" via the lines 65, 66 through the main heat exchanger to an intermediate stage of the main air compressor 2.
  • the recirculation flow between the second and the third stage and between the third and fourth stage of the main air compressor is added to the feed air.
  • This feed air is in the first variant of the invention, the "first process stream".
  • a 95% operation could be considered a "first mode of operation”.
  • a “second mode of operation” is then achieved, for example, with an oxygen production of 90% of the design value.
  • the recirculation quantity in the table refers to the current air volume through filter 1. All percentages here and in the rest of the text refer to molar quantities, unless stated otherwise.
  • FIG. 2 an embodiment of the second variant of the invention is shown. It is different from FIG. 1 by the following features.
  • the corresponding amount of nitrogen 180 from the high pressure column is not condensed in the main condenser 23 and not introduced into the low pressure column. As a result, it does not participate in the rectification in the low-pressure column (neither indirectly via the evaporation of the sump oxygen, nor directly by use as reflux liquid) and thereby enables the reduction of oxygen production. At the same time, the same amount of air (or only slightly less) is available for refrigeration and nitrogen production.
  • FIG. 1 The flexibility of the method can be further increased by the optional measure described below (which basically also applies to the first variant) FIG. 1 can be used).
  • gaseous oxygen 181 is withdrawn from the low pressure column and with the gaseous impurity nitrogen 61 mixed from the low pressure column.
  • the mixing takes place in the example downstream of the subcooling countercurrent 34.
  • the conduit 181 is closed or less gas is supplied via conduit 181.
  • the following table shows example numerical values of two different operating modes of the system FIG. 2 at: GOX IC amount 72 Air volume through main air compressor 2 Amount of nitrogen through line 180 Amount of oxygen through line 181 100% 100% 0% 0% 76% 83% 5% 0%
  • the amount of nitrogen through line 180 refers to the amount of air through filter 1 in the design case.
  • FIG. 3 differs from FIG. 1 through a third inductor current.
  • the second turbine 38 is operated with a relatively large outlet pressure and a relatively high outlet temperature.
  • the work-expanded turbine stream 339 then has a pressure which is at least 1 bar, in particular 4 to 11 bar above the operating pressure of the high-pressure column, and a temperature which is at least 10 K, in particular 20 to 60 K above the inlet temperature of the low-pressure nitrogen streams 55 , 61 is located at the cold end of the main heat exchanger.
  • This stream is then further cooled in the cold part of the main heat exchanger.
  • the further cooled third partial flow 340 is expanded as a third throttle flow in a throttle valve 341 to about high-pressure column pressure and introduced via line 32 into the high-pressure column.
  • the heat exchange process in the main heat exchanger can be further optimized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Das Verfahren und die Vorrichtung dienen zur variablen Gewinnung eines Druckgasprodukts (72; 73) mittels Tieftemperaturzerlegung von Luft in einem Destillationssäulen-System, das eine Hochdrucksäule (21) und eine Niederdrucksäule (22) aufweist. Die gesamte Einsatzluft wird in einem Hauptluftverdichter (2) auf einen ersten Druck verdichtet, der mindestens 4 bar höher als der Betriebsdruck der Hochdrucksäule (21) ist. Ein erster Teilstrom (8, 11, 14) der im Hauptluftverdichter (2) verdichteten Einsatzluft (7) wird in einem Hauptwärmetauscher (13) auf eine Zwischentemperatur abgekühlt und in einer ersten Luftturbine (15) arbeitsleistend entspannt und in das Destillationssäulen-System eingeleitet (40; 18, 19, 20). Ein zweiter Teilstrom (12, 27, 29, 30) der im Hauptluftverdichter (2) verdichteten Einsatzluft wird in einem ersten Nachverdichter (9) nachverdichtet, in dem Hauptwärmetauscher (13) abgekühlt und anschließend entspannt (31) und in das Destillationssäulen-System eingeleitet. Ein erster Produktstrom (69; 75) wird flüssig aus dem Destillationssäulen-System entnommen, einer Druckerhöhung (71; 76) auf einen ersten Produktdruck unterworfen, im Hauptwärmetauscher (13) verdampft oder pseudo-verdampft und angewärmt und als erstes Druckgasprodukt (GOX IC; GAN IC) gewonnen. Ein erster Prozessstrom wird in einem mehrstufigen Verdichter (2; 57/59) von einem Eintrittsdruck auf einen Enddruck verdichtet. Mindestens zeitweise wird ein zweiter Prozessstrom (65; 180) stromabwärts der ersten Stufe des mehrstufigen Verdichters (2; 57/59) mit dem ersten Prozessstrom vermischt. In einem ersten Betriebsmodus wird eine erste Menge an erstem Druckgasprodukt gewonnen und in einem zweiten Betriebsmodus eine zweite, geringer Menge. In dem ersten Betriebsmodus wird einer erste Menge des zweiten Prozessstroms (65; 180), die auch Null sein kann, in dem mehrstufigen Verdichter (2; 57/59) verdichtet, im zweiten Betriebsmodus eine zweite, größere Menge.

