A Review on Montmorillonite-Based Nanoantimicrobials: State of the Art
"> Figure 1
<p>(<b>a</b>) Schematic preparation process of the composite films. (<b>b</b>) TEM images of MMT nanosheets, (<b>c</b>) FTIR spectra of MMT, KGM, and KGM–MMT composite films. Adapted from [<a href="#B97-nanomaterials-13-00848" class="html-bibr">97</a>], with permission from Elsevier. Copyright 2018, Elsevier. (<b>d</b>) Schematic of preparation of Laser ablated Ag/MMT/Beeswax coating and IR-ATR monitoring of biofilms inhibition. Adapted from [<a href="#B150-nanomaterials-13-00848" class="html-bibr">150</a>], distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.</p> "> Figure 2
<p>(<b>a</b>) Schematic for CHX–Cu (II) complexes formation and intercalation into the interlayer of MMT. (<b>b</b>) The release profile of CHX–Cu complexes from the CHX–Cu/MMT nanocomposite in 0.9% NaCl solution at 37 °C; (<b>c</b>) linear regression curves of release data fitting with pseudo-second kinetic mode. Adapted from [<a href="#B153-nanomaterials-13-00848" class="html-bibr">153</a>] with permission from Elsevier (Copyright 2013, Elsevier).</p> "> Figure 3
<p>(<b>a</b>) Comparison of silver release properties of Ag@MMT, Ag@AA-MMT-3 and Ag@AA-MMT-UV. Adapted from [<a href="#B186-nanomaterials-13-00848" class="html-bibr">186</a>] with permission from Elsevier (Copyright 2014). (<b>b</b>) Preparation protocol followed for synthesis of Ag/MMT and Cu/MMT nanohybrids. Adapted from [<a href="#B31-nanomaterials-13-00848" class="html-bibr">31</a>], with permission from Elsevier (Copyright 2018).</p> "> Figure 4
<p>(<b>a</b>) Schematic illustrations for preparation of PVA/OMMT/Ag NC films. Adapted from [<a href="#B191-nanomaterials-13-00848" class="html-bibr">191</a>], with permission from Elsevier (Copyright 2014). Adsorption of (<b>b</b>) Cu<sup>2+</sup> and (<b>c</b>) Zn<sup>2+</sup> onto the MMT-Na, MMT-CP-SR (0.7CEC), and MMT-CP-SR (1CEC). Adapted from [<a href="#B214-nanomaterials-13-00848" class="html-bibr">214</a>], with permission from Elsevier (Copyright 2020, Elsevier).</p> "> Figure 5
<p>(<b>a</b>) Schematic diagram of the synthesis process of Ag–Bi<sub>2</sub>O<sub>3</sub>/MMT nanocomposite and (<b>b</b>) schematic representation of electron–hole separation of Ag–Bi<sub>2</sub>O<sub>3</sub>/MMT composite under visible light irradiation. Adapted from [<a href="#B221-nanomaterials-13-00848" class="html-bibr">221</a>], with permission from Elsevier (Copyright 2020, Elsevier).</p> "> Figure 6
<p>(<b>a</b>–<b>c</b>) The antimicrobial activity of Cu/Zn-MMT-2 with different specific surface area, (<b>d</b>) the cytotoxicity of Cu/Zn-MMT. Adapted from [<a href="#B229-nanomaterials-13-00848" class="html-bibr">229</a>], BMC part of Springer Nature, distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.</p> ">
Abstract
:1. Introduction
2. Nanoantimicrobials Based on Various Synthetic Routes
2.1. Ag/MMT Nanocomposite by Ion Exchange and Chemical Reduction
2.2. Cu/MMT Nanocomposite by Ion Exchange Method
2.3. Zn/MMT by Ion Exchange
2.4. Ag/MMT Nanocomposite by Hybrid Method
2.5. Cu/MMT by Hybrid Method
2.6. Zn/MMT by Hybrid Method
2.7. Ag/MMT Nanocomposite by Irradiation Method
2.8. Structural Investigation, Acid Treatment, and Adsorption Study Based on Ag/MMT Nanocomposite
2.9. Adsorption Properties of Cu/MMT
2.10. Adsorption Properties of Zn/MMT
2.11. Ag/MMT, Cu/MMT, and ZnO/MMT Nanocomposite by Electrochemical, Plasma resonance, and Radio Frequency (RF) Methods
3. Comparison of Antimicrobial Performance and Mechanism among Ag/MMT, Cu/MMT, and Zn/MMT Nanocomposite
4. Selected Cases of Study about Antimicrobial Applications of MMT-Based Materials
5. Environmental and Toxicity Issue
6. Perspectives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jack, A.; Campbell, C. The Threat of Antibiotic Resistance—In Charts. Available online: https://www.ft.com/content/d806dcf5-23f8-4714-ad04-ca11a66061e2 (accessed on 23 January 2021).
- Flemming, H.-C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S. Biofilms: An Emergent Form of Bacterial Life. Nat. Rev. Microbiol. 2016, 14, 563–575. [Google Scholar] [CrossRef] [PubMed]
- Cioffi, N.; Torsi, L.; Ditaranto, N.; Tantillo, G.; Ghibelli, L.; Sabbatini, L.; Bleve-Zacheo, T.; D’Alessio, M.; Zambonin, P.G.; Traversa, E. Copper Nanoparticle/Polymer Composites with Antifungal and Bacteriostatic Properties. Chem. Mater. 2005, 17, 5255–5262. [Google Scholar] [CrossRef]
- Cioffi, N.; Torsi, L.; Ditaranto, N.; Sabbatini, L.; Zambonin, P.G.; Tantillo, G.; Ghibelli, L.; D’Alessio, M.; Bleve-Zacheo, T.; Traversa, E. Antifungal Activity of Polymer-Based Copper Nanocomposite Coatings. Appl. Phys. Lett. 2004, 85, 2417–2419. [Google Scholar] [CrossRef]
- Ruparelia, J.P.; Chatterjee, A.K.; Duttagupta, S.P.; Mukherji, S. Strain Specificity in Antimicrobial Activity of Silver and Copper Nanoparticles. Acta Biomater. 2008, 4, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Motshekga, S.C.; Ray, S.S.; Onyango, M.S.; Momba, M.N.B. Microwave-Assisted Synthesis, Characterization and Antibacterial Activity of Ag/ZnO Nanoparticles Supported Bentonite Clay. J. Hazard. Mater. 2013, 262, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Malarkodi, C.; Rajeshkumar, S.; Paulkumar, K.; Vanaja, M.; Gnanajobitha, G.; Annadurai, G. Biosynthesis and Antimicrobial Activity of Semiconductor Nanoparticles against Oral Pathogens. Bioinorg. Chem. Appl. 2014, 2014, e347167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sportelli, M.C.; Nitti, M.A.; Valentini, M.; Picca, R.A.; Bonerba, E.; Sabbatini, L.; Tantillo, G.; Cioffi, N.; Valentini, A. Ion Beam Sputtering Deposition and Characterization of ZnO-Fluoropolymer Nano-Antimicrobials. Sci. Adv. Mater. 2014, 6, 1019–1025. [Google Scholar] [CrossRef]
- Roy, A.; Joshi, M. Enhancing Antibacterial Properties of Polypropylene/Cu-Loaded Montmorillonite Nanocomposite Filaments through Sheath-Core Morphology: Enhancing Antibacterial Properties of PP/Cu-MMT Nanocomposite. Polym. Int. 2018, 67, 917–924. [Google Scholar] [CrossRef]
- Sportelli, M.C.; Picca, R.A.; Izzi, M.; Palazzo, G.; Gristina, R.; Innocenti, M.; Torsi, L.; Cioffi, N. ZnO Nanostructures with Antibacterial Properties Prepared by a Green Electrochemical-Thermal Approach. Nanomaterials 2020, 10, 473. [Google Scholar] [CrossRef] [Green Version]
- Antony, J.J.; Sivalingam, P.; Siva, D.; Kamalakkannan, S.; Anbarasu, K.; Sukirtha, R.; Krishnan, M.; Achiraman, S. Comparative Evaluation of Antibacterial Activity of Silver Nanoparticles Synthesized Using Rhizophora Apiculata and Glucose. Colloids Surf. B Biointerfaces 2011, 88, 134–140. [Google Scholar] [CrossRef]
- Martínez-Castañón, G.A.; Niño-Martínez, N.; Martínez-Gutierrez, F.; Martínez-Mendoza, J.R.; Ruiz, F. Synthesis and Antibacterial Activity of Silver Nanoparticles with Different Sizes. J. Nanoparticle Res. 2008, 10, 1343–1348. [Google Scholar] [CrossRef]
- Shtykova, L.; Fant, C.; Handa, P.; Larsson, A.; Berntsson, K.; Blanck, H.; Simonsson, R.; Nydén, M.; Ingelsten Härelind, H. Adsorption of Antifouling Booster Biocides on Metal Oxide Nanoparticles: Effect of Different Metal Oxides and Solvents. Prog. Org. Coat. 2009, 64, 20–26. [Google Scholar] [CrossRef]
- Makhluf, S.; Dror, R.; Nitzan, Y.; Abramovich, Y.; Jelinek, R.; Gedanken, A. Microwave-Assisted Synthesis of Nanocrystalline MgO and Its Use as a Bacteriocide. Adv. Funct. Mater. 2005, 15, 1708–1715. [Google Scholar] [CrossRef]
- Dutta, R.K.; Nenavathu, B.P.; Gangishetty, M.K.; Reddy, A.V.R. Studies on Antibacterial Activity of ZnO Nanoparticles by ROS Induced Lipid Peroxidation. Colloids Surf. B Biointerfaces 2012, 94, 143–150. [Google Scholar] [CrossRef]
- Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.-H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.-Y.; et al. Antimicrobial Effects of Silver Nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2007, 3, 95–101. [Google Scholar] [CrossRef]
- Chatterjee, A.K.; Chakraborty, R.; Basu, T. Mechanism of Antibacterial Activity of Copper Nanoparticles. Nanotechnology 2014, 25, 135101. [Google Scholar] [CrossRef]
- Hamm, S.C.; Shankaran, R.; Korampally, V.; Bok, S.; Praharaj, S.; Baker, G.A.; Robertson, J.D.; Lee, B.D.; Sengupta, S.; Gangopadhyay, K.; et al. Sputter-Deposition of Silver Nanoparticles into Ionic Liquid as a Sacrificial Reservoir in Antimicrobial Organosilicate Nanocomposite Coatings. ACS Appl. Mater. Interfaces 2012, 4, 178–184. [Google Scholar] [CrossRef]
- Sportelli, M.C.; Picca, R.A.; Cioffi, N. Recent Advances in the Synthesis and Characterization of Nano-Antimicrobials. TrAC Trends Anal. Chem. 2016, 84, 131–138. [Google Scholar] [CrossRef]
- Rojas-Andrade, M.; Cho, A.T.; Hu, P.; Lee, S.J.; Deming, C.P.; Sweeney, S.W.; Saltikov, C.; Chen, S. Enhanced Antimicrobial Activity with Faceted Silver Nanostructures. J. Mater. Sci. 2015, 50, 2849–2858. [Google Scholar] [CrossRef]
- Sheehy, K.; Casey, A.; Murphy, A.; Chambers, G. Antimicrobial Properties of Nano-Silver: A Cautionary Approach to Ionic Interference. J. Colloid Interface Sci. 2015, 443, 56–64. [Google Scholar] [CrossRef] [Green Version]
- Lejon, D.P.H.; Pascault, N.; Ranjard, L. Differential Copper Impact on Density, Diversity and Resistance of Adapted Culturable Bacterial Populations According to Soil Organic Status. Eur. J. Soil Biol. 2010, 46, 168–174. [Google Scholar] [CrossRef]
- Applerot, G.; Lipovsky, A.; Dror, R.; Perkas, N.; Nitzan, Y.; Lubart, R.; Gedanken, A. Enhanced Antibacterial Activity of Nanocrystalline ZnO Due to Increased ROS-Mediated Cell Injury. Adv. Funct. Mater. 2009, 19, 842–852. [Google Scholar] [CrossRef]
- Carbone, M.; Donia, D.T.; Sabbatella, G.; Antiochia, R. Silver Nanoparticles in Polymeric Matrices for Fresh Food Packaging. J. King Saud Univ.-Sci. 2016, 28, 273–279. [Google Scholar] [CrossRef] [Green Version]
