WO2014037091A2 - Verfahren und anlage zur erzeugung flüssiger und gasförmiger sauerstoffprodukte durch tieftemperaturzerlegung von luft - Google Patents
Verfahren und anlage zur erzeugung flüssiger und gasförmiger sauerstoffprodukte durch tieftemperaturzerlegung von luft Download PDFInfo
- Publication number
- WO2014037091A2 WO2014037091A2 PCT/EP2013/002604 EP2013002604W WO2014037091A2 WO 2014037091 A2 WO2014037091 A2 WO 2014037091A2 EP 2013002604 W EP2013002604 W EP 2013002604W WO 2014037091 A2 WO2014037091 A2 WO 2014037091A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- column
- air
- separation
- pressure
- expansion
- Prior art date
Links
- 238000000926 separation method Methods 0.000 title claims abstract description 117
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims abstract description 91
- 239000001301 oxygen Substances 0.000 title claims abstract description 91
- 229910052760 oxygen Inorganic materials 0.000 title claims abstract description 91
- 239000007788 liquid Substances 0.000 title claims abstract description 51
- 238000000034 method Methods 0.000 title claims abstract description 28
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims abstract description 23
- 238000004821 distillation Methods 0.000 claims abstract description 22
- 238000002156 mixing Methods 0.000 claims description 47
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 36
- 229910052757 nitrogen Inorganic materials 0.000 claims description 18
- 239000007789 gas Substances 0.000 claims description 12
- 238000001816 cooling Methods 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 238000011144 upstream manufacturing Methods 0.000 claims 3
- 230000002040 relaxant effect Effects 0.000 claims 2
- 238000010438 heat treatment Methods 0.000 claims 1
- 239000000047 product Substances 0.000 description 35
- 239000012263 liquid product Substances 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 239000000543 intermediate Substances 0.000 description 8
- 229910052786 argon Inorganic materials 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 238000005056 compaction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 150000002835 noble gases Chemical class 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04163—Hot end purification of the feed air
- F25J3/04169—Hot end purification of the feed air by adsorption of the impurities
- F25J3/04175—Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
- F25J3/04393—Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/0446—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases
- F25J3/04466—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the heat generated by mixing two different phases for producing oxygen as a mixing column overhead gas by mixing gaseous air feed and liquid oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/04—Processes or apparatus using separation by rectification in a dual pressure main column system
- F25J2200/06—Processes or apparatus using separation by rectification in a dual pressure main column system in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/90—Details relating to column internals, e.g. structured packing, gas or liquid distribution
- F25J2200/94—Details relating to the withdrawal point
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/50—Oxygen or special cases, e.g. isotope-mixtures or low purity O2
- F25J2215/52—Oxygen production with multiple purity O2
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2235/00—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
- F25J2235/50—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/0409—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04193—Division of the main heat exchange line in consecutive sections having different functions
- F25J3/042—Division of the main heat exchange line in consecutive sections having different functions having an intermediate feed connection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04296—Claude expansion, i.e. expanded into the main or high pressure column
Definitions
- the invention relates to a process for producing liquid and gaseous
- oxygen products are usually carried out by cryogenic separation of air in air separation plants with distillation column systems known per se. These can be used as two-pillar systems, especially as classical
- Double column systems but also be designed as a three or more pillar systems. Furthermore, devices for obtaining further air components, in particular the noble gases krypton, xenon and / or argon, may be provided.
- the noble gases krypton, xenon and / or argon may be provided.
- the oxygen-rich stream is vaporized in the mixing column and at its upper end as gaseous, "impure” oxygen deducted.
- the impure oxygen can be taken from the air separation plant as a gaseous oxygen product.
- the air stream in turn is liquefied, enriched to some extent with oxygen, and withdrawn at the bottom of the mixing column.
- the liquefied air stream can then be fed into the distillation column system used at an energetically and / or separation-appropriate location.
- Oxygen product can be considerably reduced.
- Liquid nitrogen and liquid oxygen in systems with mixing columns usually limited to at most 0.5% of the total amount of air used.
