[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2026024A1 - Verfahren und Vorrichtung zur Gewinnung von Argon durch Tieftemperaturzerlegung von Luft - Google Patents

Verfahren und Vorrichtung zur Gewinnung von Argon durch Tieftemperaturzerlegung von Luft Download PDF

Info

Publication number
EP2026024A1
EP2026024A1 EP08012054A EP08012054A EP2026024A1 EP 2026024 A1 EP2026024 A1 EP 2026024A1 EP 08012054 A EP08012054 A EP 08012054A EP 08012054 A EP08012054 A EP 08012054A EP 2026024 A1 EP2026024 A1 EP 2026024A1
Authority
EP
European Patent Office
Prior art keywords
condenser
column
argon column
passages
crude argon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08012054A
Other languages
English (en)
French (fr)
Inventor
Horst Corduan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102007035619A external-priority patent/DE102007035619A1/de
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to EP08012054A priority Critical patent/EP2026024A1/de
Publication of EP2026024A1 publication Critical patent/EP2026024A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • F25J3/04884Arrangement of reboiler-condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/042Division of the main heat exchange line in consecutive sections having different functions having an intermediate feed connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • F25J3/04357Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04624Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using integrated mass and heat exchange, so-called non-adiabatic rectification, e.g. dephlegmator, reflux exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04727Producing pure argon, e.g. recovered from a crude argon column using an auxiliary pure argon column for nitrogen rejection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • F25J5/007Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger combined with mass exchange, i.e. in a so-called dephlegmator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/04Mixing or blending of fluids with the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/58Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being argon or crude argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/58Processes or apparatus involving steps for recycling of process streams the recycled stream being argon or crude argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/04Down-flowing type boiler-condenser, i.e. with evaporation of a falling liquid film
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Definitions

