[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0384483B1 - Verfahren und Vorrichtung zur Luftzerlegung durch Rektifikation - Google Patents

Verfahren und Vorrichtung zur Luftzerlegung durch Rektifikation Download PDF

Info

Publication number
EP0384483B1
EP0384483B1 EP90103572A EP90103572A EP0384483B1 EP 0384483 B1 EP0384483 B1 EP 0384483B1 EP 90103572 A EP90103572 A EP 90103572A EP 90103572 A EP90103572 A EP 90103572A EP 0384483 B1 EP0384483 B1 EP 0384483B1
Authority
EP
European Patent Office
Prior art keywords
nitrogen
pressure
pressure stage
compressed
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90103572A
Other languages
English (en)
French (fr)
Other versions
EP0384483A3 (en
EP0384483A2 (de
Inventor
Dietrich Dipl.-Ing. Rottmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19893905521 external-priority patent/DE3905521A1/de
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP0384483A2 publication Critical patent/EP0384483A2/de
Publication of EP0384483A3 publication Critical patent/EP0384483A3/de
Application granted granted Critical
Publication of EP0384483B1 publication Critical patent/EP0384483B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04854Safety aspects of operation
    • F25J3/0486Safety aspects of operation of vaporisers for oxygen enriched liquids, e.g. purging of liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/04206Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/0423Subcooling of liquid process streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04315Lowest pressure or impure nitrogen, so-called waste nitrogen expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04327Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of argon or argon enriched stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04709Producing crude argon in a crude argon column as an auxiliary column system in at least a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/20Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/42Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/52Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being oxygen enriched compared to air, e.g. "crude oxygen"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/58Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being argon or crude argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/40One fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/50One fluid being oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/923Inert gas
    • Y10S62/924Argon