- Roy, A.; Butola, B.S.; Joshi, M. Synthesis, Characterization and Antibacterial Properties of Novel Nano-Silver Loaded Acid Activated Montmorillonite. Appl. Clay Sci. 2017, 146, 278–285. [Google Scholar] [CrossRef]
- Tamayo, L.; Azócar, M.; Kogan, M.; Riveros, A.; Páez, M. Copper-Polymer Nanocomposites: An Excellent and Cost-Effective Biocide for Use on Antibacterial Surfaces. Mater. Sci. Eng. C 2016, 69, 1391–1409. [Google Scholar] [CrossRef]
- Ahmad, M.B.; Shameli, K.; Darroudi, M.; Yunus, W.M.Z.W.; Ibrahim, N.A. Synthesis and Characterization of Silver/Clay Nanocomposites by Chemical Reduction Method. Am. J. Appl. Sci. 2009, 6, 1909–1914. [Google Scholar] [CrossRef]
- Wei, J.-C.; Yen, Y.-T.; Wang, Y.-T.; Hsu, S.; Lin, J.-J. Enhancing Silver Nanoparticle and Antimicrobial Efficacy by the Exfoliated Clay Nanoplatelets. RSC Adv. 2013, 3, 7392–7397. [Google Scholar] [CrossRef]
- Rao, F.; Song, S.; Lopez-Valdivieso, A. Synthesis and Characterization of Ag-PILC Through the Formation of Ag @Montmorillonite Nanocomposite. Nano 2015, 10, 1550031. [Google Scholar] [CrossRef]
- Joshi, M.; Brahma, S.; Roy, A.; Wazed Ali, S. Nano-Calcium Carbonate Reinforced Polypropylene and Propylene-Ethylene Copolymer Nanocomposites: Tensile vs. Impact Behavior. Fibers Polym. 2017, 18, 2161–2169. [Google Scholar] [CrossRef]
- Roy, A.; Joshi, M.; Butola, B.S.; Malhotra, S. Antimicrobial and Toxicological Behavior of Montmorillonite Immobilized Metal Nanoparticles. Mater. Sci. Eng. C 2018, 93, 704–715. [Google Scholar] [CrossRef]
- Dizaj, S.M.; Lotfipour, F.; Barzegar-Jalali, M.; Zarrintan, M.H.; Adibkia, K. Antimicrobial Activity of the Metals and Metal Oxide Nanoparticles. Mater. Sci. Eng. C 2014, 44, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.-I.; Wang, L.-F.; Rhim, J.-W. Preparation and Characterization of Nanoclays-Incorporated Polyethylene/Thermoplastic Starch Composite Films with Antimicrobial Activity. Food Packag. Shelf Life 2022, 31, 100784. [Google Scholar] [CrossRef]
- Wang, W.; Wen, T.; Bai, H.; Zhao, Y.; Ni, J.; Yang, L.; Xia, L.; Song, S. Adsorption toward Cu(II) and Inhibitory Effect on Bacterial Growth Occurring on Molybdenum Disulfide-Montmorillonite Hydrogel Surface. Chemosphere 2020, 248, 126025. [Google Scholar] [CrossRef] [PubMed]
- İlaslan, K.; Tornuk, F. Characterization of Silver Ions-Doped Organomodified Nanoclays. Arab. J. Sci. Eng. 2023, 48, 327–340. [Google Scholar] [CrossRef]
- Giannakas, A.E.; Salmas, C.E.; Moschovas, D.; Baikousi, M.; Kollia, E.; Tsigkou, V.; Karakassides, A.; Leontiou, A.; Kehayias, G.; Avgeropoulos, A.; et al. Nanocomposite Film Development Based on Chitosan/Polyvinyl Alcohol Using ZnO@Montmorillonite and ZnO@Halloysite Hybrid Nanostructures for Active Food Packaging Applications. Nanomaterials 2022, 12, 1843. [Google Scholar] [CrossRef]
- Darroudi, M.; Ahmad, M.B.; Shameli, K.; Abdullah, A.H.; Ibrahim, N.A. Synthesis and Characterization of UV-Irradiated Silver/Montmorillonite Nanocomposites. Solid State Sci. 2009, 11, 1621–1624. [Google Scholar] [CrossRef]
- Bruna, J.E.; Galotto, M.J.; Guarda, A.; Rodríguez, F. A Novel Polymer Based on MtCu2+/Cellulose Acetate with Antimicrobial Activity. Carbohydr. Polym. 2014, 102, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Ye, W.; Cai, S.; Huang, L.; Zhong, T.; Chen, L.; Wang, X. Green Antimicrobial Coating Based on Quaternised Chitosan/Organic Montmorillonite/Ag NPs Nanocomposites. J. Exp. Nanosci. 2016, 11, 1360–1371. [Google Scholar] [CrossRef] [Green Version]
- Seray, M.; Hadj-Hamou, A.S.; uzunlu, S.; Benhacine, F. Development of Active Packaging Films Based on Poly (Butylene Adipate-Co-Terephthalate) and Silver–Montmorillonite for Shelf Life Extension of Sea Bream. Polym. Bull. 2021, 79, 3573–3594. [Google Scholar] [CrossRef]
- Bragg, P.D.; Rainnie, D.J. The Effect of Silver Ions on the Respiratory Chain of Escherichia Coli. Can. J. Microbiol. 2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noori, F.; Neree, A.T.; Megoura, M.; Mateescu, M.A.; Azzouz, A. Insights into the Metal Retention Role in the Antibacterial Behavior of Montmorillonite and Cellulose Tissue-Supported Copper and Silver Nanoparticles. RSC Adv. 2021, 11, 24156–24171. [Google Scholar] [CrossRef] [PubMed]
- Schiffenbauer, M.; Stotzky, G. Adsorption of Coliphages T1 and T7 to Clay Minerals. Appl. Environ. Microbiol. 1982, 43, 590–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dermatas, D.; Dadachov, M.S. Rietveld Quantification of Montmorillonites in Lead-Contaminated Soils. Appl. Clay Sci. 2003, 23, 245–255. [Google Scholar] [CrossRef]
- Carretero, M.I. Clay Minerals and Their Beneficial Effects upon Human Health. A Review. Appl. Clay Sci. 2002, 21, 155–163. [Google Scholar] [CrossRef]
- Özdemir, G.; Limoncu, M.H.; Yapar, S. The Antibacterial Effect of Heavy Metal and Cetylpridinium-Exchanged Montmorillonites. Appl. Clay Sci. 2010, 48, 319–323. [Google Scholar] [CrossRef]
- Bergaya, F.; Theng, B.K.G.; Lagaly, G. (Eds.) Handbook of Clay Science; Elsevier: Newnes, NSW, Australia, 2013; ISBN 978-0-08-099371-3. [Google Scholar]
- Giovannini, G.; Garoli, D.; Rupper, P.; Neels, A.; Rossi, R.M.; Boesel, L.F. Metal-Modified Montmorillonite as Plasmonic Microstructure for Direct Protein Detection. Sensors 2021, 21, 2655. [Google Scholar] [CrossRef]
- Yi, H.; Xia, L.; Song, S. Three-Dimensional Montmorillonite/Ag Nanowire Aerogel Supported Stearic Acid as Composite Phase Change Materials for Superior Solar-Thermal Energy Harvesting and Storage. Compos. Sci. Technol. 2022, 217, 109121. [Google Scholar] [CrossRef]
- Valášková, M.; Simha Martynková, G.; Lešková, J.; Čapková, P.; Klemm, V.; Rafaja, D. Silver Nanoparticles/Montmorillonite Composites Prepared Using Nitrating Reagent at Water and Glycerol. J. Nanosci. Nanotechnol. 2008, 8, 3050–3058. [Google Scholar] [CrossRef]
- Malachová, K.; Praus, P.; Pavlíčková, Z.; Turicová, M. Activity of Antibacterial Compounds Immobilised on Montmorillonite. Appl. Clay Sci. 2009, 43, 364–368. [Google Scholar] [CrossRef]
- Sohrabnezhad, S.; Mehdipour Moghaddam, M.J.; Salavatiyan, T. Synthesis and Characterization of CuO–Montmorillonite Nanocomposite by Thermal Decomposition Method and Antibacterial Activity of Nanocomposite. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 125, 73–78. [Google Scholar] [CrossRef]
- Shi, Q.; Tan, S.; Yang, Q.; Jiao, Z.; Ouyang, Y.; Chen, Y. Preparation and Characterization of Antibacterial Zn2+-Exchanged Montmorillonites. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2010, 25, 725–729. [Google Scholar] [CrossRef]
- Kuorwel, K.K.; Cran, M.J.; Orbell, J.D.; Buddhadasa, S.; Bigger, S.W. Review of Mechanical Properties, Migration, and Potential Applications in Active Food Packaging Systems Containing Nanoclays and Nanosilver. Compr. Rev. Food Sci. Food Saf. 2015, 14, 411–430. [Google Scholar] [CrossRef] [Green Version]
- Marin, S.; Mihail Vlasceanu, G.; Elena Tiplea, R.; Raluca Bucur, I.; Lemnaru, M.; Minodora Marin, M.; Mihai Grumezescu, A. Applications and Toxicity of Silver Nanoparticles: A Recent Review. Curr. Top. Med. Chem. 2015, 15, 1596–1604. [Google Scholar] [CrossRef] [PubMed]
- Zhan, J.; Chen, H.; Zhou, H.; Hao, L.; Xu, H.; Zhou, X. Essential Oil-Loaded Chitosan/Zinc (II) Montmorillonite Synergistic Sustained-Release System as Antibacterial Material. J. Dispers. Sci. Technol. 2021, 39, 792–801. [Google Scholar] [CrossRef]
- Yu, L.; He, T.; Yao, J.; Xu, W.; Peng, S.; Feng, P.; Shuai, C. Cu Ions and Cetyltrimethylammonium Bromide Loaded into Montmorillonite: A Synergistic Antibacterial System for Bone Scaffolds. Mater. Chem. Front. 2022, 6, 103–116. [Google Scholar] [CrossRef]
- Abdel-Aziz, M.S.; Abou-El-Sherbini, K.S.; Hamzawy, E.M.A.; Amr, M.H.A.; El-Dafrawy, S. Green Synthesis of Silver Nano-Particles by Macrococcus Bovicus and Its Immobilization onto Montmorillonite Clay for Antimicrobial Functionality. Appl. Biochem. Biotechnol. 2015, 176, 2225–2241. [Google Scholar] [CrossRef]
- Zhu, J.; Zhu, L.; Zhu, R.; Chen, B. Microstructure of Organo-Bentonites in Water and the Effect of Steric Hindrance on the Uptake of Organic Compounds. Clays Clay Miner. 2008, 56, 144–154. [Google Scholar] [CrossRef]
- Reinert, L.; Batouche, K.; Lévêque, J.-M.; Muller, F.; Bény, J.-M.; Kebabi, B.; Duclaux, L. Adsorption of Imidazolium and Pyridinium Ionic Liquids onto Montmorillonite: Characterisation and Thermodynamic Calculations. Chem. Eng. J. 2012, 209, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Bertuoli, P.T.; Piazza, D.; Scienza, L.C.; Zattera, A.J. Preparation and Characterization of Montmorillonite Modified with 3-Aminopropyltriethoxysilane. Appl. Clay Sci. 2014, 87, 46–51. [Google Scholar] [CrossRef]
- Veiskarami, M.; Sarvi, M.N.; Mokhtari, A.R. Influence of the Purity of Montmorillonite on Its Surface Modification with an Alkyl-Ammonium Salt. Appl. Clay Sci. 2016, 120, 111–120. [Google Scholar] [CrossRef]
- Das, T.K.; Ganguly, S.; Ghosh, S.; Remanan, S.; Ghosh, S.K.; Das, N.C. In-Situ Synthesis of Magnetic Nanoparticle Immobilized Heterogeneous Catalyst through Mussel Mimetic Approach for the Efficient Removal of Water Pollutants. Colloid Interface Sci. Commun. 2019, 33, 100218. [Google Scholar] [CrossRef]
- Feiona, T.A.; Sabeena, G.; Bagavathy, M.S.; Pushpalaksmi, E.; Samra, J.J.; Annadurai, G. Synthesis and Characterization of ZnO-MMT Nanocomposite for Antibacterial Activity Studies. J. Appl. Sci. Environ. Manag. 2020, 24, 1079–1084. [Google Scholar] [CrossRef]
- Wang, R.; Li, H.; Ge, G.; Dai, N.; Rao, J.; Ran, H.; Zhang, Y. Montmorillonite-Based Two-Dimensional Nanocomposites: Preparation and Applications. Molecules 2021, 26, 2521. [Google Scholar] [CrossRef] [PubMed]
