[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0949471B1 - Luftzerlegungsanlage mit zwei verschiedenen Betriebsmodi - Google Patents

Luftzerlegungsanlage mit zwei verschiedenen Betriebsmodi Download PDF

Info

Publication number
EP0949471B1
EP0949471B1 EP19990106715 EP99106715A EP0949471B1 EP 0949471 B1 EP0949471 B1 EP 0949471B1 EP 19990106715 EP19990106715 EP 19990106715 EP 99106715 A EP99106715 A EP 99106715A EP 0949471 B1 EP0949471 B1 EP 0949471B1
Authority
EP
European Patent Office
Prior art keywords
air
liquid
pressure
refrigeration
rectification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19990106715
Other languages
English (en)
French (fr)
Other versions
EP0949471A1 (de
Inventor
Jürgen Dipl.-Phys. Voit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7864076&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0949471(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to EP19990106715 priority Critical patent/EP0949471B1/de
Publication of EP0949471A1 publication Critical patent/EP0949471A1/de
Application granted granted Critical
Publication of EP0949471B1 publication Critical patent/EP0949471B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04951Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network
    • F25J3/04957Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network and inter-connecting equipments upstream of the fractionation unit (s), i.e. at the "front-end"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04024Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04145Mechanically coupling of different compressors of the air fractionation process to the same driver(s)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04339Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air
    • F25J3/04345Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air and comprising a gas work expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04418Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system with thermally overlapping high and low pressure columns
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04436Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system
    • F25J3/04448Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system in a double column flowsheet with an intermediate pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • F25J3/04496Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • F25J3/04496Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist
    • F25J3/04503Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems
    • F25J3/04509Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems within the cold part of the air fractionation, i.e. exchanging "cold" within the fractionation and/or main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04781Pressure changing devices, e.g. for compression, expansion, liquid pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • F25J3/04878Side by side arrangement of multiple vessels in a main column system, wherein the vessels are normally mounted one upon the other or forming different sections of the same column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/54Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the low pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/24Multiple compressors or compressor stages in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/40Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/42Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • F25J2240/42Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/90Triple column