Definitions

  • the invention relates to a method for air separation by rectification, in which air is compressed, pre-cleaned, cooled and pre-separated in the pressure stage of a two-stage rectification into a nitrogen-rich fraction and an oxygen-rich liquid, and the two fractions are at least partially fed to the medium-pressure stage of the rectification and in oxygen and nitrogen are broken down, with at least one gaseous nitrogen fraction being led out of the medium pressure stage, heated and at least partially compressed.
  • the invention also relates to a device for carrying out the method with the flagpoles of the first part of claim 6.
  • the object of the invention is to improve the economy of the method and the device of the type mentioned at the outset and, in particular, to provide process cooling in a particularly advantageous manner without the reuse of the gaseous nitrogen fraction, in particular for applications which require an increased pressure level, restrict.
  • This object is achieved in that the nitrogen is relieved of work prior to compression and reheated, the cold obtained during the expansion being given off to one or more other process streams and at least part of the work obtained during expansion being used to compress the nitrogen.
  • the work-relieving expansion with recompression is particularly favorable to use in air separation plants which are operated under increased pressure, since the pressure at the inlet of the expansion turbine is also relatively high here and a favorable efficiency can thus be achieved.
  • the expanded nitrogen content can be brought back to its original pressure (before the expansion) or to a higher pressure if it is to be used further with the appropriate parameters.
  • the recompressed nitrogen can be fed into the combustion chamber, which is generally under increased pressure.
  • the nitrogen which has been relieved of work is compressed to a pressure which is substantially equal to the pressure prior to the relaxation of work, and the relaxed and re-compressed nitrogen is again the non-expanded part of the gaseous nitrogen fraction is fed from the medium pressure stage.
  • the entire gaseous nitrogen fraction is also available under the (generally increased) pressure of the medium pressure stage in the type of cold generation according to the invention and can be used, for example, in the combustion chamber of a coal gasification power plant.
  • the product purities achieved are often unsatisfactory, particularly in those applications in which the entire air separation and in particular the medium pressure stage must be carried out at relatively high pressures. This applies to the nitrogen produced, but particularly to the oxygen product.
  • a further nitrogen fraction is removed from the head of the medium pressure stage, heated, compressed, then cooled again and introduced into the pressure stage.
  • the (pure) nitrogen fraction is therefore at least partially carried out in a so-called amplification circuit.
  • the amount of nitrogen passed through the boost circuit into the pressure stage is condensed in indirect heat exchange with sump liquid of the medium pressure stage, drawn off in liquid form and added to the medium pressure stage as an additional return flow.
  • the invention also relates to a device for carrying out the method according to claims 6 and 7.
  • Compressed and pre-cleaned air is introduced via line 1, cooled in a main heat exchanger 17 in indirect heat exchange with product streams and fed into pressure stage 3 of a two-stage rectification column 2.
  • the pressure level 3 (operating pressure: 6 to 20 bar, preferably 8 to 17 bar) is with the medium pressure level 4 (operating pressure: 1.5 to 10 bar, preferably 2.0 to 8.0 bar) via a common condenser / evaporator 13 in heat exchanging connection.
  • the introduced air is pre-divided in pressure stage 3 into nitrogen and into an oxygen-enriched fraction.
  • the oxygen-enriched fraction is discharged in the liquid state via line 6, subcooled in heat exchanger 18 and throttled into the medium pressure stage 4.
  • Nitrogen from the head of pressure stage 3 is also drawn off in liquid form via line 5, subcooled in heat exchanger 18 and partly discharged as a liquid product via line 8.
  • the other part of the nitrogen from the pressure stage 3 is fed via line 9 as a return to the medium pressure stage 4.
  • Another liquid fraction is discharged via line 7 from pressure stage 3 and fed to low pressure stage 4.
  • liquid oxygen (line 14), gaseous pure nitrogen (line 15) and impure nitrogen (line 16) are removed and the nitrogen streams are additionally heated in the main heat exchanger 17, in the heat exchanger 18.
  • part (line 21) of the air in line 1 can be condensed in heat exchange 20 with oxygen 14 from the bottom of medium pressure stage 4.
  • the liquid 14 from the sump of the medium pressure stage 4 is brought to high pressure by means of a pump 19 and at which Heat exchange in the condenser 20 partially evaporates.
  • the partially condensed air 22 is introduced into the pressure stage 3 above the first feed point (line 1).
  • the vaporized portion of the oxygen is removed via line 23 and warmed (17). Another part of the oxygen is withdrawn via line 42 as a liquid product stream.
  • part of the impure nitrogen in line 16 is drawn off from the main heat exchanger 17 via line 30 at an average temperature of approximately 110 to 210 K, preferably 135 to 185 K, and in a pressure-reducing turbine 31 to perform a pressure of 2.6 to 1 , 4 bar, preferably about 2.0 bar relaxed.
  • the expanded nitrogen is again conducted via line 32 to the cold end of the main heat exchanger 17 and warmed to approximately ambient temperature. He releases the cold obtained during relaxation to air to be separated in line 1.