Description

  • Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur variablen Gewinnung eines Druckgasprodukts mittels Tieftemperaturzerlegung von Luft.
  • Verfahren und Vorrichtungen zur Tieftemperaturzerlegung von Luft sind zum Beispiel aus Hausen/Linde, Tieftemperaturtechnik, 2. Auflage 1985, Kapitel 4 (Seiten 281 bis 337) bekannt.
  • Das Destillationssäulen-System einer solchen Anlage kann als Zwei-Säulen-System (zum Beispiel als klassisches Linde-Doppelsäulensystem) ausgebildet sein, oder auch als Drei- oder Mehr-Säulen-System. Es kann zusätzlich zu den Kolonnen zur Stickstoff-Sauerstoff-Trennung weitere Vorrichtungen zur Gewinnung hoch reiner Produkte und/oder anderer Luftkomponenten, insbesondere von Edelgasen aufweisen, beispielsweise eine Argongewinnung und/oder eine Krypton-Xenon-Gewinnung.
  • Bei dem Prozess wird im Rahmen einer "Innenverdichtung" ein flüssig auf Druck gebrachter Produktstrom gegen einen Wärmeträger verdampft und schließlich als innenverdichtetes Druckgasprodukt gewonnen. Diese Methode wird auch als Innenverdichtung bezeichnet. Sie dient zur Gewinnung von gasförmigem Druckprodukt. Für den Fall eines überkritischen Drucks findet kein Phasenübergang im eigentlichen Sinne statt, der Produktstrom wird dann "pseudo-verdampft". Bei dem Produktstrom kann es sich beispielsweise um ein Sauerstoffprodukt aus der Niederdrucksäule eines Zwei-Säulen-Systems oder um ein Stickstoffprodukt aus der Hochdrucksäule eines Zwei-Säulen-Systems beziehungsweise aus dem Verflüssigungsraum eines Hauptkondensators handeln, über den Hochdrucksäule und Niederdrucksäule in wärmetauschender Verbindung stehen
  • Gegen den (pseudo-)verdampfenden Produktstrom wird ein unter hohem Druck stehender Wärmeträger verflüssigt (beziehungsweise pseudo-verflüssigt, wenn er unter überkritischem Druck steht). Der Wärmeträger wird häufig durch einen Teil der Luft gebildet, im vorliegenden Fall von dem "zweiten Teilstrom" der verdichteten Einsatzluft.
  • Innenverdichtungsverfahren sind zum Beispiel bekannt aus DE 830805 , DE 901542 (= US 2712738 / US 2784572 ), DE 952908 , DE 1103363 (= US 3083544 ), DE 1112997 (= US 3214925 ), DE 1124529 , DE 1117616 (= US 3280574 ), DE 1226616 (= US 3216206 ), DE 1229561 (= US 3222878 ), DE 1199293 , DE 1187248 (= US 3371496 ), DE 1235347 , DE 1258882 (= US 3426543 ), DE 1263037 (= US 3401531 ), DE 1501722 (= US 3416323 ), DE 1501723 (= US 3500651 ), DE 253132 (= US 4279631 ), DE 2646690 , EP 93448 B1 (= US 4555256 ), EP 384483 B1 (= US 5036672 ), EP 505812 B1 (= US 5263328 ), EP 716280 B1 (= US 5644934 ), EP 842385 B1 (= US 5953937 ), EP 758733 B1 (= US 5845517 ), EP 895045 B1 (= US 6038885 ), DE 19803437 A1 , EP 949471 B1 (= US 6185960 B1 ), EP 955509 A1 (= US 6196022 B1 ), EP 1031804 A1 (= US 6314755 ), DE 19909744 A1 , EP 1067345 A1 (= US 6336345 ), EP 1074805 A1 (= US 6332337 ), DE 19954593 A1 , EP 1134525 A1 (= US 6477860 ), DE 10013073 A1 , EP 1139046 A1 , EP 1146301 A1 , EP 1150082 A1 , EP 1213552 A1 , DE 10115258 A1 , EP 1284404 A1 (= US 2003051504 A1 ), EP 1308680 A1 (= US 6612129 B2 ), DE 10213212 A1 , DE 10213211 A1 , EP 1357342 A1 oder DE 10238282 A1 DE 10302389 A1 , DE 10334559 A1 , DE 10334560 A1 , DE 10332863 A1 , EP 1544559 A1 , EP 1585926 A1 , DE 102005029274 A1 EP 1666824 A1 , EP 1672301 A1 , DE 102005028012 A1 , WO 2007033838 A1 , WO 2007104449 A1 , EP 1845324 A1 , DE 102006032731 A1 , EP 1892490 A1 , DE 102007014643 A1 , A1, EP 2015012 A2 , EP 2015013 A2 , EP 2026024 A1 , WO 2009095188 A2 oder DE 102008016355 A1 .
  • Die Erfindung betrifft insbesondere Systeme, bei denen die gesamte Einsatzluft auf einen Druck, der deutlich über dem höchsten Destillationsdruck, der im Inneren der Säulen des Destillationssäulen-Systems herrscht (im Normalfall ist dies der Hochdrucksäulendruck verdichtet wird. Solche Systeme werden auch als HAP-Prozesse bezeichnet (HAP - high air pressure). Dabei liegt der "erste Druck", also der Austrittsdruck des Hauptluftverdichters (MAC = main air compressor), in dem die Gesamtluft verdichtet wird, beispielsweise mehr als 4 bar, insbesondere 6 bis 16 bar über dem höchsten Destillationsdruck. Absolut liegt der "erste Druck" beispielsweise zwischen 17 und 25 bar. Bei HAP-Verfahren stellt der Hauptluftverdichter regelmäßig die einzige mit externer Energie angetriebene Maschine zur Verdichtung von Luft dar. Unter einer "einzigen Maschine" wird hier ein einstufiger oder mehrstufiger Verdichter verstanden, dessen Stufen alle mit dem gleichen Antrieb verbunden sind, wobei alle Stufen in demselben Gehäuse untergebracht oder mit demselben Getriebe verbunden sind.
  • Eine Alternative zu derartigen HAP-Verfahren stellen so genannte MAC-BAC-Verfahren dar, bei denen die Luft im Hauptluftverdichter auf einen relativ niedrigen Gesamtluftdruck verdichtet wird, zum Beispiel auf den Betriebsdruck der Hochdrucksäule (plus Leitungsverlusten). Ein Teil der Luft aus dem Hauptluftverdichter im einem mit externer Energie angetriebenen Luftnachverdichter (BAC = booster air compressor) auf einen höheren Druck verdichtet wird. Dieser Luftteil unter höherem Druck (häufig Drosselstrom genannt) liefert den Großteil der für die (Pseudo-)Verdampfung des innenverdichteten Produkts notwendige Wärme im Hauptwärmetauscher. Er wird stromabwärts des Hauptluftverdichter in einem Drosselventil oder in einer Flüssigturbine (DLE = dense liquid expander) auf den im Destillationssäulen-System benötigten Druck entspannt.
  • Vielfach zwingt ein schwankender Bedarf an innenverdichtetem Produkt dazu, eine Luftzerlegungsanlage auf variablen Betrieb mit variabler Druckgasproduktion auszulegen. Umgekehrt kann es sinnvoll sein, eine Luftzerlegungsanlage trotz konstanter oder im Wesentlichen konstanter Produktion variabel zu betreiben, indem verschiedene Betriebsweisen vorgesehen sind, die unterschiedlich hohen Energieverbrauch aufweisen.
  • Ein konkretes Beispiel für eine derartige Randbedingung ist die Lieferung von innenverdichtetem Sauerstoff (GOXIV) und gegebenenfalls weiteren gasförmigen und/oder flüssigen Produkten an einer Ethylenoxid-Produktionsanlage. Hier ist es oftmals der Fall, dass der Sauerstoff-Bedarf dem Katalysator-Zustand bei der EO-Produktion angepasst wird; er kann daher zwischen 100% und ca. 70% während der Katalysator-Lebensdauer (in der Regel um die 3 Jahre) variiert werden. Dabei ist es wesentlich, dass während dieser Zeit die Luftzerlegungsanlage ca. die gleichen Zeiten mit unterschiedlichen GOXIV-Produktmengen (zwischen 100% und ca. 70%) betrieben wird. Daher ist es wichtig, dass die Anlage nicht nur im Design-Fall mit 100% GOXIV, sondern auch in Unterlastfällen effizient betrieben wird. Diese Forderung wird noch dadurch erschwert, dass die Produktion von anderen Luftzerlegungsprodukten unabhängig vom GOXIV-Produkt ist; zum Beispiel kann der Bedarf an einem, mehreren oder allen anderen Luftzerlegungsprodukten unverändert bleiben, während die GOX-Produktion von 100 % auf etwa 70 % sinkt. Bei solchen "anderen Luftzerlegungsprodukten" und kann es sich beispielsweise um ein, mehrere oder alle der folgenden Produkte handeln:
    • Innenverdichtetes Stickstoffprodukt (GANIV)
    • Anderes gasförmiges Druckprodukt wie zum Beispiel gasförmig aus der Hochdrucksäule entnommener Druckstickstoff (HPGAN), der gegebenenfalls in einem Stickstoffverdichter weiter verdichtet wird.
    • Flüssigprodukt(e) wie flüssiger Sauerstoff, flüssiger Stickstoff und/oder flüssiges Argon.
  • Mit einem konventionellen MAC-BAC-Verfahren ist diese Aufgabenstellung relativ gut zu bewerkstelligen , da beide Verdichter (MAC und BAC) für funktional getrennte Aufgaben zuständig sind. Der Hauptluftverdichter liefert im Prinzip nur die Einsatzluft für die Zerlegung; der Luftnachverdichter liefert Energie für die Innenverdichtung (GOXIV, GANIV) und für die Flüssigproduktion. Beide Maschinen können dabei in der Regel zwischen 70% und 100% relativ einfach geregelt werden.
  • Bei einem HAP-Verfahren werden diese beiden Aufgaben (Lieferung von Zerlegungsluft und von Energie zur Innenverdichtung/Flüssigproduktion) mit einem einzigen Verdichter gelöst. Dabei kann es zu Situationen führen, dass bestimmte Betriebsfälle außerhalb des Verdichter-Kennfeldes liegen und nicht fahrbar sind. Der Gesamtenergiebedarf einer Luftzerlegungsanlage wird nicht nur durch das GOXIV-Produkt, sondern zu einem großen Teil durch Flüssigproduktion beziehungsweise durch andere innenverdichteten Produkte bestimmt. Für die Menge der Zerlegungsluft ist das GOXIV-Produkt aber oftmals bestimmend. Wird die GOXIV-Menge deutlich reduziert, wird auch deutlich weniger Zerlegungsluft in die Anlage gefahren. Damit wird aber auch deutlich weniger Energie ins System eingetragen, was unter Umständen nicht mehr für die gewünschte Produktion von anderen Produkten (Flüssigkeiten, GANIV etc.) ausreichen kann. Um trotz der deutlich geringeren Luftmenge genügend Energie zu liefern, muss der Verdichterdruck deutlich höher gefahren werden. Dies ist aber bei einem HAP-Verfahren nur bedingt machbar, weil
    1. a) das Maschinen-Kennfeld begrenzt ist und
    2. b) der Auslegungsdruck für den "warmen" Anlagenteil (Vorkühlung, Adsorber etc.) darf nicht überschritten werden darf.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine entsprechende Vorrichtung anzugeben, welche die Vorteile von HAP-Verfahren mit einer Flexibilität zu verbinden, wie sie ähnlich bei MAC-BAC-Verfahren bekannt ist. Unter "Flexibilität" wird hier insbesondere verstanden, dass das System nicht nur bei einer bestimmten Produktionsmenge an innenverdichtetem Produkt energetisch günstig betrieben werden kann, sondern im einem relativ weiten Lastbereich bei ungefähr gleich bleibend geringem spezifischen Energieverbrauch. Dabei soll insbesondere die Produktion von anderen Luftzerlegungsprodukten gleich bleiben oder sich zumindest weniger stark als die Produktmenge des Innenverdichtungsprodukts ändern.
  • Diese Aufgabe wird durch die Merkmale des Patentanspruchs 1 gelöst.
  • Bei der Erfindung wird in dem zweiten Betriebsmodus ein Teil der Einsatzluftmenge oder eines stickstoffangereicherten Prozessstroms ("zweiter Prozessstrom") an der Niederdrucksäule beziehungsweise an dem gesamten Destillationssäulen-System vorbeigeleitet. Diese Menge nimmt dann nicht an der Erzeugung des ersten Produktstroms teil, kann aber trotzdem durch die erste Turbine geleitet werden, um damit genügend Kälte zu produzieren beziehungsweise genügend Energie ins System zu liefern, um die Flüssigproduktion aufrechterhalten zu können oder mindestens relativ weniger stark zu vermindern als die Menge der ersten Druckproduktion.
  • In einer ersten Variante der Erfindung wird ein Teil der Einsatzluft nicht in das Destillationssäulen-System eingeleitet, sondern in den Hauptluftverdichter zurückgeführt, indem
    • der mehrstufige Verdichter durch den Hauptluftverdichter,
    • der erste Prozessstrom durch die gesamte Einsatzluft und
    • der zweite Prozessstrom durch einen Teil des arbeitsleistend entspannten ersten Teilstroms der Einsatzluft
    gebildet werden.
  • Die überschüssige Luft wird nicht in dass Destillationssäulen-System geleitet, sondern gleich nach Entspannung in der Turbine zurück in den Wärmetauscher geführt und anschließend ohne Abdrosselung an einer passenden Stelle (zum Beispiel nach der zweiten oder dritten Stufe) des Hauptluftverdichters eingespeist. Dadurch wird die notwendige Menge an "Überschuss"-Luft nicht vom atmosphärischen Druck, sondern beispielsweise von ca. 5 bar aus verdichtet, und es wird viel Energie gespart.
  • In einer zweiten Variante der Erfindung wird ein Teil des in der Hochdrucksäule gewonnenen Stickstoffs nicht in die Niederdrucksäule eingeleitet, sondern einem Stickstoffproduktverdichter zugeführt, indem
    • der mehrstufige Verdichter durch einen Stickstoffproduktverdichter,
    • der erste Prozessstrom durch einen ersten gasförmigen Stickstoffstrom aus der Niederdrucksäule und
    • der zweite Prozessstrom durch ersten gasförmigen Stickstoffstrom aus der Hochdrucksäule
    gebildet werden.
  • Ist im Prozess zum Beispiel wegen großen Mengen an Stickstoff-Produkt ein Niederdruck-GAN-Verdichter als Stickstoffproduktverdichter vorgesehen, kann dieser durch Zwischeneinspeisung von Druck-GAN aus der Hochdrucksäule entlastet werden. Anders als im Design-Fall, wird im Falle von geringerer GOXIV-Produktion deutlich mehr Luft ins Rektifikationssystem gefahren und als Druck-GAN aus der Drucksäule entnommen, als für die Sauerstoffproduktion notwendig ist. Nach Anwärmen im Wärmetauscher wird dieser Druck-GAN an einer passenden Stelle (zum Beispiel nach der zweiten oder dritten Verdichterstufe) beim Stickstoffproduktverdichter eingespeist. Dadurch kann der Anteil des Niederdruck-GAN (die von ca. atmosphärischem Druck auf etwa 5 bar zu verdichtende Gas-Menge) entsprechend reduziert werden. So werden zum Beispiel (anderes als im Design-Fall mit 100% GOXIV) im Betriebsfall mit ca. 75% GOXIV, voller Flüssigproduktion und 100% HPGAN-Produktmenge - ca. 70-75% Niederdruck-GAN und ca.25-30% Druck-GAN aus der Drucksäule verdichtet (s. dazu Abbildung 2 ). Dadurch gewinnt man die mit der überschüssigen Luftmenge am Hauptluftverdichter aufgenommene Energie teilweise zurück.
    Eine andere Möglichkeit (bei nicht vorhandenem Niederdruck-GAN-Verdichter) besteht darin, die überschüssige Luft ins Destillationssäulen-System zu leiten und zu trennen. Dabei kann das in dieser Luftmenge vorhandene Argon gewonnen werden. Die überschüssige Sauerstoff-Menge kann dabei als Niederdruck-Sauerstoff aus der Niederdrucksäule entnommen werden und dem UN2-Strom zugeführt werden. Hier verliert man im Prinzip nur die Trennarbeit zur Gewinnung von zusätzlichen Sauerstoff-Molekülen, gleichzeitig wird aber deutlich mehr an Argon produziert.
  • Die beiden Varianten der Erfindung können aber auch kombiniert werden, wie es im Patentanspruch 4 beschrieben ist.
  • Grundsätzlich kann der zweite Prozessstrom auch am Eintritt eines Stickstoffproduktverdichters mit dem ersten Prozessstrom vermischt werden. In vielen Fällen ist es aber günstig, wenn die Vermischung des zweiten mit dem ersten Prozessstrom beziehungsweise des vierten mit dem zweiten Prozessstrom bei einer Zwischenstufe des mehrstufigen Verdichters beziehungsweise des Stickstoffproduktverdichters durchgeführt wird.
  • Zusätzlich kann in dem zweiten Betriebsmodus ein Sauerstoffgasstrom aus dem unteren Bereich der Niederdrucksäule entnommen, mit einem stickstoffangereicherten Strom aus dem oberen Bereich der Niederdrucksäule vermischt und das Gemisch im Hauptwärmetauscher angewärmt werden.
  • Außerdem kann in einer speziellen Ausführungsform der Erfindung eine zweite Luftturbine eingesetzt werden, wobei ein dritter Teilstrom der im Hauptluftverdichter verdichteten Einsatzluft in einem Hauptwärmetauscher auf eine Zwischentemperatur abgekühlt und in der zweiten Luftturbine arbeitsleistend entspannt wird und mindestens ein erster Teil des arbeitsleistend entspannten dritten Teilstroms in das Destillationssäulen-System eingeleitet wird.
  • Außerdem kann der zweite Teilstrom der im Hauptluftverdichter verdichteten Einsatzluft in dem Hauptwärmetauscher auf eine Zwischentemperatur abgekühlt, in einem zweiten Nachverdichter, der als Kaltverdichter betrieben und von der zweiten Turbine angetrieben wird, auf einen dritten Druck nachverdichtet werden, der höher als der erste Druck ist, in dem Hauptwärmetauscher abgekühlt, (pseudo-)verflüssigt und anschließend entspannt und in das Destillationssäulen-System eingeleitet wird. Auf diese Weise kann der Druck des zweiten Teilstroms ohne Aufwendung äußerer Energie weiter erhöht werden. Ein entsprechend höherer Innenverdichtungsdruck kann erreicht werden.
  • Zusätzlich kann ein vierter Teilstrom der im Hauptluftverdichter verdichteten Luft unter dem ersten Druck in dem Hauptwärmetauscher abgekühlt und anschließend entspannt und in das Destillationssäulen-System eingeleitet wird. Durch einen derartigen zweiten Drosselstrom wird der Wärmeaustauschvorgang im Hauptwärmetauscher weiter optimiert.
  • Bei einer anderen Ausführungsform mit der einer zweiten Turbine ist es günstig, wenn der dritte Teilstrom in der zweiten Luftturbine auf einen Druck entspannt wird, der mindestens 1 bar höher als der Betriebsdruck der Hochdrucksäule ist, und der arbeitsleistend entspannte dritte Teilstrom in dem Hauptwärmetauscher weiter abgekühlt und anschließend entspannt und in das Destillationssäulen-System eingeleitet wird. Durch einen derartigen dritten Drosselstrom wird der Wärmeaustauschvorgang im Hauptwärmetauscher weiter optimiert.