Definitions

  • the invention relates to a method for Generation of gaseous pressure product by low-temperature separation of air, at times in a gas operation and at times in a combined operation is operated.
  • the invention also relates to an apparatus for performing this method.
  • EP 0 044 679 A1 is a process for the production of gaseous Compressed oxygen (DGOX) and small amounts of liquid oxygen (LOX) known: cold supplies for air separation and the production of liquid product Air cooling circuit. It contains a compression with two compressor stages in series Compression of an air flow in the first stage to a medium pressure for one work-relieving relaxation of a partial flow of this air to a lower pressure and a second compressor stage to compress the remaining air flow to one higher pressure for throttle relaxation to the same low pressure.
  • the refrigeration cycle in such a The process cannot be switched off and the cooling capacity is reduced an energetically unfavorable operation.
  • the object of the invention is a method and a device of the aforementioned Kind with an energetically favorable production of the gaseous printed product and of the liquid product in variable quantities and with high availability of the Generation of the printed product.
  • the gas operation of the Air flow in the refrigeration circuit is reduced to zero and a compensation of Cold losses that are no longer covered by the refrigeration cycle are extremely cold stored liquid is used.
  • This enables the generation of gaseous printed product even with a full liquid product tank, for example stored liquid product in a heat exchanger in counterflow to used air is guided, this air is cooled, partially liquefied and the Rectification is supplied or by stored liquid directly to the rectification is fed.
  • Cryogenic liquid of at least one liquid fraction from the rectification for example liquid nitrogen (LIN), liquid oxygen (LOX) or liquid air Compensation for cold losses in gas operation can be in a tank be cached, being used as a tank to store these fractions Buffer tanks and / or product tanks can be used. Most is the use of Product tanks are the cheapest solution, while liquid air is more like a buffer tank Required, since liquid air usually doesn't matter as a product.
  • LIN liquid nitrogen
  • LOX liquid oxygen
  • Temporary storage can be used temporarily using at least two tanks be made, on the one hand with increased pressure oxygen (DGOX) demand in addition to the LOX from rectification from one tank LOX removed, compressed, evaporated in countercurrent and warmed and then as DGOX product is released and thereby recovered in countercurrent cold and is used to create and cache LIN product, where on the other hand, with low DGOX requirements, correspondingly little LOX from the Rectification system given as DGOX and more LOX temporarily stored becomes.
  • DGOX pressure oxygen
  • a two-column process can be used for rectification, one Head cooling of the pressure column with an intermediate liquid from a low pressure column accomplished and a sump heating of the low pressure column by indirect Heat exchange with air is made.
  • the two-column process is from DE 196 09 490 A1 and is particularly suitable if only a small one Oxygen purity is required.
  • a three-column process can also be used as the rectification system, being a double column with a high pressure part and a low pressure part and a Additional column is used under intermediate pressure.
  • the three-column process is from DE 195 37 913 A1 known. Even with oxygen purities> 99.5 mol% are with this Process energy savings possible.
  • the work-relieving relaxation can take place in at least one cooling turbine, the power on the shaft of such a turbine for driving either one electricity generating generator or a booster is used, the booster is used, for example, to recompress the air in the refrigeration cycle. In In both cases, the energy of the cooling turbine is used cheaply.
  • Characteristic of the device according to the invention is that the compressor station is designed with at least two compressors arranged in parallel, which are designed in this way are that only one of the compressors is in operation in gas operation, this compressor Throttle air supplies and the refrigeration circuit is not pressurized while in Operation with production of printed product and liquid product at least two in parallel arranged compressors are in operation and in addition to supplying throttle air the cooling circuit is pressurized with air.
  • a compressor station has several advantages.
  • a compressor is energetically connected to its gas operation cheapest operating point, with additional production of liquid product several, for example two compressors close to their optimal operating point used. With several compressors, one becomes simultaneously Machine redundancy created that ensures security of supply in gas operation increased accordingly.
  • Another advantage of the invention is that with a Compressor, operated as a cycle compressor, also an energy-efficient liquid product can be generated and that this liquid operation through machine redundancy is also made possible with high security of supply.
  • the refrigeration turbine in the refrigeration circuit wiring harness can function as a turbine / generator unit be trained.
  • the energy gained in the cooling turbine is transferred to the local power grid fed.
  • the cooling turbine in the wiring harness of the cooling circuit can act as a turbine / booster unit be formed, the booster in the wiring harness of the refrigeration circuit as Post-compressor air is switched from the compressor station in the refrigeration turbine gained energy, for example via a common wave with a Booster used to drive this booster.
  • a secondary compressor for air from the Compressor station can be arranged.
  • the changing demand can be energy-efficient with a high security of supply of the steelworks on gaseous printed products.
  • the Invention and further refinements of the invention are described below of exemplary embodiments illustrated in the drawings.
  • air to be broken down is drawn in at 1 and in an air compressor 30 a first pressure, essentially medium pressure column pressure (plus line losses) compressed, pre-cooled in a cooling device 31 in direct contact with water and in a cleaning device (molecular sieve system) 32 in particular of water and Free of carbon dioxide.
  • a first pressure essentially medium pressure column pressure (plus line losses) compressed, pre-cooled in a cooling device 31 in direct contact with water and in a cleaning device (molecular sieve system) 32 in particular of water and Free of carbon dioxide.
  • the cleaned air is divided into three sub-streams, the first of which without further measures to increase pressure via line 103, through a main heat exchanger 2 and is introduced via line 104 into a medium pressure column 6.
  • the medium pressure column 6 is - according to the respective product specification and the pressure loss - under operated at a pressure of 2 to 4 bar, preferably about 2.5 to 3.5 bar.
  • the second partial flow of the cleaned air is in a post-compressor 202 essential pressure column pressure (plus line losses) compressed, in Main heat exchanger 2 in indirect heat exchange with cold process streams cooled to dew point temperature and introduced into the bottom of a pressure column 7 (see positions 201,202,203,2,204 and 7).
  • the pressure column 7 is at one Working pressure of 5 to 10 bar, preferably operated 5.5 to 6.5 bar and is over a main capacitor 3 thermally coupled to a low pressure column 5.
  • Latter works at a pressure of 1.1 to 2.0 bar, preferably 1.3 to 1.7 bar.
  • the Air post-compressor 202 can be driven by the same motor shaft as that Air compressor 30.
  • the third partial flow is fed via a line 301 to a compressor station 305 for Turbine air (306, 307, 308) into a turbine 309 and / or for rectification air (313, 314, 315), the intake pressure 303 using a throttle device 302 can be reduced especially in underload operation.
  • the air of the third partial flow is about in the compression station 305
  • Medium pressure column pressure compressed to a pressure equal to an air condensation temperature corresponds, which is at least approximately equal to Evaporation temperature of the liquid pressurized oxygen 17 is alternatively the third partial flow of the cleaned air also on the pressure side of the air post-compressor 202 are branched off when air (312) from the expansion turbine 309 is fed into the pressure column 7.
  • the suction pressure of the compressor station 305 then corresponds to the pressure column pressure.
  • a first portion 307 of the highly compressed air 306 is at a temperature 308 which between the temperatures at the warm and cold ends of the Main heat exchanger 2 is fed to the expansion turbine 309 and there for example, medium pressure column pressure relaxed while working.
  • the embodiment is the turbine output by a brake generator to the The relaxed turbine outlet flow is partly through the Main heat exchanger 2 via lines 310,311 and 304 to the suction side of the Compressor station 305 returned, partly via line 312 in the bottom of the Medium pressure column 6 fed.
  • a second part 313 of the highly compressed air 306 is against the evaporating Pressurized oxygen 17 at least partially, preferably completely or in essentially completely liquefied, to a part 314 above the sump in the Low pressure column 5 and another part 315 in the bottom of the pressure column 7 relaxed.
  • Bottom liquid 70 and washing nitrogen 74 from the top of the pressure column 7 are in a supercooling counterflow 4 against a residual gas flow 50
  • Low pressure column 5 supercooled and in each case in the low pressure column 5 and / or in the Medium pressure column relaxed (lines 71, 72, 73, 75, 76 and 77).
  • Bottom liquid 60 and washing nitrogen 61 from the medium pressure column are also in the Subcooling countercurrent 4 subcooled against the residual gas stream 50 (not in Figure 1 shown) or the bottom liquid 60 directly into the top condenser 10 of the Medium pressure column and the washing nitrogen 61 on the head of the low pressure column 5 given up.
  • a residual gas stream 51 and products from the rectification section, in Example GOX and DGOX are approximately in the main heat exchanger 2 Ambient temperature warmed up (lines 51, 52, 54, 55, 17 and 18).
  • the Residual gas stream 52 can be completely or partially as stream 53 for the regeneration of the Molecular sieve station 32 can be used.
  • Liquid oxygen 15 is taken from the bottom of the low pressure column, depending on Product specification with the help of an oxygen pump 16 to the required Delivery pressure compressed or completely or partially into a removable storage tank 80 filled.