  • the pure nitrogen is required under a pressure higher than medium pressure level 4, it can be compressed after it has been heated. This is generally done in several compressor stages 40, 41. As a rule, each is behind Stage 40, 41 the heat of compression removed (not shown in the drawing) water cooler.
  • the additional nitrogen condenses at the top and thereby evaporates liquid in the bottom of the medium pressure stage 4. In liquid form, it is additionally removed via line 5 and fed as a return to the medium pressure column. A correspondingly increased amount of nitrogen is then drawn off via line 15, warmed (18, 17) and compressed in the compressor stage 40, so that the amplification circuit closes and the balances of the heat exchangers 18 and 17 are balanced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Luftzerlegung durch Rektifikation, bei dem Luft verdichtet, vorgereinigt, abgekühlt und in der Druckstufe einer zweistufigen Rektifikation in eine stickstoffreiche Fraktion und in eine sauerstoffreiche Flüssigkeit vorzerlegt wird und die beiden Fraktionen mindestens teilweise der Mitteldruckstufe der Rektifikation zugeführt und in Sauerstoff und Stickstoff zerlegt werden, wobei mindestens eine gasförmige Stickstofffraktion aus der Mitteldruckstufe herausgeführt, angewärmt und mindestens teilweise verdichtet wird. Gegenstand der Erfindung ist außerdem eine Vorrichtung zur Durchfürung des Verfahrens mit den Merkwalen des ersten Teils des Anspruchs 6.
  • Ein derartiges Verfahren und eine solche Vorrichtung sind aus der US-PS 2 666 303 bekannt. Hier wird Stickstoff aus der Mitteldruckstufe einer zweistufigen Rektifikation auf etwa Umgebungstemperatur angewärmt, verdichtet und anschließend als Produkt abgezogen. Dadurch kann der Stickstoff unter einem erhöhtem Druck abgegeben werden. Das vorbekannte Verfahren weist den Nachteil auf, daß auch bei relativ hohem Druck der Mitteldruckstufe die Druckdifferenz gegenüber der Atmosphäre nicht zur Kälteerzeugung ausgenützt werden kann. Verfahrenskälte wird hier vielmehr durch Entspannung eines Teils der Zerlegungsluft gewonnen, was eine Luftverdichtung auf sehr hohen Druck voraussetzt und daher wegen des entsprechenden Energieverbrauchs wirtschaftlich nicht zufriedenstellend ist.
  • Daneben ist aus der DE-B-25 48 222 ein Verfahren mit einem Stickstoff-Kältekreislauf bekannt, in dem Stickstoff aus der Druckstufe auf einen höheren Druck verdichtet, anschließend teilweise arbeitsleistend in etwa auf Druckstufendruck entspannt und in die Druckstufe zurückgespeist wird. Hierdurch kann zwar ein beträchtlicher Teil des Kältebedarfs der Luftzerlegungsanlage gedeckt werden, allerdings steht der Stickstoff nicht unter dem hohen Druck als Produkt zur Verfügung, sondern wird als Rücklauf in Druck- und Mitteldruckstufe der Rektifikation benötigt. Dieses Verfahren besitzt also ebenfalls Nachteile hinsichtlich seiner Wirtschaftlichkeit, insbesondere dann, wenn Stickstoff unter erhöhtem Druck gewonnen werden soll.
  • Der Erfindung liegt die Aufgabe zugrunde, die Wirtschaftlichkeit des Verfahrens und der Vorrichtung der eingangs genannten Art zu verbessern und insbesondere auf besonders günstige Weise Verfahrenskälte zur Verfügung zu stellen, ohne dabei die Weiterverwendung der gasförmigen Stickstofffraktion, insbesondere für Anwendungen, die ein erhöhtes Druckniveau erfordern, einzuschränken.
  • Diese Aufgabe wird dadurch gelöst, daß der Stickstoff vor der Verdichtung arbeitsleistend entspannt und erneut angewärmt wird, wobei die beim Entspannen gewonnene Kälte an einen oder mehrere andere Prozeßströme abgegeben wird und mindestens ein Teil der beim Entspannen gewonnenen Arbeit zum Verdichten des Stickstoffs verwendet wird.
  • Besonders günstig ist die arbeitsleistende Entspannung mit Rückverdichtung bei Luftzerlegungsanlagen anzuwenden, die unter erhöhtem Druck betrieben werden, da hier auch der Druck am Eingang der Entspannungsturbine relativ hoch ist und somit ein günstiger Wirkungsgrad erzielt werden kann. Dies gilt insbesondere für Luftzerleger, die im Verbund mit Kraftwerken stehen, die gemeinsam mit einer Kohle- oder Schwerölvergasung betrieben werden.
  • Es erweist sich als vorteilhaft, wenn ein Teil der Leistung beim Verdichten durch von außerhalb des Verfahrens importierte Energie aufgebracht wird. Dadurch kann der entspannte Stickstoffanteil wieder auf seinen ursprünglichen Druck (vor dem Entspannen) oder auf einen höheren Druck gebracht werden, falls er mit den entsprechenden Parametern weiterverwendet werden soll. Beispielsweise kann der rückverdichtete Stickstoff bei einem Verbund zwischen Luftzerlegungsanlage und Kohlevergasungskraftwerk in die in der Regel unter erhöhtem Druck stehende Brennkammer geführt werden.
  • Dabei ist es insbesondere vorteilhaft, wenn gemäß weiteren Merkmalen der Erfindung der arbeitsleistend entspannte Stickstoff auf einen Druck verdichtet wird, der im wesentlichen gleich dem Druck vor der arbeitsleistenden Entspannung ist, und außerdem der entspannte und wieder verdichtete Stickstoff wieder dem nicht entspannten Teil der gasförmigen Stickstofffraktion aus der Mitteldruckstufe zugeführt wird.
  • Mit Hilfe dieser Verfahrensweise steht auch bei der erfindungsgemäßen Art der Kältegewinnung die gesamte gasförmige Stickstofffraktion unter dem (im allgemeinen erhöhten) Druck der Mitteldruckstufe zur Verfügung und kann beispielsweise in der Brennkammer eines Kohlevergasungskraftwerkes weiterverwendet werden.
  • Besonders bei solchen Anwendungen, bei denen die gesamte Luftzerlegung und insbesondere die Mitteldruckstufe bei relativ hohen Drücken gefahren werden muß, sind die erzielten Produktreinheiten oft nicht befriedigend. Dies gilt für den erzeugten Stickstoff, in besonderem Maße jedoch für das Sauerstoffprodukt.