- a method according to the invention serves to generate at least one liquid oxygen product and one gaseous oxygen product
- a distillation column system of an air separation plant is used.
- a liquid fraction having a first, higher oxygen content of a Separation column of the distillation column system removed and liquid from the
- Air separation plant brought out. To recover the gaseous
- Oxygen product becomes a liquid fraction with a second, lower
- the gaseous oxygen product is also, but in the gaseous state, led out of the air separation plant.
- the liquid oxygen product is hereinafter also referred to as "purer”
- the gaseous oxygen product also as “impure” oxygen, the possible contents of oxygen are given below.
- Oxygen product depends on the type of air separation unit used and the requirements of the respective consumer.
- the production of "impure” gaseous oxygen products can, as explained, be realized with mixed columns in an energy-efficient manner.
- the terms “higher” and “lower” oxygen content refer to each other.
- a “product” leaves the described plant and is stored or consumed, for example, in a tank. So it no longer only participates exclusively in the plant-internal circuits, but can be used accordingly before leaving the plant, for example as a refrigerant in a heat exchanger.
- the term “product” thus does not include those fractions or streams which remain in the plant itself and exclusively there,
- product further includes a quantity.
- a “product” corresponds to at least 1%, in particular at least 2%, for example at least 5% or at least 10% of the amount of air used in a corresponding plant.
- Air separation plant however, liquid products, such as liquid oxygen and / or nitrogen, to be removed, the system thus this amount of cold is withdrawn.
- the "missing" in liquid systems cold must therefore be generated in addition, and ultimately in the form of compressor performance.
- the invention has particular advantages in plants used to produce a gaseous oxygen product having, for example, less than 98 mole percent (mole percent) purity and, at the same time, larger amounts of a "pure" liquid oxygen product as used herein.
- the method proves to be highly efficient and allows the recovery of 1% to 5% or 1% to 10% of the total of the air separation plant in a compressed form
- total air supplied air
- total air supplied air
- total air supplied air
- total air supplied air
- total air supplied air
- total air supplied air
- total air liquid nitrogen
- the method presented here may, for example, be based on an air separation plant with a double column system.
- dual column systems include a high pressure separation column and a low pressure separation column for separation of oxygen and nitrogen.
- the high pressure separation column works at one
- Low pressure separation column can also be at least partially structurally separated. In this case, these are the two-post systems mentioned at the beginning.
- the invention can also be realized with three or more column systems for the separation of oxygen and nitrogen and / or with distillation column systems, which are set up to obtain further components.
- the separation column with the highest operating pressure is referred to as "high pressure separation column” in the context of this application.
- the separation column which is usually taken from oxygen, for example an oxygen-rich stream having more than 99 mol%, is then referred to in the language usage of this application as a "low-pressure separation column".
- the mixing column may also be operated at a higher pressure than the high pressure separation column.
- the liquid fraction with the first is advantageously taken at different heights from the low pressure separation column.
- the liquid fraction with the first is advantageously taken at different heights from the low pressure separation column.
- Oxygen content which can be taken from the side of the low-pressure separation column, however, for example, 97 mol% of oxygen and 3 mol% of argon.
- the work required for the separation of oxygen and argon can thus be saved.
- the liquid oxygen-rich stream which is fed into the mixing column advantageously has an oxygen content of 70 to 99 mol%, in particular 90 to 98 mol%. on.
- the first oxygen content found in the liquid oxygen product advantageously corresponds to at least 99 mol%, in particular at least 99.5 mol%.
- the first is advantageously always above the second oxygen content.
- the liquid fraction with the second oxygen content is in turn after the
- Distillation column system is used before or after evaporation in the mixing column, however, the liquid fraction having the second oxygen content can also be passed through a main heat exchanger of the air separation plant and further heated there.
- the liquid fraction with the second oxygen content is fed to the top of the mixing column after removal from the separation column of the distillation column system by means of at least one pump and at least one expansion valve. The pressure is thereby increased to the mixing column pressure, which is above the pressure of the low-pressure separation column, from which the liquid fraction with the second oxygen content is advantageously taken.
- the described method is advantageously implemented as a so-called HAP method (High Air Pressure).