  • the invention relates to a method according to the preamble of patent claim 1.
  • the distillation column system for nitrogen-oxygen separation of the invention may be formed as a single column system for nitrogen-oxygen separation, as a two-column system (for example as a classic Linde double column system), or as a three or more column system.
  • further steps for obtaining other air components may be provided in the method, in particular further noble gases.
  • the "crude argon column” within the meaning of the claim is used for argon-oxygen separation.
  • the crude argon column may be formed by a one-piece column or by a two- or multi-part column, as in EP 628777 B1 is described.
  • the "pure argon column” is used for argon-nitrogen separation.
  • the "crude argon stream” has a higher argon concentration than the "argon-containing stream”.
  • the "pure argon product stream” has a higher argon concentration than crude argon stream and is preferably withdrawn from the bottom of the pure argon column, for example from its bottom.
  • Processes for argon recovery of the type mentioned are, for example DE 2325422 A .
  • EP 942246 A2 EP 1103772 A1 .
  • the invention has for its object to provide a method of the type mentioned above and a corresponding device, which are economically particularly favorable to operate by having an increased product yield, higher product purity, lower operating costs and / or lower investment costs.
  • top condenser of the crude argon column is designed as a reflux condenser and top gas of the crude argon column is introduced into the return passages of the reflux condenser.
  • lux condenser also called dephlegmator
  • dephlegmator a heat exchanger having return passages. These return passages are pressurized from below with steam (here: overhead gas of the crude argon column). This condenses at least partially when ascending in the return passages.
  • the return passages are designed so that the condensed liquid is not entrained, but flows down. Due to the countercurrent of vapor and liquid, a rectification takes place in the return passages.
  • the condensate, which exits at the lower end, is enriched in less volatile components, the steam exiting overhead is more volatile.
  • the heat exchanger block (or even a plurality of heat exchanger blocks) may be arranged inside a pressure vessel, as described, for example, in US Pat EP 1189000 A2 is shown, or the heat exchanger block is completed on all sides by headers, see for example US 6128920 .
  • the reflux condenser in the head of a separation column here: the crude argon column
  • the return passages are at its lower end in communication with the upper region of the separation column, see German patent application 102006037058 and corresponding applications.
  • the one or more heat exchanger blocks of the reflux condenser are preferably designed as a plate heat exchanger, in particular as a brazed aluminum plate heat exchanger.
  • a reflux condenser not only allows heat exchange, but also mass transfer between the gas rising in the return passages and the liquid flowing down there, similar to the corrugated packings of a mass transfer column.
  • This release effect can be expressed as the HETP value (Height Equivalent to One Theoretical Plate).
  • the HETP value of the capacitor is in the range of 300 to 600 mm.
  • a 1.5 m high reflux condenser acts like up to five theoretical plates.
  • this effect does not affect the argon-oxygen separation at the top of the crude argon column, ie the use of the reflux condenser does not save mass transfer elements (practical trays, ordered packing or disordered packing) in the crude argon column.
  • the upper area of the argon column is off US 5133790 is not used for argon-oxygen separation (as in the crude argon column of the invention), but for argon nitrogen separation, which in the Method of the type mentioned is carried out practically exclusively in the pure argon column.
  • Such capacitors are regularly designed as a condenser-evaporator. Against the condensing on the liquefaction side (return passages) head gas thus a cooling fluid is evaporated on the evaporation side.
  • the heat exchanger block is usually arranged in a bath. Because of the hydrostatic pressure, the temperature in the evaporation passages rises from top to bottom.
  • the gas flowing upwards in the return passages becomes increasingly nitrogen-rich and is the coldest at the top of the condenser because of the increased nitrogen content (see FIG. 4 ).
  • the temperature profile in the return passages adapts to those of the evaporation passages.
  • the return condenser creates a natural tendency for a driving temperature gradient which remains almost constant over the entire block height.
  • the driving temperature gradient in the lower capacitor area is always much smaller than in the upper area. This weakens the contribution of the heating surface located in the lower part of the condenser to the total heat exchange.
  • the temperature difference between evaporation and liquefaction passages is almost constant.
  • the exchange losses can be reduced, or the exchange area is reduced accordingly, thus reducing the investment costs.
  • the liquid cooling fluid is supplied to the evaporation passages at its lower end and the mixture of vaporized cooling fluid and liquid remaining cooling fluid is withdrawn from the lower end of the evaporation passages.
  • the top condenser may be formed as a bath evaporator, in which the evaporation passages are open at the top and bottom and the cooling fluid is guided by the thermosiphon effect from bottom to top through the evaporation passages.
  • the top condenser is formed by exactly one plate heat exchanger block.
  • the crude argon stream is withdrawn from the upper region of the return passages.
  • the gas fraction remaining after flowing through has a particularly high argon concentration and its oxygen content is particularly low.
  • the crude argon stream thus also contains a relatively large amount of nitrogen; However, this can be separated easily in the pure argon column.
  • no residual gas stream is withdrawn from the upper region of the crude argon column and from the reflux passages.
  • no further stream is withdrawn from the upper region, including the return passages, in addition to the crude argon stream.
  • the crude argon column is drained of just another stream which is returned to the nitrogen-oxygen separation distillation column system (for example, the low-pressure column of a two-column system from which the argon-containing stream is withdrawn).
  • the crude argon stream of the crude argon column or the top condenser is taken off in gaseous form and at least partially, for example completely condensed, upstream of its introduction into the pure argon column in an additional condenser.
  • the crude argon stream can be introduced at least partially, for example completely in liquid form, into the pure argon column.
  • the top condenser and the additional condenser are designed as a condenser-evaporator, wherein both evaporation passages are fed with the same cooling fluid.
  • the cooling fluid is partially vaporized in the evaporation passages, whereby liquid is entrained by the thermosiphon effect and returned to the liquid bath.
  • oxygen-enriched liquid from the distillation column system is used for nitrogen-oxygen separation, such as from the bottom of the high-pressure column of a two-column system.
  • top condenser and the additional condenser are designed as liquid bath evaporators and are arranged in the same liquid bath. Since the additional capacitor regularly has a lower height than the top condenser, the additional condenser can still be operated with a temperature at the lower end, which is lower than the temperature at the lower end of the top condenser.
  • a residual gas stream is withdrawn from the head of the pure argon column or from the upper region of the return passages and mixed with the feed air, in particular before its compression.
  • This recycling of the residual gas from the head of the pure argon column or the crude argon column can also be used with advantage in argon recovery processes without reflux condenser at the top of the crude argon column.
  • the argon contained in it is returned to the process. The argon yield increases accordingly.
  • the invention also relates to a device according to claims 12 to 15.
  • atmospheric air 1 is sucked in via a filter 2 from an air compressor 3 and there compressed to an absolute pressure of 5.0 to 7.0 bar, preferably about 5.5 bar and is then in a direct contact cooler 4 in direct heat exchange with cooling water 5, 6 cooled, which originates (1) from an evaporative cooler 7, on the other hand (6) is supplied from an external source.
  • the compressed and cooled air 8 is cleaned in a cleaning device 9 having a pair of containers filled with adsorbent material, preferably molecular sieve.
  • the purified air 10 is cooled in a main heat exchanger system 11 a, 11 b, 11 c to about dew point.
  • the cold air 12 is introduced into the high-pressure column 13 of a distillation column system for nitrogen-oxygen separation, which also has a low-pressure column 14.
  • High-pressure column 13 and low-pressure column 14 are designed as classic Linde double column and are connected via a main condenser 15 in heat exchanging connection.
  • the operating pressures - at the top - are 4.5 to 6.5 bar, preferably about 5.0 bar in the high pressure column and 1.2 to 1.7 bar, preferably about 1.3 bar in the low pressure column.
  • Liquid raw oxygen 16 is withdrawn from the sump of the high-pressure column 13, supercooled in a supercooling countercurrent 17 and further cooled to a part 19 in a sump evaporator 21 of the pure argon column 20.
  • Another part 22 can be passed past the bottom evaporator 21.
  • a part 23 flows into the evaporation space of a top condenser 24 of a crude argon column 25, another part in the evaporation space of a top condenser 27 of the pure argon column 20.
  • the in the top condensers 24, 27 evaporated crude oxygen 28, 29 via line 30 of the low pressure column 14 at a first Supplied intermediate point.
  • the remaining liquid portion 31 from the top condenser 24 of the crude argon column 25 is also guided to the first intermediate point of the low-pressure column 14.
  • the remaining liquid portion 32 from the top condenser 27 of the pure argon column 20 is fed to a second intermediate point of the low-pressure column 14, which is above the first intermediate point.
  • Gaseous nitrogen 33 from the head of the high pressure column 13 is directed to a first portion 34 to the cold end of the main heat exchanger 11a where it is warmed to about ambient temperature and then divided into a pressurized product stream 36 (GAN I) and a recycle stream 37.
  • the circulation stream 37 is compressed in a cycle compressor 38 with aftercooler 39 to a pressure of 25 to 60 bar, preferably about 35 bar, and cooled in the main heat exchanger 11a.
  • a portion 40 of the high-pressure nitrogen is removed from the main heat exchanger at an intermediate temperature and expanded in an expansion turbine 41 to approximately high-pressure column pressure.
  • the relaxed circulation stream 42 is again admixed with the cold product stream 34. Any existing liquid is previously separated (43) and fed via line 44 to the top of the low pressure column 14. Another part 61 of the high pressure nitrogen is led to the cold end of the main heat exchanger 11a and then abandoned on the high-pressure column 13.
  • the remaining gaseous top nitrogen 45 of the high-pressure column 13 is at least partially condensed in the main condenser 15.
  • the generated during this process liquid nitrogen 46 is given to a part 47 of the high-pressure column 13 as reflux.
  • Another part 48, 49 is passed to the head of the low-pressure column 14 after subcooling in the subcooling countercurrent 17.
  • a part 50 can be deducted as liquid nitrogen product (LIN).
  • gaseous oxygen 51 is removed, warmed in the main heat exchanger 11a and withdrawn via line 52 as a non-pressurized gaseous product (GOX III).
  • a liquid oxygen stream 53 from the bottom of the low pressure column 14 is supercooled in the subcooling countercurrent 17 and fed via line 54 to a liquid tank (LOX).
  • At least a portion of the liquid oxygen is withdrawn via line 55 to the tank again, brought in a pump 56 to the required product pressure, for example 6 to 60 bar, preferably about 31 bar, and vaporized in the main heat exchanger 11a against high pressure nitrogen (or pseudo at supercritical pressure -Vaporated) and warmed to ambient temperature and finally withdrawn via line 57 as a gaseous high pressure product (GOX I).
  • a portion 58 of the high-pressure liquid is expanded via a throttle valve 59 to an intermediate pressure of, for example, 6 to 25 bar, preferably about 15 bar and evaporated under this lower pressure and withdrawn via line 60 as gaseous medium pressure product (GOX II).
  • Gaseous nitrogen 62, 63, 64 from the head of the low pressure column 14 and gaseous impurity 65, 66, 67 from an intermediate point of the low pressure column 14 are respectively supercooled in the subcooling countercurrent 17, warmed in the main heat exchanger blocks 11 c and 11 b and via line 68 - If necessary, after heating 69 - used as a regeneration gas for the cleaning device 9, fed via line 70 to the evaporative cooler 70 and / or blown off via line 71 directly into the atmosphere.
  • an argon-containing stream 72 is taken from the low-pressure column 14 and fed to the crude argon column 25 directly above the sump.
  • the crude argon column 25 is made in one piece in this example. Bottom liquid 73 of the crude argon column is returned via pump 74 and line 75 into the low-pressure column.
  • the top condenser 24 of the crude argon column 25 is designed according to the invention as a reflux condenser. Gas from the top of the crude argon column 25 flows down into the return passages where it is partially condensed. The condensate generated in this case flows in countercurrent to the rising gas in the return passages down and is used in the crude argon column 25 as a liquid reflux. On the evaporation side, the top condenser 24 is designed as a bath condenser.
  • the cooling fluid which is formed here by liquid crude oxygen 23, flows in at the bottom via one or more lateral openings into the evaporation passages and is partially evaporated there.
  • Liquid is entrained by the thermosiphon effect, exits along with the vaporized portion at the top of the evaporation passages, and is returned to the liquid bath.
  • the top condenser is thus formed on the evaporation side as a bath evaporator.
  • a crude argon stream 76 is taken off in gaseous form via a lateral header and fed to the pure argon column 20 at an intermediate point.
  • the top condenser of the pure argon column 20 is conventionally designed in the example on the liquefaction side, that is, the head gas 77 of the pure argon column 20 flows from top to bottom through the liquefaction passages.
  • the top condenser 27 of the pure argon column 20 and / or the main condenser 15 could be designed as reflux condenser.
  • a residual gas stream 78 is withdrawn and blown off into the atmosphere in the example. Alternatively it can be returned to the distillation column system for nitrogen-oxygen separation or to the air compressor 3 via its own blower.
  • the bottom liquid 79 of the pure argon column 20 is vaporized to a part 80 in the bottom evaporator 21 and the generated thereby vapor 81 is as Ascending gas used in the pure argon column 20. The remainder is taken as a liquid pure argon product stream 82.
  • FIG. 2 gives way before all in the execution of pure argon column 20 of FIG. 1 from.
  • the pure argon column has no top condenser here.
  • the crude argon stream 176 is here formed by a part of the return passages of the top condenser 24 of the crude argon column 25 and fed to the top of the pure argon column 20.
  • the top gas 177 of the pure argon column 20 is returned to the top of the crude argon column 25.
  • the residual gas stream 178 is formed by the uncondensed in the top condenser 24 portion of the top gas of crude argon and pure argon. It is removed at the upper end of the return passages via a lateral header and, like the residual gas stream 78 of the FIG. 1 be treated.
  • FIG. 3 shows only the crude argon column 25 and the pure argon column 20. Otherwise, the method is identical to those of FIGS. 1 and 2 , Similar to FIG. 2 Here is a first Rohargonstrom 276a liquid introduced into the pure argon column 20. Deviating from FIG. 2 However, this introduction is not done on the head, but as in FIG. 1 at an intermediate point of the pure argon column 20. At this point, a part 277 of the ascending in the pure argon gas and withdrawn to the top of the crude argon column 25.
  • the vapor 276b from the head of the return passages of the top condenser 24 forms a second crude argon stream.
  • This is at least partially condensed in an additional capacitor 227, which is designed as a condenser-evaporator.
  • the condensate 282 is given as reflux to the top of the pure argon column.
  • the evaporation side of the additional capacitor 227 is like that of the top condenser 24 formed as a liquid bath evaporator, both preferably being arranged in the same liquid bath, which is fed by liquid crude oxygen 23.
  • the temperature profile is plotted against the height of the condenser block (left axis). Between the liquid condensing in the return passages whose temperature is approximately equal to the temperature in the evaporation passages (upper curve “condensation”) and in countercurrent For ascending evaporating gas (lower curve “evaporation”) there is a temperature difference (MTD), which is almost constant over the height of the reflux condenser.
  • MTD temperature difference
  • the reflux condenser has assumed in the example a separation effect of five theoretical plates.
  • a theoretical bottom causes in the top condenser of a crude argon column a nitrogen increase by a factor of about 3 (K value of nitrogen in argon).
  • All described capacitors are preferably designed as soldered aluminum plate heat exchangers whose channels contain corrugated sheets, so-called fins.
  • fins Within the return passages basically the same types of fins can be used. However, it may be beneficial in reflux condensers to use different Fintypen.
  • An embodiment is in FIG. 5 shown.
  • the return passages shown here are divided into four sections A to D, in which different types of fins are used.
  • the gas load and thus the flood tendency is greatest.
  • the gas load is getting smaller. Therefore, in the lower region A, a fin with a small specific pressure loss and a relatively poor heat transfer is preferably selected.
  • FIG. 6 shows a further method to make the operation of the return passages of the reflux condenser 24 so that the basically upward decreasing gas load is compensated.
  • a part of the gas to be condensed is given up on the return passages. This reduces the gas load in the lower zone. Since the amount of gas flowing to the head is only a subset of the amount of gas to be condensed, the necessary piping takes up less space and construction volume is saved.
  • the reflux condenser on the evaporation side is designed as a falling-film evaporator, that is to say vaporizing cooling fluid is added at the top and flows down in a film flow through the evaporation passages.
  • vaporizing cooling fluid is added at the top and flows down in a film flow through the evaporation passages.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Das Verfahren und die Vorrichtung dienen zur Gewinnung von Argon durch Tieftemperaturzerlegung von Luft. Einsatzluft (1) wird verdichtet (3) und in ein Destilliersäulen-System zur Stickstoff-Sauerstoff-Trennung (13,14) eingeleitet. Dem Destilliersäulen-System zur Stickstoff-Sauerstoff-Trennung wird ein argonhaltiger Strom (72) entnommen. Der argonhaltige Strom (72) wird einer Rohargonsäule (25) zugeleitet. Die Rohargonsäule (25) weist einen Kopfkondensator (24) auf, in dem ein Kopfgas aus der Rohargonsäule (25) mindestens teilweise kondensiert wird. Mindestens ein Teil des dabei gewonnenen Kondensats wird als Rücklaufflüssigkeit auf die Rohargonsäule (25) aufgegeben. Der Rohargonsäule (25) oder dem Kopfkondensator (24) wird ein Rohargonstrom (76, 176, 276a, 276b) entnommen. Der Rohargonstrom (76, 176, 276a, 276b) wird einer Reinargonsäule (20) zugeleitet. Der Reinargonsäule (20) wird ein Reinargonproduktstrom (81) entnommen. Der Kopfkondensator (24) der Rohargonsäule (25) ist als Rücklaufkondensator ausgebildet und Kopfgas der Rohargonsäule wird in die Rücklaufpassagen des Rücklaufkondensators eingeleitet.