  • Aus diesem Grunde ist es in bestimmten Fällen günstig, wenn gemäß einem weiteren Aspekt der Erfindung der Mitteldruckstufe eine weitere Stickstofffraktion am Kopf entnommen, angewärmt, verdichtet, anschließend wieder abgekühlt und in die Druckstufe eingeführt wird. Die (Rein-)Stickstofffraktion wird also mindestens teilweise in einem sogenannten Verstärkungskreislauf geführt. Die über den Verstärkungskreislauf in die Druckstufe geleitete Stickstoffmenge wird in indirektem Wärmetausch mit Sumpfflüssigkeit der Mitteldruckstufe kondensiert, flüssig abgezogen und als zusätzliche Rücklaufmenge auf die Mitteldruckstufe aufgegeben. Dadurch wird - ohne Beeinflussung des Stoffaustausches in der Druckstufe - der Umsatz in der Mitteldruckstufe erhöht, so daß die Produktströme höhere Reinheiten aufweisen.
  • Die Erfindung betrifft auch eine Vorrichtung zur Durchführung des Verfahrens gemäß den Patentansprüchen 6 und 7 .
  • Anhand der Zeichnung, in welcher eine Ausführungsform des erfindungsgemäßen Verfahrens schematisch dargestellt ist, werden die Erfindung und weitere Einzelheiten der Erfindung näher erläutert.
  • Über Leitung 1 wird verdichtete und vorgereinigte Luft herangeführt, in einem Hauptwärmetauscher 17 in indirektem Wärmeaustausch mit Produktströmen abgekühlt und in die Druckstufe 3 einer zweistufigen Rektifiziersäule 2 eingespeist. Die Druckstufe 3 (Betriebsdruck: 6 bis 20 bar, vorzugsweise 8 bis 17 bar) steht mit der Mitteldruckstufe 4 (Betriebsdruck: 1,5 bis 10 bar, vorzugsweise 2,0 bis 8,0 bar) über einen gemeinsamen Kondensator/Verdampfer 13 in wärmetauschender Verbindung. Die eingeführte Luft wird in der Druckstufe 3 in Stickstoff und in eine sauerstoffangereicherte Fraktion vorzerlegt. Die sauerstoffangereicherte Fraktion wird über Leitung 6 in flüssigem Zustand abgeführt, in Wärmetauscher 18 unterkühlt und in die Mitteldruckstufe 4 eingedrosselt. Stickstoff vom Kopf der Druckstufe 3 wird über Leitung 5 ebenfalls flüssig abgezogen, in Wärmetauscher 18 unterkühlt und zum einen Teil über Leitung 8 als flüssiges Produkt abgeführt. Der andere Teil des Stickstoffs aus der Druckstufe 3 wird über Leitung 9 als Rücklauf auf die Mitteldruckstufe 4 aufgegeben. Eine weitere flüssige Fraktion wird über Leitung 7 aus der Druckstufe 3 ab- und der Niederdruckstufe 4 zugeführt.
  • Als Produkte der Mitteldruckstufe 4 werden flüssiger Sauerstoff (Leitung 14), gasförmiger Reinstickstoff (Leitung 15) und unreiner Stickstoff (Leitung 16) entnommen und im Hauptwärmetauscher 17, die Stickstoffströme zusätzlich im Wärmetauscher 18, angewärmt.
  • Vor der Einspeisung in die Druckstufe 3 kann ein Teil (Leitung 21) der Luft in Leitung 1 in Wärmetausch 20 mit Sauerstoff 14 aus dem Sumpf der Mitteldruckstufe 4 kondensiert werden. Die Flüssigkeit 14 aus dem Sumpf der Mitteldruckstufe 4 wird dazu mittels einer Pumpe 19 auf hohen Druck gebracht und bei dem Wärmeaustausch im Kondensator 20 teilweise verdampft. Die teilweise kondensierte Luft 22 wird oberhalb der ersten Einspeisestelle (Leitung 1) in die Druckstufe 3 eingeführt. Der verdampfte Anteil des Sauerstoffs wird über Leitung 23 abgeführt und angewärmt (17). Ein anderer Teil des Sauerstoffs wird über Leitung 42 als flüssiger Produktstrom abgezogen.
  • Erfindungsgemäß wird ein Teil des unreinen Stickstoffs in Leitung 16 auf einer mittleren Temperatur von etwa 110 bis 210 K, vorzugsweise 135 bis 185 K, über Leitung 30 aus dem Hauptwärmetauscher 17 abgezogen und in einer Entspannungsturbine 31 arbeitsleistend auf einen Druck von 2,6 bis 1,4 bar, vorzugsweise etwa 2,0 bar entspannt. Der entspannte Stickstoff wird über Leitung 32 erneut zum kalten Ende des Hauptwärmetauschers 17 geführt und auf etwa Umgebungstemperatur angewärmt. Er gibt dabei die beim Entspannen gewonnene Kälte an zu zerlegende Luft in Leitung 1 ab.
  • Um den entspannten Teil des Stickstoffs gemeinsam mit dem nicht entspannten Anteil (Leitung 39) abziehen zu können, wird dieser in zwei Stufen 33, 36 wieder verdichtet, wobei jeweils die Kompressionswärme anschließend entfernt wird (Kühler 35, 37). Die zweite Verdichtungsstufe 36 ist mit der Entspannungsturbine 31 gekoppelt, so daß die bei der Entspannung gewonnene Arbeit für das Verfahren zurückgewonnen wird. Um das Gas wieder auf seinen Anfangsdruck (in Leitung 30 bzw. 39) zu bringen ist jedoch eine weitere Verdichtungsstufe 33 erforderlich, die mit von außen eingebrachter Energie betrieben wird. Diese zusätzlich aufgewandte Energie wird jedoch durch die erfindungsgemäße Verfahrensweise außerordentlich effektiv in Verfahrenskälte umgesetzt.
  • Falls der Reinstickstoff unter einem höheren Druck als dem Mitteldruckstufe 4 benötigt wird, kann er nach seiner Erwärmung verdichtet werden. Dies geschieht im allgemeinen in mehreren Verdichterstufen 40, 41. Dabei wird in der Regel hinter jeder Stufe 40, 41 die Verdichtungswärme durch (in der Zeichnung nicht dargestellte) Wasserkühler abgeführt.
  • Besonders in diesem Fall ist es günstig, einen Verstärkungskreislauf zur Erhöhung von Umsatz und Produktreinheiten der Mitteldruckstufe vorzusehen. Dazu ist die in der Zeichnung gestrichelt dargestellte Leitung notwendig. Über Leitung 43 wird mindestens ein Teil des Reinstickstoffs aus Leitung 15 auf dem Druckniveau der Drucksäule (im Falle des Ausführungsbeispiel zwischen den Verdichterstufen 40 und 41) abgezweigt, im Hauptwärmetauscher 17 abgekühlt und weiter über Leitung 43 in die Druckstufe 3 eingespeist.
  • Der zusätzliche Stickstoff kondensiert an deren Kopf und verdampft dabei Flüssigkeit im Sumpf der Mitteldruckstufe 4. In flüssiger Form wird er zusätzlich über Leitung 5 entnommen und als Rücklauf auf die Mitteldrucksäule aufgegeben. Eine entsprechend erhöhte Stickstoffmenge wird dann auch über Leitung 15 abgezogen, angewärmt (18, 17) und in der Verdichterstufe 40 komprimiert, so daß sich der Verstärkungskreislauf schließt und die Bilanzen der Wärmetauscher 18 und 17 ausgeglichen sind.