- the total air supplied to the air separation plant is advantageously compressed in a main compressor to a feed pressure of 6 to 30 bar, in particular from 7 to 20 bar, for example from 10 to 14 bar.
- the main compressor is the only external energy driven machine for compressing air.
- a single machine is meant here, for example, a single-stage or multi-stage compressor whose stages are all connected to the same drive, all stages in the same housing housed or connected to the same gear.
- the total air is preferably compressed to a pressure, for example, well above the operating pressure of the column with the highest
- Pressure level is. In addition to this compression, however, it is possible to use partial flows, for example in boosters, which are coupled with expansion turbines.
- the feed pressure may alternatively or additionally also be stated in relation to the operating pressure of the high-pressure separation column. This means here that the pressure difference between the feed pressure and the operating pressure of the high pressure separation column not only the natural pressure drop through lines,
- Heat exchanger and other apparatus corresponds, but at least 1 bar, in particular at least 3 bar, preferably at least 5 bar, is.
- High-pressure separating column is for example 5 to 25 bar, in particular 7 to 15 bar.
- At least a first partial flow of the total air is at least in a first expansion machine to the operating pressure of the high-pressure separation column relaxed and fed into the high pressure separation column.
- the first partial flow may be compressed prior to expansion in the first expansion machine in a booster coupled to the first expansion machine and / or cooled before and / or after the expansion in the first expansion machine.
- cooling after compaction e.g. by water cooling and / or by cooling to an intermediate temperature in one
- a second partial flow of the total air is advantageously used, at least in a second expansion machine on the
- the two expansion machines have different inlet temperatures, that is, the inlet temperature of the second expansion machine is in particular at least 5 K higher or lower than that of the first expansion machine.
- the first and / or the second partial flow can be cooled in different ways, so that the method can be optimized, for example, in terms of smaller volumes for the main heat exchanger on the one hand or in terms of maximum energy savings.
- the second partial flow can be cooled before and / or after the relaxation in the second expansion machine, so that the respective desired temperatures can be achieved.
- One of the two relaxation machines is preferably coupled with a booster. Through this coupling, the expansion work can be used meaningfully.
- the other of the two expansion machines is advantageously coupled mechanically to a generator and / or an oil brake, in which or the released expansion work can be implemented accordingly.
- a pressure of 2 to 6 bar is advantageously used as the mixing column pressure.
- the mixing column pressure depends, for example, on the externally required supply pressure for the gaseous oxygen product or can also be optimized according to energy considerations. In the latter case, a pressure of or close to 2 bar is an advantage.
- An air separation plant is set up to carry out a method according to one of the preceding claims. It comprises means adapted to extract a liquid fraction having a first, higher oxygen content for obtaining a liquid oxygen product from a separation column of a distillation column system of the air separation plant, and means adapted to the same separation column of the distillation column system
- FIG. 1 shows an air separation plant according to an embodiment of the invention.
- FIG. 2 shows an air separation plant according to an embodiment of the invention.
- FIG. 1 an air separation plant according to an embodiment of the invention is shown schematically.
- the air separation plant has one, among others
- Main heat exchanger E1 a distillation column system S with a High-pressure separation column S1 and a low-pressure separation column S2, a mixing column S3, a subcooler E3 and two designed as expansion turbines
- total air a prepurified and compressed to a pressure of for example 10 to 14 bar
- air AIR can be fed into the system 100.
- total air the total supplied air is referred to as "total air”.
- a portion of the total air from line a can be supplied via a line b a booster C1.
- the booster C1 may be coupled to a first expansion turbine X1.
- the further compressed in the booster C1 air can then be cooled in an aftercooler E2 and fed to the main heat exchanger E1 at its warm end.
- this first partial stream can be taken from the main heat exchanger E1 at an intermediate temperature, cooled down in the first expansion turbine X1 and expanded by work, and then again passed through the main heat exchanger E1 at the cold end.
- Further air from line a can be supplied via a line d to the main heat exchanger E1 at its warm end. A part of this can, if appropriate even only if necessary, be expanded by way of an expansion valve V1.