Description

  • Die Erfindung betrifft ein Verfahren gemäß dem Oberbegriff des Patentanspruchs 1.
  • Verfahren und Vorrichtungen zur Tieftemperaturzerlegung von Luft sind zum Beispiel aus Hausen/Linde, Tieftemperaturtechnik, 2. Auflage 1985, Kapitel 4 (Seiten 281 bis 337) bekannt. Das Destilliersäulen-System zur Stickstoff-Sauerstoff-Trennung der Erfindung kann als Einsäulensystem zur Stickstoff-Sauerstoff-Trennung ausgebildet sein, als Zweisäulensystem (zum Beispiel als klassisches Linde-Doppelsäulensystem), oder auch als Drei- oder Mehrsäulensystem. Zusätzlich zu den Kolonnen zur Stickstoff-Sauerstoff-Trennung und zur Argongewinnung können in dem Verfahren weitere Schritte zur Gewinnung anderer Luftkomponenten vorgesehen sein, insbesondere weiterer Edelgase.
  • Die "Rohargonsäule" im Sinne des Patentanspruchs dient zur Argon- Sauerstoff-Trennung. Die Rohargonsäule kann durch eine einteilige Säule gebildet sein oder auch durch eine zwei- oder mehrteilige Säule, wie es in EP 628777 B1 beschrieben ist. Die "Reinargonsäule" dient zur Argon-Stickstoff-Trennung. Der "Rohargonstrom" weist eine höhere Argonkonzentration als der "argonhaltige Strom" auf. Der "Reinargonproduktstrom" weist eine höhere Argonkonzentration als Rohargonstrom auf und wird vorzugsweise aus dem unteren Bereich der Reinargonsäule abgezogen, zum Beispiel von ihrem Sumpf.
  • Einzige Quelle für Rücklaufflüssigkeit der Rohargonsäule ist ein Kopfkondensator. Dieser Kopfkondensator kann aus einem, zwei oder mehreren Plattenwärmetauscherblöcken gebildet werden, die verdampfungsseitig und verflüssigungsseitig parallel geschaltet sind. Kühlfluid strömt an einem Ende in die Verdampfungspassagen ein und am anderen Ende aus den Verdampfungspassagen aus. Ein Gegenstrom innerhalb der Verdampfungspassagen findet nicht statt. Vielmehr werden flüssig verbliebenes Kühlfluid und verdampftes Kühlfluid innerhalb der Verdampfungspassagen im Gleichstrom geführt. Ist der Kopfkondensator als Badverdampfer ausgebildet, strömt das Kühlfluid in den Verdampfungspassagen von unten nach oben.
  • Prozesse zur Argongewinnung der eingangs genannten Art sind zum Beispiel aus DE 2325422 A , EP 171711 A2 , EP 377117 B2 (= US 5019145 ), DE 4030749 A1 , EP 628777 B1 (= US 5426946 ), EP 669508 A1 (= US 5592833 ), EP 669509 B1 (= US 5590544 ), EP 942246 A2 , EP 1103772 A1 , DE 19609490 (= US 5669237 ), Figur 8, EP 1243882 A1 (= US 2002178747 A1 ) und EP 1243881 A1 (= US 2002189281 A1 ) bekannt, beiden als Kopfkondensator der Rohargonsäule konventioneller Kondensator verwendet wird, in zu kondensierendes Gas und kondensierte Flüssigkeit in den Verflüssigungspassagen im Gleichstrom geführt werden.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art und eine entsprechende Vorrichtung anzugeben, die wirtschaftlich besonders günstig zu betreiben sind, indem sie eine erhöhte Produktsausbeute, eine höhere Produktreinheit, geringere Betriebskosten und/oder geringere Investitionskosten aufweisen.
  • Diese Aufgabe wird dadurch gelöst, dass der Kopfkondensator der Rohargonsäule als Rücklaufkondensator ausgebildet ist und Kopfgas der Rohargonsäule in die Rücklaufpassagen des Rücklaufkondensators eingeleitet wird.
  • Unter "Rücklaufkondensator" (auch Dephlegmator genannt) wird hier ein Wärmetauscher verstanden, der Rücklaufpassagen aufweist. Diese Rücklaufpassagen werden von unten mit Dampf (hier: Kopfgas der Rohargonsäule) beaufschlagt. Dieser kondensiert beim Aufsteigen in den Rücklaufpassagen mindestens teilweise. Die Rücklaufpassagen sind dabei so konstruiert, dass die kondensierte Flüssigkeit nicht mitgerissen wird, sondern nach unten fließt. Durch den Gegenstrom von Dampf und Flüssigkeit findet in den Rücklaufpassagen eine Rektifikation statt. Das Kondensat, das am unteren Ende austritt, ist an schwererflüchtigen Komponenten angereichert, der oben austretende Dampf an leichterflüchtigen.
  • Es sind verschiedene Bauformen von Rücklaufkondensatoren bekannt. Der Wärmetauscherblock (oder auch eine Mehrzahl von Wärmetauscherblöcken) kann im Inneren eines Druckbehälters angeordnet sein, wie dies zum Beispiel in EP 1189000 A2 dargestellt ist, oder der Wärmetauscherblock ist auf allen Seiten durch Header abgeschlossen, siehe zum Beispiel US 6128920 . Alternativ dazu kann der Rücklaufkondensator im Kopf einer Trennsäule (hier: der Rohargonsäule) eingebaut sein, wobei die Rücklaufpassagen an ihrem unteren Ende in Kommunikation mit dem oberen Bereich der Trennsäule stehen, siehe deutsche Patentanmeldung 102006037058 und dazu korrespondierende Anmeldungen. Der oder die Wärmetauscherblöcke des Rücklaufkondensators sind vorzugsweise als Plattenwärmetauscher, insbesondere als gelötete Aluminium-Plattenwärmetauscher ausgeführt.
  • Räumliche Begriffe wie "oben", "unten", "seitlich" etc. beziehen sich hier immer auf die Orientierung des Rücklaufkondensators im bestimmungsgemäßen Betrieb.
  • Ein Rücklaufkondensator ermöglicht nicht nur einen Wärmeaustausch, sondern auch einen Stoffaustausch zwischen dem in den Rücklaufpassagen aufsteigenden Gas und der dort nach unten fließenden Flüssigkeit, ähnlich wie die geriffelten Packungen einer Stoffaustauschsäule. Diese Trennwirkung kann als HETP-Wert (Height Equivalent to One Theoretical Plate = Höhe eines theoretischen Bodens) angegeben. Der HETP-Wert des Kondensators liegt im Bereich von 300 bis 600 mm. Damit wirkt zum Beispiel ein 1,5 m hoher Rücklaufkondensator etwa wie bis zu fünf theoretische Böden. Allerdings wirkt sich am Kopf der Rohargonsäule dieser Effekt nicht auf die Argon-Sauerstoff-Trennung aus, das heißt der Einsatz des Rücklaufkondensators spart keine Stoffaustauschelemente (praktische Böden, geordnete Packung oder ungeordnete Füllkörper) in der Rohargonsäule.
  • Deshalb wurde ein Rücklaufkondensator bei der Argongewinnung bisher nur dann als Kopfkondensator eingesetzt, wenn in der Säule, die direkt an das Destilliersäulen-System zur Stickstoff-Sauerstoff-Trennung angeschlossen ist, kein Rohargon, sondern reines Argon gewonnen wird (siehe US 5133790 ). In diesem Fall wird in einer einzelnen Argonsäule sowohl die Argon-Sauerstoff-Trennung als auch die Argon-Stickstoff-Trennung vorgenommen und eine separate Reinargonsäule zur Argon-Stickstoff-Trennung ist ausdrücklich nicht vorgesehen. Der obere Bereich der Argonsäule aus US 5133790 dient nicht zur Argon-Sauerstoff-Trennung (wie in der Rohargonsäule der Erfindung), sondern zur Argon-Stickstofftrennung, die in dem Verfahren der eingangs genannten Art praktisch ausschließlich in der Reinargonsäule durchgeführt wird.
  • Bisher wurde also kein Grund gesehen, in Verfahren, die eine eigene Reinargonsäule zur Argon-Stickstofftrennung aufweisen, einen Teil der Argon-Stickstoff-Trennung in die Rohargonsäule beziehungsweise deren Kopfkondensator zu verlegen, da dadurch keine Böden in den Säulen einzusparen sind.
  • Im Rahmen der Erfindung hat sich jedoch herausgestellt, dass der Einsatz eines solchen Rücklaufkondensators am Kopf der Rohargonsäule einen weiteren Vorteil aufweist. Solche Kondensatoren sind regelmäßig als Kondensator-Verdampfer ausgeführt. Gegen das auf der Verflüssigungsseite (Rücklaufpassagen) kondensierende Kopfgas wird also auf der Verdampfungsseite ein Kühlfluid verdampft. Der Wärmetauscherblock ist üblicherweise in einem Bad angeordnet. Wegen des hydrostatischen Drucks steigt die Temperatur in den Verdampfungspassagen von oben nach unten an.
  • Durch die Trennwirkung des Rücklaufkondensators am Kopf der Rohargonsäule wird das in den Rücklaufpassagen nach oben strömende Gas zunehmend stickstoffreicher und ist am Kopf des Kondensators wegen des erhöhten Stickstoffanteils am kältesten (siehe Figur 4). Damit passt sich der Temperaturverlauf in den Rücklaufpassagen an denjenigen der Verdampfungspassagen an. Auf diese Weise entsteht beim Rücklaufkondensator eine natürliche Tendenz zu einem über die gesamte Blockhöhe fast gleich bleibenden treibenden Temperaturgefälle. Beim konventionellen Rohargonkondensator ist dagegen das treibende Temperaturgefälle im unteren Kondensatorbereich immer viel kleiner als im oberen Bereich. Dies schwächt den Beitrag der im unteren Kondensatorteil befindlichen Heizfläche am gesamten Wärmeaustausch. Bei dem erfindungsgemäßen Verfahren ist dagegen die Temperaturdifferenz zwischen Verdampfungs- und Verflüssigungspassagen fast konstant. Damit können die Austauschverluste verringert werden, oder die Austauschfläche wird entsprechend verkleinert und damit die Investitionskosten verringert.
  • Damit erhöhen sich Produktreinheit und/oder Produktausbeute. Bei gleich bleibender oder weniger stark erhöhter Trennwirkung kann die Zahl der theoretischen Böden in der Rohargonsäule verringert werden; dadurch werden die Investitionskosten der Anlage vermindert.