- Giraldo, L.F.; Camilo, P.; Kyu, T. Incorporation of Silver in Montmorillonite-Type Phyllosilicates as Potential Antibacterial Material. Curr. Opin. Chem. Eng. 2016, 11, 7–13. [Google Scholar] [CrossRef]
- Dutta, P.; Wang, B. Zeolite-Supported Silver as Antimicrobial Agents. Coord. Chem. Rev. 2019, 383, 1–29. [Google Scholar] [CrossRef]
- Lemire, J.A.; Harrison, J.J.; Turner, R.J. Antimicrobial Activity of Metals: Mechanisms, Molecular Targets and Applications. Nat. Rev. Microbiol. 2013, 11, 371–384. [Google Scholar] [CrossRef]
- Khalandi, B.; Asadi, N.; Milani, M.; Davaran, S.; Abadi, A.J.N.; Abasi, E.; Akbarzadeh, A. A Review on Potential Role of Silver Nanoparticles and Possible Mechanisms of Their Actions on Bacteria. Drug Res. 2017, 11, 70–76. [Google Scholar] [CrossRef]
- Park, H.J.; Lim, H.M. Antimicrobial Properties of Ag-Exchanged Natural and Synthetic Zeolites: A Short Review. Curr. Green Chem. 2015, 2, 354–361. [Google Scholar] [CrossRef]
- Marambio-Jones, C.; Hoek, E.M.V. A Review of the Antibacterial Effects of Silver Nanomaterials and Potential Implications for Human Health and the Environment. J. Nanopart. Res. 2010, 12, 1531–1551. [Google Scholar] [CrossRef]
- Longano, D.; Ditaranto, N.; Sabbatini, L.; Torsi, L.; Cioffi, N. Synthesis and Antimicrobial Activity of Copper Nanomaterials. In Nano-Antimicrobials: Progress and Prospects; Nicola, C., Mahendra, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 85–117. ISBN 978-3-642-24427-8. [Google Scholar]
- Simončič, B.; Klemenčič, D. Preparation and Performance of Silver as an Antimicrobial Agent for Textiles: A Review. Text. Res. J. 2015, 3, 15–20. [Google Scholar] [CrossRef]
- Giannossa, L.C.; Longano, D.; Ditaranto, N.; Nitti, M.A.; Paladini, F.; Pollini, M.; Rai, M.; Sannino, A.; Valentini, A.; Cioffi, N. Metal Nanoantimicrobials for Textile Applications. Nanotechnol. Rev. 2013, 2, 307–331. [Google Scholar] [CrossRef]
- Sportelli, M.C.; Picca, R.A.; Cioffi, N. Nano-Antimicrobials Based on Metals. In Novel Antimicrobial Agents and Strategies; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2014; pp. 181–218. ISBN 978-3-527-67613-2. [Google Scholar]
- Ohashi, F.; Ueda, S.; Taguri, T.; Kawachi, S.; Abe, H. Antimicrobial Activity and Thermostability of Silver 6-Benzylaminopurine Montmorillonite. Appl. Clay Sci. 2009, 46, 296–299. [Google Scholar] [CrossRef]
- Sohrabnezhad, S.; Sadeghi, A. Matrix Effect of Montmorillonite and MCM-41 Matrices on the Antibacterial Activity of Ag2CO3 Nanoparticles. Appl. Clay Sci. 2015, 105–106, 217–224. [Google Scholar] [CrossRef]
- Shameli, K.; Ahmad, M.B.; Yunus, W.M.Z.W.; Ibrahim, N.A.; Gharayebi, Y.; Sedaghat, S. Synthesis of Silver/Montmorillonite Nanocomposites Using γ-Irradiation. Int. J. Nanomed. 2010, 5, 1067–1077. [Google Scholar] [CrossRef] [Green Version]
- Ranjan, S.; Fontana, F.; Ullah, H.; Hirvonen, J.; Santos, H.A. Microparticles to Enhance Delivery of Drugs and Growth Factors into Wound Sites. Ther. Deliv. 2016, 7, 711–732. [Google Scholar] [CrossRef]
- Lakbita, O.; Rhouta, B.; Maury, F.; Senocq, F.; Amjoud, M.; Daoudi, L. Influence of the Crystal Structure of Ag2CO3 on the Photocatalytic Activity under Visible Light of Ag2CO3-Palygorskite Nanocomposite Material. Appl. Surf. Sci. 2019, 464, 205–211. [Google Scholar] [CrossRef] [Green Version]
- Sohrabnezhad, S.; Rassa, M.; Mohammadi Dahanesari, E. Spectroscopic Study of Silver Halides in Montmorillonite and Their Antibacterial Activity. J. Photochem. Photobiol. B Biol. 2016, 163, 150–155. [Google Scholar] [CrossRef]
- Naik, B.; Desai, V.; Kowshik, M.; Prasad, V.S.; Fernando, G.F.; Ghosh, N.N. Synthesis of Ag/AgCl–Mesoporous Silica Nanocomposites Using a Simple Aqueous Solution-Based Chemical Method and a Study of Their Antibacterial Activity on E. coli. Particuology 2011, 9, 243–247. [Google Scholar] [CrossRef]
- Duan, S.; Zhai, Y.H.; Qu, Y.J. Synthesis and Characterization of Silver-Histidine Complex Doped Montmorillonite Antibacterial Agent. Adv. Mater. Res. 2012, 510, 757–761. [Google Scholar] [CrossRef]
- Armstrong, G.; Thornton, R.; Ryan, M.P.; Laffir, F.; Russell, R.J.; Bala, T.; Keely, C.; Babu, R. Formulation of Epoxy–Polyester Powder Coatings Containing Silver-Modified Nanoclays and Evaluation of Their Antimicrobial Properties. Polym. Bull. 2012, 68, 1951–1963. [Google Scholar] [CrossRef] [Green Version]
- Lavorgna, M.; Attianese, I.; Buonocore, G.G.; Conte, A.; Del Nobile, M.A.; Tescione, F.; Amendola, E. MMT-Supported Ag Nanoparticles for Chitosan Nanocomposites: Structural Properties and Antibacterial Activity. Carbohydr. Polym. 2014, 102, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Bell, W.C.; Myrick, M.L. Preparation and Characterization of Nanoscale Silver Colloids by Two Novel Synthetic Routes. J. Colloid Interface Sci. 2001, 242, 300–305. [Google Scholar] [CrossRef] [Green Version]
- Su, H.-L.; Chou, C.-C.; Hung, D.-J.; Lin, S.-H.; Pao, I.-C.; Lin, J.-H.; Huang, F.-L.; Dong, R.-X.; Lin, J.-J. The Disruption of Bacterial Membrane Integrity through ROS Generation Induced by Nanohybrids of Silver and Clay. Biomaterials 2009, 30, 5979–5987. [Google Scholar] [CrossRef]
- Praus, P.; Turicová, M.; Klementová, M. Preparation of Silver-Montmorillonite Nanocomposites by Reduction with Formaldehyde and Borohydride. J. Braz. Chem. Soc. 2009, 20, 1351–1357. [Google Scholar] [CrossRef] [Green Version]
- Miyoshi, H.; Ohno, H.; Sakai, K.; Okamura, N.; Kourai, H. Characterization and Photochemical and Antibacterial Properties of Highly Stable Silver Nanoparticles Prepared on Montmorillonite Clay in N-Hexanol. J. Colloid Interface Sci. 2010, 345, 433–441. [Google Scholar] [CrossRef]
- Wang, Z.L. Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies. J. Phys. Chem. B 2000, 104, 1153–1175. [Google Scholar] [CrossRef]
- Shameli, K.; Mansor Bin Ahmad, M.; Mohsen, Z.; Yunis, W.Z.; Ibrahim, N.A.; Rustaiyan, A. Synthesis of Silver Nanoparticles in Montmorillonite and Their Antibacterial Behavior. Int. J. Nanomed. 2011, 6, 581. [Google Scholar] [CrossRef] [Green Version]
- Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramírez, J.T.; Yacaman, M.J. The Bactericidal Effect of Silver Nanoparticles. Nanotechnology 2005, 16, 2346–2353. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.; Cohen, R.E.; Rubner, M.F. Antibacterial Properties of Ag Nanoparticle Loaded Multilayers and Formation of Magnetically Directed Antibacterial Microparticles. Langmuir 2005, 21, 9651–9659. [Google Scholar] [CrossRef]
- Sohrabnezhad, S.; Pourahmad, A.; Mehdipour Moghaddam, M.J.; Sadeghi, A. Study of Antibacterial Activity of Ag and Ag2CO3 Nanoparticles Stabilized over Montmorillonite. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 136, 1728–1733. [Google Scholar] [CrossRef]
- Magaña, S.M.; Quintana, P.; Aguilar, D.H.; Toledo, J.A.; Ángeles-Chávez, C.; Cortés, M.A.; León, L.; Freile-Pelegrín, Y.; López, T.; Sánchez, R.M.T. Antibacterial Activity of Montmorillonites Modified with Silver. J. Mol. Catal. A Chem. 2008, 281, 192–199. [Google Scholar] [CrossRef]
- Bonga, D.L.S.; Pinto, M.M.F.B.; Tayad, M.F.T. Synthesis and Characterization of Silver Nanoparticles Anchored on Montmorillonite via Chemical Reduction. Nano Hybrids Compos. 2016, 11, 30–37. [Google Scholar] [CrossRef]
- Zhu, W.; Li, J.; Lei, J.; Li, Y.; Chen, T.; Duan, T.; Yao, W.; Zhou, J.; Yu, Y.; Liu, Y. Silver Nanoparticles Incorporated Konjac Glucomannan-Montmorillonite Nacre-like Composite Films for Antibacterial Applications. Carbohydr. Polym. 2018, 197, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Shameli, K.; Mansor Bin Ahmad, M.; Yunis, W.Z.; Ibrahim, N.A.; Mohsen, Z.; Shabanzadeh, P.; Moghaddam, M.G. Synthesis and Characterization of Silver/Montmorillonite/Chitosan Bionanocomposites by Chemical Reduction Method and Their Antibacterial Activity. Int. J. Nanomed. 2011, 6, 271. [Google Scholar] [CrossRef] [Green Version]
- Roy, B.; Bharali, P.; Konwar, B.K.; Karak, N. Silver-Embedded Modified Hyperbranched Epoxy/Clay Nanocomposites as Antibacterial Materials. Bioresour. Technol. 2013, 127, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Monsif, M.; Zerouale, A.; Kandri, N.I.; Bertani, R.; Bartolozzi, A.; Bresolin, B.M.; Zorzi, F.; Tateo, F.; Zappalorto, M.; Quaresimin, M.; et al. Multifunctional Epoxy/Nanocomposites Based on Natural Moroccan Clays with High Antimicrobial Activity: Morphological, Thermal and Mechanical Properties. J. Nanomater. 2019, 2019, e2810901. [Google Scholar] [CrossRef] [Green Version]
- Gogoi, B.; Barua, S.; Sarmah, J.K.; Karak, N. In Situ Synthesis of a Microbial Fouling Resistant, Nanofibrillar Cellulose-Hyperbranched Epoxy Composite for Advanced Coating Applications. Prog. Org. Coat. 2018, 124, 224–231. [Google Scholar] [CrossRef]
- Krishnan, B.; Mahalingam, S. Ag/TiO2/Bentonite Nanocomposite for Biological Applications: Synthesis, Characterization, Antibacterial and Cytotoxic Investigations. Adv. Powder Technol. 2017, 28, 2265–2280. [Google Scholar] [CrossRef]
- Benhacine, F.; Abdellaoui, N.; Arous, O.; Hadj-Hamou, A.S. Behaviours of Poly(ε-Caprolactone)/Silver-Montmorillonite Nanocomposite in Membrane Ultrafiltration for Wastewater Treatment. Environ. Technol. 2018, 40, 2225–2231. [Google Scholar] [CrossRef]
- Benhacine, F.; Hadj-Hamou, A.S.; Habi, A. Development of Long-Term Antimicrobial Poly (ε-Caprolactone)/Silver Exchanged Montmorillonite Nanocomposite Films with Silver Ion Release Property for Active Packaging Use. Polym. Bull. 2016, 73, 1207–1227. [Google Scholar] [CrossRef]
- Gurunathan, S.; Hyun Park, J.; Choi, Y.J.; Woong Han, J.; Kim, J.H. Synthesis of Graphene Oxide-Silver Nanoparticle Nanocomposites: An Efficient Novel Antibacterial Agent. Available online: http://www.eurekaselect.com/144133/article (accessed on 18 April 2020).