- a second part of the air from line d, and thus part of the total air, referred to in the context of this application as "second partial flow" can be taken from the main heat exchanger E1 at an intermediate temperature via a line s.
- the air in line s is, as explained below, fed into the mixing column S3.
- the amount of air fed into the mixing column S3 can also be adjusted via the expansion valve V1.
- Main heat exchanger E1 at its cold end in each case at a temperature near the condensation temperature of the air before. A corresponding airflow can over a line e are fed to the high pressure separation column S1.
- the operating pressure of the high-pressure separation column S1, and thus the pressure in line e, is at the values explained.
- the expansion turbine X1 and the valve V1 are set accordingly.
- High-pressure separation column S1 can be removed in a lower region or from the sump via a line f an oxygen-enriched liquid bottoms fraction, cooled in a subcooler E3 and fed to the operating pressure of the low pressure separation column S2 via a pressure relief valve V2 via a line g in the low pressure separation column S2 ,
- the head of the high-pressure separation column S1 can be a gaseous, nitrogen-rich
- Crop fraction are taken. At least a partial stream thereof can be condensed via a line h in a condenser E4, which in operation is covered by an oxygen-rich bottom fraction of the low-pressure separation column S2.
- At least part of the condensate can be fed in as liquid reflux via a line i at the top of the high-pressure separation column S1. Another part of the
- Condensate can be supplied via a line k to the subcooler E3 (not shown) and fed via a line m as a liquid nitrogen product LIN, for example, in a tank.
- Another partial stream of the top side of the high-pressure separation column S1 removed gaseous, nitrogen-rich overhead fraction can via a line I the
- Nitrogen-rich gaseous fraction can be used, for example, as a sealing gas in the compressors used.
- the high-pressure separation column S1 can be taken at a defined height via a line n a nitrogen-enriched fraction, cooled in the subcooler E3, and fed after relaxation via a pressure relief valve V4 via a line o as a liquid nitrogen-rich stream on the head side in the low pressure separation column S2. From the sump, the low pressure separation column S2 at least a part of
- This liquid fraction has a high oxygen content, which in the context of this application is referred to as "first"
- Oxygen content is called. After cooling, this fraction via a line q and a valve V5, an oxygen-rich liquid fraction as
- Air separation plant are led out.
- the low-pressure separation column S2 can be taken off via a line r a gaseous top fraction, heated in the main heat exchanger E1 and discharged via a valve V6.
- This fraction can e.g. for the regeneration of
- Adsorption be used to purify the air to be fed AIR.
- the air separation plant is designed as a mixed column system. For this purpose, at least a portion of the air from line d (the "second partial flow") the
- Main heat exchanger E1 taken at an intermediate temperature and fed via line s a second expansion turbine X2.
- the air can be expanded to a pressure of, for example, 2 to 4 bar, in particular 3 bar.
- the air is then fed in gaseous form to the lower part of a mixing column S3, which is operated at a corresponding pressure.
- the head of the mixing column S3 is in this via a line t a
- oxygen-enriched fraction fed which is liquid at a defined height of the low-pressure separating column S2 via a line u and with the referred to in the context of this application as a "second oxygen content" content of oxygen.
- the taken over the line u fraction is pumped via a pump P1 to a pressure above the pressure of the mixing column S3, heated via lines v and w in the subcooler E3 and then in the main heat exchanger E1 each to an intermediate temperature, and via a valve V7 and the line t is fed into the mixing column S3.
- the gas fed into the lower part of the mixing column S3 is liquefied.
- the liquefied air can be withdrawn in a lower region of the mixing column S3 via a line x, cooled in the subcooler E3 to an intermediate temperature, and via a line y and a
- Expansion valve V8 be fed ("blown") in the low pressure separation column S2.
- FIG. 2 schematically shows an air separation plant according to a further embodiment of the invention. This has the essential components of the previously explained with reference to Figure 1 air separation plant and is operated accordingly. A repeated explanation is omitted.
- FIGS. 1 and 2 are optimized for different purposes.
- the arrangement of Figure 1 allows a smaller volume for the
- Main heat exchanger but is not fully optimized for energy.
