Abstract
Effect on antimicrobial activity observed for several types of hybrid materials is described in our chapter. The substrates for functional antimicrobial particles are natural clay minerals and carbon materials for this review limited to graphite/graphene and carbon nanoparticles (nanotubes and fullerenes). Short description of substrate materials and their properties is followed by discussion of the effect of selected most popular antimicrobial metals (silver, copper) and several oxides (zinc, titanium and copper oxides) and it is conferred for Gram positive and Gram negative bacterial strains. The methods for preparation of such particles may vary but the most used are intercalation and decoration methods from solution for the clay minerals. Nanoparticles (NPs) of metals and metal oxides on carbon and nanocarbon materials are prepared using physico-chemical approach. The research confirmed that the shape and size of functional NPs can depend on used substrate, preparation conditions and used method. Interestingly, it was found that Ag-clay sample was as effective as the free Ag+ions. Generally, it was found the size of active surface area, mobility and availability of potential active particles (ions or nanoparticles) and chemical state of them plays an important role in antimicrobial activity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akhavan O, Azimirad R, Safa S. Functionalized carbon nanotubes in ZnO thin films for photoinactivation of bacteria. Mater Chem Phys. 2011;130(1–2):598–602.
Bagchi B, Kar S, Dey SK, Bhandary S, Roy D, Mukhopadhyay TK, et al. In situ synthesis and antibacterial activity of copper nanoparticle loaded natural montmorillonite clay based on contact inhibition and ion release. Colloid Surf B-Biointerfaces. 2013;108:358–65.
Baker C, Pradhan A, Pakstis L, Pochan DJ, Shah SI. Synthesis and antibacterial properties of silver nanoparticles. J Nanosci Nanotechnol. 2005;5:244–9.
Benaliouche F, Hidous N, Guerza M, Zouad Y, Boucheffa Y. Characterization and water adsorption properties of Ag and Zn-exchanged A zeolites. Microporous Mesoporous Mater. 2015;209:184–8.
Braydich-Stolle L, Hussain S, Schlager J, Hofmann MC. In vitro cytotoxicity of nanoparticles in mammalian germ line stem cells. Toxicol Sci. 2005;88:412–9.
Brigatti MF, Galan E, Theng BKG. Structures and mineralogy of clay minerals. In: Bergaya F, Theng BKG, Lagaly G, editors. Handbook of clay science. Oxford: Elsevier; 2006. p. 19–86.
Bykkam S, Narsingam S, Ahmadipour M, Dayakar T, et al. Few layered graphene sheet decorated by ZnO nanoparticles for anti-bacterial application. Superlattice Microst. 2015;83:776–84.
Cao B, Cao S, Dong P, Gao J, Wang J. High antibacterial activity of ultrafine TiO2/graphene sheets nanocomposites under visible light irradiation. Mater Lett. 2013;93:349–52.
Cao GF, Sun Y, Chen JG, Song LP, Jiang JQ, Liu ZT, Liu ZW. Sutures modified by silver-loaded montmorillonite with antibacterial properties. Appl Clay Sci. 2014;93-94:102–6.
Cataldo F, Da Ros T. Medicinal chemistry and pharmacological potential of fullerenes and carbon nanotubes. Trieste: Springer; 2008.
Chang YN, Zhang M, Xia L, Zhang J, Xing G. The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials. 2012;5:2850–71.
Chang Y, Ou X, Zeng G, Gong J, Deng C. Synthesis of magnetic graphene oxide-TiO2 and their antibacterial properties under solar irradiation. Appl Surf Sci. 2015;343:1–10.
Chung CJ, Su CW, He JL. Antimicrobial efficacy of photocatalytic TiO2 coatings prepared by arc ion plating. Surf Coat Technol. 2007a;202(4–7):1302–7.
Chung CJ, Su CW, He JL. Microstructural effect on the antimicrobial efficacy of arc ion plated TiO2. J Mater Res. 2007b;22:3137–43.
Chung CJ, Lin HI, Hsieh PY, Chen KC, He JL, Leyland A, et al. Growth behavior and microstructure of arc ion plated titanium dioxide. Surf Coat Technol. 2009;204:915–22.
Chung CJ, Tsou HK, Chen HL, Hsieh PY, He JL. Low temperature preparation of phase-tunable and antimicrobial titanium dioxide coating on biomedical polymer implants for reducing implant-related infections. Surf Coat Technol. 2011;205:5035–9.
Copcia VE, Luchian C, Dunca S, Bilba N, Hristodor CM. Antibacterial activity of silver-modified natural clinoptilolite. J Mater Sci. 2011;46:7121–8.
Costa C, Conte A, Buonocore GG, Del Nobile MA. Antimicrobial silver-montmorillonite nanoparticles to prolong the shelf life of fresh fruit salad. Int J Food Microbiol. 2011;148:164–7.
Costa C, Conte A, Buonocore GG, Lavorgna M, Del Nobile MA. Calcium-alginate coating loaded with silver-montmorillonite nanoparticles to prolong the shelf-life of fresh-cut carrots. Food Res Int. 2012;48:164–9.
