Recent Advances in Antibacterial Metallic Species Supported on Montmorillonite Clay Mineral: A Review
<p>Number of articles based on antibacterial metallic species supported on montmorillonite (based on Scopus database searches).</p> "> Figure 2
<p>Structure of the Na–montmorillonite (2:1 type) of clay minerals.</p> "> Figure 3
<p>Classification of antibacterial composite materials.</p> "> Figure 4
<p>(<b>i</b>) Preparation methods; (<b>ii</b>,<b>iii</b>) TEM micrographs and histogram of metallic nanoparticle–montmorillonite hybrids. Reproduced with permission from [<a href="#B145-minerals-13-01268" class="html-bibr">145</a>].</p> "> Figure 4 Cont.
<p>(<b>i</b>) Preparation methods; (<b>ii</b>,<b>iii</b>) TEM micrographs and histogram of metallic nanoparticle–montmorillonite hybrids. Reproduced with permission from [<a href="#B145-minerals-13-01268" class="html-bibr">145</a>].</p> "> Figure 5
<p>(<b>i</b>) Preparation methods; (<b>ii</b>) TEM micrographs and histogram of zinc oxide–montmorillonite nanocomposite; (<b>iii</b>) zones of inhibition. Reproduced with permission from [<a href="#B148-minerals-13-01268" class="html-bibr">148</a>].</p> "> Figure 5 Cont.
<p>(<b>i</b>) Preparation methods; (<b>ii</b>) TEM micrographs and histogram of zinc oxide–montmorillonite nanocomposite; (<b>iii</b>) zones of inhibition. Reproduced with permission from [<a href="#B148-minerals-13-01268" class="html-bibr">148</a>].</p> "> Figure 6
<p>(<b>i</b>) XRD and (<b>ii</b>) TEM analyses of Ag–montmorillonite and Ag<sub>2</sub>CO<sub>3</sub>–montmorillonite nanocomposites. Reproduced with permission from [<a href="#B153-minerals-13-01268" class="html-bibr">153</a>].</p> "> Figure 7
<p>(<b>i</b>) Elemental dot mapping of Al, Si, O, and Sn on the surface of montmorillonite. (<b>ii</b>) XPS spectrum of the SnO<sub>2</sub> nanoparticles. Reproduced with permission from [<a href="#B34-minerals-13-01268" class="html-bibr">34</a>].</p> "> Figure 8
<p>Various applications of clay minerals.</p> "> Figure 9
<p>Digital image of transparency/appearance, SEM image, and antibacterial tests of nanocomposite films based on montmorillonite. Reproduced with permission from [<a href="#B164-minerals-13-01268" class="html-bibr">164</a>].</p> "> Figure 10
<p>Photographs of impregnated filter papers that were Fe<sup>3+</sup>-saturated or contained Na<sup>+</sup>–montmorillonite. Scanning electron micrograph showing <span class="html-italic">E. coli</span> cells retained on Fe<sup>3+</sup>-saturated montmorillonite-impregnated filter paper. Reproduced with permission from [<a href="#B176-minerals-13-01268" class="html-bibr">176</a>].</p> "> Figure 11
<p>(<b>i</b>) Bacteriostatic ring experiment of nanocomposites of AgNPs@LEC-Mt with different silver content against the strains <span class="html-italic">E. coli</span> and <span class="html-italic">S. aureus</span>. Reproduced with permission from [<a href="#B178-minerals-13-01268" class="html-bibr">178</a>].</p> "> Figure 12
<p>Schematic representation of the four plausible antibacterial mechanisms of the Ag–ZnO nanocomposite. Reproduced with permission from [<a href="#B193-minerals-13-01268" class="html-bibr">193</a>].</p> ">
Abstract
:1. Introduction
2. Structural Features of Montmorillonite
3. Classification of Antibacterial Composite Materials
4. Some Important Properties of the Antibacterial Metallic Species Loaded on Montmorillonite
5. Antibacterial Metallic Species
6. Various Preparation Processes of Antibacterial Metallic Species Supported on Montmorillonite
7. Characterizations of the Antibacterial Metallic Species Loaded on Montmorillonite Composites
8. Applications Fields of Clay Minerals
8.1. Clay Minerals in Water Disinfection
8.2. Use of Montmorillonite-Supported Metallic Nanoparticles as a Potential Antimicrobial for Food Packaging
8.3. Use of Montmorillonite-Supported Metallic Nanoparticles for Water Disinfection
8.4. Use of Montmorillonite-Supported Metallic Species as Antibacterial Materials
9. Biocompatibility (Toxicity)
10. The Antibacterial Mechanisms
- Metallic species are capable of blocking the electron transport system in bacteria.
- Metallic species kill bacteria cells by rupturing the cell membrane and cell wall.
- Metallic species interact with bacterial cell DNA, which results in mutation and causes cell death.
- The destruction of bacterial cells by silver free radicals.
- The direct interaction with the bacterial cell membrane via electrostatic interactions between the ions released and the negatively charged bacterial cell wall.
- The second action is the disruption of the bacterial cell membrane, by paving a way into the bacterial cells, leading to membrane protein and lipid bilayer damage.
- The third action is at the cellular level by the disruption of the bacterial cell membrane, by either altering the membrane proteins or enzyme activity in an ROS-mediated manner. At the molecular level, it inhibits DNA/plasmid replication and proteins/enzymes in cells either via ROS formation or by metal ions directly.
- The fourth action is the leakage of intracellular material owing to membrane disruption, which may cause the shrinkage of the cell membrane, ultimately leading to cellular lysis.
11. Conclusions, Future Research Proposition, and Deficits
- The need to establish the antimicrobial activity of these materials with different bacterial populations.
- The evaluation of antibacterial activity efficiency after several cycles of regeneration.
- Studies should be carried out to quantify and detect the chemical nature of the metallic substances released.
- Ensuring that the antibacterial property of these materials is preserved over time.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Williams, L.B. Antibacterial Clays: Scientific Investigations of Their Practical Applications in Medicine. In Practical Applications of Medical Geology; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Martynková, G.S.; Valášková, M. Antimicrobial Nanocomposites Based on Natural Modified Materials: A Review of Carbons and Clays. J. Nanosci. Nanotechnol. 2014, 14, 673–693. [Google Scholar] [CrossRef] [PubMed]
- Kurtjak, M.; Aničić, N.; Vukomanovicć, M. Inorganic Nanoparticles: Innovative Tools for Antimicrobial Agents; InTech Open: London, UK, 2017. [Google Scholar]
- de Oliveira, L.H.; de Lima, I.S.; dos Santos, A.N.; Trigueiro, P.; Barreto, H.M.; Cecília, J.A.; Osajima, J.A.; da Silva-Filho, E.C.; Fonseca, M.G. Monitoring the Antimicrobial Activity of Bentonite-Chlorhexidine Hybrid. Mater. Today Commun. 2023, 34, 105352. [Google Scholar] [CrossRef]
- Krishnan, B.; Mahalingam, S. Ag/TiO2/Bentonite Nanocomposite for Biological Applications: Synthesis, Characterization, Antibacterial and Cytotoxic Investigations. Adv. Powder Technol. 2017, 28, 2265–2280. [Google Scholar] [CrossRef]
- Varadwaj, G.B.B.; Parida, K.M. Montmorillonite Supported Metal Nanoparticles: An Update on Syntheses and Applications. RSC Adv. 2013, 3, 13583–13593. [Google Scholar] [CrossRef]
- Awasthi, A.; Jadhao, P.; Kumari, K. Clay Nano-Adsorbent: Structures, Applications and Mechanism for Water Treatment. SN Appl. Sci. 2019, 1, 1076. [Google Scholar] [CrossRef]
- Jiao, L.F.; Ke, Y.L.; Xiao, K.; Song, Z.H.; Lu, J.J.; Hu, C.H. Effects of Zinc-Exchanged Montmorillonite with Different Zinc Loading Capacities on Growth Performance, Intestinal Microbiota, Morphology and Permeability in Weaned Piglets. Appl. Clay Sci. 2015, 112–113, 40–43. [Google Scholar] [CrossRef]
- Jiao, L.; Lin, F.; Cao, S.; Wang, C.; Wu, H.; Shu, M.; Hu, C. Preparation, Characterization, Antimicrobial and Cytotoxicity Studies of Copper/Zinc- Loaded Montmorillonite. J. Anim. Sci. Biotechnol. 2017, 8, 27. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.B. Natural Antibacterial Clays: Historical Uses and Modern Advances. Clays Clay Miner. 2019, 67, 7–24. [Google Scholar] [CrossRef]
- Wang, M.; Phillips, T.D. Lecithin-Amended Montmorillonite Clays Enhance the Antibacterial Effect of Barrier Creams. Colloids Surf. B Biointerfaces 2023, 229, 113450. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Chen, H. Development and Characterization of Starch-sodium Alginate-Montmorillonite Biodegradable Antibacterial Films. Int. J. Biol. Macromol. 2023, 233, 123462. [Google Scholar] [CrossRef]