  • Bei dem erfindungsgemäßen Verfahren wird insbesondere beim Übergang von dem ersten in den zweiten Betriebsmodus die im Hauptluftverdichter verdichtete Gesamtluftmenge gar nicht reduziert oder weniger stark reduziert als die Drucksauerstoff-Produktmenge, indem
    • in dem ersten Betriebsmodus eine erste Menge an Einsatzluft in dem Hauptluftverdichter verdichtet wird und
    • in dem zweiten Betriebsmodus eine zweite Menge an Einsatzluft in dem Hauptluftverdichter verdichtet wird, wobei
    • das Verhältnis von zweiter Menge an Einsatzluft zu erster Menge an Einsatzluft größer, insbesondere um mindestens 3 %, insbesondere um mehr als 5 %größer ist als das Verhältnis zwischen zweiter Menge an erstem Druckgasprodukt und erster Menge an erstem Druckgasprodukt.
  • In Betriebsfällen mit geringerer GOXIV-Produktion, wird die Einsatzluftmenge in die Coldbox "künstlich" angehoben, das heißt es wird mehr Luft in den Tieftemperaturteil der Anlage gefahren als zur Gewinnung der für diesen Betriebsfall spezifizierten Drucksauerstoff-Produkte notwendig ist. Fährt man die Einsatzluft im "Überschuss", kann der Druck am Verdichter-Austritt reduziert werden, da die Energielieferung für die (Pseudo-)Verdampfung des GOXIV-Produkts dann nicht mit dem Luft-Druck, sondern mit der Luft-Menge erfolgt. Dabei ist es von der Bedeutung, dass die Luft nicht nur einfach im Überschuss gefahren (im Hauptluftverdichter verdichtet, im Wärmetauscher abgekühlt, in der Turbine auf den Hochdrucksäulen-Druck entspannt, im Wärmetauscher wieder angewärmt und schließlich auf atmosphärischen Druck abgedrosselt) wird, sondern es werden mit den weiter oben beschriebenen Merkmale auch weitere Vorteile erzielt.
  • Durch diese Maßnahme steht weiterhin ausreichend Luft für die Gewinnung von anderen Produkten zur Verfügung. Zu Beispiel kann ausreichend Kälte erzeugt werden, um eine gleich bleibende Menge an Flüssigprodukten zu liefern.
  • Vorzugsweise wird der erste Teilstrom der im Hauptluftverdichter verdichteten Einsatzluft stromaufwärts seiner Einleitung in den Hauptwärmetauscher in einem ersten Nachverdichter nachverdichtet, der im Warmen betrieben und insbesondere von der ersten Turbine angetrieben wird. Dadurch ist der Eintrittsdruck der ersten Turbine deutlich höher als der erste Druck, auf den die Gesamtluft verdichtet wird. Die Luft für die zweite Turbine wird dagegen beispielsweise nicht nachverdichtet, das heißt ihr Eintrittsdruck liegt auf dem niedrigeren Niveau des ersten Drucks.
  • Die Erfindung betrifft außerdem eine Vorrichtung gemäß Patentanspruch 13. Die erfindungsgemäße Vorrichtung kann durch Vorrichtungsmerkmale ergänzt werden, die den Merkmalen der abhängigen Verfahrensansprüche entsprechen.
  • Bei den "Mitteln zum Umschalten zwischen einem ersten und einem zweiten Betriebsmodus" handelt es sich um komplexe Regel- und Steuerungsvorrichtungen, die im Zusammenwirken ein mindestens teilweise automatisches Umschalten zwischen den beiden Betriebsmodi ermöglichen, beispielsweise durch ein entsprechend programmiertes Betriebsleitsystem.
  • Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand von in den Zeichnungen schematisch dargestellten Ausführungsbeispielen näher erläutert. Hierbei zeigen:
  • Figur 1
    ein Ausführungsbeispiel für die erste Variante der Erfindung mit Rückführung von Turbinenluft zum Hauptluftverdichter in dem zweiten Betriebsmodus,
    Figur 2
    ein Ausführungsbeispiel für die zweite Variante der Erfindung mit Einführung von gasförmigem Stickstoff aus der Hochdrucksäule in einen Stickstoffproduktverdichter und
    Figuren 3 und 4
    Abwandlungen der Figur 1 und 2 mit einem dritten Drosselstrom.
  • Anhand von Figur 1 wird zunächst der erste Betriebsmodus einer Ausführungsform des Verfahrens gemäß der ersten Variante der Erfindung beschrieben. Atmosphärische Luft (AIR) wird über ein Filter 1 von einem Hauptluftverdichter 2 angesaugt. Der Hauptluftverdichter weist in dem Beispiel fünf Stufen auf und verdichtet den Gesamtluftstrom auf einen "ersten Druck" von beispielsweise 22 bar. Der Gesamtluftstrom 3 stromabwärts des Hauptluftverdichters 2 wird unter dem ersten Druck in einer Vorkühlung 4 gekühlt. Der vorgekühlte Gesamtluftstrom 5 wird in einer Reinigungseinrichtung 6, die insbesondere durch ein Paar umschaltbarer Molsieb-Adsorber gebildet wird, gereinigt. Der gereinigte Gesamtluftstrom 7 wird zu einem ersten Teil 8 in einem im Warmen betriebenen Luftnachverdichter 9 mit Nachkühler 10 auf einen zweiten Druck von beispielsweise 28 bar nachverdichtet und anschließend in einen "ersten Teilstrom" 11 (erster Turbinenluftstrom) und einen "zweiten Teilstrom" 12 (erster Drosselstrom) aufgeteilt.
  • Der erste Teilstrom 11 wird in einem Hauptwärmetauscher 13 auf eine erste Zwischentemperatur abgekühlt. Der abgekühlte erste Teilstrom 14 wird in einer ersten Luftturbine 15 von dem zweiten Druck auf etwa 5,5 bar arbeitsleistend entspannt. Die erste Luftturbine 15 treibt den warmen Luftnachverdichter 9 an. Der arbeitsleistend entspannte erste Teilstrom 16 wird in einem Abscheider (Phasentrenner) 17 eingeleitet. Der flüssige Anteil 18 wird über die Leitungen 19 und 20 in die Niederdrucksäule 22 des Destillationssäulen-Systems eingeleitet.
  • Das Destillationssäulen-System umfasst eine Hochdrucksäule 21, die Niederdrucksäule 22 und einen Hauptkondensator 23 sowie eine übliche Argongewinnung 24 mit Rohargonsäule 25 und Reinargonsäule 26. Der Hauptkondensator 23 ist als Kondensator-Verdampfer ausgebildet, in dem konkreten Beispiel als Kaskadenverdampfer. Der Betriebsdruck am Kopf der Hochdrucksäule beträgt in dem Beispiel 5,3 bar, derjenige am Kopf der Niederdrucksäule 1,35 bar.
  • Der zweite Teilstrom 12 der Einsatzluft wird in dem Hauptwärmetauscher 13 auf eine zweite Zwischentemperatur abgekühlt, die höher als die erste Zwischentemperatur ist, über Leitung 27 einem Kaltverdichter 28 zugeleitet und dort auf einen "dritten Druck" von ca. 40 bar nachverdichtet. Der nachverdichtete zweite Teilstrom 29 wird bei einer dritten Zwischentemperatur, die höher als die zweite Zwischentemperatur ist, wieder in den Hauptwärmetauscher 13 eingeleitet und dort bis zum kalten Ende abgekühlt. Der kalte zweite Teilstrom 30 wird in einem Drosselventil 31 auf etwa den Betriebsdruck der Hochdrucksäule entspannt und über Leitung 32 der Hochdrucksäule 21 zugeführt. Ein Teil 33 wird wieder entnommen, in einem Unterkühlungs-Gegenströmer 34 abgekühlt und über die Leitungen 35 und 20 in die Niederdrucksäule 22 eingespeist.
  • Ein "dritter Teilstrom" 36 der Einsatzluft wird unter dem ersten Druck in den Hauptwärmetauscher 13 eingeleitet und dort auf eine vierte Zwischentemperatur abgekühlt, die in dem Beispiel etwas niedriger als die erste Zwischentemperatur liegt. Der abgekühlte dritte Teilstrom 37 wird in einer zweiten Luftturbine 37 von dem ersten Druck auf etwa Hochdrucksäulendruck arbeitsleistend entspannt. Die zweite Luftturbine 38 treibt den Kaltverdichter 28 an. Der arbeitsleistend entspannte dritte Teilstrom 39 wird über Leitung 40 der Hochdrucksäule 21 am Sumpf zugeführt.
  • Ein "vierter Teilstrom" 41 (zweiter Drosselstrom) durchströmt den Hauptwärmetauscher 13 vom warmen bis zum kalten Ende unter dem ersten Druck. Der kalte vierte Teilstrom 42 wird in einem Drosselventil 43 auf etwa den Betriebsdruck der Hochdrucksäule entspannt und über Leitung 32 der Hochdrucksäule 21 zugeführt.
  • Die sauerstoffangereicherte Sumpfflüssigkeit der Hochdrucksäule 21 wird im Unterkühlungs-Gegenströmer 34 abgekühlt und über Leitung 45 in die fakultative Argongewinnung 24 eingeleitet. Daraus erzeugter Dampf 46 und verbleibende Flüssigkeit 47 werden in die Niederdrucksäule 22 eingespeist.
  • Ein erster Teil 49 des Kopfstickstoffs 48 der Hochdrucksäule 21 wird im Verflüssigungsraum des Hauptkondensators 23 gegen im Verdampfungsraum verdampfenden flüssigen Sauerstoff aus dem Sumpf der Niederdrucksäule vollständig oder im Wesentlichen vollständig verflüssigt. Ein erster Teil 51 des dabei erzeugten flüssigen Stickstoffs 51 wird als Rücklauf auf die Hochdrucksäule 21 aufgegeben. Ein zweiter Teil 52 wird im Unterkühlungs-Gegenströmer 34 abgekühlt, über Leitung 53 in die Niederdrucksäule 22 eingespeist. Mindestens ein Teil des flüssigen Niederdruckstickstoffs 53 dient als Rücklauf in der Niederdrucksäule 21; ein anderer Teil 54 kann als Flüssigstickstoffprodukt (LIN) gewonnen werden.
  • Vom Kopf der Niederdrucksäule 22 wird gasförmiger Niederdruckstickstoff 55 abgezogen, im Unterkühlungs-Gegenströmer 34 und im Hauptwärmetauscher 13 angewärmt. Der warme Niederdruckstickstoff 56 wird in einem aus zwei Sektionen bestehenden Stickstoffproduktverdichter (57, 59) mit Zwischen- und Nachkühlung (58, 60) auf den gewünschten Produktdruck verdichtet, der in dem Beispiel 12 bar beträgt. Die erste Sektion 57 des Stickstoffproduktverdichters besteht beispielsweise aus zwei oder drei Stufen mit dazugehörigen Nachkühlern; die zweite Sektion 59 weist mindestens eine Stufe auf und ist vorzugsweise ebenfalls zwischen- und nachgekühlt.
  • Von einer Zwischenstelle Niederdrucksäule 22 wird gasförmiger Unreinstickstoff 55 abgezogen, im Unterkühlungs-Gegenströmer 34 und im Hauptwärmetauscher 13 angewärmt. Der warme Unreinstickstoff 62 kann in die Atmosphäre (ATM) abgeblasen (63) und/oder als Regeneriergas 64 für die Reinigungseinrichtung 6 eingesetzt werden.
  • Die Leitungen 67 und 68 (sogenannter Argonübergang) verbinden die Niederdrucksäule 21 mit der Rohargonsäule 25 der Argongewinnung 24.
  • Ein erster Teil 70 des flüssigen Sauerstoffs 69 vom Sumpf der Niederdrucksäule 21 wird als "erster Produktstrom" abgezogen, in einer Sauerstoffpumpe 71 auf einen "ersten Produktdruck" von beispielsweise 37 bar gebracht und unter dem ersten Produktdruck in dem Hauptwärmetauscher 13 verdampft und schließlich über Leitung 72 als "erstes Druckgasprodukt" (GOX IC - innenverdichteter gasförmiger Sauerstoff) gewonnen.
  • Ein zweiter Teil 73 des flüssigen Sauerstoffs 69 vom Sumpf der Niederdrucksäule 21 wird gegebenenfalls im Unterkühlungs-Gegenströmer 34 abgekühlt und über Leitung 74 als Flüssigsauerstoffprodukt (LOX) gewonnen.
  • In dem Beispiel wird auch ein dritter Teil 75 des flüssigen Stickstoffs 50 aus der Hochdrucksäule 21 beziehungsweise dem Hauptkondensator 23 einer Innenverdichtung unterzogen, indem er in einer Stickstoffpumpe 76 auf einen zweiten Produktdruck von beispielsweise 37 bar gebracht, unter dem zweiten Produktdruck in dem Hauptwärmetauscher 13 pseudo-verdampft und schließlich über Leitung 77 als innenverdichtetes gasförmiges Stickstoff-Druckprodukt (GAN IC) gewonnen.
  • Ein zweiter Teil 78 des gasförmigen Kopfstickstoffs 48 der Hochdrucksäule 21 wird im Hauptwärmetauscher angewärmt und über Leitung 79 entweder als gasförmiges Mitteldruckprodukt gewonnen oder - wie dargestellt - als Dichtgas (Sealgas) für eine oder mehrere der dargestellten Prozesspumpen eingesetzt.
  • Wenn man als "ersten Betriebsmodus" den Betrieb mit der maximalen Sauerstoffproduktion (100 % gemäß der Auslegung) bezeichnet, bleiben in dieser Betriebsweise die fett dargestellten Leitungen 65/66 außer Betrieb.
  • Eine niedrigere Sauerstoffproduktion (beispielsweise 75 %) kann dann als "zweiter Betriebsmodus" angesehen werden. Hier wird ein Teil des gasförmigen Anteils 17 des arbeitsleistend entspannten ersten Teilstroms 16 als "zweiter Prozessstrom" über die Leitungen 65, 66 durch den Hauptwärmetauscher zu einer Zwischenstufe des Hauptluftverdichters 2 zurückgeführt. In dem Beispiel wird der Rückführstrom zwischen der zweiten und der dritten Stufe beziehungsweise zwischen der dritten und vierten Stufe des Hauptluftverdichters der Einsatzluft zugemischt. (Diese Einsatzluft stellt in der ersten Variante der Erfindung den "ersten Prozessstrom" dar.) Dadurch kann die Luftmenge durch die Turbine 15 relativ hoch gehalten werden und eine unveränderte - oder zumindest eine weniger stark reduzierte - Menge and Stickstoff- und Flüssigprodukten gewonnen werden.
  • Genauso gut könnte eine 95 %-Betriebsweise als "erster Betriebsmodus" angesehen werden. Ein "zweiter Betriebsmodus" wird dann beispielsweise mit einer Sauerstoffproduktion von 90 % des Auslegungswerts erreicht.
  • Die folgende Tabelle führt beispielhafte Zahlenwerte zweier verschiedener Betriebsmodi der Anlage von Figur 1 an:
    GOX-IC-Menge 72 Luftmenge durch Filter 1 Rückführmenge 65/66*
    100% 100 % 0%
    76 % 83% 4,2%
  • Die Rückführmenge bezieht sich in der Tabelle auf die aktuelle Luftmenge durch Filter 1. Alle Prozentangaben beziehen sich hier und im übrigen Text auf molare Mengen, wenn nichts Anderes angegeben ist.
  • In Figur 2 ist eine Ausführungsform der zweiten Variante der Erfindung dargestellt. Sie unterscheidet sich von Figur 1 durch die folgenden Merkmale.
  • Die Rückführleitung 65, 66 für Luft fehlt hier. Stattdessen wird im zweiten Betriebsmodus zusätzlich zu der Dichtgasmenge 79 ein zusätzlicher Teil 180 des gasförmigen Kopfstickstoffs 48 vom Kopf der Hochdrucksäule als "zweiter Prozessstrom" 180 über die Leitungen 178, 179 geführt und schließlich zwischen den beiden Sektionen 57, 59 des Stickstoffproduktverdichters mit den Stickstoff 56 aus der Niederdrucksäule vermischt, der in der zweiten Variante den "ersten Prozessstrom" bildet.
  • Die entsprechende Stickstoffmenge 180 aus der Hochdrucksäule wird nicht im Hauptkondensator 23 kondensiert und nicht in die Niederdrucksäule eingeleitet. Dadurch nimmt sie nicht an der Rektifikation in der Niederdrucksäule teil (weder indirekt über die Verdampfung des Sumpfsauerstoffs, noch direkt durch Verwendung als Rücklaufflüssigkeit) und ermöglicht dabei die Verringerung der Sauerstoffproduktion. Gleichzeitig steht gleich viel Luft (oder nur unwesentlich weniger) zur Kälteproduktion und Stickstofferzeugung zur Verfügung.
  • Im ersten Betriebsmodus wird eine geringere Menge an zweitem Prozessstrom 180 zur Zwischenstelle des Stickstoffproduktverdichters gefahren oder Leitung 180 ist ganz geschlossen.
  • Die Flexibilität des Verfahrens kann durch die im Folgenden beschrieben fakultative Maßnahme weiter erhöht werden (die grundsätzlich auch bei der ersten Variante nach Figur 1 eingesetzt werden kann). Hierbei wird in dem zweiten Betriebsmodus gasförmiger Sauerstoff 181 aus der Niederdrucksäule abgezogen und mit dem gasförmigen Unreinstickstoff 61 aus der Niederdrucksäule vermischt. Die Vermischung findet in dem Beispiel stromabwärts des Unterkühlungs-Gegenströmers 34 statt. Im ersten Betriebsmodus ist die Leitung 181 geschlossen oder es wird weniger Gas über Leitung 181 geführt.
  • Die folgende Tabelle führt beispielhafte Zahlenwerte zweier verschiedener Betriebsmodi der Anlage von Figur 2 an:
    GOX-IC-Menge 72 Luftmenge durch Hauptluftverdichter 2 Stickstoffmenge durch Leitung 180 Sauerstoffmenge durch Leitung 181
    100 % 100 % 0 % 0 %
    76 % 83 % 5 % 0 %
  • Die Stickstoffmenge durch Leitung 180 bezieht sich auf die Luftmenge durch Filter 1 im Designfall.
  • Figur 3 unterscheidet sich von Figur 1 durch einen dritten Drosselstrom. Hierzu wird die zweite Turbine 38 mit einem relativ großen Austrittsdruck und einer relativ hohen Austrittstemperatur betrieben. Der arbeitsleistend entspannte Turbinenstrom 339 weist dann einen Druck auf, der mindestens 1 bar, insbesondere 4 bis 11 bar über dem Betriebsdruck der Hochdrucksäule liegt, und eine Temperatur, die mindestens 10 K, insbesondere 20 bis 60 K oberhalb der Eintrittstemperatur der Niederdruck-Stickstoffströme 55, 61 am kalten Ende des Hauptwärmetauschers liegt. Dieser Strom wird dann im kalten Teil des Hauptwärmetauschers weiter abgekühlt. Der weiter abgekühlte dritte Teilstrom 340 wird als dritter Drosselstrom in einem Drosselventil 341 auf etwa Hochdrucksäulendruck entspannt und über Leitung 32 in die Hochdrucksäule eingeführt. Hierdurch lässt sich der Wärmeaustauschvorgang im Hauptwärmetauscher weiter optimieren.
  • In Figur 4 wird in Abweichung von Figur 3 der dritte Teilstrom 436 nicht unter dem ersten Druck, sondern unter dem höheren zweiten Druck in die zweite Turbine 38 eingeleitet.
  • Die zusätzlichen Maßnahmen der Figuren 3 und 4 können nicht nur bei der ersten Variante der Erfindung eingesetzt werden, sondern auch bei der zweiten Variante.