Claims (7)

1. Verfahren zur Luftzerlegung durch Rektifikation, bei dem Luft (1) verdichtet, vorgereinigt, abgekühlt (17) und in der Druckstufe (3) einer zweistufigen Rektifikation (2) in eine stickstoffreiche Fraktion (5) und in eine sauerstoffreiche Flüssigkeit (6) vorzerlegt wird und die beiden Fraktionen (5, 6) mindestens teilweise der Mitteldruckstufe (4) der Rektifikation (2) zugeführt und in Sauerstoff und Stickstoff zerlegt werden, wobei mindestens eine gasförmige Stickstofffraktion aus der Mitteldruckstufe (4) herausgeführt (16), angewärmt (17) mindestens teilweise (32) verdichtet (33, 36) wird, dadurch gekennzeichnet, daß der Stickstoff vor der Verdichtung (33, 36) arbeitleistend entspannt (31) und erneut angewärmt (17) wird, wobei die beim Entspannen gewonnene Kälte an einen oder mehere ander Prozeßströme (1, 43) abgegeben wird und mindestens ein Teil der beim Entspannen (31) gewonnenen Arbeit zum Verdichten (36) des Stickstoffs verwendet wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein Teil der Leistung beim Verdichten (33) durch von außerhalb des Verfahrens importierte Energie aufgebracht wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der arbeitsleistend entspannte Stickstoff (32) auf einen Druck verdichtet (33, 36) wird, der im wesentlichen gleich dem Druck vor der arbeitsleistenden Entspannung (31) ist.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß der entspannte und wieder verdichtete Anteil (38) der gasförmigen Stickstofffraktion wieder dem nicht entspannten Teil (39) der gasförmigen Stickstofffraktion (16) zugeführt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet,daß der Mitteldruckstufe (4) eine weitere Stickstofffraktion (15) am Kopf entnommen, angewärmt (18, 17), verdichtet (40), anschließend wieder abgekühlt (17) und in die Druckstufe (3) eingeführt (43) wird.
6. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 5 mit einem Hauptwärmetauscher (17), der Passagen für Luft (1) und für Stickstoff (16, 39) enthält, und mit einer Doppelrektifiziersäule (2) bestehend aus Drucksäule (3) und Mitteldrucksäule (4), wobei die Passage für Luft (1) mit der Drucksäule (3) und die Stickstoffpassage (16, 39) mit der Mitteldrucksäule (4) verbunden sind, gekennzeichnet durch eine Leitung (30), die aus dem mittleren Bereich des Hauptwärmetauschers (17) herausführt und mit der Stickstoffpassage (16) und mit dem Eingang einer Entspannungsturbine (31) verbunden ist, und durch eine weitere Leitung (32), die den Ausgang der Entspannungsturbine (31) mit dem Eingang eines Verdichters (33, 36) verbindet und als Passage durch den Hauptwärmetauscher (17) geführt wird.
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß der Ausgang des Verdichters (33, 36) mit dem Ausgang der Stickstoffpassage (39) des Hauptwärmetauschers (17) verbunden ist.
EP90103572A 1989-02-23 1990-02-23 Verfahren und Vorrichtung zur Luftzerlegung durch Rektifikation Expired - Lifetime EP0384483B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3905521 1989-02-23
DE19893905521 DE3905521A1 (de) 1989-02-23 1989-02-23 Verfahren und vorrichtung zur luftzerlegung durch rektifikation
EP89113815 1989-07-26
EP19890113815 EP0383994A3 (de) 1989-02-23 1989-07-26 Verfahren und Vorrichtung zur Luftzerlegung durch Rektifikation

Publications (3)

Publication Number Publication Date
EP0384483A2 EP0384483A2 (de) 1990-08-29
EP0384483A3 EP0384483A3 (en) 1990-11-07
EP0384483B1 true EP0384483B1 (de) 1992-07-22

Family

ID=25878076

Family Applications (2)

Application Number Title Priority Date Filing Date
EP19890113815 Withdrawn EP0383994A3 (de) 1989-02-23 1989-07-26 Verfahren und Vorrichtung zur Luftzerlegung durch Rektifikation
EP90103572A Expired - Lifetime EP0384483B1 (de) 1989-02-23 1990-02-23 Verfahren und Vorrichtung zur Luftzerlegung durch Rektifikation

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP19890113815 Withdrawn EP0383994A3 (de) 1989-02-23 1989-07-26 Verfahren und Vorrichtung zur Luftzerlegung durch Rektifikation