  • Liquid nitrogen 78 is drawn off from the top of the low pressure column 5 or branched off from one of the washing nitrogen lines 75 or 61 and likewise internally compressed (not shown in FIG. 1) or in a removable storage tank 79 fed.
  • the compressor station 305 consists of at least two in parallel switched compressors. This makes it possible to also use the removable storage system to operate as a pure gas apparatus, i.e. without liquid production the to generate internally compressed oxygen (DGOX).
  • DGOX internally compressed oxygen
  • one of the two compressors of the compression station 305 is taken out of operation and the second compressor takes over the task of compressing the inside Evaporate pressurized oxygen 17.
  • the compressor station 305 thus exists according to the invention from two compressors, each with a different function, from one for the generation of cold for liquid production and the other for Evaporation of the internally compressed oxygen is used.
  • the removable storage tanks 79 and 80 are used in the example of a time-limited Overproduction of DGOX, the removal of LOX and LIN as sales products, as Emergency supply tanks, as removable storage of the LOX and LIN cold contents and as Cooling supply with the cooling circuit switched off.
  • the compressor station shown in FIG. 1 can be single-stage or multi-stage machines with intercooling and / or aftercooling included.
  • the work output of the Expansion turbine 309 in the present embodiment to a booster transfer.
  • the air throttle flow 313 is cooled in the Main heat exchanger 2 and subsequent isenthalpic relaxation in the Double column 5,7 compressed to a pressure which is at least as large as that Final pressure of the compressor station 305 of the exemplary embodiment in FIG. 1.
  • air to be broken down is drawn in at 1 and in an air compressor 30 a first pressure, essentially medium pressure column pressure (plus line losses) compressed, pre-cooled in a cooling device 31 in direct contact with water and in a cleaning device (molecular sieve system) 32 in particular of water and Free of carbon dioxide.
  • a first pressure essentially medium pressure column pressure (plus line losses) compressed, pre-cooled in a cooling device 31 in direct contact with water and in a cleaning device (molecular sieve system) 32 in particular of water and Free of carbon dioxide.
  • the cleaned air is divided into three sub-streams, the first of which without further measures to increase pressure via line 103, through main heat exchanger 2 and can be introduced via line 104 into a medium pressure column 6.
  • the Medium pressure column 6 is - according to the respective product specification and Pressure loss - under a pressure of 2 to 4 bar, preferably about 2.5 to 3.5 bar operated.
  • the second partial flow of the cleaned air is applied to one in a post-compressor 202 Compresses pressure that corresponds to an air condensation temperature that at least approximately the same as the evaporation temperature of a liquid low-pressure oxygen 15 is, in the main heat exchanger 2 in indirect heat exchange with cold Process streams cooled and in a bottom condenser 3 of the low pressure column 5 introduced (see positions 201, 202, 203, 2, 204 and 3).
  • the Air post-compressor 202 can be driven by the same motor shaft as that Air compressor 30.
  • the two-column apparatus shown works with high oxygen purities (greater than 99.5%) in the limit case over into the normal double column apparatus (see e.g. patent DE 195 26 785 C1).
  • the second partial flow then goes to zero and that Low pressure column taps of streams 62 and 63 shift towards the swamp the low pressure column 5, so that the top capacitor 10 to the main capacitor of the Double column is and the pressure of the medium pressure column corresponding to the thermal coupling increased
  • the third partial flow is fed via a line 301 to a compressor station 305 for Turbine air (306, 307, 308) into a turbine 309 and / or for rectification air (313, 314, 315) supplied, the suction pressure 303 thereof with the aid of a throttle device 302 can be reduced in particular in underload operation.
  • the air of the third Partial flow is in the compressor station 305 from about medium pressure column pressure compresses a pressure that corresponds to an air condensation temperature that at least approximately equal to the vaporization temperature of the liquid pressurized oxygen 17 is.
  • a first partial stream 307 of the highly compressed air 306 is fed via line 308 to a Temperature that is between the temperatures at the warm and cold ends of the Main heat exchanger 2 is fed to the expansion turbine 309 and there for example, medium pressure column pressure relaxed while working.
  • the embodiment is the turbine output by a brake generator to the The relaxed turbine outlet flow is partly through the Main heat exchanger 2 via lines 310,311 and 304 to the suction side of the Compressor station 305 returned, partly via line 312 in the bottom of the Medium pressure column 6 fed
  • a second partial flow 313 of the highly compressed air 306 is against the evaporating pressurized oxygen 17 at least partially, preferably completely or essentially completely liquefied, to a part 314 above the sump in the low pressure column 5 and another part 315 in the swamp of the Medium pressure column 6 relaxed.
  • Liquid oxygen 15 is taken from the bottom of the low pressure column, depending on Product specification with the help of an oxygen pump 16 to the required Delivery pressure compressed or completely or partially into a removable storage tank 80 filled.
  • Liquid nitrogen 78 is drawn off from the top of the low pressure column 5 or branched off from the washing nitrogen line 61 and likewise internally compressed (in 1 not shown) or fed into the removable storage tank 79.
  • the compressor station 305 consists of at least two in parallel switched compressors. This makes it possible to also use the removable storage system to operate as a pure gas apparatus, i.e. without liquid production the to generate internally compressed oxygen (DGOX).
  • DGOX internally compressed oxygen
  • one of the two compressors of the compression station 305 is taken out of operation and the second compressor takes over the task of compressing the inside Evaporate pressurized oxygen 17.
  • the compressor station 305 thus exists according to the invention from two compressors, each with a different function, from one for the generation of cold for liquid production and the other for Evaporation of the internally compressed oxygen is used.
  • the removable storage tanks 79 and 80 are used in the example of a time-limited Overproduction of DGOX, the removal of LOX and LIN as sales products, as Emergency supply tanks, as removable storage of the LOX and LIN cold contents and as Cooling supply with the cooling circuit switched off.
  • the compressor station shown in FIG. 3 can be single-stage or multi-stage machines with intercooling and / or aftercooling included.
  • the work performance of the Expansion turbine 309 in the present embodiment to a booster transfer.
  • the air throttle flow 313 is cooled in the Main heat exchanger 2 and subsequent isenthalpic expansion into the columns 5 and 6 compressed to a pressure at least as large as the ultimate pressure of the Compressor station 305 of the exemplary embodiment in FIG. 3.
  • the table shows the product flows, the alternating storage flows, for the (circulation and throttle air) compressor station the number of compressors in operation, the air flows and the energy requirements of the system. All gas and liquid flows are given in m 3 / h, whereby m 3 / h in the normal state are meant at 1atm and 273 K.
  • the operating cases A1, A2 and A3 are characterized in that both compressors of the compressor station are in operation and supply a turbine flow and a throttle flow.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft, das zeitweise in einem Gasbetrieb und zeitweise in einem kombinierten Betrieb betrieben wird.
Die Erfindung betrifft außerdem eine Vorrichtung zur Durchführung dieses Verfahrens.
Aus der Schrift EP 0 044 679 A1 ist ein Verfahren zur Erzeugung von gasförmigem Drucksauerstoff (DGOX) und geringer Mengen Flüssigsauerstoff (LOX) bekannt: Kälte für die Luftzerlegung und die Erzeugung von Flüssigprodukt liefert ein Luftkältekreislauf. Er enthält eine Verdichtung mit zwei Kompressorstufen in Serie zur Verdichtung eines Luftstromes in der ersten Stufe auf einen mittleren Druck für eine arbeitsleistende Entspannung eines Teilstromes dieser Luft auf einen unteren Druck und eine zweite Kompressorstufe zur Verdichtung des restlichen Luftstromes auf einen höheren Druck für eine Drosselentspannung auf den gleichen niedrigen Druck. Nach Zusammenführung der Teilströme und Abzweigen einer gebildeten Flüssigphase wird die Gasphase zur Verdichtung rezykliert und die Flüssigphase nach Aufteilung in zwei Drosselströme einer Rektifikation zugeführt. Der Kältekreislauf kann bei einem solchen Verfahren nicht abgeschaltet werden und ein Zurückfahren der Kälteleistung führt zu einem energetisch ungünstigen Betrieb.
Aufgabe der Erfindung ist ein Verfahren und eine Vorrichtung der eingangs genannten Art mit einer energetisch günstigen Erzeugung des gasförmigen Druckprodukts und des Flüssigprodukts jeweils in variablen Mengen und bei hoher Verfügbarkeit der Erzeugung des Druckprodukts.
Diese Aufgabe wird erfindungsgemäß gelöst von einem Verfahren mit den Merkmalen des Anspruchs 1 und von einer Vorrichtung mit den Merkmalen des Anspruchs 8. Ausführungen der Erfindung sind Gegenstand von Unteransprüchen.
Kennzeichnend an dem erfindungsgemäßen Verfahren ist, daß beim Gasbetrieb der Luftdurchsatz im Kältekreislauf auf Null reduziert wird und zu einer Kompensation von Kälteverlusten, die nicht mehr durch den Kältekreislauf gedeckt werden, tiefkalte gespeicherte Flüssigkeit verwendet wird. Dies ermöglicht die Erzeugung von gasförmigem Druckprodukt auch bei vollem Flüssigprodukttank, indem beispielsweise gespeichertes Flüssigprodukt in einem Wärmeaustauscher im Gegenstrom zur eingesetzten Luft geführt wird, diese Luft dabei abgekühlt, teilweise verflüssigt und der Rektifikation zugeführt wird oder indem gespeicherte Flüssigkeit direkt der Rektifikation zugeführt wird.
Tiefkalte Flüssigkeit mindestens einer flüssigen Fraktion aus der Rektifikation, beispielsweise Flüssigstickstoff (LIN), Flüssigsauerstoff (LOX) oder flüssige Luft, zur Kompensation von Kälteverlusten im Gasbetrieb kann in einem Tank zwischengespeichert werden, wobei als Tank zum Speichern dieser Fraktionen Pufferbehälter und/oder Produkttanks verwendet werden. Meist ist die Nutzung von Produkttanks die günstigste Lösung, während flüssige Luft eher einen Pufferbehälter erfordert, da flüssige Luft als Produkt meist keine Rolle spielt.
