Synthesis and Antibacterial Activity of (AgCl, Ag)NPs/Diatomite Hybrid Composite
"> Figure 1
<p>SEM-EDX spectrum (<b>A</b>) and SEM image (<b>B</b>); XRD patterns (I—illite; Q—quartz; K—kaolinite; H—halite) (<b>C</b>); FTIR spectrum; (<b>D</b>) curves of the studied raw diatomite samples.</p> "> Figure 2
<p>TGA curves of the studied raw diatomite sample.</p> "> Figure 3
<p>SEM-EDX spectra of the studied diatomite samples: (<b>A</b>) raw diatomite, (<b>B</b>–<b>D</b>) diatomite with immobilized silver (0.71, 4.65 and 7.21%, respectively).</p> "> Figure 4
<p>X-ray diffraction patterns of the studied diatomite samples: (<b>A</b>) raw diatomite, (<b>B</b>–<b>D</b>) diatomite with immobilized silver 0.71, 4.65 and 7.21%, respectively. I—illite, Q—quartz, K—kaolinite, H—halite, AgCl—silver chloride, Ag—metallic silver.</p> "> Figure 5
<p>TEM micrographs of synthesized hybrid (AgCl, Ag)NPs/diatomite composites with silver concentrations of 4.65% (<b>A</b>,<b>B</b>) and 7.21% (<b>C</b>,<b>D</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Diatomite Sample
2.2. Characterization Methods and Instrumentation
2.3. Preparation of (AgCl,Ag)NPs/Diatomite Composite
2.4. Antimicrobial Assay of (AgCl, Ag)NPs/Diatomite Composite
3. Result and Discussion
3.1. Characteristic of Natural Diatomite
3.2. Characterization of the Synthesized (AgCl,Ag)NPs/Diatomite Composite
3.2.1. Energy-Dispersive X-ray Spectroscopy (EDX) Studies
3.2.2. Powder X-ray Diffraction Analysis
3.2.3. Transmission Electron Microscopy Studies
3.3. Antibacterial Activity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- de Jesu´, A.L.; Ruı´z-Baltazar, S. Green composite based on silver nanoparticles supported on diatomaceous earth: Kinetic adsorption models and antibacterial effect. J. Clust. Sci. 2018, 29, 509–519. [Google Scholar] [CrossRef]
- Zhu, H.Y.; Orthman, J.A.; Li, J.Y.; Zhao, J.C.; Churchman, G.J.; Vansant, E.F. Novel composites of TiO2 (anatase) and silicate nanoparticles. Chem. Mater. 2002, 14, 5037–5044. [Google Scholar] [CrossRef]
- He, H.; Li, J.; Yu, C.; Luo, Z. Surface decoration of microdisk-like g-C3N4/diatomite with Ag/AgCl nanoparticles for application in Cr(VI) reduction. Mater. Technol. 2019. [Google Scholar] [CrossRef]
- Vamanu, E.; Ene, M.; Biță, B.; Ionescu, C.; Crăciun, L.; Sârbu, I. In vitro human microbiota response to exposure to silver nanoparticles biosynthesized with mushroom extract. Nutrients 2018, 10, 607. [Google Scholar] [CrossRef] [Green Version]
- Hillenkamp, M.; di Domenicantonio, G.; Eugster, O.; Félix, C. Instability of Ag nanoparticles in SiO2 at ambient conditions. Nanotechnology 2007. [Google Scholar] [CrossRef] [Green Version]
- El-Tawil, R.S.; El-Wakeel, S.T.; Abdel-Ghany, A.E.; Abuzeid, H.A.M.; Selim, K.A.; Hashem, A.M. Silver/quartz nanocomposite as an adsorbent for removal of mercury (II) ions from aqueous solutions. Heliyon 2019. [Google Scholar] [CrossRef]
- Pergolese, B.; Muniz-Miranda, M.; Bigotto, A. Catalytic activity of Ag/Pd bimetallic nanoparticles immobilized on quartz surfaces. Chem. Phys. Lett. 2007. [Google Scholar] [CrossRef]