- Ghosh, B.; Chakraborty, D. An Overview of the Clay Minerals: Composition, Classification, Internal Structure and Properties. In Clay Minerals: Their Antimicrobial and Antitoxic Applications; Ghosh, B., Chakraborty, D., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 1–24. ISBN 978-3-031-22327-3. [Google Scholar]
- Sohrabnezhad, S.; Rassa, M.; Mohammadi Dahanesari, E. Spectroscopic Study of Silver Halides in Montmorillonite and Their Antibacterial Activity. J. Photochem. Photobiol. B Biol. 2016, 163, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Khezerlou, A.; Alizadeh-Sani, M.; Azizi-Lalabadi, M.; Ehsani, A. Nanoparticles and Their Antimicrobial Properties against Pathogens Including Bacteria, Fungi, Parasites and Viruses. Microb. Pathog. 2018, 123, 505–526. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, S.; Peighambardoust, S.H.; Peighambardoust, S.J.; Hosseini, S.V.; Regenstein, J.M. Improved Mechanical and Antibacterial Properties of Active LDPE Films Prepared with Combination of Ag, ZnO and CuO Nanoparticles. Food Packag. Shelf Life 2019, 22, 100391. [Google Scholar] [CrossRef]
- Barani, H.; Montazer, M.; Samadi, N.; Toliyat, T. In Situ Synthesis of Nano Silver/Lecithin on Wool: Enhancing Nanoparticles Diffusion. Colloids Surf. B Biointerfaces 2012, 92, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Sun, X.; Yang, H. The Role of Antibacterial Metallic Elements in Simultaneously Improving the Corrosion Resistance and Antibacterial Activity of Magnesium Alloys. Mater. Des. 2021, 198, 109350. [Google Scholar] [CrossRef]
- Alexander, J.W. History of the Medical Use of Silver. Surg. Infect. 2009, 10, 289–292. [Google Scholar] [CrossRef]
- Giraldo, L.F.; Camilo, P.; Kyu, T. Incorporation of Silver in Montmorillonite-Type Phyllosilicates as Potential Antibacterial Material. Curr. Opin. Chem. Eng. 2016, 11, 7–13. [Google Scholar] [CrossRef]
- Gil-Korilis, A.; Cojocaru, M.; Berzosa, M.; Gamazo, C.; Andrade, N.J.; Ciuffi, K.J. Comparison of Antibacterial Activity and Cytotoxicity of Silver Nanoparticles and Silver-Loaded Montmorillonite and Saponite. Appl. Clay Sci. 2023, 240, 106968. [Google Scholar] [CrossRef]
- Zhou, L.; Yu, K.; Lu, F.; Lan, G.; Dai, F.; Shang, S.; Hu, E. Minimizing Antibiotic Dosage through in Situ Formation of Gold Nanoparticles across Antibacterial Wound Dressings: A Facile Approach Using Silk Fabric as the Base Substrate. J. Clean. Prod. 2020, 243, 118604. [Google Scholar] [CrossRef]
- Bartolozzi, A.; Bertani, R.; Burigo, E.; Fabrizi, A.; Panozzo, F.; Quaresimin, M.; Simionato, F.; Sgarbossa, P.; Tamburini, S.; Zappalorto, M.; et al. Multifunctional Cu 2+ -Montmorillonite/Epoxy Resin Nanocomposites with Antibacterial Activity. J. Appl. Polym. Sci. 2017, 134, 44733. [Google Scholar] [CrossRef]
- Ouyang, Y.; Xie, Y.; Tan, S.; Shi, Q.; Chen, Y. Structure and Antibacterial Activity of Ce3+ Exchanged Montmorillonites. J. Rare Earths 2009, 27, 858–863. [Google Scholar] [CrossRef]
- Shu, Z.; Zhang, Y.; Ouyang, J.; Yang, H. Characterization and Synergetic Antibacterial Properties of ZnO and CeO2 Supported by Halloysite. Appl. Surf. Sci. 2017, 420, 833–838. [Google Scholar] [CrossRef]
- Bouchikhi, N.; Adjdir, M.; Bendeddouche, K.C.; Bouazza, D.; Mokhtar, A.; Bennabi, F.; Tabti, H.A.; Sehmi, A.; Miloudi, H. Enhancement of Adsorption Capacity of Low Cost Mesoporous MCM-41 and Their Antibacterial and Antifungal Activities. Mater. Res. Express 2019, 6, 1250j7. [Google Scholar] [CrossRef]
- Yang, S.; Ji, Y.; Deng, F.; Sun, X.; Ning, C. Co-Exchanged Montmorillonite: A Potential Antibacterial Agent with Good Antibacterial Activity and Cytocompatibility. J. Mater. Chem. B 2022, 10, 3705–3715. [Google Scholar] [CrossRef]
- Pourabolghasem, H.; Ghorbanpour, M.; Shayegh, R. Antibacterial Activity of Copper-Doped Montmorillonite Nanocomposites Prepared by Alkaline Ion Exchange Method. J. Phys. Sci. 2016, 27, 1–12. [Google Scholar] [CrossRef]
- Sohrabnezhad, S.H.; Mehdipour Moghaddam, M.J.; Salavatiyan, T. Synthesis and Characterization of CuO-Montmorillonite Nanocomposite by Thermal Decomposition Method and Antibacterial Activity of Nanocomposite. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 125, 73–78. [Google Scholar] [CrossRef]
- Qi, K.; Cheng, B.; Yu, J.; Ho, W. Review on the Improvement of the Photocatalytic and Antibacterial Activities of ZnO. J. Alloy. Compd. 2017, 727, 792–820. [Google Scholar] [CrossRef]
- Rodrigues, C.; de Mello, J.M.M.; Dalcanton, F.; Macuvele, D.L.P.; Padoin, N.; Fiori, M.A.; Soares, C. Mechanical, Thermal and Antimicrobial Properties of Chitosan-Based-Nanocomposite with Potential Applications for Food Packaging. J. Polym. Environ. 2020, 28, 1216–1236. [Google Scholar] [CrossRef]
- Giannakas, A.E.; Salmas, C.E.; Moschovas, D.; Baikousi, M.; Kollia, E.; Tsigkou, V.; Karakassides, A.; Leontiou, A.; Kehayias, G.; Avgeropoulos, A.; et al. Nanocomposite Film Development Based on Chitosan/Polyvinyl Alcohol Using ZnO@Montmorillonite and ZnO@Halloysite Hybrid Nanostructures for Active Food Packaging Applications. Nanomaterials 2022, 12, 1843. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Y.; Niu, J.; Chen, Y. Photogeneration of Reactive Oxygen Species on Uncoated Silver, Gold, Nickel, and Silicon Nanoparticles and Their Antibacterial Effects. Langmuir 2013, 29, 4647–4651. [Google Scholar] [CrossRef]
- Phukan, A.; Bhattacharjee, R.P.; Dutta, D.K. Stabilization of SnO2 Nanoparticles into the Nanopores of Modified Montmorillonite and Their Antibacterial Activity. Adv. Powder Technol. 2017, 28, 139–145. [Google Scholar] [CrossRef]
- Krishnan, B.; Mahalingam, S. Facile Synthesis and Antimicrobial Activity of Manganese Oxide/Bentonite Nanocomposites. Res. Chem. Intermed. 2017, 43, 2351–2365. [Google Scholar] [CrossRef]
- Agarwal, S.; Nekouei, F.; Kargarzadeh, H.; Nekouei, S.; Tyagi, I.; Kumar Gupta, V. Preparation of Nickel Hydroxide Nanoplates Modified Activated Carbon for Malachite Green Removal from Solutions: Kinetic, Thermodynamic, Isotherm and Antibacterial Studies. Process Saf. Environ. Prot. 2016, 102, 85–97. [Google Scholar] [CrossRef]
- Rešček, A.; Katančić, Z.; Kratofil Krehula, L.; Ščetar, M.; Hrnjak-Murgić, Z.; Galić, K. Development of Double-Layered PE/PCL Films for Food Packaging Modified with Zeolite and Magnetite Nanoparticles. Adv. Polym. Technol. 2018, 37, 837–842. [Google Scholar] [CrossRef]
- Dutta, R.K.; Nenavathu, B.P.; Gangishetty, M.K.; Reddy, A.V.R. Studies on Antibacterial Activity of ZnO Nanoparticles by ROS Induced Lipid Peroxidation. Colloids Surf. B Biointerfaces 2012, 94, 143–150. [Google Scholar] [CrossRef]
- Shameli, K.; Ahmad, M.B.; Zargar, M.; Yunus, W.M.Z.W.; Rustaiyan, A.; Ibrahim, N.A. Synthesis of Silver Nanoparticles in Montmorillonite and Their Antibacterial Behavior. Int. J. Nanomed. 2011, 6, 581–590. [Google Scholar] [CrossRef]
- Shu, Z.; Zhang, Y.; Yang, Q.; Yang, H. Halloysite Nanotubes Supported Ag and ZnO Nanoparticles with Synergistically Enhanced Antibacterial Activity. Nanoscale Res. Lett. 2017, 12, 135. [Google Scholar] [CrossRef]
- Alswat, A.A.; Ahmad, M.B.; Hussein, M.Z.; Ibrahim, N.A.; Saleh, T.A. Copper Oxide Nanoparticles-Loaded Zeolite and Its Characteristics and Antibacterial Activities. J. Mater. Sci. Technol. 2017, 33, 889–896. [Google Scholar] [CrossRef]
- Alswat, A.A.; Ahmad, M.B.; Saleh, T.A.; Bin Hussein, M.Z.; Ibrahim, N.A. Effect of Zinc Oxide Amounts on the Properties and Antibacterial Activities of Zeolite/Zinc Oxide Nanocomposite. Mater. Sci. Eng. C 2016, 68, 505–511. [Google Scholar] [CrossRef]
- Azizi-Lalabadi, M.; Ehsani, A.; Divband, B.; Alizadeh-Sani, M. Antimicrobial Activity of Titanium Dioxide and Zinc Oxide Nanoparticles Supported in 4A Zeolite and Evaluation the Morphological Characteristic. Sci. Rep. 2019, 9, 17439. [Google Scholar] [CrossRef]
- Alswat, A.A.; Ahmad, M.B.; Saleh, T.A. Preparation and Characterization of Zeolite\Zinc Oxide-Copper Oxide Nanocomposite: Antibacterial Activities. Colloids Interface Sci. Commun. 2017, 16, 19–24. [Google Scholar] [CrossRef]