Zeitweise kann unter Verwendung mindestens zweier Tanks eine Wechselspeicherung vorgenommen werden, wobei einerseits bei erhöhtem Drucksauerstoff (DGOX)-Bedarf zusätzlich zum LOX aus der Rektifikation aus dem einen Tank zwischengespeichertes LOX entnommen, verdichtet, im Gegenstrom verdampft und angewärmt und dann als DGOX-Produkt abgeben wird und hierbei im Gegenstrom Kälte zurückgewonnen und zur Erzeugung und Zwischenspeicherung von LIN-Produkt verwendet wird, wobei andererseits bei niedrigem DGOX-Bedarf entsprechend wenig LOX aus dem Rektifiziersystem als DGOX abgegeben und dafür mehr LOX zwischengespeichert wird. Der Vorteil besteht darin, daß zeitweise mehr DGOX geliefert wird als nach Auslegung der Luftzerlegung möglich wäre, indem gespeichertes LOX entnommen und dem Kälteinhalt des LOX entsprechend LIN gespeichert wird.
Zur Rektifikation kann ein Zweisäulenverfahren eingesetzt werden, wobei eine Kopfkühlung der Drucksäule mit einer Zwischenflüssigkeit aus einer Niederdrucksäule bewerkstelligt und eine Sumpfheizung der Niederdrucksäule durch indirekten Wärmeaustausch mit Luft vorgenommen wird. Das Zweisäulenverfahren ist aus DE 196 09 490 A1 bekannt und eignet sich besonders, wenn nur eine geringe Sauerstoffreinheit erforderlich ist.
Als Rektifiziersystem kann alternativ auch ein Dreisäulenverfahren eingesetzt werden, wobei eine Doppelsäule mit einem Hochdruckteil und einem Niederdruckteil und eine Zusatzsäule unter Zwischendruck eingesetzt wird. Das Dreisäulenverfahren ist aus DE 195 37 913 A1 bekannt. Auch bei Sauerstoffreinheiten > 99,5 mol % sind mit diesem Verfahren Energieeinsparungen möglich.
Bei der Gewinnung von gasförmigem Druckprodukt durch Verdampfen und Anwärmen von Flüssigkeit unter Druck, auch Innenverdichtung genannt, im Gegenstrom mit warmer Luft, kann Luft auf dem oberen Druckniveau der Verdichtung im Kältekreislauf verwendet werden oder solche, die von diesem Druckniveau ausgehend nachverdichtet wird.
Die arbeitsleistende Entspannung kann in mindestens einer Kälteturbine erfolgen, wobei die Leistung an der Welle einer solchen Turbine zum Antrieb entweder eines stromerzeugenden Generators oder eines Boosters verwendet wird, wobei der Booster beispielsweise zum Nachverdichten der Luft im Kältekreislauf eingesetzt wird. In beiden Fällen wird die Energie der Kälteturbine günstig genutzt.
Kennzeichnend an der erfindungsgemäßen Vorrichtung ist, daß die Verdichterstation mit mindestens zwei parallel angeordneten Verdichtem ausgeführt ist, die so ausgelegt sind, daß im Gasbetrieb nur einer der Verdichter in Betrieb ist, wobei dieser Verdichter Drosselluft liefert und der Kältekreislauf nicht mit Luft beaufschlagt ist, während im Betrieb mit Erzeugung von Druckprodukt und Flüssigprodukt mindestens zwei parallel angeordnete Verdichter in Betrieb sind und zusätzlich zum Liefern von Drosselluft auch der Kältekreislauf mit Luft beaufschlagt ist. Eine solche Verdichterstation besitzt mehrere Vorteile. Für den Gasbetrieb wird ein Verdichter an seinem energetisch günstigsten Betriebspunkt, bei zusätzlicher Erzeugung von Flüssigprodukt werden mehrere, beispielsweise zwei Verdichter nahe ihrem optimalen Betriebspunkt eingesetzt. Mit mehreren Verdichtem wird außerdem gleichzeitig eine Maschinenredundanz geschaffen, die die Versorgungssicherheit im Gasbetrieb entsprechend erhöht. Ein weiterer Vorteil der Erfindung besteht darin, daß mit einem Verdichter, als Kreislaufverdichter betrieben, auch energetisch günstig Flüssigprodukt erzeugt werden kann und daß dieser Flüssigbetrieb durch die Maschinenredundanz ebenfalls mit hoher Versorgungssicherheit ermöglicht wird.
Die Kälteturbine im Leitungsstrang des Kältekreislaufs kann als Turbinen/Generator-Einheit ausgebildet sein. Die in der Kälteturbine gewonnene Energie wird in das örtliche Stromnetz eingespeist.
Die Kälteturbine im Leitungstrang des Kältekreislaufs kann als Turbinen/Booster-Einheit ausgebildet sein, wobei der Booster im Leitungsstrang des Kältekreislaufs als Nachverdichter von Luft aus der Verdichterstation geschaltet ist Die in der Kälteturbine gewonnene Energie wird, beispielsweise über eine gemeinsame Welle mit einem Booster zum Antrieb dieses Boosters verwendet.
Im Leitungsstrang für die Drosselluft kann ein Nachverdichter für Luft aus der Verdichterstation angeordnet sein.
Eine vorteilhafte Anwendung erfährt das Verfahren und die Vorrichtung gemäß Erfindung in einer Luftzerlegungsanlage zur Belieferung eines Stahlwerks mit Stickstoff und Sauerstoff.
Energetisch günstig kann mit hoher Versorgungssicherheit dem wechselnden Bedarf des Stahlwerks an gasförmigem Druckprodukt Rechnung getragen werden. Die Erfindung sowie weitere Ausgestaltungen der Erfindung werden im folgenden anhand von in den Zeichnungen dargestellten Ausführungsbeispielen näher erläutert.
Hierbei zeigen:
  • Figur 1 ein Ausführungsbeispiel der Erfindung mit Dreisäulen-Rektifikation und Turbinen/Generator-Einheit,
  • Figur 2 eine Ausführung mit Dreisäulen-Rektifikation, Turbinen/Booster-Einheit und Drosselluft-Nachverdichtung,
  • Figur 3 ein Ausführungsbeispiel der Erfindung mit Zweisäulen-Rektifikation und Turbinen/Generator-Einheit und
  • Figur 4 eine Ausführung mit Zweisäulen-Rektifikation, Turbinen/Booster-Einheit und Drosselluft-Nachverdichtung.
  • Figur 1
    In Figur 1 wird zu zerlegende Luft bei 1 angesaugt und in einem Luftverdichter 30 auf einen ersten Druck im wesentlichen Mitteldrucksäulendruck (plus Leitungsverluste) verdichtet, in einer Kühleinrichtung 31 in direktem Kontakt mit Wasser vorgekühlt und in einer Reinigungseinrichtung (Molsiebanlage) 32 insbesondere von Wasser und Kohlendioxid befreit.
    Die gereinigte Luft wird in drei Teilströme aufgeteilt, von denen der erste ohne weitere druckerhöhende Maßnahmen über Leitung 103, durch einen Hauptwärmetauscher 2 und über Leitung 104 in eine Mitteldrucksäule 6 eingeführt wird. Die Mitteldrucksäule 6 wird - entsprechend der jeweiligen Produktspezifikation und den Druckveriusten - unter einem Druck von 2 bis 4 bar, vorzugsweise etwa 2,5 bis 3,5 bar betrieben.
    Der zweite Teilstrom der gereinigten Luft wird in einem Nachverdichter 202 auf im wesentlichen Drucksäulendruck (plus Leitungsverluste) verdichtet, im Hauptwärmetauscher 2 in indirektem Wärmeaustausch mit kalten Verfahrensströmen auf Taupunktstemperatur abgekühlt und in den Sumpf einer Drucksäule 7 eingeführt (siehe Positionen 201,202,203,2,204 und 7). Die Drucksäule 7 wird bei einem Arbeitsdruck von 5 bis 10 bar, vorzugsweise 5,5 bis 6,5 bar betrieben und ist über einen Hauptkondensator 3 mit einer Niederdrucksäule 5 thermisch gekoppelt. Letztere arbeitet bei einem Druck von 1,1 bis 2,0 bar vorzugsweise 1,3 bis 1,7 bar. Der Luftnachverdichter 202 kann von derselben Motorwelle angetrieben werden wie der Luftverdichter 30.
    Der dritte Teilstrom wird über eine Leitung 301 einer Verdichterstation 305 für Turbinenluft (306, 307, 308) in eine Turbine 309 und/oder für Rektifikationsluft (313, 314, 315) zugeführt, wobei der Ansaugdruck 303 mit Hilfe einer Drosselvorrichtung 302 vermindert werden kann insbesondere bei Unterlastbetrieb.
    Die Luft des dritten Teilstroms wird in der Verdichterstation 305 von etwa Mitteldrucksäulendruck auf einen Druck komprimiert, der einer Luft-Kondensationstemperatur entspricht, die mindestens etwa gleich der Verdampfungstemperatur des flüssigen Drucksauerstoffs 17 ist Alternativ kann der dritte Teilstrom der gereinigten Luft auch an der Druckseite des Luftnachverdichters 202 abgezweigt werden, wenn gleichzeitig Luft (312) aus der Entspannungsturbine 309 in die Drucksäule 7 eingespeist wird. Der Ansaugdruck der Verdichterstation 305 entspricht dann dem Drucksäulendruck.
    Ein erster Teil 307 der hochverdichteten Luft 306 wird bei einer Temperatur 308, die zwischen den Temperaturen am warmen und am kalten Ende des Hauptwärmetauschers 2 liegt, der Entspannungsturbine 309 zugeleitet und dort auf etwa Mitteldrucksäulendruck arbeitsleistend entspannt. Im vorliegenden Ausführungsbeispiel wird die Turbinenleistung durch einen Bremsgenerator an das Werksnetz übertragen.Der entspannte Turbinenaustrittsstrom wird teils durch den Hauptwärmetauscher 2 über die Leitungen 310,311 und 304 auf die Saugseite der Verdichterstation 305 zurückgeführt, teils über Leitung 312 in den Sumpf der Mitteldrucksäule 6 eingespeist.
    Ein zweiter Teil 313 der hochverdichteten Luft 306 wird gegen den verdampfenden Drucksauerstoff 17 mindestens teilweise, vorzugsweise vollständig oder im wesentlichen vollständig verflüssigt, zu einem Teil 314 oberhalb vom Sumpf in die Niederdrucksäule 5 und zu einem anderen Teil 315 in den Sumpf der Drucksäule 7 entspannt.
    Sumpfflüssigkeit 70 und Waschstickstoff 74 vom Kopf der Drucksäule 7 werden in einem Unterkühlungsgegenströmer 4 gegen einen Restgasstrom 50 der Niederdrucksäule 5 unterkühlt und jeweils in die Niederdrucksäule 5 und / oder in die Mitteldrucksäule entspannt (Leitungen 71,72,73,75,76 und 77). Sumpfflüssigkeit 60 und Waschstickstoff 61 aus der Mitteldrucksäule werden ebenfalls im Unterkühlungsgegenströmer 4 gegen den Restgasstrom 50 unterkühlt (in Figur 1 nicht dargestellt) oder die Sumpfflüssigkeit 60 direkt in den Kopfkondensator 10 der Mitteldrucksäule und der Waschstickstoff 61 auf den Kopf der Niederdrucksäule 5 aufgegeben. Ein Restgasstrom 51 und Produkte aus dem Rektifikationsabschnitt, im Beispiel GOX und DGOX werden im Hauptwärmetauscher 2 etwa auf Umgebungstemperatur angewärmt (Leitungen 51, 52, 54, 55,17 und 18). Der Restgasstrom 52 kann vollständig oder teilweise als Strom 53 zur Regenerierung der Molekularsiebstation 32 eingesetzt werden.
    Flüssiger Sauerstoff 15 wird dem Sumpf der Niederdrucksäule entnommen, je nach Produktspezifikation mit Hilfe einer Sauerstoffpumpe 16 auf den geforderten Abgabedruck komprimiert oder vollständig oder teilweise in einen Wechselpeichertank 80 eingefüllt. Flüssiger Stickstoff 78 wird vom Kopf der Niederdrucksäule 5 abgezogen oder von einer der Waschstickstoffleitungen 75 bzw.61 abgezweigt und ebenfalls innenverdichtet (in Figur 1 nicht dargestellt) oder in einen Wechselspeichertank 79 eingespeist.
    Zur Erhöhung der Flexibilität der Fahrweise und der Verfügbarkeit der Druckprodukte, im Beispiel des DGOX besteht die Verdichterstation 305 aus mindestens zwei parallel geschalteten Verdichtem. Hierdurch wird es möglich, die Wechselspeicheranlage auch als reinen Gaseapparat zu betreiben,d.h. ohne Flüssigproduktion weiterhin den innenverdichteten Drucksauerstoff (DGOX) zu erzeugen. Im Fall von zwei Verdichtem wird einer der beiden Verdichter der Verdichterstation 305 außer Betrieb genommen und der zweite Verdichter übernimmt die Aufgabe, den innenverdichteten Drucksauerstoff 17 zu verdampfen. Somit besteht die Verdichterstation 305 erfindungsgemäß aus zwei Verdichtern mit jeweils unterschiedlicher Funktion, von denen der eine zur Erzeugung der Kälte für die Flüssigproduktion und der andere zur Verdampfung des innenverdichteten Drucksauerstoffs herangezogen wird.