Country Status (6)

Country Link
US (1) US5036672A (de)
EP (2) EP0383994A3 (de)
JP (1) JPH02245201A (de)
CN (1) CN1025068C (de)
AU (1) AU618659B2 (de)
DE (1) DE59000211D1 (de)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007031759A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
DE102007031765A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren zur Tieftemperaturzerlegung von Luft
DE102009034979A1 (de) 2009-04-28 2010-11-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Drucksauerstoff
EP2312248A1 (de) 2009-10-07 2011-04-20 Linde Aktiengesellschaft Verfahren und Vorrichtung Gewinnung von Drucksauerstoff und Krypton/Xenon
EP2458311A1 (de) 2010-11-25 2012-05-30 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102010052544A1 (de) 2010-11-25 2012-05-31 Linde Ag Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2520886A1 (de) 2011-05-05 2012-11-07 Linde AG Verfahren und Vorrichtung zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2551619A1 (de) 2011-07-26 2013-01-30 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff und Drucksauerstoff durch Tieftemperaturzerlegung von Luft
EP2568242A1 (de) 2011-09-08 2013-03-13 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Stahl
EP2600090A1 (de) 2011-12-01 2013-06-05 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von Drucksauerstoff durch Tieftemperaturzerlegung von Luft
DE102011121314A1 (de) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102013017590A1 (de) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage
DE102012017488A1 (de) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Verfahren zur Erstellung einer Luftzerlegungsanlage, Luftzerlegungsanlage und zugehöriges Betriebsverfahren
EP2784420A1 (de) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Verfahren zur Luftzerlegung und Luftzerlegungsanlage
WO2014154339A2 (de) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Verfahren zur luftzerlegung und luftzerlegungsanlage
EP2801777A1 (de) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Luftzerlegungsanlage mit Hauptverdichterantrieb
EP2963369A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
EP2963371A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur gewinnung eines druckgasprodukts durch tieftemperaturzerlegung von luft
EP2963370A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
EP2963367A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft mit variablem Energieverbrauch

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3913880A1 (de) * 1989-04-27 1990-10-31 Linde Ag Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
FR2670278B1 (fr) * 1990-12-06 1993-01-22 Air Liquide Procede et installation de distillation d'air en regime variable de production d'oxygene gazeux.
DE4126945A1 (de) * 1991-08-14 1993-02-18 Linde Ag Verfahren zur luftzerlegung durch rektifikation
FR2681416B1 (fr) * 1991-09-13 1993-11-19 Air Liquide Procede de refroidissement d'un gaz dans une installation d'exploitation de gaz de l'air, et installation.
FR2685459B1 (fr) * 1991-12-18 1994-02-11 Air Liquide Procede et installation de production d'oxygene impur.
US5197296A (en) * 1992-01-21 1993-03-30 Praxair Technology, Inc. Cryogenic rectification system for producing elevated pressure product
FR2689224B1 (fr) 1992-03-24 1994-05-06 Lair Liquide Procede et installation de production d'azote sous haute pression et d'oxygene.
US5245832A (en) * 1992-04-20 1993-09-21 Praxair Technology, Inc. Triple column cryogenic rectification system
GB9208645D0 (en) * 1992-04-22 1992-06-10 Boc Group Plc Air separation
US5228297A (en) * 1992-04-22 1993-07-20 Praxair Technology, Inc. Cryogenic rectification system with dual heat pump
US5275004A (en) * 1992-07-21 1994-01-04 Air Products And Chemicals, Inc. Consolidated heat exchanger air separation process
FR2699992B1 (fr) * 1992-12-30 1995-02-10 Air Liquide Procédé et installation de production d'oxygène gazeux sous pression.
US5321953A (en) * 1993-05-10 1994-06-21 Praxair Technology, Inc. Cryogenic rectification system with prepurifier feed chiller
US5406786A (en) * 1993-07-16 1995-04-18 Air Products And Chemicals, Inc. Integrated air separation - gas turbine electrical generation process
US5410885A (en) * 1993-08-09 1995-05-02 Smolarek; James Cryogenic rectification system for lower pressure operation
US5463871A (en) * 1994-10-04 1995-11-07 Praxair Technology, Inc. Side column cryogenic rectification system for producing lower purity oxygen
US5461872A (en) * 1994-11-21 1995-10-31 The Boc Group, Inc. Air separation method and apparatus
DE19529681C2 (de) * 1995-08-11 1997-05-28 Linde Ag Verfahren und Vorrichtung zur Luftzerlegung durch Tieftemperaturrektifikation
US5546767A (en) * 1995-09-29 1996-08-20 Praxair Technology, Inc. Cryogenic rectification system for producing dual purity oxygen
FR2739439B1 (fr) * 1995-09-29 1997-11-14 Air Liquide Procede et installation de production d'un gaz sous pression par distillation cryogenique
US5799508A (en) * 1996-03-21 1998-09-01 Praxair Technology, Inc. Cryogenic air separation system with split kettle liquid
US5682762A (en) * 1996-10-01 1997-11-04 Air Products And Chemicals, Inc. Process to produce high pressure nitrogen using a high pressure column and one or more lower pressure columns
JP3527609B2 (ja) * 1997-03-13 2004-05-17 株式会社神戸製鋼所 空気分離方法および装置
AU7330298A (en) * 1997-05-21 1998-12-11 Kemin Huang An oxygen-rich air conditioner
US6009723A (en) * 1998-01-22 2000-01-04 Air Products And Chemicals, Inc. Elevated pressure air separation process with use of waste expansion for compression of a process stream
US5878597A (en) * 1998-04-14 1999-03-09 Praxair Technology, Inc. Cryogenic rectification system with serial liquid air feed
US5901578A (en) * 1998-05-18 1999-05-11 Praxair Technology, Inc. Cryogenic rectification system with integral product boiler
EP1169609B1 (de) * 1999-04-05 2006-10-11 L'air Liquide, S.A. à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude Vorrichtung mit variabler auslastung und entsprechendes verfahren zur trennung eines einsatzgemisches
US7086242B2 (en) * 2001-07-13 2006-08-08 Ebara Corporation Dehumidifying air-conditioning apparatus
CN100436989C (zh) * 2004-01-29 2008-11-26 宝山钢铁股份有限公司 一种用全低压空分装置制取高纯氧的方法
JP4460975B2 (ja) * 2004-08-20 2010-05-12 三菱重工業株式会社 海水処理方法および海水処理装置
US7421856B2 (en) * 2005-06-17 2008-09-09 Praxair Technology, Inc. Cryogenic air separation with once-through main condenser
EP2087301B1 (de) * 2006-11-07 2018-11-14 Tiax LLC System und Verfahren zur Entfeuchtung
CN101886871B (zh) * 2010-08-04 2012-08-08 四川空分设备(集团)有限责任公司 一种空气分离制取压力氧气的方法及装置
US20130139547A1 (en) * 2011-12-05 2013-06-06 Henry Edward Howard Air separation method and apparatus
CN104833174B (zh) * 2015-05-26 2017-08-11 杭州杭氧股份有限公司 一种带压辅助氧塔低能耗生产带压低纯氧和高纯氧产品的装置及方法
CN105066587A (zh) * 2015-09-16 2015-11-18 开封空分集团有限公司 深冷分离及生产低纯度氧、高纯度氧和氮的装置及方法
EP3179186A1 (de) * 2015-12-07 2017-06-14 Linde Aktiengesellschaft Verfahren zur gewinnung eines flüssigen und eines gasförmigen, sauerstoffreichen luftprodukts in einer luftzerlegungsanlage und luftzerlegungsanlage