- Tao, Y.; Ju, E.; Ren, J.; Qu, X. Bifunctionalized Mesoporous Silica-Supported Gold Nanoparticles: Intrinsic Oxidase and Peroxidase Catalytic Activities for Antibacterial Applications. Adv. Mater. 2015, 27, 1097–1104. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, S.; Fang, Y.; Zhu, Z. Boosting Antibacterial Activity with Mesoporous Silica Nanoparticles Supported Silver Nanoclusters. J. Colloid Interface Sci. 2019, 555, 470–479. [Google Scholar] [CrossRef]
- Sohrabnezhad, S.; Sadeghi, A. Matrix Effect of Montmorillonite and MCM-41 Matrices on the Antibacterial Activity of Ag2CO3 Nanoparticles. Appl. Clay Sci. 2015, 105–106, 217–224. [Google Scholar] [CrossRef]
- Tahmasbi, L.; Sedaghat, T.; Motamedi, H.; Kooti, M. Mesoporous Silica Nanoparticles Supported Copper(II) and Nickel(II) Schiff Base Complexes: Synthesis, Characterization, Antibacterial Activity and Enzyme Immobilization. J. Solid State Chem. 2018, 258, 517–525. [Google Scholar] [CrossRef]
- Shah, V.; Shah, S.; Shah, H.; Rispoli, F.J.; McDonnell, K.T.; Workeneh, S.; Karakoti, A.; Kumar, A.; Seal, S. Antibacterial Activity of Polymer Coated Cerium Oxide Nanoparticles. PLoS ONE 2012, 7, e47827. [Google Scholar] [CrossRef] [PubMed]
- Gul, S.; Rehan, Z.A.; Khan, S.A.; Akhtar, K.; Khan, M.A.; Khan, M.I.; Rashid, M.I.; Asiri, A.M.; Khan, S.B. Antibacterial PES-CA-Ag2O Nanocomposite Supported Cu Nanoparticles Membrane toward Ultrafiltration, BSA Rejection and Reduction of Nitrophenol. J. Mol. Liq. 2017, 230, 616–624. [Google Scholar] [CrossRef]
- Dhanavel, S.; Manivannan, N.; Mathivanan, N.; Gupta, V.K.; Narayanan, V.; Stephen, A. Preparation and Characterization of Cross-Linked Chitosan/Palladium Nanocomposites for Catalytic and Antibacterial Activity. J. Mol. Liq. 2018, 257, 32–41. [Google Scholar] [CrossRef]
- Hamidi, M.; Azadi, A.; Rafiei, P. Hydrogel Nanoparticles in Drug Delivery. Adv. Drug Deliv. Rev. 2008, 60, 1638–1649. [Google Scholar] [CrossRef]
- Wahid, F.; Yin, J.J.; Xue, D.D.; Xue, H.; Lu, Y.S.; Zhong, C.; Chu, L.Q. Synthesis and Characterization of Antibacterial Carboxymethyl Chitosan/ZnO Nanocomposite Hydrogels. Int. J. Biol. Macromol. 2016, 88, 273–279. [Google Scholar] [CrossRef]
- Wahid, F.; Wang, H.S.; Lu, Y.S.; Zhong, C.; Chu, L.Q. Preparation, Characterization and Antibacterial Applications of Carboxymethyl Chitosan/CuO Nanocomposite Hydrogels. Int. J. Biol. Macromol. 2017, 101, 690–695. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Li, C.; Wu, H.; Du, J.; Feng, J.; Zhang, J.; Huang, L.; Tan, S.; Shi, Q. Montmorillonite-Modified Reduced Graphene Oxide Stabilizes Copper Nanoparticles and Enhances Bacterial Adsorption and Antibacterial Activity. ACS Appl. Bio Mater. 2019, 2, 1842–1849. [Google Scholar] [CrossRef] [PubMed]
- Kubasheva, Z.; Sprynskyy, M.; Railean-Plugaru, V.; Pomastowski, P.; Ospanova, A.; Buszewski, B. Synthesis and Antibacterial Activity of (AgCl, Ag)NPs/Diatomite Hybrid Composite. Materials 2020, 13, 3409. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Garza, M.; Olguín, M.T.; García-Sosa, I.; Alcántara, D.; Rodríguez-Fuentes, G. Silver Supported on Natural Mexican Zeolite as an Antibacterial Material. Microporous Mesoporous Mater. 2000, 39, 431–444. [Google Scholar] [CrossRef]
- De la Rosa-Gómez, I.; Olguín, M.T.; Alcántara, D. Bactericides of Coliform Microorganisms from Wastewater Using Silver-Clinoptilolite Rich Tuffs. Appl. Clay Sci. 2008, 40, 45–53. [Google Scholar] [CrossRef]
- Azizi-Lalabadi, M.; Alizadeh-Sani, M.; Khezerlou, A.; Mirzanajafi-Zanjani, M.; Zolfaghari, H.; Bagheri, V.; Divband, B.; Ehsani, A. Nanoparticles and Zeolites: Antibacterial Effects and Their Mechanism against Pathogens. Curr. Pharm. Biotechnol. 2019, 20, 1074–1086. [Google Scholar] [CrossRef]
- Du, W.L.; Niu, S.S.; Xu, Y.L.; Xu, Z.R.; Fan, C.L. Antibacterial Activity of Chitosan Tripolyphosphate Nanoparticles Loaded with Various Metal Ions. Carbohydr. Polym. 2009, 75, 385–389. [Google Scholar] [CrossRef]
- Guibal, E.; Cambe, S.; Bayle, S.; Taulemesse, J.M.; Vincent, T. Silver/Chitosan/Cellulose Fibers Foam Composites: From Synthesis to Antibacterial Properties. J. Colloid Interface Sci. 2013, 393, 411–420. [Google Scholar] [CrossRef]
- Anwar, Y. Antibacterial and Lead Ions Adsorption Characteristics of Chitosan-Manganese Dioxide Bionanocomposite. Int. J. Biol. Macromol. 2018, 111, 1140–1145. [Google Scholar] [CrossRef]
- Mokhtar, A.; Abdelkrim, S.; Hachemaoui, M.; Adjdir, M.; Zahraoui, M.; Boukoussa, B. Layered Silicate Magadiite and Its Composites for Pollutants Removal and Antimicrobial Properties: A Review. Appl. Clay Sci. 2020, 198, 105823. [Google Scholar] [CrossRef]
- Mokhtar, A.; Medjhouda, Z.A.K.; Djelad, A.; Boudia, A.; Bengueddach, A.; Sassi, M. Structure and Intercalation Behavior of Copper II on the Layered Sodium Silicate Magadiite Material. Chem. Pap. 2018, 72, 39–50. [Google Scholar] [CrossRef]
- Mokhtar, A.; Djelad, A.; Boudia, A.; Sassi, M.; Bengueddach, A. Preparation and Characterization of Layered Silicate Magadiite Intercalated by Cu2+ and Zn2+ for Antibacterial Behavior. J. Porous Mater. 2017, 24, 1627–1636. [Google Scholar] [CrossRef]
- Kebir, Z.; Adel, M. Preparation and Antibacterial Activity of Silver Nanoparticles Intercalated Kenyaite Materials. Mater. Res. Express 2018, 5, 085021. [Google Scholar] [CrossRef]
- Abdelkrim, S.; Mokhtar, A.; Djelad, A.; Bennabi, F.; Souna, A.; Bengueddach, A.; Sassi, M. Chitosan/Ag-Bentonite Nanocomposites: Preparation, Characterization, Swelling and Biological Properties. J. Inorg. Organomet. Polym. Mater. 2020, 30, 831–840. [Google Scholar] [CrossRef]
- Tian, Y.; Qi, J.; Zhang, W.; Cai, Q.; Jiang, X. Facile, One-Pot Synthesis, and Antibacterial Activity of Mesoporous Silica Nanoparticles Decorated with Well-Dispersed Silver Nanoparticles. ACS Appl. Mater. Interfaces 2014, 6, 12038–12045. [Google Scholar] [CrossRef] [PubMed]
- Hachemaoui, M.; Boukoussa, B.; Mokhtar, A.; Mekki, A.; Beldjilali, M.; Benaissa, M.; Zaoui, F.; Hakiki, A.; Chaibi, W.; Sassi, M.; et al. Dyes Adsorption, Antifungal and Antibacterial Properties of Metal Loaded Mesoporous Silica: Effect of Metal and Calcination Treatment. Mater. Chem. Phys. 2020, 256, 123704. [Google Scholar] [CrossRef]
- Nocchetti, M.; Donnadio, A.; Ambrogi, V.; Andreani, P.; Bastianini, M.; Pietrella, D.; Latterini, L. Ag/AgCl Nanoparticle Decorated Layered Double Hydroxides: Synthesis, Characterization and Antimicrobial Properties. J. Mater. Chem. B 2013, 1, 2383–2393. [Google Scholar] [CrossRef]
- Chen, C.; Gunawan, P.; Lou, X.W.; Xu, R. Silver Nanoparticles Deposited Layered Double Hydroxide Nanoporous Coatings with Excellent Antimicrobial Activities. Adv. Funct. Mater. 2012, 22, 780–787. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, Y.; Zhang, Q.; Yang, F.; Hui, A.; Wang, A. Structural Evolution of Palygorskite-Rich Clay as the Nanocarriers of Silver Nanoparticles for Efficient Improving Antibacterial Activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022, 652, 129885. [Google Scholar] [CrossRef]
- Ghiassi, S.; Sedaghat, S.; Mokhtary, M.; Kefayati, H. Plant-mediated bio-synthesis of silver–montmorillonite nanocomposite and antibacterial effects on gram-positive and -negative bacteria. J. Nanostruct. Chem. 2018, 8, 353–357. [Google Scholar] [CrossRef]
- Le Ouay, B.; Stellacci, F. Antibacterial activity of silver nanoparticles: A surface science insight. Nano Today 2015, 10, 339–354. [Google Scholar] [CrossRef]
- Moradi, F.; Sedaghat, S.; Moradi, O.; Salmanabadi, S.A. Review on green nano-biosynthesis of silver nanoparticles and their biological activities: With an emphasis on medicinal plants. Inorg. Nano-Met. Chem. 2020, 51, 133–142. [Google Scholar] [CrossRef]
- Hundáková, M.; Dêdková, K.; Martynková, G.S. Decoration of Inorganic Substrates with Metallic Nanoparticles and Their Application as Antimicrobial Agents. In Metal Nanoparticles in Pharma; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Wang, L.; Wang, C.; Yang, C.; Hsieh, C.; Chen, S.; Shen, C.; Wang, J.; Huang, K.S. Synthesis and Anti-Fungal Effect of Silver Nanoparticles–Chitosan Composite Particles. Int. J. Nanomed. 2015, 2015, 2685–2696. [Google Scholar]
- Functionalization of Spray Coated Cellulose Nanofiber Sheet with Montmorillonite (MMT) and Silver Nanoparticles (AgNPs) to Biomedical Nanocomposite as Wound Regeneration Scaffold—ScienceDirect. Available online: https://www-sciencedirect-com.sndl1.arn.dz/science/article/pii/S0300944022000790 (accessed on 8 January 2023).