- Mitzel, M.R.; Tufenkji, N. Transport of industrial PVP-stabilized silver nanoparticles in saturated quartz sand coated with pseudomonas aeruginosa PAO1 biofilm of variable age. Environ. Sci. Technol. 2014. [Google Scholar] [CrossRef]
- Shameli, K.; Ahmad, M.B.; Yunus, W.Z.W.; Ibrahim, N.A.; Flores, M. Synthesis and characterization of silver/talc nanocomposites using the wet chemical reduction method. Int. J. Nanomed. 2010. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Wang, L.; Yang, L.; Zhao, Y.; Shi, N.; An, C.; Sun, Y.; Xie, J.; Wang, H.; Song, Y.; et al. Preparation, characterization and antibacterial activity of silver nanoparticle/graphene oxide/diatomite composite. Appl. Surf. Sci. 2019. [Google Scholar] [CrossRef]
- Xia, Y.; Jiang, X.; Zhang, J.; Lin, M.; Tang, X.; Zhang, J.; Liu, H. Synthesis and characterization of antimicrobial nanosilver/diatomite nanocomposites and its water treatment application. Appl. Surf. Sci. 2017. [Google Scholar] [CrossRef]
- Patakfalvi, R.; Oszkó, A.; Dékány, I. Synthesis and characterization of silver nanoparticle/kaolinite composites. Colloids Surf. A Physicochem. Eng. Asp. 2003. [Google Scholar] [CrossRef]
- Malachová, K.; Praus, P.; Rybková, Z.; Kozák, O. Antibacterial and antifungal activities of silver, copper and zinc montmorillonites. Appl. Clay Sci. 2011. [Google Scholar] [CrossRef]
- Magaña, S.M.; Quintana, P.; Aguilar, D.H.; Toledo, J.A.; Ángeles-Chávez, C.; Cortés, M.A.; León, L.; Freile-Pelegrín, Y.; López, T.; Sánchez, R.M.T. Antibacterial activity of montmorillonites modified with silver. J. Mol. Catal. A Chem. 2008. [Google Scholar] [CrossRef]
- Hwang, J.J.; Ma, T.W. Preparation, morphology, and antibacterial properties of polyacrylonitrile/montmorillonite/silver nanocomposites. Mater. Chem. Phys. 2012. [Google Scholar] [CrossRef]
- Incoronato, A.L.; Buonocore, G.G.; Conte, A.; Lavorgna, M.; del Nobile, M.A. Active systems based on silver-montmorillonite nanoparticles embedded into bio-based polymer matrices for packaging applications. J. Food Prot. 2010. [Google Scholar] [CrossRef] [PubMed]
- Saengmee-anupharb, S.; Srikhirin, T.; Thaweboon, B.; Thaweboon, S.; Amornsakchai, T.; Dechkunakorn, S.; Suddhasthira, T. Antimicrobial effects of silver zeolite, silver zirconium phosphate silicate and silver zirconium phosphate against oral microorganisms. Asian Pac. J. Trop. Biomed. 2013. [Google Scholar] [CrossRef] [Green Version]
- Jiraroj, D.; Tungasmita, S.; Tungasmita, D.N. Silver ions and silver nanoparticles in zeolite a composites for antibacterial activity. Powder Technol. 2014. [Google Scholar] [CrossRef]
- Flores-López, N.S.; Castro-Rosas, J.; Ramírez-Bon, R.; Mendoza-Córdova, A.; Larios-Rodríguez, E.; Flores-Acosta, M. Synthesis and properties of crystalline silver nanoparticles supported in natural zeolite chabazite. J. Mol. Struct. 2012. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, J.; Cai, W. Sonochemical preparation of Au, Ag, Pd/SiO2 mesoporous nanocomposites. Scr. Mater. 2003. [Google Scholar] [CrossRef]