    Die Wechselspeichertanks 79 und 80 dienen im Beispiel einer zeitlich begrenzten Überproduktion von DGOX, der Entnahme von LOX und LIN als Verkaufsprodukte, als Notversorgungstanks,als Wechselspeicherung der LOX - und LIN -Kälteinhalte und als Kälteversorgung bei abgeschaltetem Kältekreislauf. Die in Figur 1 angegebene Verdichterstation kann ein- oder mehr- stufige Maschinen mit Zwischen- und / oder Nachkühlung enthalten.
    Figur 2
    In Abweichung zum Ausführungsbeispiel in Figur 1 wird die Arbeitsleistung der Entspannungsturbine 309 in der vorliegenden Ausführung an einen Booster übertragen. Außerdem wird der Luftdrosselstrom 313 vor seiner Abkühlung im Hauptwärmetauscher 2 und anschließender isenthalper Entspannung in die Doppelsäule 5,7 auf einen Druck komprimiert, der mindestens so groß ist wie der Enddruck der Verdichterstation 305 des Ausführungsbeispiels in Figur 1.
    Figur 3
    In Figur 3 wird zu zerlegende Luft bei 1 angesaugt und in einem Luftverdichter 30 auf einen ersten Druck im wesentlichen Mitteldrucksäulendruck (plus Leitungsverluste) verdichtet, in einer Kühleinrichtung 31 in direktem Kontakt mit Wasser vorgekühlt und in einer Reinigungseinrichtung (Molsiebanlage) 32 insbesondere von Wasser und Kohlendioxid befreit.
    Die gereinigte Luft wird in drei Teilströme aufgeteilt, von denen der erste ohne weitere druckerhöhende Maßnahmen über Leitung 103, durch Hauptwärmetauscher 2 und über Leitung 104 in eine Mitteldrucksäule 6 eingeführt werden kann. Die Mitteldrucksäule 6 wird - entsprechend der jeweiligen Produktspezifikation und den Druckverfusten - unter einem Druck von 2 bis 4 bar, vorzugsweise etwa 2,5 bis 3,5 bar betrieben.
    Der zweite Teilstrom der gereinigten Luft wird in einem Nachverdichter 202 auf einen Druck verdichtet, der einer Luft-Kondensationstemperatur entspricht, die mindestens etwa gleich der Verdampfungstemperatur eines flüssigen Niederdrucksauerstoffs 15 ist, im Hauptwärmetauscher 2 in indirektem Wärmeaustausch mit kalten Verfahrensströmen abgekühlt und in einen Sumpfkondensator 3 der Niederdrucksäule 5 eingeführt (siehe Positionen 201, 202, 203, 2, 204 und 3).
    Letztere arbeitet bei einem Druck von 1,1 bis 2,0 bar vorzugsweise 1,3 bis 1,7 bar. Der Luftnachverdichter 202 kann von derselben Motorwelle angetrieben werden wie der Luftverdichter 30.
    Bei hohen Sauerstoffreinheiten (größer 99,5 % ) geht der gezeigte Zweisäulenapparat im Grenzfall über in den normalen Doppelsäulenapparat (siehe z.B. Patentschrift DE 195 26 785 C1). Der zweite Teilstrom geht dann gegen Null und die Niederdrucksäulenanstiche der Ströme 62 und 63 verschieben sich in Richtung Sumpf der Niederdrucksäule 5, so daß der Kopfkondensator 10 zum Hauptkondensator der Doppelsäule wird und sich der Druck der Mitteldrucksäule entsprechend der thermischen Kopplung erhöht
    Der dritte Teilstrom wird über eine Leitung 301 einer Verdichterstation 305 für Turbinenluft (306, 307, 308) in eine Turbine 309 und/oder für Rektifikationsluft (313, 314, 315) zugeführt, wobei deren Ansaugdruck 303 mit Hilfe einer Drosselvorrichtung 302 vermindert werden kann insbesondere bei Unterlastbetrieb. Die Luft des dritten Teilstromes wird in der Verdichterstation 305 von etwa Mitteldrucksäulendruck auf einen Druck komprimiert, der einer Luft-Kondensationstemperatur entspricht, die mindestens etwa gleich der Verdampfungstemperatur des flüssigen Drucksauerstoffs 17 ist.
    Ein erster Teilstrom 307 der hochverdichteten Luft 306 wird über Leitung 308 bei einer Temperatur, die zwischen den Temperaturen am warmen und am kalten Ende des Hauptwärmetauschers 2 liegt, der Entspannungsturbine 309 zugeleitet und dort auf etwa Mitteldrucksäulendruck arbeitsleistend entspannt. Im vorliegenden Ausführungsbeispiel wird die Turbinenleistung durch einen Bremsgenerator an das Werksnetz übertragen.Der entspannte Turbinenaustrittsstrom wird teils durch den Hauptwärmetauscher 2 über die Leitungen 310,311 und 304 auf die Saugseite der Verdichterstation 305 zurückgeführt, teils über Leitung 312 in den Sumpf der Mitteldrucksäule 6 eingespeist
    Ein zweiter Teilstrom 313 der hochverdichteten Luft 306 wird gegen den verdampfenden Drucksauerstoff 17 mindestens teilweise, vorzugsweise vollständig oder im wesentlichen vollständig verflüssigt, zu einem Teil 314 oberhalb vom Sumpf in die Niederdrucksäule 5 und zu einem anderen Teil 315 in den Sumpf der Mitteldrucksäule 6 entspannt.
    Sumpfflüssigkeit 60 und Waschstickstoff 61 vom Kopfkondensator 10 der Mitteldrucksäule 6 werden in einem Unterkühlungsgegenströmer 4 gegen einen Restgasstrom 50 der Niederdrucksäule 5 unterkühlt und jeweils in diese entspannt (Leitungen 71,75 und 76). Ein Restgasstrom 51 und Produkte aus dem Rektifikationsabschnitt, im Beispiel DGOX werden im Hauptwärmetauscher 2 etwa auf Umgebungstemperatur angewärmt (Leitungen 51,52,17 und 18). Der Restgasstrom 52 kann vollständig oder teilweise zur Regenerierung 53 der Molekularsiebstation 32 eingesetzt werden.
    Flüssiger Sauerstoff 15 wird dem Sumpf der Niederdrucksäule entnommen, je nach Produktspezifikation mit Hilfe einer Sauerstoffpumpe 16 auf den geforderten Abgabedruck komprimiert oder vollständig oder teilweise in einen Wechselpeichertank 80 eingefüllt. Flüssiger Stickstoff 78 wird vom Kopf der Niederdrucksäule 5 abgezogen oder von der Waschstickstoffleitung 61 abgezweigt und ebenfalls innenverdichtet (in Figur 1 nicht dargestellt) oder in den Wechselspeichertank 79 eingespeist.
    Zur Erhöhung der Flexibilität der Fahrweise und der Verfügbarkeit der Druckprodukte, im Beispiel des DGOX besteht die Verdichterstation 305 aus mindestens zwei parallel geschalteten Verdichtem. Hierdurch wird es möglich, die Wechselspeicheranlage auch als reinen Gaseapparat zu betreiben,d.h. ohne Flüssigproduktion weiterhin den innenverdichteten Drucksauerstoff (DGOX) zu erzeugen. Im Fall von zwei Verdichtem wird einer der beiden Verdichter der Verdichterstation 305 außer Betrieb genommen und der zweite Verdichter übernimmt die Aufgabe, den innenverdichteten Drucksauerstoff 17 zu verdampfen. Somit besteht die Verdichterstation 305 erfindungsgemäß aus zwei Verdichtern mit jeweils unterschiedlicher Funktion, von denen der eine zur Erzeugung der Kälte für die Flüssigproduktion und der andere zur Verdampfung des innenverdichteten Drucksauerstoffs herangezogen wird.
    Die Wechselspeichertanks 79 und 80 dienen im Beispiel einer zeitlich begrenzten Überproduktion von DGOX, der Entnahme von LOX und LIN als Verkaufsprodukte, als Notversorgungstanks,als Wechselspeicherung der LOX - und LIN -Kälteinhalte und als Kälteversorgung bei abgeschaltetem Kältekreislauf. Die in Figur 3 angegebene Verdichterstation kann ein- oder mehr- stufige Maschinen mit Zwischen- und / oder Nachkühlung enthalten.
    Figur 4
    In Abweichung zum Ausführungsbeispiel 3 wird die Arbeitsleistung der Entspannungsturbine 309 in der vorliegenden Ausführung an einen Booster übertragen. Außerdem wird der Luftdrosselstrom 313 vor seiner Abkühlung im Hauptwärmetauscher 2 und anschließender isenthalper Entspannung in die Säulen 5 und 6 auf einen Druck komprimiert, der mindestens so groß ist wie der Enddruck der Verdichterstation 305 des Ausführungsbeispiel in Figur 3.
    Beispiel:
    Für die Belieferung eines Stahlwerks werden stark schwankende Mengen DGOX und Druckstickstoff (DRGAN) benötigt. Für die Belieferung des Gasmarktes sollen zusätzlich die Flüssigprodukte LOX, LIN und Flüssigargon (LAR) produziert werden, um die Wirtschaftlichkeit der Produktionsanlage zu erhöhen. Die Investitionsentscheidung wird zugunsten einer Anlage mit Turbinen/Booster-Einheit und Doppelsäulenrektifikation gefällt, weil keine Energie ins örtliche Stromnetz eingespeist werden darf und weil eine hohe Sauerstoffreinheit gefordert wird. Bis auf die nicht dargestellte Argongewinnung entspricht dies einer Anlage, wie sie in Figur 4 dargestellt ist. Die Tabelle zeigt für vier Hauptbetriebsarten A1, A2, A3 und A4 der Anlage die Produktströme, die Wechselspeicherströme, für die (Kreislauf- und Drosselluft-) Verdichterstation die Anzahl der im Betrieb befindlichen Kompressoren, die Luftströme und den Energiebedarf der Anlage. Alle Gas- und Flüssigkeitsströme sind in m3/h angegeben, wobei jeweils m3/h im Normalzustand bei 1atm und 273 K gemeint sind. Die Betriebsfälle A1, A2 und A3 zeichnen sich dadurch aus, daß beide Kompressoren der Verdichterstation in Betrieb sind und einen Turbinenstrom und einen Drosselstrom liefem.
    Im Betriebsfall A1 werden zusätzlich zur Flüssigproduktion 10.000 m3/h DGOX erzeugt. Für eine Belieferung des Stahlwerks mit 13.000 m3/h DGOX wie in Betriebsfall A2 werden zusätzlich 3000 m3/h als LOX einem LOX-Tank flüssig entnommen und innenverdichtet als DGOX abgegeben. Der Kälteinhalt des LOX wird genutzt und reicht aus, um den LIN Tank mit 2.800 m3/h zu füllen. Im Betriebsfall A3 werden nur 7.000 m3/h DGOX an das Stahlwerk abgegeben. Der beispielsweise im Betriebsfall A2 entleerte LOX-Tank wird mit 3000 m3/h LOX wieder befüllt Die hierzu benötigte Kälte wird mit LIN aus dem vom Betriebsfall A2 her gefüllten LIN-Tank zugeführt.
    Im Betriebsfall A4 ist in der Verdichterstation nur ein Kompressor in Betrieb. Er liefert den Drosselstrom, Flüssigkeit wird nicht erzeugt. Selbst für die im Stahlwerk maximal benötigte DGOX Menge von 13.000 m3/h ist die hierfür benötige Kälteleistung um eine Größenanordnung kleiner als in den Betriebsfällen A1, A2 und A3, der äquivalent benötigte Turbinenstrom müßte nur 4000 m3/h betragen. Der Kältekreislauf der Anlage wird deshalb günstig durch Flüssigkeit aus den Tanks gedeckt und der Turbinenstrom abgeschaltet. Andere Betriebsfälle sind denkbar. Die genannten Betriebsfälle zeichnen sich dadurch besonders aus, daß alle betrieblichen Anforderungen energetisch günstig erfüllt werden, weil die Maschinen in ihrem Auslegungspunkt bei etwa 100 % Leistung betrieben werden. Der Stromverbrauch der Anlage ist in der überwiegenden Zeit nahezu konstant. Deshalb kann bei den Elektroversorgungsuntemehmen ein günstiger Stromtarif erzielt werden.
    Betriebsfall A1 A2 A3 A4
    Eintrittsluft m3/h 65.000 65.000 65.000 65.000
    Produkte
    DGOX m3/h 10.000 13.000 7.000 13.000
    LOX m3/h 3.000 3.000 3.000 -
    LIN m3/h 4.000 3.000 4.300 -
    DRGAN m3/h 2.000 2.000 2.000 2.000
    LAR m3/h 430 430 430 430
    Wechselpeicherströme
    LOX zum Tank m3/h - - 3.000 -
    LIN zum Tank m3/h - 2.800 - -
    LOX vom Tank m3/h - 3.000 - -
    LIN vom Tank m3/h - - 2.800 -
    Verdichterstation
    Anzahl der betriebenen Kompressoren m3/h 2 2 2 1
    Turbinenstrom m3/h 51.000 43.500 57.000 4.000
    Drosselstrom m3/h 21.000 23.000 17.000 23.000
    Stromverbrauch kW 11.000 11.000 11.000 7.700