Claims (13)

  1. Verfahren zur variablen Gewinnung eines Druckgasprodukts (72; 73) mittels Tieftemperaturzerlegung von Luft in einem Destillationssäulen-System, das eine Hochdrucksäule (21) und eine Niederdrucksäule (22) aufweist, bei dem
    - die gesamte Einsatzluft in einem Hauptluftverdichter (2) auf einen ersten Druck verdichtet wird, der mindestens 4 bar höher als der Betriebsdruck der Hochdrucksäule (21) ist,
    - ein erster Teilstrom (8, 11, 14) der im Hauptluftverdichter (2) verdichteten Einsatzluft (7) in einem Hauptwärmetauscher (13) auf eine Zwischentemperatur abgekühlt und in einer ersten Luftturbine (15) arbeitsleistend entspannt wird,
    - mindestens ein erster Teil des arbeitsleistend entspannten ersten Teilstroms (16) in das Destillationssäulen-System eingeleitet (40; 18, 19, 20) wird,
    - ein zweiter Teilstrom (12, 27, 29, 30) der im Hauptluftverdichter (2) verdichteten Einsatzluft in einem ersten Nachverdichter (9), der insbesondere von der ersten Turbine (15) angetrieben wird, auf einen zweiten Druck nachverdichtet wird, der höher als der erste Druck ist, in dem Hauptwärmetauscher (13) abgekühlt und anschließend entspannt (31) und in das Destillationssäulen-System eingeleitet wird,
    - ein erster Produktstrom (69; 75) flüssig aus dem Destillationssäulen-System entnommen und einer Druckerhöhung (71; 76) auf einen ersten Produktdruck unterworfen wird,
    - der erste Produktstrom unter dem ersten Produktdruck im Hauptwärmetauscher (13) verdampft oder pseudo-verdampft und angewärmt wird,
    - der angewärmte erste Produktstrom (72; 77) als erstes Druckgasprodukt (GOX IC; GAN IC) gewonnen wird,
    - ein erster Prozessstrom, der mindestens 78 mol-% Stickstoff enthält, in einem mehrstufigen Verdichter (2; 57/59) von einem Eintrittsdruck auf einen Enddruck verdichtet wird,
    - mindestens zeitweise ein zweiter Prozessstrom (65; 180), der mindestens 78 mol-% Stickstoff enthält, stromabwärts der ersten Stufe des mehrstufigen Verdichters (2; 57/59) mit dem ersten Prozessstrom vermischt wird,
    - in einem ersten Betriebsmodus eine erste Menge an erstem Druckgasprodukt gewonnen wird und
    - in einem zweiten Betriebsmodus eine zweite Menge an erstem Druckgasprodukt gewonnen wird, die geringer ist als die erste Menge,
    dadurch gekennzeichnet, dass
    - in dem ersten Betriebsmodus einer erste Menge des zweiten Prozessstroms (65; 180), die auch Null sein kann, in dem mehrstufigen Verdichter (2; 57/59) verdichtet wird und
    - in dem zweiten Betriebsmodus eine zweite Menge des zweiten Prozessstroms (65; 180) in dem mehrstufigen Verdichter (2; 57/59) verdichtet wird, die größer ist als die erste Menge des zweiten Prozessstroms.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass
    - der mehrstufige Verdichter durch den Hauptluftverdichter (2),
    - der erste Prozessstrom durch die gesamte Einsatzluft und
    - der zweite Prozessstrom durch einen Teil (65) des arbeitsleistend entspannten ersten Teilstroms (16) der Einsatzluft
    gebildet werden.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass
    - der mehrstufige Verdichter durch einen Stickstoffproduktverdichter (57/59),
    - der erste Prozessstrom durch einen ersten gasförmigen Stickstoffstrom (55, 56) aus der Niederdrucksäule und
    - der zweite Prozessstrom (180) durch ersten gasförmigen Stickstoffstrom (178, 179) aus der Hochdrucksäule (21)
    gebildet werden.
  4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass
    - ein dritter Prozessstrom in einem Stickstoffproduktverdichter von einem Eintrittsdruck auf einen Enddruck verdichtet wird,
    - mindestens zeitweise ein vierter Prozessstrom stromabwärts der ersten Stufe des Stickstoffproduktverdichters mit dem dritten Prozessstrom vermischt wird, wobei
    - der dritte Prozessstrom durch einen ersten gasförmigen Stickstoffstrom aus der Niederdrucksäule und
    - der vierte Prozessstrom durch ersten gasförmigen Stickstoffstrom aus der Hochdrucksäule
    gebildet werden.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der zweite Prozessstrom beziehungsweise der vierte Prozessstrom bei einer Zwischenstufe des mehrstufigen Verdichters beziehungsweise des Stickstoffproduktverdichters mit dem ersten Prozessstrom beziehungsweise mit dem zweiten Prozessstrom vermischt wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass in dem zweiten Betriebsmodus ein Sauerstoffgasstrom (181) aus dem unteren Bereich der Niederdrucksäule (22) entnommen, mit einem stickstoffangereicherten Strom (61) aus dem oberen Bereich der Niederdrucksäule (22) vermischt und das Gemisch im Hauptwärmetauscher (13) angewärmt wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass
    - ein dritter Teilstrom (36, 37) der im Hauptluftverdichter (2) verdichteten Einsatzluft (7) in dem Hauptwärmetauscher (13) auf eine Zwischentemperatur abgekühlt und in einer zweiten Luftturbine (38) arbeitsleistend entspannt wird und
    - mindestens ein erster Teil des arbeitsleistend entspannten dritten Teilstroms (39) in das Destillationssäulen-System eingeleitet (40) wird,
    - wobei der Turbineneintrittsdruck der zweiten Luftturbine insbesondere gleich dem ersten Druck ist.
  8. Verfahren nach einem der Anspruch 7, dadurch gekennzeichnet, dass
    - der zweite Teilstrom (12, 27, 29, 30) der im Hauptluftverdichter (2) verdichteten Einsatzluft (7) stromabwärts des ersten Nachverdichters (9) in dem Hauptwärmetauscher (13) auf eine Zwischentemperatur abgekühlt, in einem zweiten Nachverdichter (28), der als Kaltverdichter betrieben und von der zweiten Turbine (38) angetrieben wird, auf einen dritten Druck nachverdichtet wird, der höher als der erste Druck ist, in dem Hauptwärmetauscher (13) abgekühlt und anschließend entspannt (31) und in das Destillationssäulen-System eingeleitet (32) wird.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass ein vierter Teilstrom (41, 42) der im Hauptluftverdichter (2) verdichteten Luft (7) unter dem ersten Druck in dem Hauptwärmetauscher (13) abgekühlt und anschließend entspannt (43) und in das Destillationssäulen-System eingeleitet wird.
  10. Verfahren nach Anspruch 7 oder 8 oder nach Anspruch 9 rückbezogen auf einen der Ansprüche 7 oder 8, dadurch gekennzeichnet, dass
    - der dritte Teilstrom (37, 339) in der zweiten Luftturbine (38) auf einen Druck entspannt wird, der mindestens 1 bar höher als der Betriebsdruck der Hochdrucksäule (21) ist, und
    - der arbeitsleistend entspannte dritte Teilstrom (339) in dem Hauptwärmetauscher (13) weiter abgekühlt und anschließend entspannt (341) und in das Destillationssäulen-System eingeleitet wird.
  11. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass
    - in dem ersten Betriebsmodus eine erste Menge an Einsatzluft in dem Hauptluftverdichter (2) verdichtet wird und
    - in dem zweiten Betriebsmodus eine zweite Menge an Einsatzluft in dem Hauptluftverdichter (2) verdichtet wird, wobei
    - das Verhältnis von zweiter Menge an Einsatzluft zu erster Menge an Einsatzluft größer, insbesondere um mehr als 3 % größer ist als das Verhältnis zwischen zweiter Menge an erstem Druckgasprodukt und erster Menge an erstem Druckgasprodukt.
  12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass der erste Teilstrom (8, 11) der im Hauptluftverdichter (2) verdichteten Einsatzluft (7) stromaufwärts seiner Einleitung in den Hauptwärmetauscher (13) in einem ersten Nachverdichter (9) nachverdichtet wird, der im Warmen betrieben und insbesondere von der ersten Turbine angetrieben wird.
  13. Vorrichtung zur variablen Gewinnung eines Druckgasprodukts (72; 73) mittels Tieftemperaturzerlegung von Luft mit
    - einem Destillationssäulen-System, das eine Hochdrucksäule (21) und eine Niederdrucksäule (22) aufweist,
    - einem Hauptluftverdichter (2) zum Verdichten der gesamten Einsatzluft auf einen ersten Druck, der mindestens 4 bar höher als der Betriebsdruck der Hochdrucksäule (21) ist,
    - Mittel zum Abkühlen eines ersten Teilstroms (8, 11, 14) der im Hauptluftverdichter (2) verdichteten Einsatzluft (7) in einem Hauptwärmetauscher (13) auf eine Zwischentemperatur,
    - einer ersten Luftturbine (15) zum arbeitsleistenden Entspannen des abgekühlten ersten Teilstroms,
    - Mittel zum Einleiten (40; 18, 19, 20) des arbeitsleistend entspannten ersten Teilstroms (16) in das Destillationssäulen-System,
    - einem ersten Nachverdichter (9) zum Nachverdichten eines zweiten Teilstroms (12, 27, 29, 30) der im Hauptluftverdichter (2) verdichteten Einsatzluft auf einen zweiten Druck, , der höher als der erste Druck ist, wobei der Nachverdichter (9) insbesondere von der ersten Turbine (15) angetrieben wird, nachverdichtet wird,
    - Mittel zum Abkühlen des nachverdichteten zweiten Teilstroms in dem Hauptwärmetauscher (13) abgekühlt,
    - Mittel zum Entspannen (31) und Einleiten in das Destillationssäulen-System des abgekühlten zweiten Teilstroms,
    - Mittel zum flüssigen Entnehmen eines ersten Produktstroms (69; 75) aus dem Destillationssäulen-System entnommen und zur Druckerhöhung (71; 76) des flüssigen ersten Produktstroms auf einen ersten Produktdruck,
    - Mittel zum Verdampfen oder Pseudo-Verdampfen und Anwärmen des ersten Produktstroms unter dem ersten Produktdruck im Hauptwärmetauscher (13),
    - Mittel zum Gewinnen des angewärmten ersten Produktstroms (72; 77) als erstes Druckgasprodukt (GOX IC; GAN IC),
    - einem mehrstufigen Verdichter (2; 57/59) zum Verdichten eines ersten Prozessstroms, der mindestens 78 mol-% Stickstoff enthält, von einem Eintrittsdruck auf einen Enddruck,
    - Mittel zum Vermischen eines zweiten Prozessstroms (65; 180), der mindestens 78 mol-% Stickstoff enthält, mit dem ersten Prozessstrom stromabwärts der ersten Stufe des mehrstufigen Verdichters (2; 57/59),
    - und mit Mitteln zum Umschalten zwischen einem ersten und einem zweiten Betriebsmodus, wobei
    - in dem ersten Betriebsmodus eine erste Menge an erstem Druckgasprodukt gewonnen wird und
    - in einem zweiten Betriebsmodus eine zweite Menge an erstem Druckgasprodukt gewonnen wird, die geringer ist als die erste Menge,
    dadurch gekennzeichnet, dass die Mitteln zum Umschalten zwischen dem ersten und dem zweiten Betriebsmodus so ausgebildet sind, dass
    - in dem ersten Betriebsmodus einer erste Menge des zweiten Prozessstroms (65; 180), die auch Null sein kann, in dem mehrstufigen Verdichter (2; 57/59) von einem Eintrittsdruck auf einen Enddruck verdichtet wird
    - in dem zweiten Betriebsmodus eine zweite Menge des zweiten Prozessstroms (65; 180) in dem mehrstufigen Verdichter (2; 57/59) verdichtet wird, die größer ist als die erste Menge des zweiten Prozessstroms.
EP14002307.8A 2014-07-05 2014-07-05 Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft mit variablem Energieverbrauch Withdrawn EP2963367A1 (de)