- Naik, B.; Desai, V.; Kowshik, M.; Prasad, V.S.; Fernando, G.F.; Ghosh, N.N. Synthesis of Ag/AgCl-mesoporous silica nanocomposites using a simple aqueous solution-based chemical method and a study of their antibacterial activity on E. coli. Particuology 2011. [Google Scholar] [CrossRef]
- Darroudi, M.; Ahmad, M.B.; Shameli, K.; Abdullah, A.H.; Ibrahim, N.A. Synthesis and characterization of UV-irradiated silver/montmorillonite nanocomposites. Solid State Sci. 2009. [Google Scholar] [CrossRef]
- Vasileva, P.; Donkova, B.; Karadjova, I.; Dushkin, C. Synthesis of starch-stabilized silver nanoparticles and their application as a surface plasmon resonance-based sensor of hydrogen peroxide. Colloids Surf. A Physicochem. Eng. Asp. 2011. [Google Scholar] [CrossRef]
- Qin, Y.; Ji, X.; Jing, J.; Liu, H.; Wu, H.; Yang, W. Size control over spherical silver nanoparticles by ascorbic acid reduction. Colloids Surf. A Physicochem. Eng. Asp. 2010. [Google Scholar] [CrossRef]
- Nishimura, S.; Mott, D.; Takagaki, A.; Maenosono, S.; Ebitani, K. Role of base in the formation of silver nanoparticles synthesized using sodium acrylate as a dual reducing and encapsulating agent. Phys. Chem. Chem. Phys. 2011. [Google Scholar] [CrossRef] [PubMed]
- Mohan, Y.M.; Premkumar, T.; Lee, K.; Geckeler, K.E. Fabrication of silver nanoparticles in hydrogel networks. Macromol. Rapid Commun. 2006. [Google Scholar] [CrossRef]
- Yunus, W.M.Z.W.; Ibrahim, N.A. Synthesis and characterization of silver/clay nanocomposites by chemical reduction method. Am. J. Appl. Sci. 2009, 6, 1909–1914. [Google Scholar]
- Wani, I.A.A.; Ganguly, A.; Ahmed, J.; Ahmad, T. Silver nanoparticles: Ultrasonic wave assisted synthesis, optical characterization and surface area studies. Mater. Lett. 2011. [Google Scholar] [CrossRef]
- Rafey, A.; Shrivastavaa, K.B.L.; Iqbal, S.A.; Khan, Z. Growth of Ag-nanoparticles using aspartic acid in aqueous solutions. J. Colloid Interface Sci. 2011. [Google Scholar] [CrossRef]
- Yi, Z.; Li, X.; Xu, X.; Luo, B.; Luo, J.; Wu, W.; Yi, Y.; Tang, Y. Green, effective chemical route for the synthesis of silver nanoplates in tannic acid aqueous solution. Colloids Surf. A Physicochem. Eng. Asp. 2011. [Google Scholar] [CrossRef]
- Kapoor, S. Preparation, characterization, and surface modification of silver particles. Langmuir 1998. [Google Scholar] [CrossRef]
- Liz-Marzán, L.M.; Lado-Touriño, I. Reduction and stabilization of silver nanoparticles in ethanol by nonionic surfactants. Langmuir 1996. [Google Scholar] [CrossRef]
- Nickel, U.; Castell, A.Z.; Pöppl, K.; Schneider, S. Silver colloid produced by reduction with hydrazine as support for highly sensitive surface-enhanced Raman spectroscopy. Langmuir 2000. [Google Scholar] [CrossRef]
- Khanna, P.K.; Subbarao, V.V.S. Nanosized silver powder via reduction of silver nitrate by sodium formaldehydesulfoxylate in acidic pH medium. Mater. Lett. 2003. [Google Scholar] [CrossRef]