- Li, T.; Su, Y.; Wang, D.; Mao, Y.; Wang, W.; Liu, L.; Wen, S. High Antibacterial and Barrier Properties of Natural Rubber Comprising of Silver-Loaded Graphene Oxide. Int. J. Biol. Macromol. 2022, 195, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Chen, Q.; Xu, L.; Zhang, S.; Feng, L.; Cheng, L.; Xu, H.; Liu, Z.; Peng, R. Graphene Oxide–Silver Nanocomposite as a Highly Effective Antibacterial Agent with Species-Specific Mechanisms. ACS Appl. Mater. Interfaces 2013, 5, 3867–3874. [Google Scholar] [CrossRef]
- Jayrajsinh, S.; Shankar, G.; Agrawal, Y.K.; Bakre, L. Montmorillonite nanoclay as a multifaceted drug-delivery carrier: A review. J. Drug Deliv. Sci. Technol. 2017, 39, 200–209. [Google Scholar] [CrossRef]
- de Oliveira, L.H.; Trigueiro, P.; Souza, J.S.N.; de Carvalho, M.S.; Osajima, J.A.; da Silva-Filho, E.C.; Fonseca, M.G. Montmo-rillonite with Essential Oils as Antimicrobial Agents, Packaging, Repellents, and Insecticides: An Overview. Colloids Surf. B Biointerfaces 2022, 209, 112186. [Google Scholar] [CrossRef]
- Unuabonah, E.I.; Ugwuja, C.G.; Omorogie, M.O.; Adewuyi, A.; Oladoja, N.A. Clays for Efficient Disinfection of Bacteria in Water. Appl. Clay Sci. 2018, 151, 211–223. [Google Scholar] [CrossRef]
- Williams, L.B.; Metge, D.W.; Eberl, D.D.; Harvey, R.W.; Turner, A.G.; Prapaipong, P.; Poret-Peterson, A.T. What Makes a Natural Clay Antibacterial? Environ. Sci. Technol. 2011, 45, 3768–3773. [Google Scholar] [CrossRef]
- Gomes, C.F.; Gomes, J.H.; da Silva, E.F. Bacteriostatic and bactericidal clays: An overview. Environ. Geochem. Health 2020, 42, 3507–3527. [Google Scholar] [CrossRef]
- Zoveidavianpoor, M. Current Topics in the Utilization of Clay in Industrial and Medical Applications; InTech Open: London, UK, 2018. [Google Scholar]
- Biswas, B.; Warr, L.N.; Hilder, E.F.; Goswami, N.; Rahman, M.M.; Churchman, J.G.; Vasilev, K.; Pan, G.; Naidu, R. Biocom-patible Functionalisation of Nanoclays for Improved Environmental Remediation. Chem. Soc. Rev. 2019, 48, 3740–3770. [Google Scholar] [CrossRef] [PubMed]
- Dorioz, J.; Robert, M.; Chenu, C. The role of roots, fungi and bacteria on clay particle organization. An experimental approach. Geoderma 1993, 56, 179–194. [Google Scholar] [CrossRef]
- Otto, C.C.; Haydel, S.E. Microbicidal Clays: Composition, Activity, Mechanism of Action, and Therapeutic Applications. Microbial pathogens and strategies for combating them: Science, technology and education (A. Méndez-Vilas, Ed.) Mic. 2013, 2, 1169–1180. [Google Scholar]
- Williams, L.B.; Haydel, S.E. Evaluation of the medicinal use of clay minerals as antibacterial agents. Int. Geol. Rev. 2010, 52, 745–770. [Google Scholar] [CrossRef]
- Özdemir, G.; Yapar, S. Preparation and characterization of copper and zinc adsorbed cetylpyridinium and N-lauroylsarcosinate intercalated montmorillonites and their antibacterial activity. Colloids Surf. B Biointerfaces 2020, 188, 110791. [Google Scholar] [CrossRef]
- Ghadiri, M.; Chrzanowski, W.; Rohanizadeh, R. Biomedical Applications of Cationic Clay Minerals. RSC Adv. 2015, 5, 29467–29481. [Google Scholar] [CrossRef]
- Li, G.L.; Zhou, C.H.; Fiore, S.; Yu, W.H. Interactions between microorganisms and clay minerals: New insights and broader applications. Appl. Clay Sci. 2019, 177, 91–113. [Google Scholar] [CrossRef]
- Yang, D.; Yuan, P.; Zhu, J.X.; He, H.-P. Synthesis and characterization of antibacterial compounds using montmorillonite and chlorhexidine acetate. J. Therm. Anal. Calorim. 2007, 89, 847–852. [Google Scholar] [CrossRef]
- Kaufhold, S.; Dohrmann, R.; Ufer, K.; Meyer, F. Comparison of methods for the quantification of montmorillonite in bentonites. Appl. Clay Sci. 2002, 22, 145–151. [Google Scholar] [CrossRef]
- Wang, J.; Cui, L.; Ren, Y.; Zou, Y.; Ma, J.; Wang, C.; Zheng, Z.; Chen, X.; Zeng, R.; Zheng, Y. In vitro and in vivo biodegradation and biocompatibility of an MMT/BSA composite coating upon magnesium alloy AZ. J. Mater. Sci. Technol. 2020, 47, 52–67. [Google Scholar] [CrossRef]
- Lima, A.C.; Jou, L.M.; Barcia, O.E.; Margarit-Mattos, I.C. Montmorillonite as corrosion protective pigment. Corros. Sci. 2018, 141, 182–194. [Google Scholar] [CrossRef]
- Wu, K.; Zhao, X.; Chen, M.; Zhang, H.; Zhu, X.; Liu, Q. Synthesis of Well-Dispersed Fe3O4 Nanoparticles Loaded on Montmorillonite and Sensitive Colorimetric Detection of H2O2 Based on Its Peroxidase-like Activity. New J. Chem. 2018, 42, 9578–9587. [Google Scholar] [CrossRef]
- Liu, Q.; Jiang, Y.; Zhang, L.; Zhou, X.; Lv, X.; Ding, Y.; Sun, L.; Chen, P.; Yin, H. The catalytic activity of Ag2S-montmorillonites as peroxidase mimetic toward colorimetric detection of H2O. Mater. Sci. Eng. C 2016, 65, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Odom, I.E. Smectite clay minerals: Properties and uses. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Sci. 1984, 311, 391–409. [Google Scholar] [CrossRef]
- Saadat, S.; Rawtani, D.; Parikh, G. Clay Minerals-Based Drug Delivery Systems for Anti-Tuberculosis Drugs. Journal of Drug Delivery Science and Technology 2022, 76, 103755. [Google Scholar] [CrossRef]
- Motshekga, S.C.; Ray, S.S.; Onyango, M.S.; Momba, M.N. Preparation and antibacterial activity of chitosan-based nanocomposites containing bentonite-supported silver and zinc oxide nanoparticles for water disinfection. Appl. Clay Sci. 2015, 114, 330–339. [Google Scholar] [CrossRef]
- Ling, Y.; Luo, Y.; Luo, J.; Wang, X.; Sun, R. Novel antibacterial paper based on quaternized carboxymethyl chitosan/organic montmorillonite/Ag NP nanocomposites. Ind. Crop. Prod. 2013, 51, 470–479. [Google Scholar] [CrossRef]
- Mueller, B. Experimental Interactions Between Clay Minerals and Bacteria: A Review. Pedosphere 2015, 25, 799–810. [Google Scholar] [CrossRef]
- Gitari, M.W.; Mudzielwana, R. Mineralogical and Chemical Characteristics of Raw and Modified Clays and Their Application in Arsenic and Fluoride Removal: Review. In Current Topics in the Utilization of Clay in Industrial and Medical Applications; Intech Open: London, UK, 2018. [Google Scholar]
- Murray, H. Applied Clay Mineralogy: Occurrences, Processing and Applications of Kaolins, Bentonites, Palygorskitesepiolite, and Common Clays. Clays Clay Miner. 2007, 55, 644–645. [Google Scholar]
- Bhattacharyya, K.G.; Gupta, S. Sen Adsorption of a Few Heavy Metals on Natural and Modified Kaolinite and Montmorillonite: A Review. Adv. Colloid Interface Sci. 2008, 140, 114–131. [Google Scholar] [CrossRef]
- Baker, M.L.; Baas, J.H.; Malarkey, J.; Jacinto, R.S.; Craig, M.J.; Kane, I.A.; Barker, S. The Effect of Clay Type on the Properties of Cohesive Sediment Gravity Flows and Their Deposits. J. Sediment. Res. 2017, 87, 1176–1195. [Google Scholar] [CrossRef]
- Helmy, A.; Ferreiro, E.; de Bussetti, S. Surface Area Evaluation of Montmorillonite. J. Colloid Interface Sci. 1999, 210, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Auerbach, S.M.; Carrado, K.A.; Dutta, P.K. Handbook of Layered Materials; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Cases, J.M.; Berend, I.; Besson, G.; Francois, M.; Uriot, J.P.; Thomas, F.; Poirier, J.E. Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite. 1. The sodium-exchanged form. Langmuir 1992, 8, 2730–2739. [Google Scholar] [CrossRef]
- Xia, M.; Jiang, Y.; Zhao, L.; Li, F.; Xue, B.; Sun, M.; Liu, D.; Zhang, X. Wet grinding of montmorillonite and its effect on the properties of mesoporous montmorillonite. Colloids Surf. A Physicochem. Eng. Asp. 2010, 356, 1–9. [Google Scholar] [CrossRef]