- Yun, H.; Ahmed, M.S.; Lee, K.; Jeon, S.; Lee, C.W. Potential Enhancement of Antibacterial Activity of Graphene Oxide-Silver Nanocomposite by Introducing C2 Carbon Chain Linkage. Appl. Surf. Sci. 2016, 360, 915–920. [Google Scholar] [CrossRef]
- San Keskin, N.O.; Koçberber Kılıç, N.; Dönmez, G.; Tekinay, T. Green Synthesis of Silver Nanoparticles Using Cyanobacteria and Evaluation of Their Photocatalytic and Antimicrobial Activity. J. Nano Res. 2016, 40, 120–127. [Google Scholar] [CrossRef]
- Li, Y.-T.; Lin, S.-B.; Chen, L.-C.; Chen, H.-H. Antimicrobial Activity and Controlled Release of Nanosilvers in Bacterial Cellulose Composites Films Incorporated with Montmorillonites. Cellulose 2017, 24, 4871–4883. [Google Scholar] [CrossRef]
- Ghiassi, S.; Sedaghat, S.; Mokhtary, M.; Kefayati, H. Plant-Mediated Bio-Synthesis of Silver–Montmorillonite Nanocomposite and Antibacterial Effects on Gram-Positive and -Negative Bacteria. J. Nanostructure Chem. 2018, 8, 353–357. [Google Scholar] [CrossRef] [Green Version]
- Omidi, S.; Sedaghat, S.; Tahvildari, K.; Derakhshi, P.; Motiee, F. Biosynthesis of Silver Nanocomposite with Tarragon Leaf Extract and Assessment of Antibacterial Activity. J. Nanostructure Chem. 2018, 8, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Moradi, F.; Sedaghat, S.; Arab-Salmanabadi, S.; Moradi, O. Biosynthesis of Silver-Montmorillonite Nanocomposites Using Ocimum Basilicum and Teucrium Polium$\mathsemicolon$ a Comparative Study. Mater. Res. Express 2019, 6, 125008. [Google Scholar] [CrossRef]
- Ge, M.; Li, J.; Song, S.; Meng, N.; Zhou, N. Development and Antibacterial Performance of Silver Nanoparticles-Lecithin Modified Montmorillonite Nanoparticle Hybrid. Appl. Clay Sci. 2019, 183, 105334. [Google Scholar] [CrossRef]
- Dairi, N.; Ferfera-Harrar, H.; Ramos, M.; Garrigós, M.C. Cellulose Acetate/AgNPs-Organoclay and/or Thymol Nano-Biocomposite Films with Combined Antimicrobial/Antioxidant Properties for Active Food Packaging Use. Int. J. Biol. Macromol. 2019, 121, 508–523. [Google Scholar] [CrossRef] [Green Version]
- Scott, A.; Vadalasetty, K.P.; Chwalibog, A.; Sawosz, E. Copper Nanoparticles as an Alternative Feed Additive in Poultry Diet: A Review. Nanotechnol. Rev. 2018, 7, 69–93. [Google Scholar] [CrossRef]
- Zhou, Y.; Xia, M.; Ye, Y.; Hu, C. Antimicrobial Ability of Cu-Montmorillonite. Appl. Clay Sci. 2004, 27, 215–218. [Google Scholar] [CrossRef]
- Xia, M.S.; Hu, C.H.; Xu, Z.R. Effects of Copper-Bearing Montmorillonite on Growth Performance, Digestive Enzyme Activities, and Intestinal Microflora and Morphology of Male Broilers. Poult. Sci. 2004, 83, 1868–1875. [Google Scholar] [CrossRef] [PubMed]
- Xia, M.S.; Hu, C.H.; Xu, Z.R.; Ye, Y.; Zhou, Y.H.; Xiong, L. Effects of Copper-Bearing Montmorillonite (Cu-MMT) on Escherichia Coli and Diarrhea on Weanling Pigs. Asian-Australas. J. Anim. Sci. 2004, 17, 1712–1716. [Google Scholar] [CrossRef]
- Hu, C.H.; Xu, Z.R.; Xia, M.S. Antibacterial Effect of Cu2+-Exchanged Montmorillonite on Aeromonas Hydrophila and Discussion on Its Mechanism. Vet. Microbiol. 2005, 109, 83–88. [Google Scholar] [CrossRef]
- Tong, G.; Yulong, M.; Peng, G.; Zirong, X. Antibacterial Effects of the Cu(II)-Exchanged Montmorillonite on Escherichia Coli K88 and Salmonella Choleraesuis. Vet. Microbiol. 2005, 105, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.H.; Xu, Y.; Xia, M.S.; Xiong, L.; Xu, Z.R. Effects of Cu 2+$ -Exchanged Montmorillonite on Intestinal Microflora, Digestibility and Digestive Enzyme Activities of Nile Tilapia. Aquac. Nutr. 2008, 14, 281–288. [Google Scholar] [CrossRef]
- Bagchi, B.; Kar, S.; Dey, S.K.; Bhandary, S.; Roy, D.; Mukhopadhyay, T.K.; Das, S.; Nandy, P. In Situ Synthesis and Antibacterial Activity of Copper Nanoparticle Loaded Natural Montmorillonite Clay Based on Contact Inhibition and Ion Release. Colloids Surf. B Biointerfaces 2013, 108, 358–365. [Google Scholar] [CrossRef]
- Tan, S.-Z.; Zhang, K.-H.; Zhang, L.-L.; Xie, Y.-S.; Liu, Y.-L. Preparation and Characterization of the Antibacterial Zn2+ or/and Ce3+ Loaded Montmorillonites. Chin. J. Chem. 2008, 26, 865–869. [Google Scholar] [CrossRef]
- Aguzzi, C.; Cerezo, P.; Viseras, C.; Caramella, C. Use of Clays as Drug Delivery Systems: Possibilities and Limitations. Appl. Clay Sci. 2007, 36, 22–36. [Google Scholar] [CrossRef]
- Volzone, C.; Garrido, L.B. Changes in Suspension Properties of Structural Modified Montmorillonites. Cerâmica 2001, 47, 4–8. [Google Scholar] [CrossRef] [Green Version]
- Cao, G.-F.; Sun, Y.; Chen, J.-G.; Song, L.-P.; Jiang, J.-Q.; Liu, Z.-T.; Liu, Z.-W. Sutures Modified by Silver-Loaded Montmorillonite with Antibacterial Properties. Appl. Clay Sci. 2014, 93–94, 102–106. [Google Scholar] [CrossRef]
- Incoronato, A.L.; Buonocore, G.G.; Conte, A.; Lavorgna, M.; Del Nobile, M.A. Active Systems Based on Silver-Montmorillonite Nanoparticles Embedded into Bio-Based Polymer Matrices for Packaging Applications. J. Food Prot. 2010, 73, 2256–2262. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.; Conte, A.; Buonocore, G.G.; Del Nobile, M.A. Antimicrobial Silver-Montmorillonite Nanoparticles to Prolong the Shelf Life of Fresh Fruit Salad. Int. J. Food Microbiol. 2011, 148, 164–167. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.; Conte, A.; Buonocore, G.G.; Lavorgna, M.; Del Nobile, M.A. Calcium-Alginate Coating Loaded with Silver-Montmorillonite Nanoparticles to Prolong the Shelf-Life of Fresh-Cut Carrots. Food Res. Int. 2012, 48, 164–169. [Google Scholar] [CrossRef]
- Ibarra-Alonso, M.C.; Sánchez-Valdes, S.; Ramírez-Vargas, E.; Fernandez-Tavizón, S.; Romero-Garcia, J.; Ledezma-Perez, A.S.; de Valle, L.F.R.; Rodriguez-Fernandez, O.S.; Espinoza-Martinez, A.B.; Martinez-Colunga, J.G.; et al. Preparation and Characterization of Polyethylene/Clay/Silver Nanocomposites Using Functionalized Polyethylenes as an Adhesion Promoter. J. Adhes. Sci. Technol. 2015, 29, 1911–1923. [Google Scholar] [CrossRef]
- Xia, Z.; Liu, J.; Zou, J.; Lin, C. Assembly and Antibacterial Properties of Chitosan Derivatives Organic Montmorillonite Nanocomposites Doped with Silver. Mater. Res. Innov. 2015, 19, S8-204–S8-211. [Google Scholar] [CrossRef]
- Savas, L.A.; Hancer, M. Montmorillonite Reinforced Polymer Nanocomposite Antibacterial Film. Appl. Clay Sci. 2015, 108, 40–44. [Google Scholar] [CrossRef]
- Muñoz-Shugulí, C.; Rodríguez, F.J.; Bruna, J.E.; Galotto, M.J.; Sarantópoulos, C.; Favaro Perez, M.A.; Padula, M. Cetylpyridinium Bromide-Modified Montmorillonite as Filler in Low Density Polyethylene Nanocomposite Films. Appl. Clay Sci. 2019, 168, 203–210. [Google Scholar] [CrossRef]
- Golubeva, O.Y.; Shamova, O.V.; Yakovlev, A.V.; Zharkova, M.S. Synthesis and Study of the Biologically Active Lysozyme–Silver Nanoparticles–Montmorillonite K10 Complexes. Glass Phys. Chem. 2016, 42, 87–94. [Google Scholar] [CrossRef]
- Roy, A.; Joshi, M.; Butola, B.S.; Ghosh, S. Evaluation of Biological and Cytocompatible Properties in Nano Silver-Clay Based Polyethylene Nanocomposites. J. Hazard. Mater. 2020, 384, 121309. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, H.M.; Shu, X.; Feng, J.; Yang, P.; Dong, P.; Xie, X.; Shi, Q. Nanocopper-Loaded Black Phosphorus Nanocomposites for Efficient Synergistic Antibacterial Application. J. Hazard. Mater. 2020, 393, 122317. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, J.; Yu, W.; Zhao, Q.; Liu, J. Antimicrobial Nanocomposites Prepared from Montmorillonite/Ag +$ /Quaternary Ammonium Nitrate. J. Nanomater. 2018, 2018, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Hwang, J.-J.; Ma, T.-W. Preparation, Morphology, and Antibacterial Properties of Polyacrylonitrile/Montmorillonite/Silver Nanocomposites. Mater. Chem. Phys. 2012, 136, 613–623. [Google Scholar] [CrossRef]
- Fryczkowska, B.; Biniaś, D.; Ślusarczyk, C.; Fabia, J.; Janicki, J. Influence of Graphene Oxide on the Properties of Composite Polyacrylonitrile Membranes. DWT 2017, 81, 67–79. [Google Scholar] [CrossRef] [Green Version]
- Ismayil, K.M.; Varghese, A.; Antony, R. Silver-Doped Polyaniline–Polyvinyl Chloride Nanocomposite Films for Photocatalytic and Antibacterial Applications. J. Elastomers Plast. 2019, 5, 009524431881923. [Google Scholar] [CrossRef]
- Fernández Solarte, A.M.; Villarroel-Rocha, J.; Morantes, C.F.; Montes, M.L.; Sapag, K.; Curutchet, G.; Torres Sánchez, R.M. Insight into Surface and Structural Changes of Montmorillonite and Organomontmorillonites Loaded with Ag. Comptes Rendus Chim. 2019, 22, 142–153. [Google Scholar] [CrossRef]