- the arrangement shown in Figure 2 is energetically better optimized or optimized, but requires a larger main heat exchanger.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR112015004726-2A BR112015004726B1 (pt) | 2012-09-04 | 2013-08-29 | processo e instalação para geração de produtos de oxigênio líquidos e gasosos por separação de ar à baixa temperatura |
PL13755972T PL2906889T3 (pl) | 2012-09-04 | 2013-08-29 | Sposób i urządzenie do wytwarzania ciekłych i gazowych produktów tlenowych poprzez kriogeniczne rozdzielanie powietrza |
RU2015112309A RU2647297C2 (ru) | 2012-09-04 | 2013-08-29 | Способ и установка для производства жидких и газообразных кислородсодержащих продуктов низкотемпературным разделением воздуха |
EP13755972.0A EP2906889B1 (de) | 2012-09-04 | 2013-08-29 | Verfahren und anlage zur erzeugung flüssiger und gasförmiger sauerstoffprodukte durch tieftemperaturzerlegung von luft |
ZA2015/01162A ZA201501162B (en) | 2012-09-04 | 2015-02-19 | Process and facility for generating liquid and gaseous oxygen products by low-temperature separation of air |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012017484.5 | 2012-09-04 | ||
DE102012017484.5A DE102012017484A1 (de) | 2012-09-04 | 2012-09-04 | Verfahren und Anlage zur Erzeugung flüssiger und gasförmiger Sauerstoffprodukte durch Tieftemperaturzerlegung von Luft |
EP12007213.7 | 2012-10-18 | ||
EP12007213.7A EP2703757A1 (de) | 2012-09-04 | 2012-10-18 | Verfahren und Anlage zur Erzeugung flüssiger und gasförmiger Sauerstoffprodukte durch Tieftemperaturzerlegung von Luft |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2014037091A2 true WO2014037091A2 (de) | 2014-03-13 |
WO2014037091A3 WO2014037091A3 (de) | 2014-12-18 |
Family
ID=47142876
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2013/002604 WO2014037091A2 (de) | 2012-09-04 | 2013-08-29 | Verfahren und anlage zur erzeugung flüssiger und gasförmiger sauerstoffprodukte durch tieftemperaturzerlegung von luft |
Country Status (8)
Country | Link |
---|---|
EP (2) | EP2703757A1 (de) |
BR (1) | BR112015004726B1 (de) |
CL (1) | CL2015000527A1 (de) |
DE (1) | DE102012017484A1 (de) |
PL (1) | PL2906889T3 (de) |
RU (1) | RU2647297C2 (de) |
WO (1) | WO2014037091A2 (de) |
ZA (1) | ZA201501162B (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3179187A1 (de) | 2015-12-07 | 2017-06-14 | Linde Aktiengesellschaft | Verfahren zur gewinnung eines flüssigen und eines gasförmigen, sauerstoffreichen luftprodukts in einer luftzerlegungsanlage und luftzerlegungsanlage |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2024013252A (ja) * | 2022-07-20 | 2024-02-01 | 大陽日酸株式会社 | 熱交換器 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0531182A1 (de) | 1991-08-07 | 1993-03-10 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Verfahren und Einrichtung zur Luftdestillation und die Verwendung bei der Zuführung von Gas in Stahlwerken |
US5490391A (en) | 1994-08-25 | 1996-02-13 | The Boc Group, Inc. | Method and apparatus for producing oxygen |
EP0697576A1 (de) | 1994-08-17 | 1996-02-21 | The Boc Group, Inc. | Verfahren und Vorrichtung zur Lufttrennung |
DE19951521A1 (de) | 1999-10-26 | 2001-05-03 | Linde Ag | Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft |
EP1139046A1 (de) | 2000-03-29 | 2001-10-04 | Linde Aktiengesellschaft | Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft |
DE10139727A1 (de) | 2001-08-13 | 2003-02-27 | Linde Ag | Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft |
DE10228111A1 (de) | 2002-06-24 | 2004-01-15 | Linde Ag | Luftzerlegungsverfahren und -anlage mit Mischsäule und Krypton-Xenon-Gewinnung |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5551258A (en) * | 1994-12-15 | 1996-09-03 | The Boc Group Plc | Air separation |
US5966967A (en) * | 1998-01-22 | 1999-10-19 | Air Products And Chemicals, Inc. | Efficient process to produce oxygen |
DE10209421A1 (de) * | 2002-03-05 | 2003-04-03 | Linde Ag | Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft |
FR2865024B3 (fr) * | 2004-01-12 | 2006-05-05 | Air Liquide | Procede et installation de separation d'air par distillation cryogenique |
EP1666824A1 (de) * | 2004-12-03 | 2006-06-07 | Linde Aktiengesellschaft | Verfahren und Vorrichtung zur Gewinnung von Argon durch Tieftemperaturzerlegung von Luft |
FR2895068B1 (fr) * | 2005-12-15 | 2014-01-31 | Air Liquide | Procede de separation d'air par distillation cryogenique |
US7533540B2 (en) * | 2006-03-10 | 2009-05-19 | Praxair Technology, Inc. | Cryogenic air separation system for enhanced liquid production |
-
2012
- 2012-09-04 DE DE102012017484.5A patent/DE102012017484A1/de not_active Withdrawn
- 2012-10-18 EP EP12007213.7A patent/EP2703757A1/de not_active Withdrawn
-
2013
- 2013-08-29 PL PL13755972T patent/PL2906889T3/pl unknown
- 2013-08-29 WO PCT/EP2013/002604 patent/WO2014037091A2/de active Application Filing
- 2013-08-29 BR BR112015004726-2A patent/BR112015004726B1/pt active IP Right Grant
- 2013-08-29 RU RU2015112309A patent/RU2647297C2/ru active
- 2013-08-29 EP EP13755972.0A patent/EP2906889B1/de active Active
-
2015
- 2015-02-19 ZA ZA2015/01162A patent/ZA201501162B/en unknown
- 2015-03-04 CL CL2015000527A patent/CL2015000527A1/es unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0531182A1 (de) | 1991-08-07 | 1993-03-10 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Verfahren und Einrichtung zur Luftdestillation und die Verwendung bei der Zuführung von Gas in Stahlwerken |
EP0697576A1 (de) | 1994-08-17 | 1996-02-21 | The Boc Group, Inc. | Verfahren und Vorrichtung zur Lufttrennung |
US5490391A (en) | 1994-08-25 | 1996-02-13 | The Boc Group, Inc. | Method and apparatus for producing oxygen |
EP0698772A1 (de) | 1994-08-25 | 1996-02-28 | The Boc Group, Inc. | Verfahren und Vorrichtung zur Herstellung von Sauerstoff |
DE19951521A1 (de) | 1999-10-26 | 2001-05-03 | Linde Ag | Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft |
EP1139046A1 (de) | 2000-03-29 | 2001-10-04 | Linde Aktiengesellschaft | Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft |
DE10139727A1 (de) | 2001-08-13 | 2003-02-27 | Linde Ag | Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft |
DE10228111A1 (de) | 2002-06-24 | 2004-01-15 | Linde Ag | Luftzerlegungsverfahren und -anlage mit Mischsäule und Krypton-Xenon-Gewinnung |
Non-Patent Citations (1)
Title |
---|
KERRY, F.G.: "Industrial Gas Handbook: Gas Separation and Purification", 2006, CRC PRESS |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3179187A1 (de) | 2015-12-07 | 2017-06-14 | Linde Aktiengesellschaft | Verfahren zur gewinnung eines flüssigen und eines gasförmigen, sauerstoffreichen luftprodukts in einer luftzerlegungsanlage und luftzerlegungsanlage |
EP3179186A1 (de) | 2015-12-07 | 2017-06-14 | Linde Aktiengesellschaft | Verfahren zur gewinnung eines flüssigen und eines gasförmigen, sauerstoffreichen luftprodukts in einer luftzerlegungsanlage und luftzerlegungsanlage |
Also Published As
Publication number | Publication date |
---|---|
ZA201501162B (en) | 2016-01-27 |
PL2906889T3 (pl) | 2021-12-27 |
RU2647297C2 (ru) | 2018-03-15 |
BR112015004726A2 (pt) | 2017-07-04 |