  • Es ist besonders günstig, wenn bei der Erfindung das flüssige Kühlfluid den Verdampfungspassagen an ihrem unteren Ende zugeleitet und das Gemisch aus verdampftem Kühlfluid und flüssig verbliebenem Kühlfluid vom unteren Ende der Verdampfungspassagen abgezogen wird. Beispielsweise kann der Kopfkondensator als Badverdampfer ausgebildet sein, bei dem die Verdampfungspassagen oben und unten offen sind und das Kühlfluid mittels des Thermosiphon-Effekts von unten nach oben durch die Verdampfungspassagen geführt wird.
  • In einer Ausführungsform der Erfindung wird der Kopfkondensator durch genau einen Plattenwärmetauscherblock gebildet.
  • Es ist besonders günstig, wenn bei dem erfindungsgemäßen Verfahren der Rohargonstrom aus dem oberen Bereich der Rücklaufpassagen abgezogen wird. Die nach Durchströmen gasförmig verbliebene Fraktion weist eine besonders hohe Argonkonzentration auf und ihr Sauerstoffgehalt ist besonders niedrig. Zwar enthält der Rohargonstrom damit auch relativ viel Stickstoff; dieser kann jedoch ohne großen Aufwand in der Reinargonsäule abgetrennt werden.
  • In einer weiteren Ausgestaltung der Erfindung wird aus dem oberen Bereich der Rohargonsäule und aus den Rücklaufpassagen kein Restgasstrom abgezogen. Vorzugsweise wird aus dem oberen Bereich einschließlich der Rücklaufpassagen neben dem Rohargonstrom überhaupt kein weiterer Strom abgezogen. Der Rohargonsäule wird beispielsweise neben dem Rohargonstrom lediglich ein weiterer Strom abgezogen, der in das Destilliersäulen-System zur Stickstoff-Sauerstoff-Trennung zurückgeleitet (zum Beispiel in die Niederdrucksäule eines Zwei-SäulenSystems, aus der auch der argonhaltige Strom abgezogen wird).
  • Es ist ferner günstig, wenn der Rohargonstrom der Rohargonsäule oder dem Kopfkondensator in Gasform entnommen und stromaufwärts seiner Einleitung in die Reinargonsäule in einem Zusatzkondensator mindestens teilweise, beispielsweise vollständig kondensiert wird. Hierdurch kann der Rohargonstrom mindestens teilweise, beispielsweise vollständig in flüssiger Form in die Reinargonsäule eingeleitet werden.
  • Dieser Zusatzkondensator sowie die folgenden Maßnahmen können auch bei Verfahren eingesetzt werden, bei denen der Kopfkondensator nicht als Rücklaufkondensator ausgebildet ist.
  • Vorzugsweise sind der Kopfkondensator und der Zusatzkondensator als Kondensator-Verdampfer ausgebildet, wobei beider Verdampfungspassagen mit demselben Kühlfluid gespeist werden. Das Kühlfluid wird in den Verdampfungspassagen teilweise verdampft, wobei durch den Thermosiphoneffekt Flüssigkeit mitgerissen und in das Flüssigkeitsbad zurückgeleitet wird. Als Kühlfluid wird zum Beispiel sauerstoffangereicherte Flüssigkeit aus dem Destilliersäulen-System zur Stickstoff-Sauerstoff-Trennung, etwa aus dem Sumpf der Hochdrucksäule eines Zwei-SäulenSystems, eingesetzt.
  • Es ist ferner günstig, wenn der Kopfkondensator und der Zusatzkondensator als Flüssigkeitsbadverdampfer ausgebildet und in demselben Flüssigkeitsbad angeordnet sind. Da der Zusatzkondensator regelmäßig eine geringere Höhe als der Kopfkondensator aufweist, kann der Zusatzkondensator dennoch mit einer Temperatur am unteren Ende betrieben werden, die niedriger als die Temperatur am unteren Ende des Kopfkondensators ist.
  • Wenn der Rohargonstrom in flüssigem Zustand auf den Kopf der Reinargonsäule aufgegeben wird, kann dieser als Rücklaufflüssigkeit genutzt und auf einen Kopfkondensator der Reinargonsäule verzichtet werden. Dies ist an sich aus US 5970743 und US 6574988 B1 bekannt. In Kombination mit dem Rücklaufkondensator ergibt sich jedoch eine erhöhte Argonausbeute.
  • Es ist ferner vorteilhaft, wenn vom Kopf der Reinargonsäule oder aus dem oberen Bereich der Rücklaufpassagen ein Restgasstrom abgezogen und der Einsatzluft, insbesondere vor deren Verdichtung, zugemischt wird. Diese Rückführung des Restgases vom Kopf der Reinargonsäule oder der Rohargonsäule kann auch bei Argongewinnungsverfahren ohne Rücklaufkondensator am Kopf der Rohargonsäule mit Vorteil angewendet werden. Im Unterschied zum Verwerfen des Restgases wird damit das in diesem enthaltene Argon in den Prozess zurückgeführt. Die Argonausbeute steigt entsprechend. Grundsätzlich kann dabei ein separater Rückverdichter eingesetzt werden, günstiger ist jedoch die Zuspeisung in die drucklose Einsatzluft stromaufwärts des Luftverdichters, insbesondere günstiger als die direkte Rückführung des Restgases in das Destilliersäulen-System zur Stickstoff-Sauerstoff-Trennung, wie sie in US 5133790 vorgeschlagen wird.
  • Die Erfindung betrifft außerdem eine Vorrichtung gemäß den Patentansprüchen 12 bis 15.
  • Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand von in den Zeichnungen schematisch dargestellten Ausführungsbeispielen näher erläutert. Hierbei zeigen:
  • Figur 1
    ein erstes Ausführungsbeispiel des erfindungsgemäßen Verfahrens ohne Zusatzkondensator,
    Figur 2
    ein zweites Ausführungsbeispiel mit Zusatzkondensator,
    Figur 3
    die Rohargonsäule und die Reinargonsäule eines dritten Ausführungsbeispiels,
    Figur 4
    der Temperatur- und Konzentrationsverlauf in einem Rohargonsäulen-Kopfkondensator, der gemäß der Erfindung als Rücklaufkondensator ausgebildet ist,
    Figur 5
    einen schematischen Längsschnitt durch eine Rücklaufpassage einer speziellen Bauform eines Rücklaufkondensators und
    Figur 6
    eine weitere spezielle Bauform des Rücklaufkondensators mit Längsschnitt durch eine Rücklaufpassage .
  • Einander entsprechende Bauteile beziehungsweise Verfahrensschritte tragen in den Zeichnungen dieselben Bezugszeichen.
  • In dem Verfahren von Figur 1 wird atmosphärische Luft 1 wird über ein Filter 2 von einem Luftverdichter 3 angesaugt und dort auf einen Absolutdruck von 5,0 bis 7,0 bar, vorzugsweise etwa 5,5 bar verdichtet und wird anschließend in einem Direktkontaktkühlers 4 in direktem Wärmeaustausch mit Kühlwasser 5, 6 gekühlt, das zum einen (5) aus einem Verdunstungskühler 7 stammt, zum anderen (6) von einer äußeren Quelle zugeführt wird. Die verdichtete und gekühlte Luft 8 wird in einer Reinigungsvorrichtung 9 gereinigt, die ein Paar von Behältern aufweist, die mit Adsorptionsmaterial, vorzugsweise Molekularsieb gefüllt sind. Die gereinigte Luft 10 wird in einem Hauptwärmetauscher-System 11a, 11 b, 11 c auf etwa Taupunkt abgekühlt. Die kalte Luft 12 wird in die Hochdrucksäule 13 eines Destilliersäulen-System zur Stickstoff-Sauerstoff-Trennung eingeleitet, das außerdem eine Niederdrucksäule 14 aufweist. Hochdrucksäule 13 und Niederdrucksäule 14 sind als klassische Linde-Doppelsäule ausgeführt und stehen über einen Hauptkondensator 15 in wärmetauschender Verbindung. Die Betriebsdrücke - jeweils am Kopf - betragen 4,5 bis 6,5 bar, vorzugsweise etwa 5,0 bar in der Hochdrucksäule und 1,2 bis 1,7 bar, vorzugsweise etwa 1,3 bar in der Niederdrucksäule.
  • Flüssiger Rohsauerstoff 16 wird vom Sumpf der Hochdrucksäule 13 abgezogen, in einem Unterkühlungs-Gegenströmer 17 unterkühlt und zu einem Teil 19 in einem Sumpfverdampfer 21 der Reinargonsäule 20 weiter abgekühlt. Ein anderer Teil 22 kann am Sumpfverdampfer 21 vorbeigeleitet werden. Anschließend strömt ein Teil 23 in den Verdampfungsraum eines Kopfkondensators 24 einer Rohargonsäule 25, ein anderer Teil in den Verdampfungsraum eines Kopfkondensators 27 der Reinargonsäule 20. Der in den Kopfkondensatoren 24, 27 verdampfte Rohsauerstoff 28, 29 wird über Leitung 30 der Niederdrucksäule 14 an einer ersten Zwischenstelle zugeführt. Der flüssig verbliebene Anteil 31 aus dem Kopfkondensator 24 der Rohargonsäule 25 wird ebenfalls zu der ersten Zwischenstelle der Niederdrucksäule 14 geführt. Der flüssig verbliebene Anteil 32 aus dem Kopfkondensator 27 der Reinargonsäule 20 wird an einer zweiten Zwischenstelle der Niederdrucksäule 14 aufgegeben, die oberhalb der ersten Zwischenstelle liegt.
  • Gasförmiger Stickstoff 33 vom Kopf der Hochdrucksäule 13 wird zu einem ersten Teil 34 zu kalten Ende des Hauptwärmetauschers 11a geleitet, dort auf etwa Umgebungstemperatur angewärmt und anschließend in einen Druckproduktstrom 36 (GAN I) und einen Kreislaufstrom 37 aufgeteilt. Der Kreislaufstrom 37 wird in einem Kreislaufverdichter 38 mit Nachkühler 39 auf einen Druck von 25 bis 60 bar, vorzugsweise etwa 35 bar verdichtet und im Hauptwärmetauscher 11a abgekühlt. Ein Teil 40 des Hochdruckstickstoffs wird bei einer Zwischentemperatur aus dem Hauptwärmetauscher entnommen und in einer Entspannungsturbine 41 auf etwa Hochdrucksäulendruck arbeitsleistend entspannt. Der entspannte Kreislaufstrom 42 wird wieder dem kalten 34 Druckproduktstrom zugemischt. Eventuell vorhandene Flüssigkeit wird vorher abgetrennt (43) und über Leitung 44 auf den Kopf der Niederdrucksäule 14 aufgegeben. Ein anderer Teil 61 des Hochdruckstickstoffs wird bis zum kalten Ende des Hauptwärmetauschers 11a geführt und anschließend auf die Hochdrucksäule 13 aufgegeben.
  • Der restliche gasförmige Kopfstickstoff 45 der Hochdrucksäule 13 wird im Hauptkondensator 15 mindestens teilweise kondensiert. Der dabei erzeugte flüssige Stickstoff 46 wird zu einem Teil 47 der Hochdrucksäule 13 als Rücklauf aufgegeben. Ein anderer Teil 48, 49 wird nach Unterkühlung im Unterkühlungs-Gegenströmer 17 zum Kopf der Niederdrucksäule 14 geleitet. Dort kann ein Teil 50 als Flüssigstickstoffprodukt (LIN) abgezogen werden.