Priority Applications (13)

Application Number Priority Date Filing Date Title
EP14002307.8A EP2963367A1 (de) 2014-07-05 2014-07-05 Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft mit variablem Energieverbrauch
RU2017103099A RU2691210C2 (ru) 2014-07-05 2015-06-25 Способ и устройство для низкотемпературного разделения воздуха с переменным потреблением энергии
EP15733625.6A EP3164653A1 (de) 2014-07-05 2015-06-25 Verfahren und vorrichtung zur tieftemperaturzerlegung von luft mit variablem energieverbrauch
CN201580036844.4A CN106662394B (zh) 2014-07-05 2015-06-25 以可变能耗低温分离空气的方法和设备
PCT/EP2015/001285 WO2016005031A1 (de) 2014-07-05 2015-06-25 Verfahren und vorrichtung zur tieftemperaturzerlegung von luft mit variablem energieverbrauch
EP15735849.0A EP3164654B1 (de) 2014-07-05 2015-06-25 Verfahren und vorrichtung zur tieftemperaturzerlegung von luft mit variablem energieverbrauch
RU2017103309A RU2690550C2 (ru) 2014-07-05 2015-06-25 Способ и устройство для низкотемпературного разделения воздуха с переменным потреблением энергии
CN201580036802.0A CN106489059B (zh) 2014-07-05 2015-06-25 以可变能耗低温分离空气的方法和设备
US15/322,740 US10215489B2 (en) 2014-07-05 2015-06-25 Method and device for the low-temperature separation of air at variable energy consumption
PCT/EP2015/001284 WO2016005030A1 (de) 2014-07-05 2015-06-25 Verfahren und vorrichtung zur tieftemperaturzerlegung von luft mit variablem energieverbrauch
US15/322,468 US10458702B2 (en) 2014-07-05 2015-06-25 Method and device for the low-temperature separation of air at variable energy consumption
TW104121752A TW201607599A (zh) 2014-07-05 2015-07-03 以可變能耗低溫分離空氣之方法與裝置
TW104121751A TW201607598A (zh) 2014-07-05 2015-07-03 以可變能耗低溫分離空氣之方法與裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP14002307.8A EP2963367A1 (de) 2014-07-05 2014-07-05 Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft mit variablem Energieverbrauch

Publications (1)

Publication Number Publication Date
EP2963367A1 true EP2963367A1 (de) 2016-01-06

Family

ID=51176034

Family Applications (3)

Application Number Title Priority Date Filing Date
EP14002307.8A Withdrawn EP2963367A1 (de) 2014-07-05 2014-07-05 Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft mit variablem Energieverbrauch
EP15733625.6A Withdrawn EP3164653A1 (de) 2014-07-05 2015-06-25 Verfahren und vorrichtung zur tieftemperaturzerlegung von luft mit variablem energieverbrauch
EP15735849.0A Active EP3164654B1 (de) 2014-07-05 2015-06-25 Verfahren und vorrichtung zur tieftemperaturzerlegung von luft mit variablem energieverbrauch

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP15733625.6A Withdrawn EP3164653A1 (de) 2014-07-05 2015-06-25 Verfahren und vorrichtung zur tieftemperaturzerlegung von luft mit variablem energieverbrauch
EP15735849.0A Active EP3164654B1 (de) 2014-07-05 2015-06-25 Verfahren und vorrichtung zur tieftemperaturzerlegung von luft mit variablem energieverbrauch

Country Status (6)

Country Link
US (2) US10458702B2 (de)
EP (3) EP2963367A1 (de)
CN (2) CN106662394B (de)
RU (2) RU2690550C2 (de)
TW (2) TW201607598A (de)
WO (2) WO2016005030A1 (de)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3312533A1 (de) 2016-10-18 2018-04-25 Linde Aktiengesellschaft Verfahren zur luftzerlegung und luftzerlegungsanlage
DE102017010001A1 (de) 2016-11-04 2018-05-09 Linde Aktiengesellschaft Verfahren und Anlage zur Tieftemperaturzerlegung von Luft
DE102016015292A1 (de) 2016-12-22 2018-06-28 Linde Aktiengesellschaft Verfahren zur Bereitstellung eines oder mehrerer Luftprodukte mit einer Luftzerlegungsanlage
EP3343158A1 (de) 2016-12-28 2018-07-04 Linde Aktiengesellschaft Verfahren zur herstellung eines oder mehrerer luftprodukte und luftzerlegungsanlage
WO2018191014A1 (en) * 2017-04-12 2018-10-18 Praxair Technology, Inc. Method for controlling production of high pressure gaseous oxygen in an air separation unit
EP3410050A1 (de) 2017-06-02 2018-12-05 Linde Aktiengesellschaft Verfahren zur gewinnung eines oder mehrerer luftprodukte und luftzerlegungsanlage
WO2018219501A1 (de) 2017-05-31 2018-12-06 Linde Aktiengesellschaft Verfahren zur gewinnung eines oder mehrerer luftprodukte und luftzerlegungsanlage
DE202018005045U1 (de) 2018-10-31 2018-12-17 Linde Aktiengesellschaft Anlage zur Gewinnung von Argon durch Tieftemperaturzerlegung von Luft
WO2019214847A1 (de) 2018-05-07 2019-11-14 Linde Aktiengesellschaft Verfahren zur gewinnung eines oder mehrerer luftprodukte und luftzerlegungsanlage
EP3620739A1 (de) 2018-09-05 2020-03-11 Linde Aktiengesellschaft Verfahren zur tieftemperaturzerlegung von luft und luftzerlegungsanlage
WO2020074120A1 (de) 2018-10-09 2020-04-16 Linde Aktiengesellschaft Verfahren zur gewinnung eines oder mehrerer luftprodukte und luftzerlegungsanlage
WO2020083520A1 (de) 2018-10-26 2020-04-30 Linde Aktiengesellschaft Verfahren zur gewinnung eines oder mehrerer luftprodukte und luftzerlegungsanlage
EP3671085A1 (de) 2018-12-18 2020-06-24 Linde GmbH Anordnung und verfahren zum rückgewinnen von verdichtungswärme aus luft, die in einer luftbearbeitungsanlage verdichtet und bearbeitet wird
DE102019000335A1 (de) 2019-01-18 2020-07-23 Linde Aktiengesellschaft Verfahren zur Bereitstellung von Luftprodukten und Luftzerlegungsanlage
EP3696486A1 (de) 2019-02-13 2020-08-19 Linde GmbH Verfahren und anlage zur bereitstellung eines oder mehrerer sauerstoffreicher, gasförmiger luftprodukte
EP3699534A1 (de) 2019-02-19 2020-08-26 Linde GmbH Verfahren und luftzerlegungsanlage zur variablen bereitstellung eines gasförmigen, druckbeaufschlagten luftprodukts
EP3699535A1 (de) 2019-02-19 2020-08-26 Linde GmbH Verfahren und luftzerlegungsanlage zur variablen bereitstellung eines gasförmigen, druckbeaufschlagten luftprodukts
DE202021002439U1 (de) 2021-07-17 2021-10-20 Linde Gmbh Verdichter
DE202021002895U1 (de) 2021-09-07 2022-02-09 Linde GmbH Anlage zur Tieftemperaturzerlegung von Luft
WO2022053173A1 (de) 2020-09-08 2022-03-17 Linde Gmbh Verfahren und anlage zur tieftemperaturzerlegung von luft
WO2022053172A1 (de) 2020-09-08 2022-03-17 Linde Gmbh Verfahren zur gewinnung eines oder mehrerer luftprodukte und luftzerlegungsanlage
WO2022111850A1 (en) 2020-11-24 2022-06-02 Linde Gmbh Process and plant for cryogenic separation of air
WO2022263013A1 (de) 2021-06-17 2022-12-22 Linde Gmbh Verfahren und anlage zur bereitstellung eines druckbeaufschlagten sauerstoffreichen, gasförmigen luftprodukts
US11578916B2 (en) * 2017-12-29 2023-02-14 L'Air Liquide, Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georqes Claude Method and device for producing air product based on cryogenic rectification
WO2023030689A1 (de) 2021-09-02 2023-03-09 Linde Gmbh Verfahren zur gewinnung eines oder mehrerer luftprodukte und luftzerlegungsanlage
WO2023051946A1 (de) 2021-09-29 2023-04-06 Linde Gmbh Verfahren zur tieftemperaturzerlegung von luft und luftzerlegungsanlage