- He, H.; Zhou, Q.; Martens, W.N.; Kloprogge, T.J.; Yuan, P.; Xi, Y.; Zhu, J.; Frost, R.L. Microstructure of HDTMA+-modified montmorillonite and its influence on sorption characteristics. Clays Clay Miner. 2006, 54, 689–696. [Google Scholar] [CrossRef]
- Yang, J.; Yu, K. Chromium Immobilization in Soil Using Quaternary Ammonium Cations Modified Montmorillonite: Characterization and Mechanism. J. Hazard. Mater. 2017, 321, 73–80. [Google Scholar] [CrossRef]
- Tombácz, E.; Szekeres, M. Colloidal behavior of aqueous montmorillonite suspensions: The specific role of pH in the presence of indifferent electrolytes. Appl. Clay Sci. 2004, 27, 75–94. [Google Scholar] [CrossRef]
- Nuruzzaman, M.; Rahman, M.M.; Liu, Y.; Naidu, R. Nanoencapsulation, Nano-guard for Pesticides: A New Window for Safe Application. J. Agric. Food Chem. 2016, 64, 1447–1483. [Google Scholar] [CrossRef]
- Magaña, S.; Quintana, P.; Aguilar, D.; Toledo, J.; Ángeles-Chávez, C.; Cortés, M.; León, L.; Freile-Pelegrín, Y.; López, T.; Sánchez, R.T. Antibacterial activity of montmorillonites modified with silver. J. Mol. Catal. A Chem. 2008, 281, 192–199. [Google Scholar] [CrossRef]
- Unuabonah, E.I.; Taubert, A. Clay–Polymer Nanocomposites (CPNs): Adsorbents of the Future for Water Treatment. Applied Clay Science 2014, 99, 83–92. [Google Scholar] [CrossRef]
- Herrera, P.; Burghardt, R.C.; Phillips, T.D. Adsorption of Salmonella enteritidis by cetylpyridinium-exchanged montmorillonite clays. Vet. Microbiol. 2000, 74, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Mokhtar, A.; Bennabi, F.; Abdelkrim, S.; Sardi, A.; Boukoussa, B.; Souna, A.; Bengueddach, A.; Sassi, M. Evaluation of intercalated layered materials as an antimicrobial and drug delivery system: A comparative study. J. Incl. Phenom. Macrocycl. Chem. 2020, 96, 353–364. [Google Scholar] [CrossRef]
- Holešová, S.; Valášková, M.; Plevová, E.; Pazdziora, E.; Matějová, K. Preparation of novel organovermiculites with antibacterial activity using chlorhexidine diacetate. J. Colloid Interface Sci. 2010, 342, 593–597. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, P.; Byrne, C.; Breen, A.; Pillai, S.C. Antimicrobial activity of photocatalysts: Fundamentals, mechanisms, kinetics and recent advances. Appl. Catal. B Environ. 2018, 225, 51–75. [Google Scholar] [CrossRef]
- Misra, A.J.; Das, S.; Rahman, A.H.; Das, B.; Jayabalan, R.; Behera, S.K.; Suar, M.; Tamhankar, A.J.; Mishra, A.; Lundborg, C.S.; et al. Doped ZnO nanoparticles impregnated on Kaolinite (Clay): A reusable nanocomposite for photocatalytic disinfection of multidrug resistant Enterobacter sp. under visible light. J. Colloid Interface Sci. 2018, 530, 610–623. [Google Scholar] [CrossRef]
- Padil, V.V.T.; Senan, C.; Černík, M. Dodecenylsuccinic Anhydride Derivatives of Gum Karaya (Sterculia urens): Preparation, Characterization, and Their Antibacterial Properties. J. Agric. Food Chem. 2015, 63, 3757–3765. [Google Scholar] [CrossRef]
- Kurczewska, J.; Cegłowski, M.; Pecyna, P.; Ratajczak, M.; Gajęcka, M.; Schroeder, G. Molecularly imprinted polymer as drug delivery carrier in alginate dressing. Mater. Lett. 2017, 201, 46–49. [Google Scholar] [CrossRef]
- Liu, X.F.; Guan, Y.L.; Yang, D.Z.; Li, Z.; Yao, K. De Antibacterial Action of Chitosan and Carboxymethylated Chitosan. J. Appl. Polym. Sci. 2001, 79. [Google Scholar] [CrossRef]
- Cheah, W.Y.; Show, P.-L.; Ng, I.-S.; Lin, G.-Y.; Chiu, C.-Y.; Chang, Y.-K. Antibacterial activity of quaternized chitosan modified nanofiber membrane. Int. J. Biol. Macromol. 2019, 126, 569–577. [Google Scholar] [CrossRef]
- Mohamed, N.A.; Sabaa, M.W.; El-Ghandour, A.H.; Abdel-Aziz, M.M.; Abdel-Gawad, O.F. Quaternized N-substituted carboxymethyl chitosan derivatives as antimicrobial agents. Int. J. Biol. Macromol. 2013, 60, 156–164. [Google Scholar] [CrossRef]
- Bai, H.; Zhang, H.; Hu, R.; Chen, H.; Lv, F.; Liu, L.; Wang, S. Supramolecular Conjugated Polymer Systems with Controlled Antibacterial Activity. Langmuir 2017, 33, 1116–1120. [Google Scholar] [CrossRef]
- Wan, H.; Yan, A.; Xiong, H.; Chen, G.; Zhang, N.; Cao, Y.; Liu, X. Montmorillonite: A structural evolution from bulk through unilaminar nanolayers to nanotubes. Appl. Clay Sci. 2020, 194, 105695. [Google Scholar] [CrossRef]
- Sajjadi, M.; Baran, N.Y.; Baran, T.; Nasrollahzadeh, M.; Tahsili, M.R.; Shokouhimehr, M. Palladium nanoparticles stabilized on a novel Schiff base modified Unye bentonite: Highly stable, reusable and efficient nanocatalyst for treating wastewater contaminants and inactivating pathogenic microbes. Sep. Purif. Technol. 2020, 237, 116383. [Google Scholar] [CrossRef]
- Murugesan, S.; Scheibel, T. Copolymer/Clay Nanocomposites for Biomedical Applications. Adv. Funct. Mater. 2020, 30, 1908101. [Google Scholar] [CrossRef]
- Peng, K.; Wang, H.; Gao, H.; Wan, P.; Ma, M.; Li, X. Emerging hierarchical ternary 2D nanocomposites constructed from montmorillonite, graphene and MoS2 for enhanced electrochemical hydrogen evolution. Chem. Eng. J. 2020, 393, 124704. [Google Scholar] [CrossRef]
- Kenawy, E.-R.; Berber, M.R.; Saad-Allah, K.; Azaam, M. Synthesis of montmorillonite-based tris(2-ethylamine)-Schiff-base composites with remarkable antibacterial activity. J. Saudi Chem. Soc. 2020, 24, 81–91. [Google Scholar] [CrossRef]
- Zhang, E.; Liu, C. A new antibacterial Co-Cr-Mo-Cu alloy: Preparation, biocorrosion, mechanical and antibacterial property. Mater. Sci. Eng. C 2016, 69, 134–143. [Google Scholar] [CrossRef]
- Mokhtar, A.; Djelad, A.; Bengueddach, A.; Sassi, M. CuNPs-magadiite/chitosan nanocomposite beads as advanced antibacterial agent: Synthetic path and characterization. Int. J. Biol. Macromol. 2018, 118, 2149–2155. [Google Scholar] [CrossRef]
- Zhou, W.; Ma, Y.; Yang, H. A Label-Free Biosensor Based on Silver Nanoparticles Array for Clinical Detection of Serum P53 in Head and Neck Squamous Cell Carcinoma. Int. J. Nanomed. 2011, 6, 381–386. [Google Scholar] [CrossRef]
- Giljohann, D.A.; Seferos, D.S.; Daniel, W.L.; Massich, M.D.; Patel, P.C.; Mirkin, C.A. Gold Nanoparticles for Biology and Medicine. Angew. Chem. Int. Ed. 2010, 49, 3280–3294. [Google Scholar] [CrossRef]
- Luo, J.; Jiang, S.; Zhang, H.; Jiang, J.; Liu, X. A Novel Non-Enzymatic Glucose Sensor Based on Cu Nanoparticle Modified Graphene Sheets Electrode. Anal. Chim. Acta 2012, 709, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Hossain , S.I.; Kukushkina, E.A.; Izzi, M.; Sportelli, M.C.; Picca, R.A.; Ditaranto, N.; Cioffi, N. A Review on Montmorillonite-Based Nanoantimicrobials: State of the Art. Nanomaterials 2023, 13, 848. Available online: https://www.mdpi.com/2079-4991/13/5/848 (accessed on 26 September 2023). [CrossRef]
- Mekki, A.; Mokhtar, A.; Hachemaoui, M.; Beldjilali, M.; Meliani, M.F.; Zahmani, H.H.; Hacini, S.; Boukoussa, B. Fe and Ni nanoparticles-loaded zeolites as effective catalysts for catalytic reduction of organic pollutants. Microporous Mesoporous Mater. 2021, 310, 110597. [Google Scholar] [CrossRef]
- Soumia, A.; Adel, M.; Amina, S.; Bouhadjar, B.; Amal, D.; Farouk, Z.; Abdelkader, B.; Mohamed, S. Fe3O4-Alginate Nanocomposite Hydrogel Beads Material: One-Pot Preparation, Release Kinetics and Antibacterial Activity. Int. J. Biol. Macromol. 2020, 145, 466–475. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Butola, B.; Joshi, M. Synthesis, characterization and antibacterial properties of novel nano-silver loaded acid activated montmorillonite. Appl. Clay Sci. 2017, 146, 278–285. [Google Scholar] [CrossRef]
- Roy, A.; Joshi, M.; Butola, B.; Malhotra, S. Antimicrobial and toxicological behavior of montmorillonite immobilized metal nanoparticles. Mater. Sci. Eng. C 2018, 93, 704–715. [Google Scholar] [CrossRef] [PubMed]