  • Unmittelbar oberhalb des Sumpfes der Niederdrucksäule 14 wird gasförmiger Sauerstoff 51 entnommen, im Hauptwärmetauscher 11a angewärmt und über Leitung 52 als druckloses gasförmiges Produkt (GOX III) abgezogen. Ein flüssiger Sauerstoffstrom 53 aus dem Sumpf der Niederdrucksäule 14 wird im Unterkühlungs-Gegenströmer 17 unterkühlt und über Leitung 54 einem Flüssigtank (LOX) zugeleitet werden. Mindestens ein Teil des flüssigen Sauerstoffs wird über Leitung 55 dem Tank wieder entnommen, in einer Pumpe 56 auf den benötigten Produktdruck gebracht, zum Beispiel 6 bis 60 bar, vorzugsweise etwa 31 bar, und im Hauptwärmetauscher 11a gegen Hochdruckstickstoff verdampft (beziehungsweise bei überkritischem Druck pseudo-verdampft) und auf Umgebungstemperatur angewärmt und schließlich über Leitung 57 als gasförmiges Hochdruckprodukt (GOX I) abgezogen. Ein Teil 58 der Hochdruckflüssigkeit wird über ein Drosselventil 59 auf einen Zwischendruck von beispielsweise 6 bis 25 bar, vorzugsweise etwa 15 bar entspannt und unter diesem geringeren Druck verdampft und über Leitung 60 als gasförmiges Mitteldruckprodukt (GOX II) abgezogen.
  • Gasförmiger Stickstoff 62, 63, 64 vom Kopf der Niederdrucksäule 14 und gasförmiger Unreinstickstoff 65, 66, 67 von einer Zwischenstelle der Niederdrucksäule 14 werden jeweils im Unterkühlungs-Gegenströmer 17 unterkühlt, in den Hauptwärmetauscher-Blöcken 11 c beziehungsweise 11 b angewärmt und über Leitung 68 - gegebenenfalls nach Erhitzung 69 - als Regeneriergas für die Reinigungsvorrichtung 9 eingesetzt, über Leitung 70 dem Verdunstungskühler 70 zugeführt und/oder über Leitung 71 direkt in die Atmosphäre abgeblasen.
  • An einer dritten Zwischenstelle, die unterhalb der ersten Zwischenstelle angeordnet ist, wird der Niederdrucksäule 14 ein argonhaltiger Strom 72 entnommen und der Rohargonsäule 25 unmittelbar über dem Sumpf zugeführt. Die Rohargonsäule 25 ist in diesem Beispiel einteilig ausgeführt. Sumpfflüssigkeit 73 der Rohargonsäule wird über Pumpe 74 und Leitung 75 in die Niederdrucksäule zurückgeleitet.
  • Der Kopfkondensator 24 der Rohargonsäule 25 ist erfindungsgemäß als Rücklaufkondensator ausgebildet. Gas vom Kopf der Rohargonsäule 25 strömt unten in die Rücklaufpassagen ein und wird dort partiell kondensiert. Das dabei erzeugte Kondensat strömt im Gegenstrom zu dem aufsteigenden Gas in den Rücklaufpassagen nach unten und wird in der Rohargonsäule 25 als flüssiger Rücklauf genutzt. Auf der Verdampfungsseite ist der Kopfkondensator 24 als Badkondensator ausgebildet. Das Kühlfluid, das hier durch flüssigen Rohsauerstoff 23 gebildet wird, strömt unten über eine oder mehrere seitliche Öffnungen in die Verdampfungspassagen ein und wird dort teilweise verdampft. Durch den Thermosiphoneffekt wird Flüssigkeit mitgerissen, tritt zusammen mit dem verdampften Anteil am oberen Ende der Verdampfungspassagen aus und wird in das Flüssigkeitsbad zurückgeleitet. Der Kopfkondensator ist also auf der Verdampfungsseite als Badverdampfer ausgebildet.
  • Vom oberen Ende der Rücklaufpassagen wird über einen seitlichen Header ein Rohargonstrom 76 gasförmig entnommen und der Reinargonsäule 20 an einer Zwischenstelle zugeleitet. Der Kopfkondensator der Reinargonsäule 20 ist in dem Beispiel auf der Verflüssigungsseite konventionell ausgeführt, das heißt das Kopfgas 77 der Reinargonsäule 20 strömt von oben nach unten durch die Verflüssigungspassagen. (Alternativ könnten auch der Kopfkondensator 27 der Reinargonsäule 20 und/oder der Hauptkondensator 15 als Rücklaufkondensatoren ausgebildet sein.) Vom Kopfkondensator 27 wird ein Restgasstrom 78 abgezogen und in dem Beispiel in die Atmosphäre abgeblasen. Alternativ kann er über ein eigenes Gebläse in das Destilliersäulen-System zur Stickstoff-Sauerstoff-Trennung oder vor den Luftverdichter 3 zurückgeführt werden.
  • Die Sumpfflüssigkeit 79 der Reinargonsäule 20 wird zu einem Teil 80 in dem Sumpfverdampfer 21 verdampft und der dabei erzeugte Dampf 81 wird als aufsteigendes Gas in der Reinargonsäule 20 genutzt. Der Rest wird als flüssiger Reinargonproduktstrom 82 entnommen.
  • Das Ausführungsbeispiel der Figur 2 weicht vor Allem in der Ausführung der Reinargonsäule 20 von Figur 1 ab. Die Reinargonsäule weist hier keinen Kopfkondensator auf. Der Rohargonstrom 176 wird hier durch einen Teil der aus den Rücklaufpassagen des Kopfkondensators 24 der Rohargonsäule 25 gebildet und auf den Kopf der Reinargonsäule 20 aufgegeben. Das Kopfgas 177 der Reinargonsäule 20 wird zum Kopf der Rohargonsäule 25 zurückgeführt. Der Restgasstrom 178 wird durch den im Kopfkondensator 24 nicht kondensierten Anteil des Kopfgases von Rohargonsäule und Reinargonsäule gebildet. Er wird am oberen Ende der Rücklaufpassagen über einen seitlichen Header entnommen und kann wie der Restgasstrom 78 der Figur 1 behandelt werden.
  • Figur 3 zeigt nur die Rohargonsäule 25 und die Reinargonsäule 20. Ansonsten ist das Verfahren identisch mit denjenigen der Figuren 1 und 2. Ähnlich wie bei Figur 2 wird hier ein erster Rohargonstrom 276a flüssig in die Reinargonsäule 20 eingeleitet. Abweichend von Figur 2 erfolgt diese Einleitung jedoch nicht am Kopf, sondern wie bei Figur 1 an einer Zwischenstelle der Reinargonsäule 20. An dieser Stelle wird auch ein Teil 277 des in der Reinargonsäule aufsteigenden Gases entnommen und zum Kopf der Rohargonsäule 25 zurückgeführt.
  • Der Dampf 276b vom Kopf der Rücklaufpassagen des Kopfkondensators 24 bildet einen zweiten Rohargonstrom. Dieser wird in einem Zusatzkondensator 227, der als Kondensator-Verdampfer ausgebildet ist, mindestens teilweise kondensiert. Das Kondensat 282 wird als Rücklauf auf den Kopf der Reinargonsäule aufgegeben. Die Verdampfungsseite des Zusatzkondensators 227 ist wie diejenige des Kopfkondensators 24 als Flüssigkeitsbadverdampfer ausgebildet, wobei beide vorzugsweise im selben Flüssigkeitsbad angeordnet sind, das durch flüssigen Rohsauerstoff 23 gespeist wird.
  • In Figur 4 ist zum einen der Temperaturverlauf über der Höhe des Kondensatorblocks aufgetragen (linke Achse). Zwischen der in den Rücklaufpassagen kondensierenden Flüssigkeit, deren Temperatur etwa gleich der Temperatur in den Verdampfungspassagen ist, (obere Kurve "Kondensation") und dem im Gegenstrom dazu aufsteigenden verdampfenden Gas (untere Kurve "Verdampfung") herrscht eine Temperaturdifferenz (MTD), die über die Höhe des Rücklaufkondensators fast konstant ist.
  • Zum anderen ist auch der Stickstoffgehalt des im Block aufsteigenden Gases dargestellt. Der Rücklaufkondensator hat in dem Beispiel eine Trennwirkung von fünf theoretischen Böden angenommen. Ein theoretischer Boden bewirkt im Kopfkondensator einer Rohargonsäule eine Stickstoffanreichung in etwa um den Faktor 3 (K-Wert von Stickstoff in Argon).
  • Alle beschriebenen Kondensatoren sind vorzugsweise als gelötete Aluminiumplattenwärmetauscher ausgeführt, deren Kanäle gewellte Bleche, so genannte Fins, enthalten. Innerhalb der Rücklaufpassagen können grundsätzlich gleiche Fintypen eingesetzt werden. Allerdings kann es bei Rücklaufkondensatoren günstig sein, unterschiedliche Fintypen einzusetzen. Ein Ausführungsbeispiel ist in Figur 5 gezeigt. Die hier gezeigten Rücklaufpassagen sind in vier Abschnitte A bis D unterteilt, in denen unterschiedliche Fintypen eingesetzt werden. Im unten befindlichen Einlaufbereich des Rücklaufkondensators ist die Gasbelastung und damit die Flutneigung am größten. Nach oben hin wird die Gasbelastung immer geringer. Deshalb wird im unteren Bereich A vorzugsweise ein Fin mit einem kleinen spezifischen Druckverlust und einem relativ schlechten Wärmeübergang gewählt. Nach oben hin werden in den Bereichen B, C und D Fins mit jeweils größerem Druckverlust und besserem Wärmeübergang eingesetzt. Beispielsweise steigt die Wellenlänge der Fins (Findichte) nach oben an.
  • Figur 6 zeigt eine weitere Methode, den Betrieb der Rücklaufpassagen des Rücklaufkondensators 24 so zu gestalten, dass die grundsätzlich nach oben abnehmende Gasbelastung kompensiert wird. Dabei wird über Leitung 383 ein Teil des zu kondensierenden Gases oben auf die Rücklaufpassagen aufgegeben. Dies verringert die Gasbelastung in der unteren Zone. Da die zum Kopf strömende Gasmenge nur eine Teilmenge der zu kondensieren Gasmenge ist, nimmt die nötige Verrohrung weniger Platz ein und es wird Bauvolumen eingespart.
  • In einer weiteren Ausgestaltung ist der Rücklaufkondensator auf der Verdampfungsseite als Fallfilmverdampfer ausgestaltet, das heißt das zu verdampfende Kühlfluid wird oben aufgegeben und fließt in einer Filmströmung durch die Verdampfungspassagen nach unten. Auch hierbei ergibt sich ein besonders günstiger Verlauf der Verdampfungs- und Verflüssigungstemperaturen über die Höhe des Rücklaufkondensators.