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2963367A1 (de) * 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft mit variablem Energieverbrauch
AU2017318652A1 (en) * 2016-08-30 2019-03-07 8 Rivers Capital, Llc Cryogenic air separation method for producing oxygen at high pressures
FR3066809B1 (fr) * 2017-05-24 2020-01-31 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede et appareil pour la separation de l'air par distillation cryogenique
FR3072451B1 (fr) * 2017-10-13 2022-01-21 Air Liquide Procede et appareil de separation d'air par distillation cryogenique
CN113758150A (zh) * 2021-09-18 2021-12-07 乔治洛德方法研究和开发液化空气有限公司 空气的低温分离方法和空气分离装置
CN114674112A (zh) * 2022-04-07 2022-06-28 安阳钢铁股份有限公司 一种液化装置氧氮自动转换方法

Citations (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE830805C (de) 1944-11-19 1952-02-07 Linde Eismasch Ag Verfahren zur Gas-, insbesondere zur Luftzerlegung
DE901542C (de) 1952-01-10 1954-01-11 Linde Eismasch Ag Verfahren zur Zerlegung von Luft durch Verfluessigung und Rektifikation
US2712738A (en) 1952-01-10 1955-07-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
DE952908C (de) 1953-10-11 1956-11-22 Linde Eismasch Ag Verfahren zur Zerlegung von Luft
US2784572A (en) 1953-01-02 1957-03-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
DE1103363B (de) 1958-09-24 1961-03-30 Linde Eismasch Ag Verfahren und Vorrichtung zur Erzeugung eines ausgeglichenen Kaeltehaushaltes bei der Gewinnung von unter hoeherem Druck stehenden Gasgemischen und/oder Gasgemisch-komponenten durch Rektifikation
DE1112997B (de) 1960-08-13 1961-08-24 Linde Eismasch Ag Verfahren und Einrichtung zur Gaszerlegung durch Rektifikation bei tiefer Temperatur
DE1117616B (de) 1960-10-14 1961-11-23 Linde Eismasch Ag Verfahren und Einrichtung zum Gewinnen besonders reiner Zerlegungsprodukte in Tieftemperaturgaszerlegungsanlagen
DE1124529B (de) 1957-07-04 1962-03-01 Linde Eismasch Ag Verfahren und Einrichtung zur Durchfuehrung von Waermeaustauschvorgaengen in einer mit vorgeschalteten Regeneratoren arbeitenden Gaszerlegungsanlage
DE1187248B (de) 1963-03-29 1965-02-18 Linde Eismasch Ag Verfahren und Einrichtung zur Gewinnung von Sauerstoffgas mit 70 bis 98% O-Gehalt
DE1199293B (de) 1963-03-29 1965-08-26 Linde Eismasch Ag Verfahren und Vorrichtung zur Luftzerlegung in einem Einsaeulenrektifikator
US3216206A (en) 1961-11-29 1965-11-09 Linde Eismasch Ag Low temperature distillation of normally gaseous substances
US3222878A (en) 1962-12-21 1965-12-14 Linde Eismasch Ag Method and apparatus for fractionation of air
DE1235347B (de) 1964-05-13 1967-03-02 Linde Ag Verfahren und Vorrichtung zum Betrieb von umschaltbaren Waermeaustauschern bei der Tieftemperaturgaszerlegung
DE1258882B (de) 1963-06-19 1968-01-18 Linde Ag Verfahren und Anlage zur Luftzerlegung durch Rektifikation unter Verwendung eines Hochdruckgas-Kaeltekreislaufes zur Druckverdampfung fluessigen Sauerstoffs
DE1263037B (de) 1965-05-19 1968-03-14 Linde Ag Verfahren zur Zerlegung von Luft in einer Rektifikationssaeule und damit gekoppelterZerlegung eines Wasserstoff enthaltenden Gasgemisches
US3416323A (en) 1966-01-13 1968-12-17 Linde Ag Low temperature production of highly compressed gaseous and/or liquid oxygen
DE1501723A1 (de) 1966-01-13 1969-06-26 Linde Ag Verfahren und Vorrichtung zur Erzeugung gasfoermigen Hochdrucksauerstoffs bei der Tieftemperaturrektifikation von Luft
DE2535132A1 (de) 1975-08-06 1977-02-10 Linde Ag Verfahren und vorrichtung zur herstellung von sauerstoff durch zweistufige tieftemperaturrektifikation von luft
DE2646690A1 (de) 1976-10-15 1978-04-20 Linde Ag Verfahren und vorrichtung zur herstellung einer mischung von sauerstoff und wasserdampf unter druck
US4555256A (en) 1982-05-03 1985-11-26 Linde Aktiengesellschaft Process and device for the production of gaseous oxygen at elevated pressure
EP0316768A2 (de) * 1987-11-13 1989-05-24 Linde Aktiengesellschaft Verfahren zur Luftzerlegung durch Tieftemperaturrektifikation
US5036672A (en) 1989-02-23 1991-08-06 Linde Aktiengesellschaft Process and apparatus for air fractionation by rectification
US5263328A (en) 1991-03-26 1993-11-23 Linde Aktiengesellschaft Process for low-temperature air fractionation
US5400600A (en) * 1992-06-23 1995-03-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and installation for the production of gaseous oxygen under pressure
US5644934A (en) 1994-12-05 1997-07-08 Linde Aktiengesellchaft Process and device for low-temperature separation of air
US5845517A (en) 1995-08-11 1998-12-08 Linde Aktiengesellschaft Process and device for air separation by low-temperature rectification
DE19803437A1 (de) 1998-01-29 1999-03-18 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
US5953937A (en) 1995-07-21 1999-09-21 Linde Aktiengesellschaft Process and apparatus for the variable production of a gaseous pressurized product
EP0955509A1 (de) 1998-04-30 1999-11-10 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von hochreinem Sauerstoff
US6038885A (en) 1997-07-30 2000-03-21 Linde Aktiengesellschaft Air separation process
DE19909744A1 (de) 1999-03-05 2000-05-04 Linde Ag Zweisäulensystem zur Tieftemperaturzerlegung von Luft
EP1031804A1 (de) 1999-02-26 2000-08-30 Linde Technische Gase GmbH Zweisäulensystem zur Tieftemperaturzerlegung von Luft
US6116052A (en) * 1999-04-09 2000-09-12 Air Liquide Process And Construction Cryogenic air separation process and installation
DE19954593A1 (de) 1999-11-12 2000-09-28 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE10013073A1 (de) 2000-03-17 2000-10-19 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP1067345A1 (de) 1999-07-05 2001-01-10 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP1074805A1 (de) 1999-08-05 2001-02-07 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Sauerstoff unter überatmosphärischem Druck
US6185960B1 (en) 1998-04-08 2001-02-13 Linde Aktiengesellschaft Process and device for the production of a pressurized gaseous product by low-temperature separation of air
EP1134525A1 (de) 2000-03-17 2001-09-19 Linde Aktiengesellschaft Verfahren zur Gewinnung von gasförmigem und flüssigem Stickstoff mit variablem Anteil des Flüssigprodukts
EP1139046A1 (de) 2000-03-29 2001-10-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
EP1146301A1 (de) 2000-04-12 2001-10-17 Linde Gas Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Drückstickstoff durch Tieftemperaturzerlegung von Luft
EP1150082A1 (de) 2000-04-28 2001-10-31 Linde Aktiengesellschaft Verfahren und Vorrichtung zum Wärmeaustausch
US6314755B1 (en) 1999-02-26 2001-11-13 Linde Aktiengesellschaft Double column system for the low-temperature fractionation of air
EP1213552A1 (de) 2000-12-06 2002-06-12 Linde Aktiengesellschaft Maschinensystem zur arbeitsleistenden Entspannung zweier Prozess-Ströme
DE10115258A1 (de) 2001-03-28 2002-07-18 Linde Ag Maschinensystem und dessen Anwendung
DE10213212A1 (de) 2002-03-25 2002-10-17 Linde Ag Verfahren und Vorrichtung zur Erzeugung zweier Druckprodukte durch Tieftemperatur-Luftzerlegung
DE10213211A1 (de) 2002-03-25 2002-10-17 Linde Ag Verfahren zur Tieftemperatur-Luftzerlegung mit abgeschottetem Kreislaufsystem
EP1284404A1 (de) 2001-08-13 2003-02-19 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
FR2831249A1 (fr) * 2002-01-21 2003-04-25 Air Liquide Procede et installation de separation d'air par distillation cryogenique
EP1308680A1 (de) 2001-10-31 2003-05-07 Linde AG Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
DE10238282A1 (de) 2002-08-21 2003-05-28 Linde Ag Verfahren zur Tieftemperatur-Zerlegung von Luft
DE10302389A1 (de) 2003-01-22 2003-06-18 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP1357342A1 (de) 2002-04-17 2003-10-29 Linde Aktiengesellschaft Drei-Säulen-System zur Tieftemperaturzerlegung mit Argongewinnung
DE10332863A1 (de) 2003-07-18 2004-02-26 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
DE10334559A1 (de) 2003-05-28 2004-12-16 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
DE10334560A1 (de) 2003-05-28 2004-12-16 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
US20050126221A1 (en) * 2003-12-10 2005-06-16 Bao Ha Process and apparatus for the separation of air by cryogenic distillation
EP1544559A1 (de) 2003-12-20 2005-06-22 Linde AG Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
US20050132746A1 (en) * 2003-12-23 2005-06-23 Jean-Renaud Brugerolle Cryogenic air separation process and apparatus
EP1585926A1 (de) 2002-12-19 2005-10-19 Karges-Faulconbridge, Inc. System und verfahren für flüssigkeitsextraktion
DE102005029274A1 (de) 2004-08-17 2006-02-23 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperatur-Zerlegung von Luft
EP1666824A1 (de) 2004-12-03 2006-06-07 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Argon durch Tieftemperaturzerlegung von Luft
EP1672301A1 (de) 2004-12-03 2006-06-21 Linde AG Vorrichtung zur Tieftemperaturzerlegung eines Gasgemischs, insbesondere von Luft
DE102005028012A1 (de) 2005-06-16 2006-09-14 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE102006032731A1 (de) 2006-07-14 2007-01-18 Linde Ag Verfahren und Anlage zur Luftzerlegung
WO2007033838A1 (de) 2005-09-23 2007-03-29 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
DE102007014643A1 (de) 2007-03-27 2007-09-20 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
WO2007104449A1 (de) 2006-03-15 2007-09-20 Linde Aktiengesellschaft Vefahren und vorrichtung zur tieftemperaturzerlegung von luft
EP1845324A1 (de) 2006-04-13 2007-10-17 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung eines Druckprodukts durch Tieftemperatur-Luftzerlegung
EP1892490A1 (de) 2006-08-16 2008-02-27 Linde Aktiengesellschaft Verfahren und Vorrichtung zur variablen Gewinnung eines Druckprodukts durch Tieftemperatur-Gaszerlegung
EP2015013A2 (de) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
EP2015012A2 (de) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Verfahren zur Tieftemperaturzerlegung von Luft
EP2026024A1 (de) 2007-07-30 2009-02-18 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Argon durch Tieftemperaturzerlegung von Luft
WO2009095188A2 (de) 2008-01-28 2009-08-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperatur-luftzerlegung
DE102008016355A1 (de) 2008-03-29 2009-10-01 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE102010052545A1 (de) * 2010-11-25 2012-05-31 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2520886A1 (de) * 2011-05-05 2012-11-07 Linde AG Verfahren und Vorrichtung zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU787829A1 (ru) * 1976-09-10 1980-12-15 Предприятие П/Я А-3605 Способ получени жидких и газообразных компонентов воздуха
RU2054609C1 (ru) * 1990-12-04 1996-02-20 Балашихинское научно-производственное объединение криогенного машиностроения им.40-летия Октября "Криогенмаш" Способ разделения воздуха
FR2689224B1 (fr) 1992-03-24 1994-05-06 Lair Liquide Procede et installation de production d'azote sous haute pression et d'oxygene.
US5678425A (en) * 1996-06-07 1997-10-21 Air Products And Chemicals, Inc. Method and apparatus for producing liquid products from air in various proportions
US7188492B2 (en) * 2002-01-18 2007-03-13 Linde Aktiengesellschaft Plate heat exchanger
US8020408B2 (en) * 2006-12-06 2011-09-20 Praxair Technology, Inc. Separation method and apparatus
EP2600090B1 (de) * 2011-12-01 2014-07-16 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von Drucksauerstoff durch Tieftemperaturzerlegung von Luft
FR2995393B1 (fr) * 2012-09-12 2014-10-03 Air Liquide Procede et appareil de separation d'air par distillation cryogenique.
EP2963367A1 (de) * 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft mit variablem Energieverbrauch