- Cruces, E.; Arancibia-Miranda, N.; Manquián-Cerda, K.; Perreault, F.; Bolan, N.; Azócar, M.I.; Cubillos, V.; Montory, J.; Rubio, M.A.; Sarkar, B. Copper/Silver Bimetallic Nanoparticles Supported on Aluminosilicate Geomaterials as Antibacterial Agents. ACS Appl. Nano Mater. 2022, 5, 1472–1483. [Google Scholar] [CrossRef]
- Amin, S.; Pazouki, M.; Technology, A.H.-P. Synthesis of TiO2–Ag Nanocomposite with Sol–Gel Method and Investigation of Its Antibacterial Activity against E. Coli. Powder Technol. 2009, 196, 241–245. [Google Scholar] [CrossRef]
- Roy, A.; Joshi, M.; Butola, B. Preparation and antimicrobial assessment of zinc-montmorillonite intercalates based HDPE nanocomposites: A cost-effective and safe bioactive plastic. J. Clean. Prod. 2018, 212, 1518–1525. [Google Scholar] [CrossRef]
- Motshekga, S.C.; Ray, S.S.; Onyango, M.S.; Momba, M.N. Microwave-assisted synthesis, characterization and antibacterial activity of Ag/ZnO nanoparticles supported bentonite clay. J. Hazard. Mater. 2013, 262, 439–446. [Google Scholar] [CrossRef]
- Girase, B.; Depan, D.; Shah, J.; Xu, W.; Misra, R. Silver–clay nanohybrid structure for effective and diffusion-controlled antimicrobial activity. Mater. Sci. Eng. C 2011, 31, 1759–1766. [Google Scholar] [CrossRef]
- Wei, J.-C.; Yen, Y.-T.; Wang, Y.-T.; Hsu, S.-H.; Lin, J.-J. Enhancing silver nanoparticle and antimicrobial efficacy by the exfoliated clay nanoplatelets. RSC Adv. 2013, 3, 7392–7397. [Google Scholar] [CrossRef]
- Sohrabnezhad, S.; Rassa, M.; Seifi, A. Green synthesis of Ag nanoparticles in montmorillonite. Mater. Lett. 2016, 168, 28–30. [Google Scholar] [CrossRef]
- Sohrabnezhad, S.; Pourahmad, A.; Moghaddam, M.M.; Sadeghi, A. Study of antibacterial activity of Ag and Ag2CO3 nanoparticles stabilized over montmorillonite. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 136, 1728–1733. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Xi, Z.; Wu, F.; Song, S.; Huang, X.; Chu, X.; Wang, Z.; Wang, Y.; Zhang, Q.; Meng, N.; et al. Quaternized Chitosan-Coated Montmorillonite Interior Antimicrobial Metal–Antibiotic in Situ Coordination Complexation for Mixed Infections of Wounds. Langmuir 2019, 35, 15275–15286. [Google Scholar] [CrossRef] [PubMed]
- Cecilia, J.A.; García-Sancho, C.; Vilarrasa-García, E.; Jiménez-Jiménez, J.; Rodriguez-Castellón, E. Synthesis, Characterization, Uses and Applications of Porous Clays Heterostructures: A Review. Chem. Rec. 2018, 18, 1085–1104. [Google Scholar] [CrossRef] [PubMed]
- Obaje, S.; Omada, J.; Dambatta, U.D. Clays and Their Industrial Applications: Synoptic Review. Int. J. Sci. Technol. 2013, 3. [Google Scholar]
- Seray, M.; Hadj-Hamou, A.S.; Uzunlu, S.; Benhacine, F. Development of active packaging films based on poly (butylene adipate-co-terephthalate) and silver–montmorillonite for shelf life extension of sea bream. Polym. Bull. 2021, 79, 3573–3594. [Google Scholar] [CrossRef]
- Afra, E.; Narchin, P. Creating extended antimicrobial property in paper by means of Ag and nanohybrids of montmorillonite (MMT). Holzforschung 2017, 71, 445–454. [Google Scholar] [CrossRef]
- Nakazato, G.; Kobayashi, R.K.; Seabra, A.B.; Duran, N. Use of nanoparticles as a potential antimicrobial for food packaging. In Food Preservation; Elsevier: Amsterdam, The Netherlands, 2017; pp. 413–447. [Google Scholar] [CrossRef]
- Cirillo, G.; Kozlowski, M.A.; Spizzirri, U.G. Composites Materials for Food Packaging; Cirillo, G., Kozlowski, M.A., Spizzirri, U.G., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; ISBN 9781119160243. [Google Scholar]
- Roy, A.; Joshi, M.; Butola, B. Antimicrobial performance of polyethylene nanocomposite monofilaments reinforced with metal nanoparticles decorated montmorillonite. Colloids Surf. B Biointerfaces 2019, 178, 87–93. [Google Scholar] [CrossRef]
- Salmas, C.; Giannakas, A.; Katapodis, P.; Leontiou, A.; Moschovas, D.; Karydis-Messinis, A. Development of ZnO/Na-Montmorillonite Hybrid Nanostructures Used for PVOH/ZnO/Na-Montmorillonite Active Packaging Films Preparation via a Melt-Extrusion Process. Nanomaterials 2020, 10, 1079. [Google Scholar] [CrossRef]
- Makwana, D.; Castaño, J.; Somani, R.S.; Bajaj, H.C. Characterization of Agar-CMC/Ag-MMT nanocomposite and evaluation of antibacterial and mechanical properties for packaging applications. Arab. J. Chem. 2018, 13, 3092–3099. [Google Scholar] [CrossRef]
- Mathew, S.; Snigdha, S.; Mathew, J.; Radhakrishnan, E. Poly(vinyl alcohol): Montmorillonite: Boiled rice water (starch) blend film reinforced with silver nanoparticles; characterization and antibacterial properties. Appl. Clay Sci. 2018, 161, 464–473. [Google Scholar] [CrossRef]
- Nouri, A.; Yaraki, M.T.; Ghorbanpour, M.; Agarwal, S.; Gupta, V.K. Enhanced Antibacterial effect of chitosan film using Montmorillonite/CuO nanocomposite. Int. J. Biol. Macromol. 2018, 109, 1219–1231. [Google Scholar] [CrossRef] [PubMed]
- Eskandarabadi, S.M.; Mahmoudian, M.; Farah, K.R.; Abdali, A.; Nozad, E.; Enayati, M. Active intelligent packaging film based on ethylene vinyl acetate nanocomposite containing extracted anthocyanin, rosemary extract and ZnO/Fe-MMT nanoparticles. Food Packag. Shelf Life 2019, 22, 100389. [Google Scholar] [CrossRef]
- Savas, L.A.; Hancer, M. Montmorillonite reinforced polymer nanocomposite antibacterial film. Appl. Clay Sci. 2015, 108, 40–44. [Google Scholar] [CrossRef]
- Kuswandi, B. Nanotechnology in Food Packaging; Springer: Cham, Switzerland, 2016; pp. 151–183. [Google Scholar] [CrossRef]
- Khalaj, M.-J.; Ahmadi, H.; Lesankhosh, R.; Khalaj, G. Study of physical and mechanical properties of polypropylene nanocomposites for food packaging application: Nano-clay modified with iron nanoparticles. Trends Food Sci. Technol. 2016, 51, 41–48. [Google Scholar] [CrossRef]
- Xu, G.; Qiao, X.; Qiu, X. Preparation and Characterization of Nano-Silver Loaded Montmorillonite with Strong Antibacterial Activity and Slow Release Property. J. Mater. Sci. Technol. 2011, 27, 685–690. [Google Scholar] [CrossRef]
- Tokarský, J.; Čapková, P.; Klemm, V.; Rafaja, D.; Kukutschová, J. Adhesion of silver nanoparticles on the montmorillonite surface. J. Phys. Chem. Solids 2010, 71, 634–637. [Google Scholar] [CrossRef]
- Barreca, S.; Colmenares, J.J.V.; Pace, A.; Orecchio, S.; Pulgarin, C. Escherichia coli inactivation by neutral solar heterogeneous photo-Fenton (HPF) over hybrid iron/montmorillonite/alginate beads. J. Environ. Chem. Eng. 2015, 3, 317–324. [Google Scholar] [CrossRef]
- Qin, C.; Chen, C.; Shang, C.; Xia, K. Fe3+-saturated montmorillonite effectively deactivates bacteria in wastewater. Sci. Total. Environ. 2018, 622–623, 88–95. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, C.; Zeng, G.-M.; Gong, J.-L.; Chang, Y.-N.; Song, B.; Deng, C.-H.; Liu, H.-Y. The disinfection performance and mechanisms of Ag/lysozyme nanoparticles supported with montmorillonite clay. J. Hazard. Mater. 2016, 317, 416–429. [Google Scholar] [CrossRef]
- de Moraes, L.T.; Paiva, E.M.; Rodrigues, S.F.; Rangel, J.H.G.; Oliveira, M.M. Development of Nickel and Silver Ceramic Filters Supported on K10 Montmorillonite Clay for Water Disinfection. Cerâmica 2020, 66, 474–482. [Google Scholar] [CrossRef]
- Qin, C.; Li, L.; Kikkeri, K.; Agah, M.; Xia, K. Deactivation of E. coli in water using Fe3+-saturated montmorillonite impregnated filter paper. Sci. Total. Environ. 2019, 652, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Lovatel, R.; Neves, R.; Oliveira, G.; Mauler, R.; Crespo, J.; Carli, L.; Giovanela, M. Disinfection of biologically treated industrial wastewater using montmorillonite/alginate/nanosilver hybrids. J. Water Process. Eng. 2015, 7, 273–279. [Google Scholar] [CrossRef]