Claims (15)

  1. Verfahren zur Gewinnung von Argon durch Tieftemperaturzerlegung von Luft, bei dem
    - Einsatzluft (1) verdichtet (3) und in ein Destilliersäulen-System zur Stickstoff-Sauerstoff-Trennung (13,14) eingeleitet wird,
    - dem Destilliersäulen-System zur Stickstoff-Sauerstoff-Trennung ein argonhaltiger Strom (72) entnommen wird,
    - der argonhaltige Strom (72) einer Rohargonsäule (25) zugeleitet wird,
    - die Rohargonsäule (25) einen Kopfkondensator (24) aufweist, der durch mindestens einen Plattenwärmetauscherblock gebildet wird, der Verflüssigungspassagen und Verdampfungspassagen aufweist,
    - ein Kopfgas aus der Rohargonsäule (25) in die Verflüssigungspassagen des Kopfkondensators eingeleitet und dort mindestens teilweise kondensiert wird,
    - mindestens ein Teil des dabei gewonnenen Kondensats als Rücklaufflüssigkeit auf die Rohargonsäule (25) aufgegeben wird,
    - der Kopfkondensator die einzige Quelle für Rücklauf der Rohargonsäule darstellt,
    - ein flüssiges Kühlfluid den Verdampfungspassagen an einem ersten Ende zugeleitet und dort teilweise verdampft wird
    - ein Gemisch aus verdampftem Kühlfluid und flüssig verbliebenem Kühlfluid von einem zweiten Ende der Verdampfungspassagen abgezogen wird,
    - der Rohargonsäule (25) oder dem Kopfkondensator (24) ein Rohargonstrom (76, 176, 276a, 276b) entnommen wird,
    - der Rohargonstrom (76, 176, 276a, 276b) einer Reinargonsäule (20) zugeleitet wird und
    - der Reinargonsäule (20) ein Reinargonproduktstrom (81) entnommen wird,
    dadurch gekennzeichnet, dass der Kopfkondensator (24) der Rohargonsäule (25) als Rücklaufkondensator ausgebildet ist und Kopfgas der Rohargonsäule in die Rücklaufpassagen des Rücklaufkondensators eingeleitet wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das flüssige Kühlfluid den Verdampfungspassagen an ihrem unteren Ende zugeleitet und das Gemisch aus verdampftem Kühlfluid und flüssig verbliebenem Kühlfluid vom unteren Ende der Verdampfungspassagen abgezogen wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Kopfkondensator durch genau einen Plattenwärmetauscherblock gebildet wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Rohargonstrom (76, 276b) aus dem oberen Bereich der Rücklaufpassagen abgezogen wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass aus dem oberen Bereich der Rohargonsäule (25) und aus den Rücklaufpassagen kein Restgasstrom abgezogen wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Rohargonstrom (276b) der Rohargonsäule oder dem Kopfkondensator (24) in Gasform entnommen und stromaufwärts seiner Einleitung (282) in die Reinargonsäule (20) in einem Zusatzkondensator (227) mindestens teilweise kondensiert wird.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass der Kopfkondensator (24) und der Zusatzkondensator (227) als Kondensator-Verdampfer ausgebildet sind, wobei beider Verdampfungspassagen mit demselben Kühlfluid (23) gespeist werden.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass der Kopfkondensator (24) und der Zusatzkondensator (227) als Flüssigkeitsbadverdampfer ausgebildet und in demselben Flüssigkeitsbad angeordnet sind.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Rohargonstrom (176, 282) in flüssigem Zustand auf den Kopf der Reinargonsäule (20) aufgegeben wird.
  10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass vom Kopf der Reinargonsäule (20) oder aus dem oberen Bereich der Rücklaufpassagen ein Restgasstrom (78, 178, 278) abgezogen und der Einsatzluft, insbesondere vor deren Verdichtung (3), zugemischt wird.
  11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der Rücklaufkondensator mindestens einen Wärmetauscherblock aufweist, der als Plattenwärmetauscher ausgebildet ist.
  12. Vorrichtung zur Gewinnung von Argon durch Tieftemperaturzerlegung von Luft mit
    - einem Luftverdichter (3) zur Verdichtung von Einsatzluft (1),
    - Mitteln zur Einführung der verdichteten Einsatzluft (8, 10, 12) in ein Destilliersäulen-System zur Stickstoff-Sauerstoff-Trennung (13,14),
    - Mitteln zur Entnahme eines argonhaltigen Stroms (72) aus dem Destilliersäulen-System zur Stickstoff-Sauerstoff-Trennung,
    - Mitteln zur Einführung des argonhaltigen Stroms (72) in eine Rohargonsäule (25),
    - wobei die Rohargonsäule (25) einen Kopfkondensator (24) aufweist, der durch mindestens einen Plattenwärmetauscherblock gebildet wird, der Verflüssigungspassagen und Verdampfungspassagen aufweist,
    - Mitteln zur Einleitung eines Kopfgases aus der Rohargonsäule (25) in die Verflüssigungspassagen des Kopfkondensators,
    - Mitteln zum Aufgeben mindestens eines Teils des im Kopfkondensator (24) gewonnenen Kondensats als Rücklaufflüssigkeit auf die Rohargonsäule (25),
    - wobei der Kopfkondensator die einzige Quelle für Rücklauf der Rohargonsäule darstellt,
    - Mitteln zur Einleitung eines flüssiges Kühlfluids in die Verdampfungspassagen an einem ersten Ende des Kopfkondensators,
    - Mitteln zur Entnahme eines Gemischs aus verdampftem Kühlfluid und flüssig verbliebenem Kühlfluid aus den Verdampfungspassagen von einem zweiten Ende des Kopfkondensators,
    - Mitteln zum Entnehmen eines Rohargonstroms (76, 176, 276a, 276b) aus der Rohargonsäule (25) oder dem Kopfkondensator (24),
    - Mitteln zum Einleiten des Rohargonstrom (76, 176, 276a, 276b) in eine Reinargonsäule (20),
    - Mitteln zum Entnehmen eines Reinargonproduktstrom (81) aus der Reinargonsäule (20),
    dadurch gekennzeichnet, dass der Kopfkondensator (24) der Rohargonsäule (25) als Rücklaufkondensator ausgebildet ist und Mittel zum Einleiten von Kopfgas der Rohargonsäule in die Rücklaufpassagen des Rücklaufkondensators aufweist.
  13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass die Mittel zur Einleitung eines flüssiges Kühlfluid in die Verdampfungspassagen am unteren Ende des Kopfkondensators und die Mittel zur Entnahme eines Gemischs aus verdampftem Kühlfluid und flüssig verbliebenem Kühlfluid aus den Verdampfungspassagen am unteren Ende des Kopfkondensators angeordnet sind.
  14. Vorrichtung nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass der Kopfkondensator durch genau einen Plattenwärmetauscherblock gebildet wird.
  15. Vorrichtung nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass der Rücklaufkondensator mindestens einen Wärmetauscherblock aufweist, der als Plattenwärmetauscher ausgebildet ist.
EP08012054A 2007-07-30 2008-07-03 Verfahren und Vorrichtung zur Gewinnung von Argon durch Tieftemperaturzerlegung von Luft Withdrawn EP2026024A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08012054A EP2026024A1 (de) 2007-07-30 2008-07-03 Verfahren und Vorrichtung zur Gewinnung von Argon durch Tieftemperaturzerlegung von Luft