- Lamarra, J.; Fernández, M.A.; Pascual Cosp, J.; De La Fournière, S.; Garbossa, G.; Torres Sanchez, R.M. Water Decontamination by Silver and Copper Montmorillonite. Int. J. Environ. Health 2014, 7, 15–30. [Google Scholar] [CrossRef]
- Ling, Y.; Luo, Y.; Luo, J.; Wang, X.; Sun, R. Novel Antibacterial Paper Based on Quaternized Carboxymethyl Chitosan/Organic Montmorillonite/Ag NP Nanocomposites. Ind. Crop. Prod. 2013, 51, 470–479. [Google Scholar] [CrossRef]
- Fernández, M.A.; Barberia Roque, L.; Gámez Espinosa, E.; Deyá, C.; Bellotti, N. Organo-Montmorillonite with Biogenic Compounds to Be Applied in Antifungal Coatings. Appl. Clay Sci. 2020, 184, 105369. [Google Scholar] [CrossRef]
- Makwana, D.; Castaño, J.; Somani, R.S.; Bajaj, H.C. Characterization of Agar-CMC/Ag-MMT Nanocomposite and Evaluation of Antibacterial and Mechanical Properties for Packaging Applications. Arab. J. Chem. 2020, 13, 3092–3099. [Google Scholar] [CrossRef]
- Abbasian, M.; Mahmoodzadeh, F. Synthesis of Antibacterial Silver-Chitosan-Modified Bionanocomposites by RAFT Polymerization and Chemical Reduction Methods. J. Elastomers Plast. 2017, 49, 173–193. [Google Scholar] [CrossRef]
- Golubeva, O.Y.; Brazovskaya, E.Y.; Shamova, O.V. Biological Activity and Sorption Ability of Synthetic Montmorillonite Modified by Silver/Lysozyme Nanoparticles. Appl. Clay Sci. 2018, 163, 56–62. [Google Scholar] [CrossRef]
- Bock, T.K.; Müller, B.W. A Novel Assay to Determine the Hemolytic Activity of Drugs Incorporated in Colloidal Carrier Systems. Pharm. Res. 1994, 11, 589–591. [Google Scholar] [CrossRef]
- Wu, T.-S.; Wang, K.-X.; Li, G.-D.; Sun, S.-Y.; Sun, J.; Chen, J.-S. Montmorillonite-Supported Ag/TiO2$ Nanoparticles: An Efficient Visible-Light Bacteria Photodegradation Material. ACS Appl. Mater. Interfaces 2010, 2, 544–550. [Google Scholar] [CrossRef]
- Park, J.H.; Karim, M.R.; Kim, I.K.; Cheong, I.W.; Kim, J.W.; Bae, D.G.; Cho, J.W.; Yeum, J.H. Electrospinning Fabrication and Characterization of Poly(Vinyl Alcohol)/Montmorillonite/Silver Hybrid Nanofibers for Antibacterial Applications. Colloid Polym. Sci. 2010, 288, 115–121. [Google Scholar] [CrossRef]
- Hossain, S.I.; Bajrami, D.; Sportelli, M.C.; Picca, R.A.; Volpe, A.; Gaudiuso, C.; Ancona, A.; Gentile, L.; Palazzo, G.; Ditaranto, N.; et al. Preparation of Laser-Ablated Ag Nanoparticle–MMT Clay-Based Beeswax Antibiofilm Coating. Antibiotics 2023, 12, 194. [Google Scholar] [CrossRef]
- Fernando, L.; Chen, W.-T.; Lai, C.-W.; Ye, F.-Y.; Lai, P.-S.; Lin, J.-J.; Yasuda, K.; Song, T.-T.; Song, J.-M. Biocompatibility and Antimicrobial Activity of Copper(II) Oxide Hybridized with Nano Silicate Platelets. Surf. Coat. Technol. 2022, 435, 128253. [Google Scholar] [CrossRef]
- Pourabolghasem, H.; Ghorbanpour, M.; Shayegh, R. Antibacterial Activity of Copper-Doped Montmorillonite Nanocomposites Prepared by Alkaline Ion Exchange Method. JPS 2016, 27, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Zhou, N.; Li, W.; Gu, H.; Fan, Y.; Yuan, J. Long-Term and Controlled Release of Chlorhexidine–Copper(II) from Organically Modified Montmorillonite (OMMT) Nanocomposites. Mater. Sci. Eng. C 2013, 33, 752–757. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, L.; Shankar, S.; Rhim, J.-W. Chapter 3—Applications of Nanotechnology in Food Microbiology. In Methods in Microbiology; Gurtler, V., Ball, A.S., Soni, S., Eds.; Nanotechnology; Academic Press: Cambridge, MA, USA, 2019; Volume 46, pp. 43–60. [Google Scholar]
- Bruna, J.E.; Peñaloza, A.; Guarda, A.; Rodríguez, F.; Galotto, M.J. Development of MtCu2+/LDPE Nanocomposites with Antimicrobial Activity for Potential Use in Food Packaging. Appl. Clay Sci. 2012, 58, 79–87. [Google Scholar] [CrossRef]
- Bruna, J.E.; Quilodrán, H.; Guarda, A.; Rodríguez, F.; Galotto, M.J.; Figueroa, P. Development of Antibacterial MtCu/PLA Nanocomposites by Casting Method for Potential Use in Food Packaging. J. Chil. Chem. Soc. 2015, 60, 3009–3014. [Google Scholar] [CrossRef] [Green Version]
- Cárdenas, G.; Díaz, V.J.; Meléndrez, M.F.; Cruzat, C.C.; García Cancino, A. Colloidal Cu Nanoparticles/Chitosan Composite Film Obtained by Microwave Heating for Food Package Applications. Polym. Bull. 2009, 62, 511–524. [Google Scholar] [CrossRef]
- Nouri, A.; Yaraki, M.T.; Ghorbanpour, M.; Agarwal, S.; Gupta, V.K. Enhanced Antibacterial Effect of Chitosan Film Using Montmorillonite/CuO Nanocomposite. Int. J. Biol. Macromol. 2018, 109, 1219–1231. [Google Scholar] [CrossRef]
- Martucci, J.F.; Ruseckaite, R.A. Antibacterial Activity of Gelatin/Copper (II)-Exchanged Montmorillonite Films. Food Hydrocoll. 2017, 64, 70–77. [Google Scholar] [CrossRef] [Green Version]
- Das, G.; Kalita, R.D.; Gogoi, P.; Buragohain, A.K.; Karak, N. Antibacterial Activities of Copper Nanoparticle-Decorated Organically Modified Montmorillonite/Epoxy Nanocomposites. Appl. Clay Sci. 2014, 90, 18–26. [Google Scholar] [CrossRef]
- Bartolozzi, A.; Bertani, R.; Burigo, E.; Fabrizi, A.; Panozzo, F.; Quaresimin, M.; Simionato, F.; Sgarbossa, P.; Tamburini, S.; Zappalorto, M.; et al. Multifunctional Cu 2+$ -Montmorillonite/Epoxy Resin Nanocomposites with Antibacterial Activity. J. Appl. Polym. Sci. 2017, 134. [Google Scholar] [CrossRef]
- De, B.; Gupta, K.; Mandal, M.; Karak, N. Biocide Immobilized OMMT-Carbon Dot Reduced Cu2O Nanohybrid/Hyperbranched Epoxy Nanocomposites: Mechanical, Thermal, Antimicrobial and Optical Properties. Mater. Sci. Eng. C 2015, 56, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Xi, Z.; Wu, F.; Song, S.; Huang, X.; Chu, X.; Wang, Z.; Wang, Y.; Zhang, Q.; Meng, N.; et al. Quaternized Chitosan-Coated Montmorillonite Interior Antimicrobial Metal–Antibiotic in Situ Coordination Complexation for Mixed Infections of Wounds. Langmuir 2019, 35, 15275–15286. [Google Scholar] [CrossRef] [PubMed]
- Rienzie, R.; Sendanayake, L.; De Costa, D.; Hossain, A.; Brestic, M.; Skalicky, M.; Vachova, P.; Adassooriya, N.M. Assessing the Carboxymethylcellulose Copper-Montmorillonite Nanocomposite for Controlling the Infection of Erwinia Carotovora in Potato (Solanum Tuberosum L.). Nanomaterials 2021, 11, 802. [Google Scholar] [CrossRef] [PubMed]
- Garshasbi, N.; Ghorbanpour, M.; Nouri, A.; Lotfiman, S.; Garshasbi, N.; Ghorbanpour, M.; Nouri, A.; Lotfiman, S. Preparation of Zinc Oxide-Nanoclay Hybrids by Alkaline Ion Exchange Method. Braz. J. Chem. Eng. 2017, 34, 1055–1063. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.-H.; Wang, J.; Cui, L.-Y.; Zeng, R.-C.; Wang, Q.-Z.; Han, Q.-X.; Qiu, J.; Chen, X.-B.; Chen, D.-C.; Guan, S.-K.; et al. Corrosion Resistance and Antibacterial Activity of Zinc-Loaded Montmorillonite Coatings on Biodegradable Magnesium Alloy AZ31. Acta Biomater. 2019, 98, 196–214. [Google Scholar] [CrossRef]
- Wang, J.; Cui, L.; Ren, Y.; Zou, Y.; Ma, J.; Wang, C.; Zheng, Z.; Chen, X.; Zeng, R.; Zheng, Y. In Vitro and in Vivo Biodegradation and Biocompatibility of an MMT/BSA Composite Coating upon Magnesium Alloy AZ31. J. Mater. Sci. Technol. 2020, 47, 52–67. [Google Scholar] [CrossRef]
- Hu, C.H.; Gu, L.Y.; Luan, Z.S.; Song, J.; Zhu, K. Effects of Montmorillonite–Zinc Oxide Hybrid on Performance, Diarrhea, Intestinal Permeability and Morphology of Weanling Pigs. Anim. Feed Sci. Technol. 2012, 177, 108–115. [Google Scholar] [CrossRef]
- Hu, C.H.; Qian, Z.C.; Song, J.; Luan, Z.S.; Zuo, A.Y. Effects of Zinc Oxide-Montmorillonite Hybrid on Growth Performance, Intestinal Structure, and Function of Broiler Chicken. Poult. Sci. 2013, 92, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Mallakpour, S.; Aalizadeh, R. Polymer Nanocomposites Containing 4,4′-Methylene Bis(3-Chloro-2,6-Diethylaniline) and N,N′-(Pyromellitoyl)-Bis-L-Phenylalanine Diacid Reinforced with Modified ZnO and Organo-Montmorillonite. Polym.-Plast. Technol. Eng. 2013, 52, 674–682. [Google Scholar] [CrossRef]
- Zahedi, Y.; Fathi-Achachlouei, B.; Yousefi, A.R. Physical and Mechanical Properties of Hybrid Montmorillonite/Zinc Oxide Reinforced Carboxymethyl Cellulose Nanocomposites. Int. J. Biol. Macromol. 2018, 108, 863–873. [Google Scholar] [CrossRef] [PubMed]
- Samzadeh-Kermani, A.; Miri, S. Synthesis, Characterization and Bactericidal Property of Chitosan-Graft-Polyaniline/Montmorillonite/ZnO Nanocomposite. Korean J. Chem. Eng. 2015, 32, 1137–1141. [Google Scholar] [CrossRef]
- Ramya, E.; Rajashree, C.; Nayak, P.L.; Narayana Rao, D. New Hybrid Organic Polymer Montmorillonite/Chitosan/Polyphenylenediamine Composites for Nonlinear Optical Studies. Appl. Clay Sci. 2017, 150, 323–332. [Google Scholar] [CrossRef]