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2666303A (en) * 1950-06-08 1954-01-19 British Oxygen Co Ltd Apparatus for the separation of gas mixtures by liquefaction and rectification
US3375673A (en) * 1966-06-22 1968-04-02 Hydrocarbon Research Inc Air separation process employing work expansion of high and low pressure nitrogen
FR2060184B1 (de) * 1969-09-10 1973-11-16 Air Liquide
DE2544340A1 (de) * 1975-10-03 1977-04-14 Linde Ag Verfahren zur luftzerlegung
BR7606681A (pt) * 1975-10-28 1977-11-16 Linde Ag Processo e instalacao para fracionamento de ar
DE2557453C2 (de) * 1975-12-19 1982-08-12 Linde Ag, 6200 Wiesbaden Verfahren zur Gewinnung von gasförmigem Sauerstoff
US4382366A (en) * 1981-12-07 1983-05-10 Air Products And Chemicals, Inc. Air separation process with single distillation column for combined gas turbine system
DE3531307A1 (de) * 1985-09-02 1987-03-05 Linde Ag Verfahren zur abtrennung von c(pfeil abwaerts)2(pfeil abwaerts)(pfeil abwaerts)+(pfeil abwaerts)-kohlenwasserstoffen aus erdgas
GB2192407B (en) * 1986-07-07 1990-12-19 Metal Box Plc Electro-coating apparatus and method
DE3738559A1 (de) * 1987-11-13 1989-05-24 Linde Ag Verfahren zur luftzerlegung durch tieftemperaturrektifikation
US4842625A (en) * 1988-04-29 1989-06-27 Air Products And Chemicals, Inc. Control method to maximize argon recovery from cryogenic air separation units