    Claims (12)

    1. Verfahren zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft, das zeitweise in einem Gasbetrieb und zeitweise in einem kombinierten Betrieb betrieben wird,
      wobei im Gasbetrieb und im kombinierten Betrieb
      gereinigte Einsatzluft unter Überdruck abgekühlt, teilweise verflüssigt und zur Gewinnung gasförmiger und flüssiger Fraktionen einer Rektifikation unterzogen wird,
      tiefkalte Flüssigkeit mindestens einer der flüssigen Fraktionen aus der Rektifikation unter erhöhtem Druck durch indirekten Wärmeaustausch mit Einsatzluft verdampft, angewärmt und als gasförmiges Druckprodukt gewonnen wird,
      wobei im kombinierten Betrieb gasförmiges Druckprodukt und Flüssigprodukt gewonnen werden und
      die hierzu benötigte Kälte in einem Luft-Kältekreislauf erzeugt wird, indem Luft in dem Kältekreislauf verdichtet und arbeitsleistend entspannt wird, der Luft hierbei Wärme entzogen wird und die arbeitsleistend entspannte Luft mindestens zum Teil im Gegenstrom mit der abzukühlenden Einsatzluft wieder angewärmt und dann rückverdichtet wird,
      tiefkalte Flüssigkeit durch Rektifikation erzeugt und mindestens zum Teil gespeichert wird,
      und wobei beim Gasbetrieb der Luftdurchsatz im Kältekreislauf auf Null reduziert wird und zu einer Kompensation von Kälteverlusten, die nicht mehr durch den Kältekreislauf gedeckt werden, tiefkalte gespeicherte Flüssigkeit verwendet wird.
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß tiefkalte Flüssigkeit mindestens einer flüssigen Fraktion aus der Rektifikation, beispielsweise Flüssigstickstoff (LIN), Flüssigsauerstoff (LOX) oder flüssige Luft, zur Kompensation von Kältevertusten im Gasbetrieb in einem Tank zwischengespeichert wird, wobei als Tank zum Speichern dieser Fraktionen Pufferbehälter und/oder Produkttanks verwendet werden.
    3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß zeitweise unter Verwendung mindestens zweier Tanks eine Wechselspeicherung vorgenommen wird, wobei einerseits bei erhöhtem Drucksauerstoff (DGOX)-Bedarf zusätzlich zum LOX aus der Rektifikation aus dem einen Tank zwischengespeichertes LOX entnommen, verdichtet, im Gegenstrom verdampft und angewärmt und dann als DGOX-Produkt abgeben wird und hierbei im Gegenstrom Kälte zurückgewonnen und zur Erzeugung und Zwischenspeicherung von LIN-Produkt verwendet wird, wobei andererseits bei niedrigen DGOX Bedarf entsprechend wenig LOX aus dem Rektifiziersystem als DGOX abgeben und dafür mehr LOX zwischengespeichert wird.
    4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß ein Zweisäulenverfahren eingesetzt wird, wobei eine Kopfkühlung der Drucksäule mit einer Zwischenflüssigkeit aus einer Niederdrucksäule bewerkstelligt und eine Sumpfheizung der Niederdrucksäule durch indirekten Wärmeaustausch mit Luft vorgenommen wird.
    5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als Rektifiziersystem ein Dreisäulenverfahren eingesetzt wird, wobei eine Doppelsäule mit einem Hochdruckteil und einem Niederdruckteil und eine Zusatzsäule unter Zwlschendruck eingesetzt wird.
    6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß als Einsatzluft, die in indirekten Wärmeaustausch mit der verdampfenden tiefkalten Flüssigkeit, aus der das gasförmige Druckprodukt gewonnen wird, gebracht wird, Luft aus dem Kältekreislauf stromabwärts der Verdichtung verwendet wird oder solche, die stromabwärts der Verdichtung nachverdichtet wurde.
    7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die arbeitsleistende Entspannung in mindestens einer Kälteturbine erfolgt, wobei die Leistung an der Welle einer solchen Turbine zum Antrieb entweder eines stromerzeugenden Generators oder eines Boosters verwendet wird, wobei der Booster beispielsweise zum Nachverdichten der Luft im Kältekreislauf eingesetzt wird.
    8. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 7 mit
      einem Hauptverdichter für Einsatzluft, wobei der Austrittsdruck des Hauptluftverdichters auch Arbeitsdruck einer folgenden Reinigungseinheit ist,
      einer Reinluftleitung aus der Reinigungseinheit zu einer Verdichterstation für die Luft im Kältekreislauf und für die Luft zur Rektifikation
      und einer druckseitigen Leitung aus der Verdichterstation, die einerseits in einen Leitungsstrang des Kältekreislaufs mit mindestens einer Kälteturbine mündet und andererseits in eine Abzweigung für Drosselluft zu den Säulen,
      und wobei die Verdichterstation mit mindestens zwei parallel angeordneten Verdichtem ausgeführt ist, die so ausgelegt sind, daß im Gasbetrieb nur einer der Verdichter im Betrieb ist, wobei dieser Verdichter Drosselluft liefert und der Kältekreislauf nicht mit Luft beaufschlagt ist, während im kombinierten Betrieb mit Erzeugung von Druckprodukt und Flüssigprodukt mindestens zwei parallel angeordnete Verdichter in Betrieb sind und zusätzlich zum Liefem von Drosselluft auch der Kältekreislauf mit Luft beaufschlagt ist und daß die Vorrichtung Mittel zum Speichern von Flüssigprodukt aufweist.
    9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß die Kälteturbine im Leitungsstrang des Kältekreislaufs als Turbinen/Generator-Einheit ausgebildet ist.
    10. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß die Kälteturbine im Leitungsgang des Kältekreislaufs als Turbinen/Booster-Einheit ausgebildet ist, wobei der Booster im Leitungsstrang des Kältekreislaufs als Nachverdichter von Luft aus der Verdichterstation geschaltet ist.
    11. Vorrichtung nach Anspruch 8 oder 9, dadurch gekennzeichnet, daß im Leitungsstrang für die Drosselluft ein Nachverdichter für Luft aus der Verdichterstation angeordnet ist.
    12. Anwendung des Verfahrens nach einem der Ansprüche 1 bis 7 und der Vorrichtung nach einem der Ansprüche 8 bis 11 in einer Luftzeriegungsanlage zur Belieferung eines Stahlwerks mit Stickstoff und Sauerstoff.
    EP19990106715 1998-04-08 1999-04-01 Luftzerlegungsanlage mit zwei verschiedenen Betriebsmodi Expired - Lifetime EP0949471B1 (de)