- Panáček, A.; Balzerová, A.; Prucek, R.; Ranc, V.; Večeřová, R.; Husičková, V.; Pechoušek, J.; Filip, J.; Zbořil, R.; Kvítek, L. Preparation, characterization and antimicrobial efficiency of Ag/PDDA-diatomite nanocomposite. Colloids Surf. B Biointerfaces 2013. [Google Scholar] [CrossRef] [PubMed]
- Sprynskyy, M.; Sokol, H.; Rafińska, K.; Brzozowska, W.; Railean-Plugaru, V.; Pomastowski, P.; Buszewski, B. Preparation of AgNPs/saponite nanocomposites without reduction agents and study of its antibacterial activity. Colloids Surf. B Biointerfaces 2019, 180. [Google Scholar] [CrossRef] [PubMed]
- Trinh, N.D.; Nguyen, T.T.B.; Nguyen, T.H. Preparation and characterization of silver chloride nanoparticles as an antibacterial agent. Adv. Nat. Sci. Nanosci. Nanotechnol. 2015, 6. [Google Scholar] [CrossRef]
- Elshikh, M.; Ahmed, S.; Funston, S.; Dunlop, P.; McGaw, M.; Marchant, R.; Banat, M.I. Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnol. Lett. 2016. [Google Scholar] [CrossRef] [Green Version]
- Etemadi, M.; Samadi, S.; Yazd, S.S.S.; Jafari, P.; Yousefi, N.; Aliabadi, M. Selective adsorption of Cr(VI) ions from aqueous solutions using Cr6+ imprinted pebax/chitosan/GO/APTES nanofibrous adsorbent. Int. J. Biol. Macromol. 2017. [Google Scholar] [CrossRef]
- Mu, Y.; Cui, M.; Zhang, S.; Zhao, J.; Meng, C.; Sun, Q. Comparison study between a series of new type functional diatomite on methane adsorption performance. Microporous Mesoporous Mater. 2018. [Google Scholar] [CrossRef]
- Mukerabigwi, J.F.; Lei, S.; Fan, L.; Wang, H.; Luo, S.; Ma, X.; Qin, J.; Huang, X.; Cao, Y. Eco-friendly nano-hybrid superabsorbent composite from hydroxyethyl cellulose and diatomite. RSC Adv. 2016. [Google Scholar] [CrossRef]
- Zviagina, B.B.; McCarty, D.K.; Środoń, J.; Drits, V.A. Interpretation of infrared spectra of dioctahedral smectites in the region of OH-stretching vibrations. Clays Clay Miner. 2004. [Google Scholar] [CrossRef]
- Khraisheh, M.A.M.; Al-degs, Y.S.; Mcminn, W.A.M. Remediation of wastewater containing heavy metals using raw and modified diatomite. Chem. Eng. J. 2004. [Google Scholar] [CrossRef]
- Badii, K.; Ardejani, F.D.; Saberi, M.A.; Limaee, N.Y.; Shafaei, S.Z.E.D. Adsorption of acid blue 25 dye on diatomite in aqueous solutions. Indian J. Chem. Technol. 2010, 17, 7–14. [Google Scholar]
- Gitari, W.M.; Izuagie, A.A.; Gumbo, J.R. Synthesis, characterization and batch assessment of groundwater fluoride removal capacity of trimetal Mg/Ce/Mn oxide-modified diatomaceous earth. Arab. J. Chem. 2020. [Google Scholar] [CrossRef]
- Zuo, R.; Du, G.; Zhang, W.; Liu, L.; Liu, Y.; Mei, L.; Li, Z. Photocatalytic degradation of methylene blue using TiO2 impregnated diatomite. Adv. Mater. Sci. Eng. 2014. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Yang, X.; Zhang, G.; Zheng, S.; Frost, R.L. A novel method for purification of low grade diatomite powders in centrifugal fields. Int. J. Miner. Process. 2013. [Google Scholar] [CrossRef] [Green Version]
- Sprynskyy, M.; Kowalkowski, T.; Tutu, H.; Cukrowska, E.M.; Buszewski, B. Ionic liquid modified diatomite as a new effective adsorbent for uranium ions removal from aqueous solution. Colloids Surf. A Physicochem. Eng. Asp. 2015. [Google Scholar] [CrossRef]