- Vaezi, K.; Asadpour, G.; Sharifi, H. Effect of ZnO Nanoparticles on the Mechanical, Barrier and Optical Properties of Thermoplastic Cationic Starch/Montmorillonite Biodegradable Films. Int. J. Biol. Macromol. 2019, 124, 519–529. [Google Scholar] [CrossRef]
- Roy, A.; Joshi, M.; Butola, B.S. Preparation and Antimicrobial Assessment of Zinc-Montmorillonite Intercalates Based HDPE Nanocomposites: A Cost-Effective and Safe Bioactive Plastic. J. Clean. Prod. 2019, 212, 1518–1525. [Google Scholar] [CrossRef]
- Salmas, C.; Giannakas, A.; Katapodis, P.; Leontiou, A.; Moschovas, D.; Karydis-Messinis, A. Development of ZnO/Na-Montmorillonite Hybrid Nanostructures Used for PVOH/ZnO/Na-Montmorillonite Active Packaging Films Preparation via a Melt-Extrusion Process. Nanomaterials 2020, 10, 1079. [Google Scholar] [CrossRef]
- Bansal, P.; Purwar, R. Development of Efficient Antimicrobial Zinc Oxide Modified Montmorillonite Incorporated Polyacrylonitrile Nanofibers for Particulate Matter Filtration. Fibers Polym. 2021, 22, 2726–2737. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Fan, X.; Liu, H.; Li, J.; He, X.; Hui, A.; Wang, A. The High-Efficiency Synergistic and Broad-Spectrum Antibacterial Effect of Cobalt Doped Zinc Oxide Quantum Dots (Co-ZnO QDs) Loaded Cetyltributylphosphonium Bromide (CTPB) Modified MMT (C-MMT) Nanocomposites. Colloids Surf. A Physicochem. Eng. Asp. 2021, 613, 126059. [Google Scholar] [CrossRef]
- Chen, H.; Deng, H.; Zhong, X.; Zhou, H.; Zhan, J.; Zhou, X. Highly Dispersed Amorphous ZnO on a Petal-like Porous Silica-Clay Composite with Enhanced Antimicrobial Properties. Colloids Surf. B Biointerfaces 2022, 220, 112978. [Google Scholar] [CrossRef]
- Baldassari, S.; Komarneni, S.; Mariani, E.; Villa, C. Microwave versus Conventional Preparation of Organoclays from Natural and Synthetic Clays. Appl. Clay Sci. 2006, 31, 134–141. [Google Scholar] [CrossRef]
- Cheng, D.; Zhou, X.; Xia, H.; Chan, H.S.O. Novel Method for the Preparation of Polymeric Hollow Nanospheres Containing Silver Cores with Different Sizes. Chem. Mater. 2005, 17, 3578–3581. [Google Scholar] [CrossRef]
- Chen, P.; Song, L.; Liu, Y.; Fang, Y. Synthesis of Silver Nanoparticles by γ-Ray Irradiation in Acetic Water Solution Containing Chitosan. Radiat. Phys. Chem. 2007, 76, 1165–1168. [Google Scholar] [CrossRef]
- Kesavan Pillai, S.; Sinha Ray, S.; Scriba, M.; Bandyopadhyay, J.; Roux-van der Merwe, M.P.; Badenhorst, J. Microwave Assisted Green Synthesis and Characterization of Silver/Montmorillonite Heterostructures with Improved Antimicrobial Properties. Appl. Clay Sci. 2013, 83–84, 315–321. [Google Scholar] [CrossRef]
- Kheiralla, Z.M.H.; Rushdy, A.A.; Betiha, M.A.; Yakob, N.A.N. High-Performance Antibacterial of Montmorillonite Decorated with Silver Nanoparticles Using Microwave-Assisted Method. J. Nanoparticle Res. 2014, 16, 2560. [Google Scholar] [CrossRef]
- Li, T.; Zhang, Y.; Song, Z.; Wu, H.; Li, S. Preparation and Characterization of Antibacterial Silver Loaded Montmorillonite under Microwave Irradiation. Sci. Eng. Compos. Mater. 2013, 20, 15–22. [Google Scholar] [CrossRef]
- Li, T.; Lin, O.; Lu, Z.; He, L.; Wang, X. Preparation and Characterization of Silver Loaded Montmorillonite Modified with Sulfur Amino Acid. Appl. Surf. Sci. 2014, 305, 386–395. [Google Scholar] [CrossRef]
- Xu, G.; Qiao, X.; Qiu, X.; Chen, J. Preparation and Characterization of Nano-Silver Loaded Montmorillonite with Strong Antibacterial Activity and Slow Release Property. J. Mater. Sci. Technol. 2011, 27, 685–690. [Google Scholar] [CrossRef]
- Shameli, K.; Ahmad, M.B.; Yunus, W.M.Z.W.; Rustaiyan, A.; Ibrahim, N.A.; Zargar, M.; Abdollahi, Y. Green Synthesis of Silver/Montmorillonite/Chitosan Bionanocomposites Using the UV Irradiation Method and Evaluation of Antibacterial Activity. Int. J. Nanomed. 2010, 5, 875–887. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Shen, S.; Luo, J.; Wang, X.; Sun, R. One-Pot Green Synthesis and Antimicrobial Activity of Exfoliated Ag NP-Loaded Quaternized Chitosan/Clay Nanocomposites. RSC Adv. 2013, 3, 9714–9722. [Google Scholar] [CrossRef]
- Gabriel, J.S.; Gonzaga, V.A.M.; Poli, A.L.; Schmitt, C.C. Photochemical Synthesis of Silver Nanoparticles on Chitosans/Montmorillonite Nanocomposite Films and Antibacterial Activity. Carbohydr. Polym. 2017, 171, 202–210. [Google Scholar] [CrossRef]
- Mallakpour, S.; Barati, A. A Straightforward Preparation and Characterization of Novel Poly(Vinyl Alcohol)/Organoclay/Silver Tricomponent Nanocomposite Films. Prog. Org. Coat. 2014, 77, 1629–1634. [Google Scholar] [CrossRef]
- Tokarský, J.; Čapková, P.; Rafaja, D.; Klemm, V.; Valášková, M.; Kukutschová, J.; Tomášek, V. Adhesion of Silver Nanoparticles on the Clay Substrates; Modeling and Experiment. Appl. Surf. Sci. 2010, 256, 2841–2848. [Google Scholar] [CrossRef]
- Keller-Besrest, F.; Bénazeth, S.; Souleau, C. EXAFS Structural Investigation of a Silver-Added Montmorillonite Clay. Mater. Lett. 1995, 24, 17–21. [Google Scholar] [CrossRef]
- Zarei, A.R.; Barghak, F. Fast and Efficient Adsorption of Ag Nanoparticles by Sodium Montmorillonite Nanoclay from Aqueous Systems. J. Chem. Res. 2015, 39, 542–545. [Google Scholar] [CrossRef]
- Syafiuddin, A.; Salmiati, S.; Jonbi, J.; Fulazzaky, M.A. Application of the Kinetic and Isotherm Models for Better Understanding of the Behaviors of Silver Nanoparticles Adsorption onto Different Adsorbents. J. Environ. Manag. 2018, 218, 59–70. [Google Scholar] [CrossRef]
- Fernández Solarte, A.M.; Blanco Massani, M.R.; Molina, V.M.; Benítez Guerrero, M.; Torres Sánchez, R.M. Correlating Antimicrobial Activity and Structure in Montmorillonite Modified with Hexadecyltrimethylammonium and Silver; Sphinx Knowledge House: Maharashtra, India, 2018. [Google Scholar] [CrossRef]
- Busolo, M.A.; Fernandez, P.; Ocio, M.J.; Lagaron, J.M. Novel Silver-Based Nanoclay as an Antimicrobial in Polylactic Acid Food Packaging Coatings. Food Addit. Contam. Part A 2010, 27, 1617–1626. [Google Scholar] [CrossRef]
- Clegg, F.; Breen, C.; Muranyi, P.; Schönweitz, C. Antimicrobial, Starch Based Barrier Coatings Prepared Using Mixed Silver/Sodium Exchanged Bentonite. Appl. Clay Sci. 2019, 179, 105144. [Google Scholar] [CrossRef]
- 1Shabanzadeh, P.; Yusof, R.; Shameli, K. Artificial Neural Network for Modeling the Size of Silver Nanoparticles’ Prepared in Montmorillonite/Starch Bionanocomposites. J. Ind. Eng. Chem. 2015, 24, 42–50. [Google Scholar] [CrossRef]
- Valášková, M.; Tokarský, J.; Pavlovský, J.; Prostějovský, T.; Kočí, K. α-Fe2O3 Nanoparticles/Vermiculite Clay Material: Structural, Optical and Photocatalytic Properties. Materials 2019, 12, 1880. [Google Scholar] [CrossRef] [Green Version]
- Tian, L.; Yuanyuan, Z.; Yingying, M.; Ran, H. Fabrication of Functional Silver Loaded Montmorillonite/Polycarbonate with Superhydrophobicity. Appl. Clay Sci. 2015, 118, 337–343. [Google Scholar] [CrossRef]
- Bhattacharyya, K.G.; Gupta, S.S. Influence of Acid Activation on Adsorption of Ni(II) and Cu(II) on Kaolinite and Montmorillonite: Kinetic and Thermodynamic Study. Chem. Eng. J. 2008, 136, 1–13. [Google Scholar] [CrossRef]
- Komadel, P. Acid Activated Clays: Materials in Continuous Demand. Appl. Clay Sci. 2016, 131, 84–99. [Google Scholar] [CrossRef]
- Esteban-Tejeda, L.; Malpartida, F.; Pecharromán, C.; Moya, J.S. High Antibacterial and Antifungal Activity of Silver Monodispersed Nanoparticles Embedded in a Glassy Matrix. Adv. Eng. Mater. 2010, 12, B292–B297. [Google Scholar] [CrossRef]
- Diba, M.; Boccaccini, A.R. 9-Silver-Containing Bioactive Glasses for Tissue Engineering Applications. In Precious Metals for Biomedical Applications; Baltzer, N., Copponnex, T., Eds.; Woodhead Publishing: Sawston, UK, 2014; pp. 177–211. ISBN 978-0-85709-434-6. [Google Scholar]
- Barui, A.K.; Nethi, S.K.; Haque, S.; Basuthakur, P.; Patra, C.R. Recent Development of Metal Nanoparticles for Angiogenesis Study and Their Therapeutic Applications. ACS Appl. Bio Mater. 2019, 2, 5492–5511. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.-L.; Xu, Z.-R.; Guo, T.; You, P. Adsorption of Methylene Blue on Cu(II)-Exchanged Montmorillonite. J. Colloid Interface Sci. 2004, 280, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Tomašević-Čanović, M.; Daković, A.; Marković, V.; Stojšić, D. The Effect of Exchangeable Cations in Clinoptilolite and Montmorillonite on the Adsorption of Aflatoxin B1. J. Serb. Chem. Soc. 2001, 66, 555–561. [Google Scholar] [CrossRef]