Patent Citations (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE830805C (de) 1944-11-19 1952-02-07 Linde Eismasch Ag Verfahren zur Gas-, insbesondere zur Luftzerlegung
DE901542C (de) 1952-01-10 1954-01-11 Linde Eismasch Ag Verfahren zur Zerlegung von Luft durch Verfluessigung und Rektifikation
US2712738A (en) 1952-01-10 1955-07-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
US2784572A (en) 1953-01-02 1957-03-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
DE952908C (de) 1953-10-11 1956-11-22 Linde Eismasch Ag Verfahren zur Zerlegung von Luft
DE1124529B (de) 1957-07-04 1962-03-01 Linde Eismasch Ag Verfahren und Einrichtung zur Durchfuehrung von Waermeaustauschvorgaengen in einer mit vorgeschalteten Regeneratoren arbeitenden Gaszerlegungsanlage
US3083544A (en) 1958-09-24 1963-04-02 Linde S Eismaschinen Ag Hollri Rectification of gases
DE1103363B (de) 1958-09-24 1961-03-30 Linde Eismasch Ag Verfahren und Vorrichtung zur Erzeugung eines ausgeglichenen Kaeltehaushaltes bei der Gewinnung von unter hoeherem Druck stehenden Gasgemischen und/oder Gasgemisch-komponenten durch Rektifikation
DE1112997B (de) 1960-08-13 1961-08-24 Linde Eismasch Ag Verfahren und Einrichtung zur Gaszerlegung durch Rektifikation bei tiefer Temperatur
US3214925A (en) 1960-08-13 1965-11-02 Linde Eismasch Ag System for gas separation by rectification at low temperatures
DE1117616B (de) 1960-10-14 1961-11-23 Linde Eismasch Ag Verfahren und Einrichtung zum Gewinnen besonders reiner Zerlegungsprodukte in Tieftemperaturgaszerlegungsanlagen
US3280574A (en) 1960-10-14 1966-10-25 Linde Ag High pressure pure gas for preventing contamination by low pressure raw gas in reversing regenerators
DE1226616B (de) 1961-11-29 1966-10-13 Linde Ag Verfahren und Einrichtung zur Gewinnung von gasfoermigem Drucksauerstoff mit gleichzeitiger Erzeugung fluessiger Zerlegungsprodukte durch Tieftemperatur-Luftzerlegung
US3216206A (en) 1961-11-29 1965-11-09 Linde Eismasch Ag Low temperature distillation of normally gaseous substances
US3222878A (en) 1962-12-21 1965-12-14 Linde Eismasch Ag Method and apparatus for fractionation of air
DE1229561B (de) 1962-12-21 1966-12-01 Linde Ag Verfahren und Vorrichtung zum Zerlegen von Luft durch Verfluessigung und Rektifikation mit Hilfe eines Inertgaskreislaufes
DE1187248B (de) 1963-03-29 1965-02-18 Linde Eismasch Ag Verfahren und Einrichtung zur Gewinnung von Sauerstoffgas mit 70 bis 98% O-Gehalt
DE1199293B (de) 1963-03-29 1965-08-26 Linde Eismasch Ag Verfahren und Vorrichtung zur Luftzerlegung in einem Einsaeulenrektifikator
US3371496A (en) 1963-03-29 1968-03-05 Linde Ag Wash liquid production by heat exchange with low pressure liquid oxygen
US3426543A (en) 1963-06-19 1969-02-11 Linde Ag Combining pure liquid and vapor nitrogen streams from air separation for crude hydrogen gas washing
DE1258882B (de) 1963-06-19 1968-01-18 Linde Ag Verfahren und Anlage zur Luftzerlegung durch Rektifikation unter Verwendung eines Hochdruckgas-Kaeltekreislaufes zur Druckverdampfung fluessigen Sauerstoffs
DE1235347B (de) 1964-05-13 1967-03-02 Linde Ag Verfahren und Vorrichtung zum Betrieb von umschaltbaren Waermeaustauschern bei der Tieftemperaturgaszerlegung
US3401531A (en) 1965-05-19 1968-09-17 Linde Ag Heat exchange of compressed nitrogen and liquid oxygen in ammonia synthesis feed gas production
DE1263037B (de) 1965-05-19 1968-03-14 Linde Ag Verfahren zur Zerlegung von Luft in einer Rektifikationssaeule und damit gekoppelterZerlegung eines Wasserstoff enthaltenden Gasgemisches
US3416323A (en) 1966-01-13 1968-12-17 Linde Ag Low temperature production of highly compressed gaseous and/or liquid oxygen
DE1501722A1 (de) 1966-01-13 1969-06-26 Linde Ag Verfahren zur Tieftemperatur-Luftzerlegung zur Erzeugung von hochverdichtetem gasfoermigem und/oder fluessigem Sauerstoff
DE1501723A1 (de) 1966-01-13 1969-06-26 Linde Ag Verfahren und Vorrichtung zur Erzeugung gasfoermigen Hochdrucksauerstoffs bei der Tieftemperaturrektifikation von Luft
US3500651A (en) 1966-01-13 1970-03-17 Linde Ag Production of high pressure gaseous oxygen by low temperature rectification of air
DE2535132A1 (de) 1975-08-06 1977-02-10 Linde Ag Verfahren und vorrichtung zur herstellung von sauerstoff durch zweistufige tieftemperaturrektifikation von luft
US4279631A (en) 1975-08-06 1981-07-21 Linde Aktiengesellschaft Process and apparatus for the production of oxygen by two-stage low-temperature rectification of air
DE2646690A1 (de) 1976-10-15 1978-04-20 Linde Ag Verfahren und vorrichtung zur herstellung einer mischung von sauerstoff und wasserdampf unter druck
US4555256A (en) 1982-05-03 1985-11-26 Linde Aktiengesellschaft Process and device for the production of gaseous oxygen at elevated pressure
EP0093448B1 (de) 1982-05-03 1986-10-15 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von gasförmigem Sauerstoff unter erhöhtem Druck
EP0316768A2 (de) * 1987-11-13 1989-05-24 Linde Aktiengesellschaft Verfahren zur Luftzerlegung durch Tieftemperaturrektifikation
US5036672A (en) 1989-02-23 1991-08-06 Linde Aktiengesellschaft Process and apparatus for air fractionation by rectification
EP0384483B1 (de) 1989-02-23 1992-07-22 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Luftzerlegung durch Rektifikation
US5263328A (en) 1991-03-26 1993-11-23 Linde Aktiengesellschaft Process for low-temperature air fractionation
EP0505812B1 (de) 1991-03-26 1995-10-18 Linde Aktiengesellschaft Verfahren zur Tieftemperaturzerlegung von Luft
US5400600A (en) * 1992-06-23 1995-03-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and installation for the production of gaseous oxygen under pressure
US5644934A (en) 1994-12-05 1997-07-08 Linde Aktiengesellchaft Process and device for low-temperature separation of air
EP0716280B1 (de) 1994-12-05 2001-05-16 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP0842385B1 (de) 1995-07-21 2001-04-18 Linde Aktiengesellschaft Verfahren und vorrichtung zur variablen erzeugung eines gasförmigen druckprodukts
US5953937A (en) 1995-07-21 1999-09-21 Linde Aktiengesellschaft Process and apparatus for the variable production of a gaseous pressurized product
US5845517A (en) 1995-08-11 1998-12-08 Linde Aktiengesellschaft Process and device for air separation by low-temperature rectification
EP0758733B1 (de) 1995-08-11 2000-11-02 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Luftzerlegung durch Tieftemperaturrektifikation
EP0895045B1 (de) 1997-07-30 2002-11-27 Linde Aktiengesellschaft Verfahren zur Luftzerlegung
US6038885A (en) 1997-07-30 2000-03-21 Linde Aktiengesellschaft Air separation process
DE19803437A1 (de) 1998-01-29 1999-03-18 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
EP0949471B1 (de) 1998-04-08 2002-12-18 Linde AG Luftzerlegungsanlage mit zwei verschiedenen Betriebsmodi
US6185960B1 (en) 1998-04-08 2001-02-13 Linde Aktiengesellschaft Process and device for the production of a pressurized gaseous product by low-temperature separation of air
US6196022B1 (en) 1998-04-30 2001-03-06 Linde Aktiengesellschaft Process and device for recovering high-purity oxygen
EP0955509A1 (de) 1998-04-30 1999-11-10 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von hochreinem Sauerstoff
EP1031804A1 (de) 1999-02-26 2000-08-30 Linde Technische Gase GmbH Zweisäulensystem zur Tieftemperaturzerlegung von Luft
US6314755B1 (en) 1999-02-26 2001-11-13 Linde Aktiengesellschaft Double column system for the low-temperature fractionation of air
DE19909744A1 (de) 1999-03-05 2000-05-04 Linde Ag Zweisäulensystem zur Tieftemperaturzerlegung von Luft
US6116052A (en) * 1999-04-09 2000-09-12 Air Liquide Process And Construction Cryogenic air separation process and installation
EP1067345A1 (de) 1999-07-05 2001-01-10 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
US6336345B1 (en) 1999-07-05 2002-01-08 Linde Aktiengesellschaft Process and apparatus for low temperature fractionation of air
EP1074805A1 (de) 1999-08-05 2001-02-07 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Sauerstoff unter überatmosphärischem Druck
US6332337B1 (en) 1999-08-05 2001-12-25 Linde Aktiengesellschaft Method and apparatus for recovering oxygen at hyperbaric pressure
DE19954593A1 (de) 1999-11-12 2000-09-28 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE10013073A1 (de) 2000-03-17 2000-10-19 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP1134525A1 (de) 2000-03-17 2001-09-19 Linde Aktiengesellschaft Verfahren zur Gewinnung von gasförmigem und flüssigem Stickstoff mit variablem Anteil des Flüssigprodukts
US6477860B2 (en) 2000-03-17 2002-11-12 Linde Aktiengesellschaft Process for obtaining gaseous and liquid nitrogen with a variable proportion of liquid product
EP1139046A1 (de) 2000-03-29 2001-10-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
EP1146301A1 (de) 2000-04-12 2001-10-17 Linde Gas Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Drückstickstoff durch Tieftemperaturzerlegung von Luft
EP1150082A1 (de) 2000-04-28 2001-10-31 Linde Aktiengesellschaft Verfahren und Vorrichtung zum Wärmeaustausch
EP1213552A1 (de) 2000-12-06 2002-06-12 Linde Aktiengesellschaft Maschinensystem zur arbeitsleistenden Entspannung zweier Prozess-Ströme
DE10115258A1 (de) 2001-03-28 2002-07-18 Linde Ag Maschinensystem und dessen Anwendung
EP1284404A1 (de) 2001-08-13 2003-02-19 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
US20030051504A1 (en) 2001-08-13 2003-03-20 Linde Aktiengesellschaft Process and device for obtaining a compressed product by low temperature separation of air
US6612129B2 (en) 2001-10-31 2003-09-02 Linde Aktiengesellschaft Process and apparatus for producing krypton and/or xenon by low-temperature fractionation of air
EP1308680A1 (de) 2001-10-31 2003-05-07 Linde AG Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
FR2831249A1 (fr) * 2002-01-21 2003-04-25 Air Liquide Procede et installation de separation d'air par distillation cryogenique
DE10213211A1 (de) 2002-03-25 2002-10-17 Linde Ag Verfahren zur Tieftemperatur-Luftzerlegung mit abgeschottetem Kreislaufsystem
DE10213212A1 (de) 2002-03-25 2002-10-17 Linde Ag Verfahren und Vorrichtung zur Erzeugung zweier Druckprodukte durch Tieftemperatur-Luftzerlegung
EP1357342A1 (de) 2002-04-17 2003-10-29 Linde Aktiengesellschaft Drei-Säulen-System zur Tieftemperaturzerlegung mit Argongewinnung
DE10238282A1 (de) 2002-08-21 2003-05-28 Linde Ag Verfahren zur Tieftemperatur-Zerlegung von Luft
EP1585926A1 (de) 2002-12-19 2005-10-19 Karges-Faulconbridge, Inc. System und verfahren für flüssigkeitsextraktion
DE10302389A1 (de) 2003-01-22 2003-06-18 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE10334559A1 (de) 2003-05-28 2004-12-16 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
DE10334560A1 (de) 2003-05-28 2004-12-16 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
DE10332863A1 (de) 2003-07-18 2004-02-26 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
US20050126221A1 (en) * 2003-12-10 2005-06-16 Bao Ha Process and apparatus for the separation of air by cryogenic distillation
EP1544559A1 (de) 2003-12-20 2005-06-22 Linde AG Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
US20050132746A1 (en) * 2003-12-23 2005-06-23 Jean-Renaud Brugerolle Cryogenic air separation process and apparatus
DE102005029274A1 (de) 2004-08-17 2006-02-23 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperatur-Zerlegung von Luft
EP1666824A1 (de) 2004-12-03 2006-06-07 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Argon durch Tieftemperaturzerlegung von Luft
EP1672301A1 (de) 2004-12-03 2006-06-21 Linde AG Vorrichtung zur Tieftemperaturzerlegung eines Gasgemischs, insbesondere von Luft
DE102005028012A1 (de) 2005-06-16 2006-09-14 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
WO2007033838A1 (de) 2005-09-23 2007-03-29 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
WO2007104449A1 (de) 2006-03-15 2007-09-20 Linde Aktiengesellschaft Vefahren und vorrichtung zur tieftemperaturzerlegung von luft
EP1845324A1 (de) 2006-04-13 2007-10-17 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung eines Druckprodukts durch Tieftemperatur-Luftzerlegung
DE102006032731A1 (de) 2006-07-14 2007-01-18 Linde Ag Verfahren und Anlage zur Luftzerlegung
EP1892490A1 (de) 2006-08-16 2008-02-27 Linde Aktiengesellschaft Verfahren und Vorrichtung zur variablen Gewinnung eines Druckprodukts durch Tieftemperatur-Gaszerlegung
DE102007014643A1 (de) 2007-03-27 2007-09-20 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
EP2015013A2 (de) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
EP2015012A2 (de) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Verfahren zur Tieftemperaturzerlegung von Luft
EP2026024A1 (de) 2007-07-30 2009-02-18 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Argon durch Tieftemperaturzerlegung von Luft
WO2009095188A2 (de) 2008-01-28 2009-08-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperatur-luftzerlegung
DE102008016355A1 (de) 2008-03-29 2009-10-01 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE102010052545A1 (de) * 2010-11-25 2012-05-31 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2520886A1 (de) * 2011-05-05 2012-11-07 Linde AG Verfahren und Vorrichtung zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAUSEN; LINDE: "Tieftemperaturtechnik, 2. Auflage", 1985, article "Kapitel 4", pages: 281 - 337