- Ge, M.; Li, J.; Song, S.; Meng, N.; Zhou, N. Development and antibacterial performance of silver nanoparticles-lecithin modified montmorillonite nanoparticle hybrid. Appl. Clay Sci. 2019, 183, 105334. [Google Scholar] [CrossRef]
- Tian, L.; Yuanyuan, Z.; Yingying, M.; Ran, H. Fabrication of functional silver loaded montmorillonite/polycarbonate with superhydrophobicity. Appl. Clay Sci. 2015, 118, 337–343. [Google Scholar] [CrossRef]
- Zou, Y.-H.; Wang, J.; Cui, L.-Y.; Zeng, R.-C.; Wang, Q.-Z.; Han, Q.-X.; Qiu, J.; Chen, X.-B.; Chen, D.-C.; Guan, S.-K.; et al. Corrosion resistance and antibacterial activity of zinc-loaded montmorillonite coatings on biodegradable magnesium alloy AZ31. Acta Biomater. 2019, 98, 196–214. [Google Scholar] [CrossRef]
- Zahedi, Y.; Fathi-Achachlouei, B.; Yousefi, A.R. Physical and mechanical properties of hybrid montmorillonite/zinc oxide reinforced carboxymethyl cellulose nanocomposites. Int. J. Biol. Macromol. 2018, 108, 863–873. [Google Scholar] [CrossRef]
- Peighambardoust, S.J.; Zahed-Karkaj, S.; Peighambardoust, S.H.; Ebrahimi, Y.; Peressini, D. Characterization of carboxymethyl cellulose-based active films incorporating non-modified and Ag or Cu-modified Cloisite 30B and montmorillonite nanoclays. Iran. Polym. J. 2020, 29, 1087–1097. [Google Scholar] [CrossRef]
- Sajjad, W.; Khan, T.; Ul-Islam, M.; Khan, R.; Hussain, Z.; Khalid, A.; Wahid, F. Development of modified montmorillonite-bacterial cellulose nanocomposites as a novel substitute for burn skin and tissue regeneration. Carbohydr. Polym. 2018, 206, 548–556. [Google Scholar] [CrossRef]
- Zhu, W.; Li, J.; Lei, J.; Li, Y.; Chen, T.; Duan, T.; Yao, W.; Zhou, J.; Yu, Y.; Liu, Y. Silver nanoparticles incorporated konjac glucomannan-montmorillonite nacre-like composite films for antibacterial applications. Carbohydr. Polym. 2018, 197, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-T.; Lin, S.-B.; Chen, L.-C.; Chen, H.-H. Antimicrobial activity and controlled release of nanosilvers in bacterial cellulose composites films incorporated with montmorillonites. Cellulose 2017, 24, 4871–4883. [Google Scholar] [CrossRef]
- Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Lett. 2015, 7, 219–242. [Google Scholar] [CrossRef] [PubMed]
- Iconaru, S.L.; Groza, A.; Stan, G.E.; Predoi, D.; Gaiaschi, S.; Trusca, R.; Chifiriuc, C.M.; Marutescu, L.; Tite, T.; Stanciu, G.A.; et al. Preparations of Silver/Montmorillonite Biocomposite Multilayers and Their Antifungal Activity. Coatings 2019, 9, 817. [Google Scholar] [CrossRef]
- Hajipour, M.J.; Fromm, K.M.; Ashkarran, A.A.; de Aberasturi, D.J.; de Larramendi, I.R.; Rojo, T.; Serpooshan, V.; Parak, W.J.; Mahmoudi, M. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012, 30, 499–511. [Google Scholar] [CrossRef]
- Gajjar, P.; Pettee, B.; Britt, D.W.; Huang, W.; Johnson, W.P.; Anderson, A.J. Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440. J. Biol. Eng. 2009, 3, 9. [Google Scholar] [CrossRef]
- Kumar, N.; Shah, V.; Walker, W.K. Perturbation of an Arctic Soil Microbial Community by Metal Nanoparticles. J. Hazard. Mater. 2011, 190, 816–822. [Google Scholar] [CrossRef]
- Kim, S.Y.; Khanal, D.; Tharkar, P.; Kalionis, B.; Chrzanowski, W. None of us is the same as all of us: Resolving heterogeneity of stem cell-derived extracellular vesicles using single-vesicle, nanoscale characterization with highresolution resonance enhanced atomic force microscope infrared spectroscopy (AFM-IR). Nanoscale Horiz. 2018, 3, 430–438. [Google Scholar] [CrossRef]
- Jou, S.K.; Malek, N.A.N.N. Characterization and antibacterial activity of chlorhexidine loaded silver-kaolinite. Appl. Clay Sci. 2016, 127–128, 1–9. [Google Scholar] [CrossRef]
- Matai, I.; Sachdev, A.; Dubey, P.; Kumar, S.U.; Bhushan, B.; Gopinath, P. Antibacterial activity and mechanism of Ag–ZnO nanocomposite on S. aureus and GFP-expressing antibiotic resistant E. coli. Colloids Surf. B Biointerfaces 2014, 115, 359–367. [Google Scholar] [CrossRef]
- Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramírez, J.T.; Yacaman, M.J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16, 2346–2353. [Google Scholar] [CrossRef]
- Kim, J.; Kuk, E.; Yu, K.; Kim, J.; Park, S.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.-Y.; et al. Antimicrobial Effects of Silver Nanoparticles. Nanomedicine 2020, 15, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.; Karan, R.; Sinha, A.; Khare, S.K. Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells. Bioresour. Technol. 2011, 102, 1516–1520. [Google Scholar] [CrossRef] [PubMed]
- Xiu, Z.-M.; Zhang, Q.-B.; Puppala, H.L.; Colvin, V.L.; Alvarez, P.J.J. Negligible Particle-Specific Antibacterial Activity of Silver Nanoparticles. Nano Lett. 2012, 12, 4271–4275. [Google Scholar] [CrossRef] [PubMed]
- Copcia, V.-E.; Gradinaru, R.; Mihai, G.-D.; Bilba, N.; Sandu, I.; Platform, A.I. Investigation Anti-Bacterial Effect of Zinc Oxide Nanoparticles upon Life of Listeria Monocytogenes. Ann. Biol. Res. 2012, 3, 3679–3685. [Google Scholar]
- Durán, N.; Marcato, P.D.; De Conti, R.; Alves, O.L.; Costa, F.T.M.; Brocchi, M. Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J. Braz. Chem. Soc. 2010, 21, 949–959. [Google Scholar] [CrossRef]
- Rai, M.K.; Deshmukh, S.D.; Ingle, A.P.; Gade, A.K. Silver Nanoparticles: The Powerful Nanoweapon against Multi-drug-Resistant Bacteria. J. Appl. Microbiol. 2012, 112, 841–852. [Google Scholar] [CrossRef]
Parameter | Value | References |
---|---|---|
Basal spacing (Å) | 10–13 | [106,107] |
Typical thickness (mm) | 2 | [108] |
Exchange capacity (mEq/100 g) | 80–120 | [106] |
Specific surface area (m2/kg) | 164.79 | [109,110] |
Micropore surface area (m2/g) | 38.48 | [111] |
External surface area (m2/g) | 126.31 | [111] |
Total pore volume (cm3/g) | 0.271 | [112] |
Average pore size (Å) | 64.74 | [113,114] |
Point of zero charge (pHpzc) | 8.0 | [115] |
Samples | Preparation Methods | Antibacterial Activity Assay | Bacteria | Initial Diameter | Final Inhibition Zone Diameter | Antibacterial Properties Comments | References |
---|---|---|---|---|---|---|---|
Montmorillonite | Silver nanoparticles were prepared by the reduction of (AgNO3) over montmorillonite in the presence and absence of the Na2CO3 compound in ethylene glycol. | Disk diffusion method | E. coli | 6.0 ± 00 mm | 6.2 ± 0.1 mm | The Ag2CO3–montmorillonite nanocomposite exhibited an antibacterial activity higher than the Ag-MMT sample against Escherichia coli. | [153] |
Ag–montmorillonite | 14.5 ± 0.3 mm | ||||||
Ag2CO3–montmorillonite | 8.5 ± 0.4 mm | ||||||
Nano-silver-loaded acid-activated (AgNPs–montmorillonite) | The silver-loaded clay (AgNPs–montmorillonite) was synthesized by converting the sodium clay form into an acid-activated clay, form then- it was treated by two concentrations of silver nitrate solution to obtain two types of acid activated Ag–montmorillonite. | Disk diffusion test | Gram-negative bacteria E. coli (ATCC 25922) | 15 mm | 44 ± 1.6 mm | The nanocomposite of AgNPs–montmorillonite showed antimicrobial activity marginally lower than silver nanoparticles alone, although the silver content was about 10-times lower than the silver nanoparticles. | [144] |
Gram-positive bacteria S. aureus (ATCC 29213) | 15 mm | 54.7 ± 1.2 mm | |||||