- Daković, A.; Matijašević, S.; Rottinghaus, G.E.; Ledoux, D.R.; Butkeraitis, P.; Sekulić, Ž. Aflatoxin B1 Adsorption by Natural and Copper Modified Montmorillonite. Colloids Surf. B Biointerfaces 2008, 66, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Özdemir, G.; Yapar, S. Adsorption and Desorption Behavior of Copper Ions on Na-Montmorillonite: Effect of Rhamnolipids and PH. J. Hazard. Mater. 2009, 166, 1307–1313. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Cao, S.; Su, R.; Li, Z.; Hu, P.; Xu, Z. Adsorptive Property of Cu2+-Loaded Montmorillonite Clays for Escherichia Coli K88 in Vitro. J. Environ. Sci. 2011, 23, 1808–1815. [Google Scholar] [CrossRef] [PubMed]
- Gu, N.; Gao, J.; Li, H.; Wu, Y.; Ma, Y.; Wang, K. Montmorillonite-Supported with Cu2O Nanoparticles for Damage and Removal of Microcystis Aeruginosa under Visible Light. Appl. Clay Sci. 2016, 132–133, 79–89. [Google Scholar] [CrossRef]
- Yan, Y.; Li, C.; Wu, H.; Du, J.; Feng, J.; Zhang, J.; Huang, L.; Tan, S.; Shi, Q. Montmorillonite-Modified Reduced Graphene Oxide Stabilizes Copper Nanoparticles and Enhances Bacterial Adsorption and Antibacterial Activity. ACS Appl. Bio Mater. 2019, 2, 1842–1849. [Google Scholar] [CrossRef] [PubMed]
- Özdemir, G.; Yapar, S. Preparation and Characterization of Copper and Zinc Adsorbed Cetylpyridinium and N-Lauroylsarcosinate Intercalated Montmorillonites and Their Antibacterial Activity. Colloids Surf. B Biointerfaces 2020, 188, 110791. [Google Scholar] [CrossRef]
- Daković, A.; Kragović, M.; Rottinghaus, G.E.; Ledoux, D.R.; Butkeraitis, P.; Vojislavljević, D.Z.; Zarić, S.D.; Stamenić, L. Preparation and Characterization of Zinc-Exchanged Montmorillonite and Its Effectiveness as Aflatoxin B1 Adsorbent. Mater. Chem. Phys. 2012, 137, 213–220. [Google Scholar] [CrossRef]
- Egirani, D.E.; Poyi, N.R.; Wessey, N. Synthesis of Zinc Oxide–Montmorillonite Composite and Its Effect on the Removal of Aqueous Lead Ions. Acta Geochim 2019, 38, 120–130. [Google Scholar] [CrossRef]
- Ma, Y.-L.; Yang, B.; Xie, L. Adsorptive Property of Cu2+–ZnO/Cetylpyridinium–Montmorillonite Complexes for Pathogenic Bacterium in Vitro. Colloids Surf. B Biointerfaces 2010, 79, 390–396. [Google Scholar] [CrossRef]
- Huang, R.-H.; Chao, W.-K.; Yu, R.-S.; Huang, R.-T.; Hsueh, K.-L.; Shieu, F.-S. Facile Synthesis of Silver Nanoparticles by Electrochemical Method in the Presence of Sodium Montmorillonite. J. Electrochem. Soc. 2012, 159, E122–E126. [Google Scholar] [CrossRef]
- Nikitenkov, N. Modern Technologies for Creating the Thin-Film Systems and Coatings; BoD–Books on Demand: London, UK, 2017; ISBN 978-953-51-3003-1. [Google Scholar]
- Iconaru, S.L.; Groza, A.; Stan, G.E.; Predoi, D.; Gaiaschi, S.; Trusca, R.; Chifiriuc, C.M.; Marutescu, L.; Tite, T.; Stanciu, G.A.; et al. Preparations of Silver/Montmorillonite Biocomposite Multilayers and Their Antifungal Activity. Coatings 2019, 9, 817. [Google Scholar] [CrossRef] [Green Version]
- Tun, P.P.; Wang, J.; Khaing, T.T.; Wu, X.; Zhang, G. Fabrication of Functionalized Plasmonic Ag Loaded Bi2O3/Montmorillonite Nanocomposites for Efficient Photocatalytic Removal of Antibiotics and Organic Dyes. J. Alloys Compd. 2020, 818, 152836. [Google Scholar] [CrossRef]
- Malachová, K.; Praus, P.; Rybková, Z.; Kozák, O. Antibacterial and Antifungal Activities of Silver, Copper and Zinc Montmorillonites. Appl. Clay Sci. 2011, 53, 642–645. [Google Scholar] [CrossRef]
- Kim, T.N.; Feng, Q.L.; Kim, J.O.; Wu, J.; Wang, H.; Chen, G.C.; Cui, F.Z. Antimicrobial Effects of Metal Ions (Ag+, Cu2+, Zn2+) in Hydroxyapatite. J. Mater. Sci. Mater. Med. 1998, 9, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Unuabonah, E.I.; Ugwuja, C.G.; Omorogie, M.O.; Adewuyi, A.; Oladoja, N.A. Clays for Efficient Disinfection of Bacteria in Water. Appl. Clay Sci. 2018, 151, 211–223. [Google Scholar] [CrossRef]
- Roy, A.; Joshi, M.; Butola, B.S. Antimicrobial Performance of Polyethylene Nanocomposite Monofilaments Reinforced with Metal Nanoparticles Decorated Montmorillonite. Colloids Surf. B Biointerfaces 2019, 178, 87–93. [Google Scholar] [CrossRef]
- Cruces, E.; Arancibia-Miranda, N.; Manquián-Cerda, K.; Perreault, F.; Bolan, N.; Azócar, M.I.; Cubillos, V.; Montory, J.; Rubio, M.A.; Sarkar, B. Copper/Silver Bimetallic Nanoparticles Supported on Aluminosilicate Geomaterials as Antibacterial Agents. ACS Appl. Nano Mater. 2022, 5, 1472–1483. [Google Scholar] [CrossRef]
- Ma, Y.-L.; Yang, B.; Guo, T.; Xie, L. Antibacterial Mechanism of Cu2+–ZnO/Cetylpyridinium–Montmorillonite in Vitro. Appl. Clay Sci. 2010, 50, 348–353. [Google Scholar] [CrossRef]
- Ma, X.; Pei, Y.; Ma, Y.; Pu, T.; Lei, Y. Antibacterial Activity of Cu2+-ZnO-Modified 13X Zeolite against E.Coli and S.Aureus. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 2019, 34, 481–486. [Google Scholar] [CrossRef]
- Jiao, L.; Lin, F.; Cao, S.; Wang, C.; Wu, H.; Shu, M.; Hu, C. Preparation, Characterization, Antimicrobial and Cytotoxicity Studies of Copper/Zinc- Loaded Montmorillonite. J. Anim. Sci. Biotechnol. 2017, 8, 27. [Google Scholar] [CrossRef] [Green Version]
- Peighambardoust, S.J.; Zahed-Karkaj, S.; Peighambardoust, S.H.; Ebrahimi, Y.; Peressini, D. Characterization of Carboxymethyl Cellulose-Based Active Films Incorporating Non-Modified and Ag or Cu-Modified Cloisite 30B and Montmorillonite Nanoclays. Iran. Polym. J. 2020, 29, 1087–1097. [Google Scholar] [CrossRef]
- Lin, Z.; Fu, H.; Zhang, Y.; Deng, Y.; Wei, F.; Li, H.; Xu, C.; Hua, F.; Lin, B. Enhanced Antibacterial Effect and Biodegradation of Coating via Dual-in-Situ Growth Based on Carboxymethyl Cellulose. Carbohydr. Polym. 2023, 302, 120433. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Ni, Y.; Pang, J. Size Effect-Inspired Fabrication of Konjac Glucomannan/Polycaprolactone Fiber Films for Antibacterial Food Packaging. Int. J. Biol. Macromol. 2020, 149, 853–860. [Google Scholar] [CrossRef] [PubMed]
- Subha, V.; Ranu, A.; Shankar, A.; Kirubanandan, S.; Satheeshkumar, E.; Suresh, S.; Pugazhendhi, A.; Ilangovan, R. Functionalization of Spray Coated Cellulose Nanofiber Sheet with Montmorillonite (MMT) and Silver Nanoparticles (AgNPs) to Biomedical Nanocomposite as Wound Regeneration Scaffold. Prog. Org. Coat. 2022, 166, 106782. [Google Scholar] [CrossRef]
- Huang, X.; Ge, M.; Wang, H.; Liang, H.; Meng, N.; Zhou, N. Functional Modification of Polydimethylsiloxane Nanocomposite with Silver Nanoparticles-Based Montmorillonite for Antibacterial Applications. Colloids Surf. A Physicochem. Eng. Asp. 2022, 642, 128666. [Google Scholar] [CrossRef]
- Sadeghianmaryan, A.; Zarbaf, D.; Montazer, M.; MahmoudiRad, M. Green Synthesis of Organo-Montmorillonite/Silver Nanocomposites on Dyed Cotton with Vat Dyes to Achieve Biocompatible Antibacterial Properties on Fashionable Clothing. J. Nat. Fibers 2022, 19, 10253–10268. [Google Scholar] [CrossRef]
- Sahithya, K.; Karthika, K. Green Synthesis of Silver Nanoparticles Using Marine Sea Weed Acetabularia Acetabulum and Their Activity as MMT-Ag Nanocomposites towards Antifouling Applications. Res. J. Pharm. Technol. 2022, 15, 5397–5404. [Google Scholar] [CrossRef]
- Horue, M.; Cacicedo, M.L.; Fernandez, M.A.; Rodenak-Kladniew, B.; Torres Sánchez, R.M.; Castro, G.R. Antimicrobial Activities of Bacterial Cellulose–Silver Montmorillonite Nanocomposites for Wound Healing. Mater. Sci. Eng. C 2020, 116, 111152. [Google Scholar] [CrossRef]
- Ogunsona, E.O.; Muthuraj, R.; Ojogbo, E.; Valerio, O.; Mekonnen, T.H. Engineered Nanomaterials for Antimicrobial Applications: A Review. Appl. Mater. Today 2020, 18, 100473. [Google Scholar] [CrossRef]
- Abbaci, A.; Azzouz, N.; Bouznit, Y. A New Copper Doped Montmorillonite Modified Carbon Paste Electrode for Propineb Detection. Appl. Clay Sci. 2014, 90, 130–134. [Google Scholar] [CrossRef]
- Tepmatee, P.; Siriphannon, P. Nanoporous Copper Doped Aluminium Pillared Montmorillonite for Dye-Containing Wastewater Treatment. Water Environ. Res. 2016, 88, 2015–2022. [Google Scholar] [CrossRef] [PubMed]
- İlaslan, K.; Tornuk, F.; Durak, M.Z. Development of Polycaprolactone Biodegradable Films Reinforced with Silver-Doped Organoclay and Effect on the Microbiological Quality of Ground Beef Meat. J. Food Process. Preserv. 2022, 46, e16862. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, Z.W.; Allaker, R.P.; Reip, P.; Oxford, J.; Ahmad, Z.; Ren, G. A Review of Nanoparticle Functionality and Toxicity on the Central Nervous System. J. R. Soc. Interface 2010, 7, S411–S422. [Google Scholar] [CrossRef] [PubMed]
- Vandebriel, R.J.; Jong, W.H.D. A Review of Mammalian Toxicity of ZnO Nanoparticles. Available online: https://www.dovepress.com/a-review-of-mammalian-toxicity-of-zno-nanoparticles-peer-reviewed-article-NSA (accessed on 28 April 2020).