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102007035619A DE102007035619A1 (de) 2007-07-30 2007-07-30 Verfahren und Vorrichtung zur Gewinnung von Argon durch Tieftemperaturzerlegung von Luft
EP07019208 2007-09-28
EP08012054A EP2026024A1 (de) 2007-07-30 2008-07-03 Verfahren und Vorrichtung zur Gewinnung von Argon durch Tieftemperaturzerlegung von Luft

Publications (1)

Publication Number Publication Date
EP2026024A1 true EP2026024A1 (de) 2009-02-18

Family

ID=39828954

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08012054A Withdrawn EP2026024A1 (de) 2007-07-30 2008-07-03 Verfahren und Vorrichtung zur Gewinnung von Argon durch Tieftemperaturzerlegung von Luft

Country Status (1)

Country Link
EP (1) EP2026024A1 (de)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2458311A1 (de) 2010-11-25 2012-05-30 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102010052544A1 (de) 2010-11-25 2012-05-31 Linde Ag Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2520886A1 (de) 2011-05-05 2012-11-07 Linde AG Verfahren und Vorrichtung zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2568242A1 (de) 2011-09-08 2013-03-13 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Stahl
EP2600090A1 (de) 2011-12-01 2013-06-05 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von Drucksauerstoff durch Tieftemperaturzerlegung von Luft
DE102011121314A1 (de) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
WO2014135271A2 (de) 2013-03-06 2014-09-12 Linde Aktiengesellschaft Luftzerlegungsanlage, verfahren zur gewinnung eines argon enthaltenden produkts und verfahren zur erstellung einer luftzerlegungsanlage
EP2784420A1 (de) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Verfahren zur Luftzerlegung und Luftzerlegungsanlage
WO2014154339A2 (de) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Verfahren zur luftzerlegung und luftzerlegungsanlage
WO2014169989A1 (de) * 2013-04-18 2014-10-23 Linde Aktiengesellschaft Nachrüstbare vorrichtung zur tieftemperaturzerlegung von luft, nachrüstanlage und verfahren zum nachrüsten einer tieftemperatur-luftzerlegungsanlage
EP2801777A1 (de) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Luftzerlegungsanlage mit Hauptverdichterantrieb
EP2963370A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
EP2963369A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
EP2963371A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur gewinnung eines druckgasprodukts durch tieftemperaturzerlegung von luft
EP2963367A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft mit variablem Energieverbrauch

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2547177A (en) * 1948-11-02 1951-04-03 Linde Air Prod Co Process of and apparatus for separating ternary gas mixtures
DE2325422A1 (de) 1973-05-18 1974-12-05 Linde Ag Verfahren und vorrichtung zur zerlegung von rohargon
FR2431103A1 (fr) * 1978-07-12 1980-02-08 Air Liquide Colonne de separation de melanges gazeux par fractionnement a basse temperature
JPS59180272A (ja) * 1983-03-30 1984-10-13 日本酸素株式会社 粗アルゴン採取方法
EP0171711A2 (de) 1984-08-06 1986-02-19 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Zerlegung von Rohargon
US4983194A (en) * 1990-02-02 1991-01-08 Air Products And Chemicals, Inc. Production of high purity argon
US5019145A (en) 1988-12-01 1991-05-28 Linde Aktiengesellschaft Argon purification
DE4030749A1 (de) 1990-09-28 1992-04-02 Linde Ag Verfahren zur tieftemperaturzerlegung von luft
US5133790A (en) 1991-06-24 1992-07-28 Union Carbide Industrial Gases Technology Corporation Cryogenic rectification method for producing refined argon
JPH0545051A (ja) * 1991-08-08 1993-02-23 Nippon Sanso Kk 空気液化分離装置及びそのアルゴン回収方法
US5426946A (en) 1993-05-28 1995-06-27 Linde Aktiengesellschaft Process and an apparatus for recovering argon
EP0669508A1 (de) 1994-02-24 1995-08-30 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von reinem Argon
DE19609490A1 (de) 1995-03-10 1996-09-12 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
US5590544A (en) 1994-02-24 1997-01-07 Linde Aktiengesellschaft Process and apparatus for recovery of pure argon
EP0942246A2 (de) 1998-03-11 1999-09-15 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Luftzerlegung
US5970743A (en) 1998-06-10 1999-10-26 Air Products And Chemicals, Inc. Production of argon from a cryogenic air separation process
US6070433A (en) * 1999-01-29 2000-06-06 Air Products And Chemicals, Inc. Recirculation of argon sidearm column for fast response
US6128920A (en) 1998-03-03 2000-10-10 Kabushiki Kaisha Kobe Seiko Sho Dephlegmator
EP1103772A1 (de) 1999-11-26 2001-05-30 Linde Aktiengesellschaft Vorrichtung zur Gewinnung von Argon
EP1189000A2 (de) 2000-09-15 2002-03-20 Air Products And Chemicals, Inc. Vorrichtung und Verfahren mit einem Dephlegmator
EP1243881A1 (de) 2001-03-21 2002-09-25 Linde Aktiengesellschaft Drei-Säulen-System zur Tieftemperatur-Luftzerlegung
US6574988B1 (en) 1999-03-29 2003-06-10 L'air Liquide Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and plant for producing argon by cryogenic distillation