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3312533A1 (de) 2016-10-18 2018-04-25 Linde Aktiengesellschaft Verfahren zur luftzerlegung und luftzerlegungsanlage
DE102017010001A1 (de) 2016-11-04 2018-05-09 Linde Aktiengesellschaft Verfahren und Anlage zur Tieftemperaturzerlegung von Luft
DE102016015292A1 (de) 2016-12-22 2018-06-28 Linde Aktiengesellschaft Verfahren zur Bereitstellung eines oder mehrerer Luftprodukte mit einer Luftzerlegungsanlage
EP3343158A1 (de) 2016-12-28 2018-07-04 Linde Aktiengesellschaft Verfahren zur herstellung eines oder mehrerer luftprodukte und luftzerlegungsanlage
WO2018191014A1 (en) * 2017-04-12 2018-10-18 Praxair Technology, Inc. Method for controlling production of high pressure gaseous oxygen in an air separation unit
US10359231B2 (en) 2017-04-12 2019-07-23 Praxair Technology, Inc. Method for controlling production of high pressure gaseous oxygen in an air separation unit
WO2018219501A1 (de) 2017-05-31 2018-12-06 Linde Aktiengesellschaft Verfahren zur gewinnung eines oder mehrerer luftprodukte und luftzerlegungsanlage
US11098950B2 (en) * 2017-06-02 2021-08-24 Linde Aktiengesellschaft Process for obtaining one or more air products and air separation plant
EP3410050A1 (de) 2017-06-02 2018-12-05 Linde Aktiengesellschaft Verfahren zur gewinnung eines oder mehrerer luftprodukte und luftzerlegungsanlage
US11578916B2 (en) * 2017-12-29 2023-02-14 L'Air Liquide, Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georqes Claude Method and device for producing air product based on cryogenic rectification
WO2019214847A1 (de) 2018-05-07 2019-11-14 Linde Aktiengesellschaft Verfahren zur gewinnung eines oder mehrerer luftprodukte und luftzerlegungsanlage
EP3620739A1 (de) 2018-09-05 2020-03-11 Linde Aktiengesellschaft Verfahren zur tieftemperaturzerlegung von luft und luftzerlegungsanlage
WO2020048634A1 (de) 2018-09-05 2020-03-12 Linde Aktiengesellschaft Verfahren zur tieftemperaturzerlegung von luft und luftzerlegungsanlage
WO2020074120A1 (de) 2018-10-09 2020-04-16 Linde Aktiengesellschaft Verfahren zur gewinnung eines oder mehrerer luftprodukte und luftzerlegungsanlage
WO2020083520A1 (de) 2018-10-26 2020-04-30 Linde Aktiengesellschaft Verfahren zur gewinnung eines oder mehrerer luftprodukte und luftzerlegungsanlage
DE202018005045U1 (de) 2018-10-31 2018-12-17 Linde Aktiengesellschaft Anlage zur Gewinnung von Argon durch Tieftemperaturzerlegung von Luft
EP3647701A1 (de) 2018-10-31 2020-05-06 Linde Aktiengesellschaft Anlage zur gewinnung von argon durch tieftemperaturzerlegung von luft
EP3671085A1 (de) 2018-12-18 2020-06-24 Linde GmbH Anordnung und verfahren zum rückgewinnen von verdichtungswärme aus luft, die in einer luftbearbeitungsanlage verdichtet und bearbeitet wird
DE102019000335A1 (de) 2019-01-18 2020-07-23 Linde Aktiengesellschaft Verfahren zur Bereitstellung von Luftprodukten und Luftzerlegungsanlage
EP3696486A1 (de) 2019-02-13 2020-08-19 Linde GmbH Verfahren und anlage zur bereitstellung eines oder mehrerer sauerstoffreicher, gasförmiger luftprodukte
WO2020164799A1 (de) 2019-02-13 2020-08-20 Linde Gmbh Verfahren und anlage zur bereitstellung eines oder mehrerer sauerstoffreicher, gasförmiger luftprodukte
EP3699534A1 (de) 2019-02-19 2020-08-26 Linde GmbH Verfahren und luftzerlegungsanlage zur variablen bereitstellung eines gasförmigen, druckbeaufschlagten luftprodukts
EP3699535A1 (de) 2019-02-19 2020-08-26 Linde GmbH Verfahren und luftzerlegungsanlage zur variablen bereitstellung eines gasförmigen, druckbeaufschlagten luftprodukts
WO2022053172A1 (de) 2020-09-08 2022-03-17 Linde Gmbh Verfahren zur gewinnung eines oder mehrerer luftprodukte und luftzerlegungsanlage
WO2022053173A1 (de) 2020-09-08 2022-03-17 Linde Gmbh Verfahren und anlage zur tieftemperaturzerlegung von luft
WO2022111850A1 (en) 2020-11-24 2022-06-02 Linde Gmbh Process and plant for cryogenic separation of air
WO2022263013A1 (de) 2021-06-17 2022-12-22 Linde Gmbh Verfahren und anlage zur bereitstellung eines druckbeaufschlagten sauerstoffreichen, gasförmigen luftprodukts
DE202021002439U1 (de) 2021-07-17 2021-10-20 Linde Gmbh Verdichter
WO2023030689A1 (de) 2021-09-02 2023-03-09 Linde Gmbh Verfahren zur gewinnung eines oder mehrerer luftprodukte und luftzerlegungsanlage
DE202021002895U1 (de) 2021-09-07 2022-02-09 Linde GmbH Anlage zur Tieftemperaturzerlegung von Luft
WO2023051946A1 (de) 2021-09-29 2023-04-06 Linde Gmbh Verfahren zur tieftemperaturzerlegung von luft und luftzerlegungsanlage

Also Published As

Publication number Publication date
US10215489B2 (en) 2019-02-26
CN106489059A (zh) 2017-03-08
CN106489059B (zh) 2019-11-05
WO2016005031A1 (de) 2016-01-14
WO2016005030A1 (de) 2016-01-14
RU2017103099A (ru) 2018-08-06
CN106662394A (zh) 2017-05-10
RU2690550C2 (ru) 2019-06-04
US20170131028A1 (en) 2017-05-11
RU2017103309A3 (de) 2018-12-18
TW201607598A (zh) 2016-03-01
EP3164654B1 (de) 2020-07-29
RU2691210C2 (ru) 2019-06-11
CN106662394B (zh) 2019-11-05
US20170153058A1 (en) 2017-06-01
RU2017103099A3 (de) 2018-12-20
TW201607599A (zh) 2016-03-01
EP3164653A1 (de) 2017-05-10
US10458702B2 (en) 2019-10-29
RU2017103309A (ru) 2018-08-06
EP3164654A1 (de) 2017-05-10

Similar Documents

Publication Publication Date Title
EP3164654B1 (de) Verfahren und vorrichtung zur tieftemperaturzerlegung von luft mit variablem energieverbrauch
EP2235460B1 (de) Verfahren und vorrichtung zur tieftemperatur-luftzerlegung
EP2963370B1 (de) Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
EP1357342B1 (de) Drei-Säulen-System zur Tieftemperaturzerlegung mit Argongewinnung
EP2015012A2 (de) Verfahren zur Tieftemperaturzerlegung von Luft
DE102010052545A1 (de) Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
WO2007104449A1 (de) Vefahren und vorrichtung zur tieftemperaturzerlegung von luft
EP1074805B1 (de) Verfahren und Vorrichtung zur Gewinnung von Sauerstoff unter überatmosphärischem Druck
EP3410050B1 (de) Verfahren zur gewinnung eines oder mehrerer luftprodukte und luftzerlegungsanlage
DE102005028012A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
WO2020169257A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
EP2963369B1 (de) Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
EP2979051B1 (de) Verfahren und vorrichtung zur erzeugung von gasförmigem drucksauerstoff mit variablem energieverbrauch
EP2053331A1 (de) Verfahren und Vorrichtung zur Tieftemperatur-Luftzerlegung
EP2551619A1 (de) Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff und Drucksauerstoff durch Tieftemperaturzerlegung von Luft
EP3980705A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
WO2021104668A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
EP2963371B1 (de) Verfahren und vorrichtung zur gewinnung eines druckgasprodukts durch tieftemperaturzerlegung von luft
DE19933558C5 (de) Dreisäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft
EP2600090B1 (de) Verfahren und Vorrichtung zur Erzeugung von Drucksauerstoff durch Tieftemperaturzerlegung von Luft
DE102004016931A1 (de) Verfahren und Vorrichtung zur variablen Erzeugung eines Druckproduktes durch Tieftemperaturzerlegung von Luft
WO2011110301A2 (de) Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
WO2020187449A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
WO2019214847A1 (de) Verfahren zur gewinnung eines oder mehrerer luftprodukte und luftzerlegungsanlage
WO2014037091A2 (de) Verfahren und anlage zur erzeugung flüssiger und gasförmiger sauerstoffprodukte durch tieftemperaturzerlegung von luft

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160707