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007031759A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
DE102007031765A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren zur Tieftemperaturzerlegung von Luft
EP2015012A2 (de) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Verfahren zur Tieftemperaturzerlegung von Luft
EP2015013A2 (de) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
DE102009034979A1 (de) 2009-04-28 2010-11-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Drucksauerstoff
EP2312248A1 (de) 2009-10-07 2011-04-20 Linde Aktiengesellschaft Verfahren und Vorrichtung Gewinnung von Drucksauerstoff und Krypton/Xenon
EP2458311A1 (de) 2010-11-25 2012-05-30 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102010052545A1 (de) 2010-11-25 2012-05-31 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102010052544A1 (de) 2010-11-25 2012-05-31 Linde Ag Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2466236A1 (de) 2010-11-25 2012-06-20 Linde Aktiengesellschaft Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tiefemperaturzerlegung von Luft
EP2520886A1 (de) 2011-05-05 2012-11-07 Linde AG Verfahren und Vorrichtung zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2551619A1 (de) 2011-07-26 2013-01-30 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff und Drucksauerstoff durch Tieftemperaturzerlegung von Luft
EP2568242A1 (de) 2011-09-08 2013-03-13 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Stahl
DE102011112909A1 (de) 2011-09-08 2013-03-14 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Stahl
EP2600090A1 (de) 2011-12-01 2013-06-05 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von Drucksauerstoff durch Tieftemperaturzerlegung von Luft
DE102011121314A1 (de) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102012017488A1 (de) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Verfahren zur Erstellung einer Luftzerlegungsanlage, Luftzerlegungsanlage und zugehöriges Betriebsverfahren
EP2784420A1 (de) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Verfahren zur Luftzerlegung und Luftzerlegungsanlage
WO2014154339A2 (de) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Verfahren zur luftzerlegung und luftzerlegungsanlage
EP2801777A1 (de) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Luftzerlegungsanlage mit Hauptverdichterantrieb
DE102013017590A1 (de) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage
EP2963369A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
EP2963371A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur gewinnung eines druckgasprodukts durch tieftemperaturzerlegung von luft
EP2963370A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
EP2963367A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft mit variablem Energieverbrauch
WO2016005031A1 (de) 2014-07-05 2016-01-14 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft mit variablem energieverbrauch

Also Published As

Publication number Publication date
JPH02245201A (ja) 1990-10-01
EP0384483A3 (en) 1990-11-07
CN1025068C (zh) 1994-06-15
EP0384483A2 (de) 1990-08-29
AU618659B2 (en) 1992-01-02
AU4996090A (en) 1990-08-30
EP0383994A2 (de) 1990-08-29
DE59000211D1 (de) 1992-08-27
US5036672A (en) 1991-08-06
CN1045173A (zh) 1990-09-05
EP0383994A3 (de) 1990-11-07

Similar Documents

Publication Publication Date Title
EP0384483B1 (de) Verfahren und Vorrichtung zur Luftzerlegung durch Rektifikation
EP0093448B1 (de) Verfahren und Vorrichtung zur Gewinnung von gasförmigem Sauerstoff unter erhöhtem Druck
EP0505812B1 (de) Verfahren zur Tieftemperaturzerlegung von Luft
EP0316768B1 (de) Verfahren zur Luftzerlegung durch Tieftemperaturrektifikation
DE19803437A1 (de) Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
EP0527501A1 (de) Verfahren und Vorrichtung zur Luftzerlegung durch Rektifikation
DE102010052544A1 (de) Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP0384213A2 (de) Verfahren und Vorrichtung zur Luftzerlegung durch Rektifikation
DE102010052545A1 (de) Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
DE10113791A1 (de) Argongewinnung mit einem Drei-Säulen-System zur Luftzerlegung und einer Rohargonsäule
DE4443190A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE10217091A1 (de) Drei-Säulen-System zur Tieftemperatur-Luftzerlegung mit Argongewinnung
DE69814519T2 (de) Kryogenisches Verfahren mit Doppelsäure und externem Verdämpfer-Kondensator für eine Sauerstoff- und Stickstoffmischung
DE10238282A1 (de) Verfahren zur Tieftemperatur-Zerlegung von Luft
DE19609490A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE10018200A1 (de) Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff durch Tieftemperaturzerlegung von Luft
WO2021204424A2 (de) Verfahren zur tieftemperaturzerlegung von luft, luftzerlegungsanlage und verbund aus wenigstens zwei luftzerlegungsanlagen
DE19951521A1 (de) Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
DE2854508A1 (de) Verfahren zur tieftemperaturzerlegung eines gasgemisches
EP0768503A2 (de) Dreifachsäulenverfahren zur Tieftemperaturzerlegung von Luft
EP1189001B1 (de) Verfahren und Vorrichtung zur Erzeugung hoch reinen Stickstoffs durch Tieftemperatur-Luftzerlegung
DE10052180A1 (de) Drei-Säulen-System zur Tieftemperatur-Zerlegung von Luft
EP1284403B1 (de) Verfahren und Vorrichtung zur Erzeugung von Sauerstoff durch Tieftemperatur-Zerlegung von Luft
EP4127583B1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
EP1209431B1 (de) Verfahren und Vorrichtung zur Erzeugung von Sauerstoff und Stickstoff

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE FR GB IT NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19901010

17Q First examination report despatched

Effective date: 19910411

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19920722

REF Corresponds to:

Ref document number: 59000211

Country of ref document: DE

Date of ref document: 19920827

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940210

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940215

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19940408

Year of fee payment: 5

EAL Se: european patent in force in sweden

Ref document number: 90103572.5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19950228

BERE Be: lapsed

Owner name: LINDE A.G.

Effective date: 19950228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19951031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970226

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980218

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980226

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990901

EUG Se: european patent has lapsed

Ref document number: 90103572.5