- Ivask, A.; Juganson, K.; Bondarenko, O.; Mortimer, M.; Aruoja, V.; Kasemets, K.; Blinova, I.; Heinlaan, M.; Slaveykova, V.; Kahru, A. Mechanisms of Toxic Action of Ag, ZnO and CuO Nanoparticles to Selected Ecotoxicological Test Organisms and Mammalian Cells in Vitro: A Comparative Review. Nanotoxicology 2014, 8, 57–71. [Google Scholar] [CrossRef]
- Minetto, D.; Volpi Ghirardini, A.; Libralato, G. Saltwater Ecotoxicology of Ag, Au, CuO, TiO2, ZnO and C60 Engineered Nanoparticles: An Overview. Environ. Int. 2016, 92–93, 189–201. [Google Scholar] [CrossRef] [Green Version]
- Ema, M.; Okuda, H.; Gamo, M.; Honda, K. A Review of Reproductive and Developmental Toxicity of Silver Nanoparticles in Laboratory Animals. Reprod. Toxicol. 2017, 67, 149–164. [Google Scholar] [CrossRef]
- Sardoiwala, M.N.; Kaundal, B.; Choudhury, S.R. Toxic Impact of Nanomaterials on Microbes, Plants and Animals. Env. Chem. Lett. 2018, 16, 147–160. [Google Scholar] [CrossRef]
- Du, J.; Tang, J.; Xu, S.; Ge, J.; Dong, Y.; Li, H.; Jin, M. ZnO Nanoparticles: Recent Advances in Ecotoxicity and Risk Assessment. Drug Chem. Toxicol. 2020, 43, 322–333. [Google Scholar] [CrossRef]
- Bai, C.; Tang, M. Toxicological Study of Metal and Metal Oxide Nanoparticles in Zebrafish. J. Appl. Toxicol. 2020, 40, 37–63. [Google Scholar] [CrossRef] [Green Version]
- AshaRani, P.V.; Low Kah Mun, G.; Hande, M.P.; Valiyaveettil, S. Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells. ACS Nano 2009, 3, 279–290. [Google Scholar] [CrossRef]
- Hackenberg, S.; Scherzed, A.; Kessler, M.; Hummel, S.; Technau, A.; Froelich, K.; Ginzkey, C.; Koehler, C.; Hagen, R.; Kleinsasser, N. Silver Nanoparticles: Evaluation of DNA Damage, Toxicity and Functional Impairment in Human Mesenchymal Stem Cells. Toxicol. Lett. 2011, 201, 27–33. [Google Scholar] [CrossRef]
- Gliga, A.R.; Skoglund, S.; Odnevall Wallinder, I.; Fadeel, B.; Karlsson, H.L. Size-Dependent Cytotoxicity of Silver Nanoparticles in Human Lung Cells: The Role of Cellular Uptake, Agglomeration and Ag Release. Part. Fibre Toxicol. 2014, 11, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezić, I. Determination of Engineered Nanoparticles on Textiles and in Textile Wastewaters. TrAC Trends Anal. Chem. 2011, 30, 1159–1167. [Google Scholar] [CrossRef]
- Larese, F.F.; D’Agostin, F.; Crosera, M.; Adami, G.; Renzi, N.; Bovenzi, M.; Maina, G. Human Skin Penetration of Silver Nanoparticles through Intact and Damaged Skin. Toxicology 2009, 255, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Foldbjerg, R.; Dang, D.A.; Autrup, H. Cytotoxicity and Genotoxicity of Silver Nanoparticles in the Human Lung Cancer Cell Line, A549. Arch. Toxicol. 2011, 85, 743–750. [Google Scholar] [CrossRef]
- Lal, S.; Perwez, A.; Rizvi, M.A.; Datta, M. Design and Development of a Biocompatible Montmorillonite PLGA Nanocomposites to Evaluate in Vitro Oral Delivery of Insulin. Appl. Clay Sci. 2017, 147, 69–79. [Google Scholar] [CrossRef]
- Corrales, T.; Larraza, I.; Catalina, F.; Portolés, T.; Ramírez-Santillán, C.; Matesanz, M.; Abrusci, C. In Vitro Biocompatibility and Antimicrobial Activity of Poly(ε-Caprolactone)/Montmorillonite Nanocomposites. Biomacromolecules 2012, 13, 4247–4256. [Google Scholar] [CrossRef]
- Jiao, L.F.; Zhang, Q.H.; Wu, H.; Wang, C.C.; Cao, S.T.; Feng, J.; Hu, C.H. Influences of Copper/Zinc-Loaded Montmorillonite on Growth Performance, Mineral Retention, Intestinal Morphology, Mucosa Antioxidant Capacity, and Cytokine Contents in Weaned Piglets. Biol. Trace Elem. Res. 2018, 185, 356–363. [Google Scholar] [CrossRef]
- Zhang, R.; Wen, C.; Chen, Y.; Liu, W.; Jiang, Y.; Zhou, Y. Zinc-Bearing Palygorskite Improves the Intestinal Development, Antioxidant Capability, Cytokines Expressions, and Microflora in Blunt Snout Bream (Megalobrama amblycephala). Aquac. Rep. 2020, 16, 100269. [Google Scholar] [CrossRef]
- Daniel, S.C.G.K.; Tharmaraj, V.; Sironmani, T.A.; Pitchumani, K. Toxicity and Immunological Activity of Silver Nanoparticles. Appl. Clay Sci. 2010, 48, 547–551. [Google Scholar] [CrossRef]
- Gutiérrez, T.J.; León, I.E.; Ponce, A.G.; Alvarez, V.A. Active and PH-Sensitive Nanopackaging Based on Polymeric Anthocyanin/Natural or Organo-Modified Montmorillonite Blends: Characterization and Assessment of Cytotoxicity. Polymers 2022, 14, 4881. [Google Scholar] [CrossRef] [PubMed]
- Gherasim, O.; Puiu, R.A.; Bîrcă, A.C.; Burdușel, A.-C.; Grumezescu, A.M. An Updated Review on Silver Nanoparticles in Biomedicine. Nanomaterials 2020, 10, 2318. [Google Scholar] [CrossRef] [PubMed]
Type of Nanocomposite | Methods of Preparation | Application | Antimicrobial Result/Improved Properties | References |
---|---|---|---|---|
Ag/OMMT/QCS-QOMA | One-step approach. | Medical device and household. | Improved mechanical properties and confirmed activity towards E. coli, S. aureus, and fungi. | [39] |
(Ag+(6-BAP)2)/MMT | Ion exchange method and carbothermal reduction. | Delivery of bacteriocidal compounds. | Slow release of silver chelate is confirmed. | [76] |
(Ag-Nacre-like KGM)/MMT | Vaccum filtration and in situ reduction method. | Biomedical field. | Good mechanical properties and improved light transmission. | [97] |
Ag/MMT/PCL | Reduction method. | Wastewater treatment. | Confirmed antibacterial activity towards S. aureus and E. coli | [103] |
Ag/MMT/glassy matrix | Embedded. | Agriculture and food technology. | Confirmed activity towards E. coli, M. luteus, and I. orientails | [204] |
Ag/MMT/PVA | Electrospinning method. | Food bacteriology. | Effective against S. aureus (ATCC6538) and E. coli (ATCC25922), improvement in thermal stability. | [149] |
Ag/MMT/agar hydrogel | Ion exchange and thermal treatment method. | Food packaging. | Activite against selected spoilage microorganisms. | [126] |
Ag/MMT | Ion exchange and thermal treatment method. | Fresh fruit salad. | Shelf life increase in fruit salad and reduced microbial viable count. | [127] |
Ag/OMMT | One-step solution-intercalation technique. | Adhesives, plastics, and paints manufacturing industries. | Confirmed that in 2 h, 0.0125 mg/mL Ag/OMMT could kill 100% of S. aureus, E. coli, and C. albicans in solution. | [136] |
Ag/MMT/Agar–CMC | Solution casting method. | Food preservation. | Improved mechanical and antimicrobial properties. | [144] |
Ag/MMT | Aqueous extract of Acetabularia acetabulum. | Marine biofouling on ship. | Active against S. aureus and E coli | [236] |
Ag-Bi2O3/MMT | Thermal and wet impregnation methods. | Refine antibiotic pollutants and dye from wastewater. | Showed outstanding visible light induced photocatalytic activities for tetracycline (TC) antibiotic and RhB degradation. | [221] |
Ag/MMT/BC | Ion exchange, solution casting. | Scaffolds for wound dressing | Active against biofilms of S. aureus and P. aeruginosa. | [237] |
Calcium–alginate coating loaded Ag/MMT | Ion exchange method. | Fresh-cut carrots | Improvement of sensory attributes, spoilage microorganisms reduced, Extension in shelf life of carrots. | [128] |
Cu2+/MMT/CA | Solution casting. | Food packaging | The change in the oxygen barrier properties, confirmed antibacterial performance against E. coli. | [38] |
Cu2+/MMTCarbon Paste Electrode (CPE) | Ion exchange and electrochemical method. | Detect propineb pesticide in river and sea water. | Confirmed sensitivity towards pesticide. | [239] |
Cu/MMT | Alkaline ion exchange. | Wastewater treatment. | Confirmed antimicrobial activity against S. aureus and E. coli, with excellent stability in water. | [152] |
Cu-Zn/MMT | Ion exchange reaction. | Animal husbandry. | Higher antimicrobial activity towards E. coli, S. aureus bacteria; and Candida albicans fungi, relatively low toxic. | [229] |
Cu-Alpill/MMT | High power ultrasonic treatment and calcining. | Wastewater treatment. | [240] | |
Cu2+/MMT/CMC | Ion exchange and spray coating. | Active against Erwinia carotovora in Potato (Solanum tuberosum L.) | [164] | |
ZnO/MMT/CMC | Solution casting. | Food packaging. | Improved functional characteristics, and enhanced resistance to water vapour permeability, glass transition temperature increased, higher antibacterial activity against S. aureus than E. coli. | [171] |
PCL/halloysite (HNT)/MMT | Heat treatment, precipitation | Beef meat packaging. | [241] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hossain, S.I.; Kukushkina, E.A.; Izzi, M.; Sportelli, M.C.; Picca, R.A.; Ditaranto, N.; Cioffi, N. A Review on Montmorillonite-Based Nanoantimicrobials: State of the Art. Nanomaterials 2023, 13, 848. https://doi.org/10.3390/nano13050848
Hossain SI, Kukushkina EA, Izzi M, Sportelli MC, Picca RA, Ditaranto N, Cioffi N. A Review on Montmorillonite-Based Nanoantimicrobials: State of the Art. Nanomaterials. 2023; 13(5):848. https://doi.org/10.3390/nano13050848
Chicago/Turabian StyleHossain, Syed Imdadul, Ekaterina A. Kukushkina, Margherita Izzi, Maria Chiara Sportelli, Rosaria Anna Picca, Nicoletta Ditaranto, and Nicola Cioffi. 2023. "A Review on Montmorillonite-Based Nanoantimicrobials: State of the Art" Nanomaterials 13, no. 5: 848. https://doi.org/10.3390/nano13050848
APA StyleHossain, S. I., Kukushkina, E. A., Izzi, M., Sportelli, M. C., Picca, R. A., Ditaranto, N., & Cioffi, N. (2023). A Review on Montmorillonite-Based Nanoantimicrobials: State of the Art. Nanomaterials, 13(5), 848. https://doi.org/10.3390/nano13050848