- Chaisenaand, A.; Rangsriwatananon, K. Effects of thermal and acid treatments on some physico-chemical properties of lampang diatomite. Suranaree J. Sci. Technol. 2004, 11, 289–299. [Google Scholar]
- Hsiao, I.-L.; Hsieh, Y.-K.; Wang, C.-F.; Chen, I.-C.; Huang, Y.-J. Trojan-horse mechanism in the cellular uptake of silver nanoparticles verified by direct intra- and extracellular silver speciation analysis. Environ. Sci. Technol. 2015. [Google Scholar] [CrossRef]
C | O | Na | Mg | Al | Si | S | Cl | K | Ca | Ti | Fe | Ag | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Natural diatomite | 0.48 | 45.99 | 1.27 | 1.09 | 7.09 | 38.37 | - | 0.59 | 1.17 | 0.30 | 0.52 | 3.14 | - |
0.71% Ag/diatomite | 0.80 | 50.31 | 0.72 | 0.87 | 5.64 | 35.76 | 0.43 | 0.23 | 1.18 | 0.30 | 0.40 | 2.65 | 0.71 |
4.65% Ag/diatomite | 0.67 | 48.77 | 0.75 | 1.08 | 6.50 | 31.93 | 0.26 | 1.08 | 1.12 | - | 0.43 | 2.75 | 4.65 |
7.21%Ag/diatomite | 0.66 | 49.37 | 0.73 | 0.94 | 5.75 | 30.05 | 0.22 | 1.21 | 1.04 | - | 0.49 | 2.34 | 7.21 |
Ag | Cl | AgCl-NPs | AgNPs | AgCl-NPs:AgNPs | |||||
---|---|---|---|---|---|---|---|---|---|
Samples | Mass% | n, mol | Mass% | n, mol | n, mol | % | n, mol | % | % |
0.71% Ag/diatomite | 0.71 | 0.066 | 0.23 | 0.065 | 0.065 | 98.4 | 0.001 | 1.5 | 98:2 |
4.65% Ag/diatomite | 4.65 | 0.431 | 1.08 | 0.305 | 0.305 | 70.7 | 0.126 | 29.3 | 71:29 |
7.21% Ag/diatomite | 7.21 | 0.668 | 1.21 | 0.341 | 0.341 | 51.1 | 0.327 | 48.9 | 51:49 |
Bacteria Stains | Minimum Inhibitory Concentration (MIC) of (AgCl, Ag)NPs/Diatomite Composite [mg/mL] | |||
---|---|---|---|---|
Natural Diatomite | 0.71% Ag/Diatomite | 4.65% Ag/Diatomite | 7.21% Ag/Diatomite | |
Staphylococcus aureus | - | 5 (0.036 Ag mg/mL) | 2.5 (0.116 Ag mg/mL) | 2.5 (0.180 Ag mg/mL) |
Klebsiella pneumoniae | - | 10 (0.071 Ag mg/mL) | 5 (0.232 Ag mg/mL) | 5 (0.360 Ag mg/mL) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubasheva, Z.; Sprynskyy, M.; Railean-Plugaru, V.; Pomastowski, P.; Ospanova, A.; Buszewski, B. Synthesis and Antibacterial Activity of (AgCl, Ag)NPs/Diatomite Hybrid Composite. Materials 2020, 13, 3409. https://doi.org/10.3390/ma13153409
Kubasheva Z, Sprynskyy M, Railean-Plugaru V, Pomastowski P, Ospanova A, Buszewski B. Synthesis and Antibacterial Activity of (AgCl, Ag)NPs/Diatomite Hybrid Composite. Materials. 2020; 13(15):3409. https://doi.org/10.3390/ma13153409
Chicago/Turabian StyleKubasheva, Zhanar, Myroslav Sprynskyy, Viorica Railean-Plugaru, Paweł Pomastowski, Aliya Ospanova, and Bogusław Buszewski. 2020. "Synthesis and Antibacterial Activity of (AgCl, Ag)NPs/Diatomite Hybrid Composite" Materials 13, no. 15: 3409. https://doi.org/10.3390/ma13153409
APA StyleKubasheva, Z., Sprynskyy, M., Railean-Plugaru, V., Pomastowski, P., Ospanova, A., & Buszewski, B. (2020). Synthesis and Antibacterial Activity of (AgCl, Ag)NPs/Diatomite Hybrid Composite. Materials, 13(15), 3409. https://doi.org/10.3390/ma13153409