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2547177A (en) * 1948-11-02 1951-04-03 Linde Air Prod Co Process of and apparatus for separating ternary gas mixtures
DE2325422A1 (de) 1973-05-18 1974-12-05 Linde Ag Verfahren und vorrichtung zur zerlegung von rohargon
FR2431103A1 (fr) * 1978-07-12 1980-02-08 Air Liquide Colonne de separation de melanges gazeux par fractionnement a basse temperature
JPS59180272A (ja) * 1983-03-30 1984-10-13 日本酸素株式会社 粗アルゴン採取方法
EP0171711A2 (de) 1984-08-06 1986-02-19 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Zerlegung von Rohargon
US5019145A (en) 1988-12-01 1991-05-28 Linde Aktiengesellschaft Argon purification
EP0377117B2 (de) 1988-12-01 1995-05-17 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Luftzerlegung
US4983194A (en) * 1990-02-02 1991-01-08 Air Products And Chemicals, Inc. Production of high purity argon
DE4030749A1 (de) 1990-09-28 1992-04-02 Linde Ag Verfahren zur tieftemperaturzerlegung von luft
US5133790A (en) 1991-06-24 1992-07-28 Union Carbide Industrial Gases Technology Corporation Cryogenic rectification method for producing refined argon
JPH0545051A (ja) * 1991-08-08 1993-02-23 Nippon Sanso Kk 空気液化分離装置及びそのアルゴン回収方法
US5426946A (en) 1993-05-28 1995-06-27 Linde Aktiengesellschaft Process and an apparatus for recovering argon
EP0628777B1 (de) 1993-05-28 1998-11-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Argon
US5590544A (en) 1994-02-24 1997-01-07 Linde Aktiengesellschaft Process and apparatus for recovery of pure argon
EP0669509B1 (de) 1994-02-24 2000-06-28 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von reinem Argon
US5592833A (en) 1994-02-24 1997-01-14 Linde Aktiengesellschaft Process and apparatus for the recovery of pure argon
EP0669508A1 (de) 1994-02-24 1995-08-30 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von reinem Argon
US5669237A (en) 1995-03-10 1997-09-23 Linde Aktiengesellschaft Method and apparatus for the low-temperature fractionation of air
DE19609490A1 (de) 1995-03-10 1996-09-12 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
US6128920A (en) 1998-03-03 2000-10-10 Kabushiki Kaisha Kobe Seiko Sho Dephlegmator
EP0942246A2 (de) 1998-03-11 1999-09-15 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Luftzerlegung
US5970743A (en) 1998-06-10 1999-10-26 Air Products And Chemicals, Inc. Production of argon from a cryogenic air separation process
US6070433A (en) * 1999-01-29 2000-06-06 Air Products And Chemicals, Inc. Recirculation of argon sidearm column for fast response
US6574988B1 (en) 1999-03-29 2003-06-10 L'air Liquide Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and plant for producing argon by cryogenic distillation
EP1103772A1 (de) 1999-11-26 2001-05-30 Linde Aktiengesellschaft Vorrichtung zur Gewinnung von Argon
EP1189000A2 (de) 2000-09-15 2002-03-20 Air Products And Chemicals, Inc. Vorrichtung und Verfahren mit einem Dephlegmator
EP1243881A1 (de) 2001-03-21 2002-09-25 Linde Aktiengesellschaft Drei-Säulen-System zur Tieftemperatur-Luftzerlegung
EP1243882A1 (de) 2001-03-21 2002-09-25 Linde Aktiengesellschaft Argongewinnung mit einem Drei-Säulen-System zur Luftzerlegung und einer Rohargonsäule
US20020178747A1 (en) 2001-03-21 2002-12-05 Linde Aktiengesellschaft Obtaining argon using a three-column system for the fractionation of air and a crude argon column
US20020189281A1 (en) 2001-03-21 2002-12-19 Linde Aktiengesellschaft Three-column system for the low-temperature fractionation of air

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAUSEN; LINDE: "Tieftemperaturtechnik", 1985, pages: 281 - 337

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2458311A1 (de) 2010-11-25 2012-05-30 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102010052544A1 (de) 2010-11-25 2012-05-31 Linde Ag Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102010052545A1 (de) 2010-11-25 2012-05-31 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2466236A1 (de) 2010-11-25 2012-06-20 Linde Aktiengesellschaft Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tiefemperaturzerlegung von Luft
EP2520886A1 (de) 2011-05-05 2012-11-07 Linde AG Verfahren und Vorrichtung zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2568242A1 (de) 2011-09-08 2013-03-13 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Stahl
DE102011112909A1 (de) 2011-09-08 2013-03-14 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Stahl
EP2600090A1 (de) 2011-12-01 2013-06-05 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von Drucksauerstoff durch Tieftemperaturzerlegung von Luft
DE102011121314A1 (de) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
WO2014135271A2 (de) 2013-03-06 2014-09-12 Linde Aktiengesellschaft Luftzerlegungsanlage, verfahren zur gewinnung eines argon enthaltenden produkts und verfahren zur erstellung einer luftzerlegungsanlage
EP2784420A1 (de) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Verfahren zur Luftzerlegung und Luftzerlegungsanlage
WO2014154339A2 (de) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Verfahren zur luftzerlegung und luftzerlegungsanlage
WO2014169989A1 (de) * 2013-04-18 2014-10-23 Linde Aktiengesellschaft Nachrüstbare vorrichtung zur tieftemperaturzerlegung von luft, nachrüstanlage und verfahren zum nachrüsten einer tieftemperatur-luftzerlegungsanlage
CN105264317A (zh) * 2013-04-18 2016-01-20 林德股份公司 空气低温分离的改造装置、改造系统以及改造低温空气分离系统的方法
CN105264317B (zh) * 2013-04-18 2019-02-12 林德股份公司 空气低温分离的改造装置、改造系统以及改造低温空气分离系统的方法
EP2801777A1 (de) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Luftzerlegungsanlage mit Hauptverdichterantrieb
EP2963370A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
EP2963369A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
EP2963371A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur gewinnung eines druckgasprodukts durch tieftemperaturzerlegung von luft
EP2963367A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft mit variablem Energieverbrauch
WO2016005031A1 (de) 2014-07-05 2016-01-14 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft mit variablem energieverbrauch

Similar Documents

Publication Publication Date Title
EP2026024A1 (de) Verfahren und Vorrichtung zur Gewinnung von Argon durch Tieftemperaturzerlegung von Luft
EP1308680B1 (de) Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
EP2236964B1 (de) Verfahren und Vorrichtung zur Tieftemperatur-Luftzerlegung
EP1357342B1 (de) Drei-Säulen-System zur Tieftemperaturzerlegung mit Argongewinnung
EP1284404A1 (de) Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
DE102007035619A1 (de) Verfahren und Vorrichtung zur Gewinnung von Argon durch Tieftemperaturzerlegung von Luft
DE69503095T2 (de) Lufttrennung
WO2009095188A2 (de) Verfahren und vorrichtung zur tieftemperatur-luftzerlegung
EP0948730B1 (de) Verfahren und vorrichtung zur gewinnung von druckstickstoff
EP0669508B1 (de) Verfahren und Vorrichtung zur Gewinnung von reinem Argon
WO2020169257A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
DE10332863A1 (de) Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
DE60008455T2 (de) Tieftemperaturdestillationsanlage zur Luftzerleggung
DE60007686T2 (de) Tieftemperaturrektifikationsystem zur Luftzerleggung
WO2021078405A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
EP4065910A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
EP3980705A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
EP2914913B1 (de) Verfahren zur tieftemperaturzerlegung von luft in einer luftzerlegungsanlage und luftzerlegungsanlage
DE19933558A1 (de) Dreisäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft
DE102005040508A1 (de) Verfahren zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
WO2020187449A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
EP3771873A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
EP2573492A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE10251485A1 (de) Verfahren und Vorrichtung zur Argongewinnung durch Tieftemperaturzerlegung von Luft
DE19819338A1 (de) Verfahren und Vorrichtung zur Gewinnung von hochreinem Druckstickstoff

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AG

17P Request for examination filed

Effective date: 20090806

17Q First examination report despatched

Effective date: 20090907

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20171114