    Priority Applications (1)

    Application Number Priority Date Filing Date Title
    EP19990106715 EP0949471B1 (de) 1998-04-08 1999-04-01 Luftzerlegungsanlage mit zwei verschiedenen Betriebsmodi

    Applications Claiming Priority (5)

    Application Number Priority Date Filing Date Title
    DE19815885 1998-04-08
    DE1998115885 DE19815885A1 (de) 1998-04-08 1998-04-08 Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt bei der Tieftemperaturzerlegung von Luft
    EP98112276 1998-07-02
    EP98112276 1998-07-02
    EP19990106715 EP0949471B1 (de) 1998-04-08 1999-04-01 Luftzerlegungsanlage mit zwei verschiedenen Betriebsmodi

    Publications (2)

    Publication Number Publication Date
    EP0949471A1 EP0949471A1 (de) 1999-10-13
    EP0949471B1 true EP0949471B1 (de) 2002-12-18

    Family

    ID=7864076

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP19990106715 Expired - Lifetime EP0949471B1 (de) 1998-04-08 1999-04-01 Luftzerlegungsanlage mit zwei verschiedenen Betriebsmodi

    Country Status (7)

    Country Link
    US (1) US6185960B1 (de)
    EP (1) EP0949471B1 (de)
    AT (1) ATE230098T1 (de)
    CZ (1) CZ297724B6 (de)
    DE (1) DE19815885A1 (de)
    HU (1) HUP9900988A2 (de)
    PL (1) PL191500B1 (de)

    Cited By (19)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102007031765A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren zur Tieftemperaturzerlegung von Luft
    DE102007031759A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
    DE102009034979A1 (de) 2009-04-28 2010-11-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Drucksauerstoff
    EP2312248A1 (de) 2009-10-07 2011-04-20 Linde Aktiengesellschaft Verfahren und Vorrichtung Gewinnung von Drucksauerstoff und Krypton/Xenon
    EP2458311A1 (de) 2010-11-25 2012-05-30 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
    DE102010052544A1 (de) 2010-11-25 2012-05-31 Linde Ag Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
    EP2520886A1 (de) 2011-05-05 2012-11-07 Linde AG Verfahren und Vorrichtung zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
    EP2568242A1 (de) 2011-09-08 2013-03-13 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Stahl
    EP2600090A1 (de) 2011-12-01 2013-06-05 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von Drucksauerstoff durch Tieftemperaturzerlegung von Luft
    DE102011121314A1 (de) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
    DE102013017590A1 (de) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage
    DE102012017488A1 (de) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Verfahren zur Erstellung einer Luftzerlegungsanlage, Luftzerlegungsanlage und zugehöriges Betriebsverfahren
    EP2784420A1 (de) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Verfahren zur Luftzerlegung und Luftzerlegungsanlage
    WO2014154339A2 (de) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Verfahren zur luftzerlegung und luftzerlegungsanlage
    EP2801777A1 (de) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Luftzerlegungsanlage mit Hauptverdichterantrieb
    EP2963370A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
    EP2963369A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
    EP2963371A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur gewinnung eines druckgasprodukts durch tieftemperaturzerlegung von luft
    EP2963367A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft mit variablem Energieverbrauch

    Families Citing this family (31)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB0002084D0 (en) * 2000-01-28 2000-03-22 Boc Group Plc Air separation method
    DE10015602A1 (de) * 2000-03-29 2001-10-04 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
    US6438990B1 (en) * 2000-06-12 2002-08-27 Jay K. Hertling Refrigeration system
    EP1207362A1 (de) 2000-10-23 2002-05-22 Air Products And Chemicals, Inc. Verfahren und Vorrichtung zur Herstellung von gasförmigem Niederdrucksauerstoff
    DE10103968A1 (de) * 2001-01-30 2002-08-01 Linde Ag Drei-Säulen-System zur Tieftemperaturzerlegung von Luft
    DE10111428A1 (de) 2001-03-09 2002-09-12 Linde Ag Verfahren und Vorrichtung zur Zerlegung eines Gasgemischs mit Notbetrieb
    FR2831249A1 (fr) * 2002-01-21 2003-04-25 Air Liquide Procede et installation de separation d'air par distillation cryogenique
    FR2844344B1 (fr) * 2002-09-11 2005-04-08 Air Liquide Installation de production de grandes quantites d'oxygene et/ou d'azote
    DE10249383A1 (de) * 2002-10-23 2004-05-06 Linde Ag Verfahren und Vorrichtung zur variablen Erzeugung von Sauerstoff durch Tieftemperatur-Zerlegung von Luft
    FR2854682B1 (fr) * 2003-05-05 2005-06-17 Air Liquide Procede et installation de separation d'air par distillation cryogenique
    EP1582830A1 (de) * 2004-03-29 2005-10-05 Air Products And Chemicals, Inc. Verfahren und Apparatus zur Tieftemperaturluftzerlegung
    DE102004016931A1 (de) * 2004-04-06 2005-10-27 Linde Ag Verfahren und Vorrichtung zur variablen Erzeugung eines Druckproduktes durch Tieftemperaturzerlegung von Luft
    US7272954B2 (en) * 2004-07-14 2007-09-25 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Proceded Georges Claude Low temperature air separation process for producing pressurized gaseous product
    US7263859B2 (en) * 2004-12-27 2007-09-04 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for cooling a stream of compressed air
    JP5005894B2 (ja) * 2005-06-23 2012-08-22 エア・ウォーター株式会社 窒素発生方法およびそれに用いる装置
    US20070251267A1 (en) * 2006-04-26 2007-11-01 Bao Ha Cryogenic Air Separation Process
    US20080289350A1 (en) * 2006-11-13 2008-11-27 Hussmann Corporation Two stage transcritical refrigeration system
    US20080115531A1 (en) * 2006-11-16 2008-05-22 Bao Ha Cryogenic Air Separation Process and Apparatus
    DE102007051184A1 (de) * 2007-10-25 2009-04-30 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Tieftemperatur-Luftzerlegung
    DE102007051183A1 (de) * 2007-10-25 2009-04-30 Linde Aktiengesellschaft Verfahren zur Tieftemperatur-Luftzerlegung
    DE102009023900A1 (de) 2009-06-04 2010-12-09 Linde Aktiengesellschaft Dreisäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft
    CN102032755A (zh) * 2010-08-03 2011-04-27 苏州制氧机有限责任公司 空气分离装置
    CN102072612B (zh) * 2010-10-19 2013-05-29 上海加力气体有限公司 N型模式节能制气方法
    EP2979051B1 (de) * 2013-03-28 2019-07-17 Linde Aktiengesellschaft Verfahren und vorrichtung zur erzeugung von gasförmigem drucksauerstoff mit variablem energieverbrauch
    EP2824407A1 (de) * 2013-07-11 2015-01-14 Linde Aktiengesellschaft Verfahren zur Erzeugung zumindest eines Luftprodukts, Luftzerlegungsanlage, Verfahren und Vorrichtung zur Erzeugung elektrischer Energie
    HUE045459T2 (hu) * 2017-06-02 2019-12-30 Linde Ag Eljárás egy vagy több levegõtermék kinyerésére és levegõszétválasztó létesítmény
    US20220026145A1 (en) 2018-10-09 2022-01-27 Linde Gmbh Method for obtaining one or more air products and air separation system
    US10914517B2 (en) * 2018-11-16 2021-02-09 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for utilizing waste air to improve the capacity of an existing air separation unit
    FR3099819B1 (fr) * 2019-08-05 2021-09-10 Air Liquide Dispositif et installation de réfrigération
    CN110608583B (zh) * 2019-09-12 2021-07-23 北京首钢股份有限公司 一种压力控制方法及装置
    CN113686099B (zh) * 2021-08-09 2022-08-09 北京科技大学 一种基于内压缩空分储能装置的物质回收方法

    Family Cites Families (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CS184647B1 (en) * 1976-09-29 1978-08-31 Jiri Sykora Method of and apparatus for manufacturing liquid air separation products and pressurized oxygen
    GB2080929B (en) * 1980-07-22 1984-02-08 Air Prod & Chem Producing gaseous oxygen
    DE3913880A1 (de) * 1989-04-27 1990-10-31 Linde Ag Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
    FR2701553B1 (fr) * 1993-02-12 1995-04-28 Maurice Grenier Procédé et installation de production d'oxygène sous pression.
    FR2704632B1 (fr) * 1993-04-29 1995-06-23 Air Liquide Procede et installation pour la separation de l'air.
    FR2706195B1 (fr) * 1993-06-07 1995-07-28 Air Liquide Procédé et unité de fourniture d'un gaz sous pression à une installation consommatrice d'un constituant de l'air.
    US5666823A (en) * 1996-01-31 1997-09-16 Air Products And Chemicals, Inc. High pressure combustion turbine and air separation system integration
    US5678425A (en) * 1996-06-07 1997-10-21 Air Products And Chemicals, Inc. Method and apparatus for producing liquid products from air in various proportions