Acid-activated montmorillonite-supported SnO2 nanoparticles | Diffusion method on Muller–Hinton Agar | S. aureus (MTCC96) | - | 13 mm | SnO2 nanoparticles supported on montmorillonite showed for antibacterial activity against both Gram + and Gram − bacterial strains. | [34] | |
Proteusvulgaris (MTCC426) | - | 10 mm | |||||
Ag–montmorillonite/polycarbonate | The polycarbonate solution was mixed with silver-loaded modified montmorillonite and, then, treated with 1,4-dimethylbenzene to obtain functional Ag-Mt/PC with superhydrophobicity. | Disk susceptibility test | S. aureus (ATCC6535) | 6.0 mm | 9.5 mm | The nanocomposite showed an antibacterial activity against both Staphylococcus aureus ATCC 6535 and Escherichia coli ATCC 8739, and the mean diameter of inhibition zone was almost 50% larger than the polycarbonate alone. | [179] |
E. coli (ATCC8739) | 6.0 mm | 10.7 mm | |||||
Zn–montmorillonite-coated AZ31 | A Zn–montmorillonite coating was hydrothermally prepared using Zn2+-ion-intercalated Na–montmorillonite upon magnesium alloy AZ31. | Disk diffusion method | E. coli (ATCC 25922) gram (−) | - | 22 mm | The good inhibition of the Zn–montmorillonite coatings of bacteria was attributed to the slow and sustainable release of Zn2+ ions (up to 144 h). | [180] |
S. aureus (ATCC 25923) Gram (+) | - | 32 mm | |||||
CMC/montmorillonite 5% | Via the casting method, novel carboxymethyl-cellulose (CMC)-based nanocomposite films containing Na–montmorillonite (5% wt) and ZnO nanoparticles at different % were prepared. | Disk diffusion method | E. coli | - | 0 mm | The simultaneous incorporation of the ZnO–montmorillonite material improved the functional characteristics of the film, and it has a wide potential for food packaging applications. | [181] |
- | 18.4 ± 2.6 mm | ||||||
CMC/montmorillonite 5%/ZnO 4% | S. aureus | - | 0 mm | ||||
- | 20.4 ± 3.3 mm | ||||||
CMC–montmorillonite | Carboxymethyl-cellulose (CMC)-based films incorporating montmorillonite clay nanoparticles modified with silver and copper ions. | Agar diffusion method | E. coli (Gram-negative) | - | 0.00 ± 0.00 mm | The microbial tests revealed that AgNPs–montmorillonite had significantly higher antibacterial activity than CuNPs–montmorillonite against Gram-negative and Gram-positive bacteria. | [182] |
CMC–montmorillonite–CuNPs | - | 2.19 ± 0.23 mm | |||||
CMC–montmorillonite–AgNPs | - | 3.88 ± 0.19 mm | |||||
CMC–montmorillonite | S. aureus (Gram-positive) | - | 0.87 ± 0.06 mm | ||||
CMC–montmorillonite–CuNPs | - | 2.45 ± 0.24 mm | |||||
CMC–montmorillonite–AgNPs | - | 6.66 ± 0.18 mm | |||||
AgNPs–montmorillonite | AgNPs–montmorillonite materials were synthesized by the chemical reducing method using NaBH4 in the external and interlamellar spacing of montmorillonite at room temperature. | Disc diffusion method using Mueller–Hinton agar | E. coli (ATCC 25922) | 6.0 mm | 8.74 ± 0.23 mm | The silver nanoparticles with a smaller size were found to have significantly higher antibacterial activity, which can be used as effective growth inhibitors in different biological systems, making them applicable to medical applications. | [39] |
E. coli O157:H7 (ATCC 43895) | 6.0 mm | 10.74 ± 0.32 mm | |||||
Klebsiellapneumoniae (ATCC 13883) | 6.0 mm | 10.98 ± 0.17 mm | |||||
S. aureus (ATCC 25923) | 6.0 mm | 10.02 ± 0.10 mm | |||||
methicillin-resistant S. aureus (ATCC 700689) | 6.0 mm | 8.97 ± 0.27 mm | |||||
Cu–montmorillonite–BC | The process was to combine the wound healing property of BC with the antimicrobial activity of the Cu–montmorillonite material to design a novel artificial substitute for burns. | Agar disc diffusion method | S. typhimurium | - | 34.33 ± 0.47 mm | The findings demonstrated that modified montmorillonite-Bacterial cellulose nanocomposites can be used as a novel artificial skin substitute for burn patients and a scaffold for skin tissue engineering. | [183] |
S. aureus | - | 33.16 ± 0.24 mm | |||||
E. coli | - | 36 ± 0 mm | |||||
C. fruendii | - | 0 ± 0 mm | |||||
MRSA | - | 0 ± 0 mm | |||||
P. aeroginosa | - | 0 ± 0 mm | |||||
Montmorillonite | Silver halides (AgX, X = Cl, Br, I) were dispersed in the montmorillonite surface in the dark. | Disk diffusion method | S. aureus | - | - | The antibacterial effects on Staphylococcus aureus, Micrococcus luteus, and Escherichia coli decreased in the order: AgCl–montmorillonite >AgBr–montmorillonite >AgI-montmorillonite. No antibacterial activity was detected for Pseudomonas aeruginosa. | [14] |
M. lutes | - | - | |||||
E. coli | - | - | |||||
P. aeruginosa | - | - | |||||
AgCl–montmorillonite | S. aureus | - | 20 ± 0.1 mm | ||||
M. lutes | - | 16.2 ± 0.3 mm | |||||
E. coli | - | 19.3 ± 0.2 mm | |||||
P. aeruginosa | - | - | |||||
AgBr–montmorillonite | S. aureus | - | 15.4 ± 0.2 mm | ||||
M. lutes | - | 15.2 ± 0.2 mm | |||||
E. coli | - | 14.2 ± 0.1 mm | |||||
P. aeruginosa | - | - | |||||
AgI–montmorillonite | S. aureus | - | - | ||||
M. lutes | - | 12.0 ± 0.1 mm | |||||
E. coli | - | - | |||||
P. aeruginosa | - | - | |||||
Konjacglucomannan–montmorillonite–AgNPs with 0.1 mol/L of Ag+ concentration | In the fabrication procedure, hybrid building blocks were assembled with a thin layer of Konjacglucomannan coating on the montmorillonite nanosheets to form Konjacglucomannan–montmorillonite composite films via vacuum filtration, then the silver nanoparticles were incorporated in the composite. | Disk diffusion method | S. aureus | 10 mm 9 mm | 20 mm 23 mm | The antibacterial test showed that the Konjacglucomannan–montmorillonite–AgNPs composite films significantly suppressed bacterial growth, which makes them favorable for the biomedical field. | [184] |
Konjacglucomannan–montmorillonite–AgNPs with 0.2 mol/L of Ag+ concentration | E. coli | 11 mm 11 mm | 21 mm 23 mm | ||||
Montmorillonite | A biofilm DFBF was immersed in the Ag–montmorillonite exchanged material solution and oscillated for 24 h and freeze-dried to form the AgNPs/MMT/DFBF composite. | Disc diffusion method | S. aureus | - | - | The montmorillonite, silver cations, and silver nanoparticles resulted in the AgNPs/MMT/DFBF composite films effectively inhibiting the growth of G(+) and G(−) bacteria. | [185] |
E. coli | - | - | |||||
P. aeruginosa | - | - | |||||
Ag+–montmorillonite | S. aureus | - | 10.3 ± 0.1 | ||||
E. coli | - | 10.8 ± 0.1 | |||||
P. aeruginosa | - | 10.2 ± 0.1 | |||||
AgNPs–montmorillonite reduced with 0.01 mol/L NaBH4 | S. aureus | - | 8.5 ± 0.1 | ||||
E. coli | - | 8.7 ± 0.1 | |||||
P. aeruginosa | - | 7.4 ± 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mokhtar, A.; Ahmed, A.B.; Asli, B.; Boukoussa, B.; Hachemaoui, M.; Sassi, M.; Abboud, M. Recent Advances in Antibacterial Metallic Species Supported on Montmorillonite Clay Mineral: A Review. Minerals 2023, 13, 1268. https://doi.org/10.3390/min13101268
Mokhtar A, Ahmed AB, Asli B, Boukoussa B, Hachemaoui M, Sassi M, Abboud M. Recent Advances in Antibacterial Metallic Species Supported on Montmorillonite Clay Mineral: A Review. Minerals. 2023; 13(10):1268. https://doi.org/10.3390/min13101268
Chicago/Turabian StyleMokhtar, Adel, Abderrazzak Baba Ahmed, Boubekeur Asli, Bouhadjar Boukoussa, Mohammed Hachemaoui, Mohamed Sassi, and Mohamed Abboud. 2023. "Recent Advances in Antibacterial Metallic Species Supported on Montmorillonite Clay Mineral: A Review" Minerals 13, no. 10: 1268. https://doi.org/10.3390/min13101268
APA StyleMokhtar, A., Ahmed, A. B., Asli, B., Boukoussa, B., Hachemaoui, M., Sassi, M., & Abboud, M. (2023). Recent Advances in Antibacterial Metallic Species Supported on Montmorillonite Clay Mineral: A Review. Minerals, 13(10), 1268. https://doi.org/10.3390/min13101268