WO2014037091A3 (de) | 2014-12-18 |
DE102012017484A1 (de) | 2014-03-06 |
CL2015000527A1 (es) | 2015-06-19 |
BR112015004726B1 (pt) | 2021-07-06 |
EP2906889B1 (de) | 2021-08-11 |
EP2703757A1 (de) | 2014-03-05 |
EP2906889A2 (de) | 2015-08-19 |
RU2015112309A (ru) | 2016-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3164654B1 (de) | Verfahren und vorrichtung zur tieftemperaturzerlegung von luft mit variablem energieverbrauch | |
EP1134525B1 (de) | Verfahren zur Gewinnung von gasförmigem und flüssigem Stickstoff mit variablem Anteil des Flüssigprodukts | |
EP3179187B1 (de) | Verfahren zur gewinnung eines flüssigen und eines gasförmigen, sauerstoffreichen luftprodukts in einer luftzerlegungsanlage und luftzerlegungsanlage | |
EP1074805B1 (de) | Verfahren und Vorrichtung zur Gewinnung von Sauerstoff unter überatmosphärischem Druck | |
EP2015012A2 (de) | Verfahren zur Tieftemperaturzerlegung von Luft | |
EP3343158A1 (de) | Verfahren zur herstellung eines oder mehrerer luftprodukte und luftzerlegungsanlage | |
EP3290843A2 (de) | Verfahren und vorrichtung zur erzeugung von druckstickstoff und flüssigstickstoff durch tieftemperaturzerlegung von luft | |
EP2963370A1 (de) | Verfahren und vorrichtung zur tieftemperaturzerlegung von luft | |
EP2520886A1 (de) | Verfahren und Vorrichtung zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft | |
EP2963369B1 (de) | Verfahren und vorrichtung zur tieftemperaturzerlegung von luft | |
EP2053331A1 (de) | Verfahren und Vorrichtung zur Tieftemperatur-Luftzerlegung | |
EP2979051A2 (de) | Verfahren und vorrichtung zur erzeugung von gasförmigem drucksauerstoff mit variablem energieverbrauch | |
DE19537913A1 (de) | Dreifachsäulenverfahren zur Tieftemperaturzerlegung von Luft | |
EP2551619A1 (de) | Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff und Drucksauerstoff durch Tieftemperaturzerlegung von Luft | |
EP3207320A1 (de) | Verfahren und vorrichtung zur variablen gewinnung von argon durch tieftemperaturzerlegung | |
EP2906889B1 (de) | Verfahren und anlage zur erzeugung flüssiger und gasförmiger sauerstoffprodukte durch tieftemperaturzerlegung von luft | |
EP2938952A2 (de) | Verfahren und vorrichtung zur tieftemperatur-luftzerlegung | |
EP2914913B1 (de) | Verfahren zur tieftemperaturzerlegung von luft in einer luftzerlegungsanlage und luftzerlegungsanlage | |
WO2021104668A1 (de) | Verfahren und anlage zur tieftemperaturzerlegung von luft | |
WO2011110301A2 (de) | Verfahren und vorrichtung zur tieftemperaturzerlegung von luft | |
DE102017010001A1 (de) | Verfahren und Anlage zur Tieftemperaturzerlegung von Luft | |
DE19933558A1 (de) | Dreisäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft | |
EP1199532A1 (de) | Drei-Säulen-System zur Tieftemperatur-Zerlegung von Luft | |
DE10045128A1 (de) | Verfahren und Vorrichtung zur Erzeugung hoch reinen Stickstoffs durch Tieftemperatur-Luftzerlegung | |
DE102010056569A1 (de) | Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff durch Tieftemperaturzerlegung von Luft |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13755972 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013755972 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015000527 Country of ref document: CL |
|
ENP | Entry into the national phase |
Ref document number: 2015112309 Country of ref document: RU Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112015004726 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112015004726 Country of ref document: BR Kind code of ref document: A2 Effective date: 20150303 |