    Cited By (25)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102007031765A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren zur Tieftemperaturzerlegung von Luft
    DE102007031759A1 (de) 2007-07-07 2009-01-08 Linde Ag Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
    EP2015012A2 (de) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Verfahren zur Tieftemperaturzerlegung von Luft
    EP2015013A2 (de) 2007-07-07 2009-01-14 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Druckprodukt durch Tieftemperaturzerlegung von Luft
    DE102009034979A1 (de) 2009-04-28 2010-11-04 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von gasförmigem Drucksauerstoff
    EP2312248A1 (de) 2009-10-07 2011-04-20 Linde Aktiengesellschaft Verfahren und Vorrichtung Gewinnung von Drucksauerstoff und Krypton/Xenon
    EP2458311A1 (de) 2010-11-25 2012-05-30 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
    DE102010052544A1 (de) 2010-11-25 2012-05-31 Linde Ag Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
    DE102010052545A1 (de) 2010-11-25 2012-05-31 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
    EP2466236A1 (de) 2010-11-25 2012-06-20 Linde Aktiengesellschaft Verfahren zur Gewinnung eines gasförmigen Druckprodukts durch Tiefemperaturzerlegung von Luft
    EP2520886A1 (de) 2011-05-05 2012-11-07 Linde AG Verfahren und Vorrichtung zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
    DE102011112909A1 (de) 2011-09-08 2013-03-14 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Stahl
    EP2568242A1 (de) 2011-09-08 2013-03-13 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Stahl
    EP2600090A1 (de) 2011-12-01 2013-06-05 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von Drucksauerstoff durch Tieftemperaturzerlegung von Luft
    DE102011121314A1 (de) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
    DE102012017488A1 (de) 2012-09-04 2014-03-06 Linde Aktiengesellschaft Verfahren zur Erstellung einer Luftzerlegungsanlage, Luftzerlegungsanlage und zugehöriges Betriebsverfahren
    EP2784420A1 (de) 2013-03-26 2014-10-01 Linde Aktiengesellschaft Verfahren zur Luftzerlegung und Luftzerlegungsanlage
    WO2014154339A2 (de) 2013-03-26 2014-10-02 Linde Aktiengesellschaft Verfahren zur luftzerlegung und luftzerlegungsanlage
    EP2801777A1 (de) 2013-05-08 2014-11-12 Linde Aktiengesellschaft Luftzerlegungsanlage mit Hauptverdichterantrieb
    DE102013017590A1 (de) 2013-10-22 2014-01-02 Linde Aktiengesellschaft Verfahren zur Gewinnung eines Krypton und Xenon enthaltenden Fluids und hierfür eingerichtete Luftzerlegungsanlage
    EP2963370A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
    EP2963369A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
    EP2963371A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und vorrichtung zur gewinnung eines druckgasprodukts durch tieftemperaturzerlegung von luft
    EP2963367A1 (de) 2014-07-05 2016-01-06 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft mit variablem Energieverbrauch
    WO2016005031A1 (de) 2014-07-05 2016-01-14 Linde Aktiengesellschaft Verfahren und vorrichtung zur tieftemperaturzerlegung von luft mit variablem energieverbrauch

    Also Published As

    Publication number Publication date
    HUP9900988A2 (hu) 2003-06-28
    PL332409A1 (en) 1999-10-11
    EP0949471A1 (de) 1999-10-13
    PL191500B1 (pl) 2006-05-31
    DE19815885A1 (de) 1999-10-14
    HU9900988D0 (en) 1999-06-28
    CZ9901213A3 (cs) 2001-02-14
    US6185960B1 (en) 2001-02-13
    CZ297724B6 (cs) 2007-03-14
    ATE230098T1 (de) 2003-01-15

    Similar Documents

    Publication Publication Date Title
    EP0949471B1 (de) Luftzerlegungsanlage mit zwei verschiedenen Betriebsmodi
    DE69413918T2 (de) Tieftemperaturzerlegung von Luft
    EP0842385B1 (de) Verfahren und vorrichtung zur variablen erzeugung eines gasförmigen druckprodukts
    EP0093448B1 (de) Verfahren und Vorrichtung zur Gewinnung von gasförmigem Sauerstoff unter erhöhtem Druck
    EP1067345B1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
    DE69205424T2 (de) Verfahren und Vorrichtung für die Luftzerlegung durch Rektifikation.
    DE69509841T2 (de) Verfahren und Vorrichtung zur Herstellung von Sauerstoff
    EP1134525B1 (de) Verfahren zur Gewinnung von gasförmigem und flüssigem Stickstoff mit variablem Anteil des Flüssigprodukts
    DE69201522T2 (de) Hochdruck-Lufttrennungsverfahren mit Gewinnung von Flüssigkeit.
    EP0758733A2 (de) Verfahren und Vorrichtung zur Luftzerlegung durch Tieftemperaturrektifikation
    DE19803437A1 (de) Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
    EP1284404A1 (de) Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
    WO2014019698A2 (de) Verfahren und vorrichtung zur erzeugung elektrischer energie
    DE69209835T2 (de) Einsäulenluftzerlegungszyklus und dessen Integration in Gasturbinen
    EP3019803B1 (de) Verfahren und vorrichtung zur sauerstoffgewinnung durch tieftemperaturzerlegung von luft mit variablem energieverbrauch
    EP1146301A1 (de) Verfahren und Vorrichtung zur Gewinnung von Drückstickstoff durch Tieftemperaturzerlegung von Luft
    WO2021037391A1 (de) Verfahren zum betreiben eines wärmetauschers, anordnung mit wärmetauscher und anlage mit entsprechender anordnung
    EP0768503B1 (de) Dreifachsäulenverfahren zur Tieftemperaturzerlegung von Luft
    EP3924677A1 (de) Verfahren und anlage zur bereitstellung eines oder mehrerer sauerstoffreicher, gasförmiger luftprodukte
    DE69410040T2 (de) Verfahren und Einrichtung zur Herstellung von wenigstens einem durch Zerlegung von Luft gewonnenem Gas unter Druck
    EP2647934A1 (de) Verfahren und Vorrichtung zur Erzeugung elektrischer Energie
    EP3948124A1 (de) Verfahren zum betreiben eines wärmetauschers, anordnung mit wärmetauscher und anlage mit entsprechender anordnung
    DE10045128A1 (de) Verfahren und Vorrichtung zur Erzeugung hoch reinen Stickstoffs durch Tieftemperatur-Luftzerlegung
    EP1209431B1 (de) Verfahren und Vorrichtung zur Erzeugung von Sauerstoff und Stickstoff
    WO2019214847A9 (de) Verfahren zur gewinnung eines oder mehrerer luftprodukte und luftzerlegungsanlage

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE DK ES FI FR GB IT LI NL SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 19991005

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: LINDE TECHNISCHE GASE GMBH

    AKX Designation fees paid

    Free format text: AT BE CH DE DK ES FI FR GB IT LI NL SE

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: LINDE GAS AG

    17Q First examination report despatched

    Effective date: 20010919

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: LINDE AG

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE DK ES FI FR GB IT LI NL SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20021218

    REF Corresponds to:

    Ref document number: 230098

    Country of ref document: AT

    Date of ref document: 20030115

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 59903802

    Country of ref document: DE

    Date of ref document: 20030130

    Kind code of ref document: P

    Ref document number: 59903802

    Country of ref document: DE

    Date of ref document: 20030130

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030318

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030318

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20030326

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030430

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030430

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030430

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030627

    ET Fr: translation filed
    PLBQ Unpublished change to opponent data

    Free format text: ORIGINAL CODE: EPIDOS OPPO

    PLBI Opposition filed

    Free format text: ORIGINAL CODE: 0009260

    PLAZ Examination of admissibility of opposition: despatch of communication + time limit

    Free format text: ORIGINAL CODE: EPIDOSNOPE2

    BERE Be: lapsed

    Owner name: *LINDE A.G.

    Effective date: 20030430

    26 Opposition filed

    Opponent name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR

    Effective date: 20030919

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PLBG Opposition deemed not to have been filed

    Free format text: ORIGINAL CODE: 0009274

    NLR1 Nl: opposition has been filed with the epo

    Opponent name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR

    26D Opposition deemed not to have been filed

    Opponent name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR

    Effective date: 20040115

    NLXE Nl: other communications concerning ep-patents (part 3 heading xe)

    Free format text: PAT. BUL. 02/2004: THE OPPOSITION SHOULD BE DEEMED NOT TO HAVE BEEN FILED (SEE EUROPEAN PATENT BULLETIN 20040303/10)

    PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

    Free format text: ORIGINAL CODE: EPIDOSDOPE2

    PLBQ Unpublished change to opponent data

    Free format text: ORIGINAL CODE: EPIDOS OPPO

    PLAB Opposition data, opponent's data or that of the opponent's representative modified

    Free format text: ORIGINAL CODE: 0009299OPPO

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20040918

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CA

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 18

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20170313

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20170329

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20170412

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20170329

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20170420

    Year of fee payment: 19

    Ref country code: AT

    Payment date: 20170327

    Year of fee payment: 19

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59903802

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: MM

    Effective date: 20180501

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MM01

    Ref document number: 230098

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20180401

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20180401

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20181101

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20180401

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20180501

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20180401

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20180430

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20180401