Dankovich TA, Smith JA. Incorporation of copper nanoparticles into paper for point-of-use water purification. Water Res. 2014;63:245–51.
Dědková K, Matějová K, Lang J, Peikertová P, Mamulová Kutláková K, Neuwirthová L, et al. Antibacterial activity of kaolinite/nanoTiO2 composites in relation to irradiation time. J Photochem Photobiol B Biol. 2014;135:17–22.
Dědková K, Janíková B, Matějová K, Peikertová P, Neuwirthová L, Holešinský J, Kukutschová J. Preparation, characterization and antibacterial properties of ZnO/kaoline nanocomposites. J Photochem Photobiol B Biol. 2015a;148:113–7.
Dědková K, Lang J, Matějová K, Peikertová P, Holešinsky J, Vodárek V, et al. Nanostructured composite material graphite/TiO2 and its antibacterial activity under visible light irradiation. J Photochem Photobiol B-Biol. 2015b;149:265–71.
Dědková K, Janíková B, Matějová K, Čabanová K, Váňa R, Kalup A, et al. ZnO/graphite composites and its antibacterial activity at different conditions. J Photochem Photobiol B Biol. 2015c;151:256–63.
Dědková K, Mamulová Kutlákova K, Matějová K, Kukutschová J. The study of the antibacterial activity of kaolinite/ZnO composites. Adv Sci Lett. 2016;22(3):695–8.
Deryabin DG, Davydova OK, Yankina ZZ, Vasilchenko AS, Miroshnikov SA, Kornev AB, et al. The activity of [60] fullerene derivatives bearing amine and carboxylic solubilizing groups against Escherichia coli: a comparative study. J Nanomater. 2014;2014:1–9.
Drelich J, Li B, Bowen P, Hwang JY, Mills O, Hoffman D. Vermiculite decorated with copper nanoparticles: novel antibacterial hybrid material. Appl Surf Sci. 2011;257:9435–43.
Esteban-Cubillo A, Pecharromán C, Aguilar E, Santarén J, Moya JS. Antibacterial activity of copper monodispersed nanoparticles into sepiolite. J Mater Sci. 2006;41:5208–12.
Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of an antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 2000;662–8.
Fernández-Ibáñez P, Polo-López MI, Malato S, Wadhwa S, Hamilton JWJ, Dunlop PSM, et al. Solar photocatalytic disinfection of water using titanium dioxide graphene composites. Chem Eng J. 2015;261:36–44.
Gao P, Ng K, Sun DD. Sulfonated graphene oxide-ZnO-Ag photocatalyst for fast photodegradation and disinfection under visible light. J Hazard Mater. 2013;262:826–35.
Girase B, Depan D, Shah JS, Xu W, Misra RDK. Silver–clay nanohybrid structure for effective and diffusion-controlled antimicrobial activity. Mater Sci Eng C. 2011;31:1759–66.
Gu N, Gao J, Wang K, Yang X, Dong W. ZnO-montmorillonite as photocatalyst and flocculant for inhibition of cyanobacterial bloom. Water Air Soil Pollut. 2015;226(5):136–47.
Guerra R, Lima E, Viniegra M, Guzman A, Lara V. Growth of Escherichia coli and Salmonella typhi inhibited by fractal silver nanoparticles supported on zeolites. Microporous Mesoporous Mater. 2012;147:267–73.
Gurr JR, Wang ASS, Chen CH, Jan KY. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology. 2005;213(1–2):66–73.
Hashimoto K, Irie H, Fujishima A. TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys. 2005;44(12):8269–85.
Holtz RD, Lima BA, Souza Filho AG, Brocchi M, Alves OL. Nanostructured silver vanadate as a promising antibacterial additive to water-based paints. Nanomed-Nanotechnol Biol Med. 2012;8:935–40.
Hrenovic J, Milenkovic J, Daneu N, Matonickin Kepcija R, Rajic N. Antimicrobial activity of metal oxide nanoparticles supported onto natural clinoptilolite. Chemosphere. 2012;88:1103–7.
Hrenovic J, Milenkovic J, Goic-Barisic I, Rajic N. Antibacterial activity of modified natural clinoptilolite against clinical isolates of Acinetobacter baumannii. Microporous Mesoporous Mater. 2013;169:148–52.
Hu CH, Xia MS. Adsorption and antibacterial effect of copper-exchanged montmorillonite on Escherichia coli K88. Appl Clay Sci. 2006;31:180–4.
Hu CH, Xu ZR, Xia MS. Antibacterial effect of Cu2+-exchanged montmorillonite on Aeromonas hydrophila and discussion on its mechanism. Vet Microbiol. 2005;109:83–8.
Hu CH, Xu Y, Xia MS, Xiong L, Xu ZR. Effects of Cu2+-exchanged montmorillonite on growth performance, microbial ecology and intestinal morphology of Nile tilapia (Oreochromis niloticus). Aquaculture. 2007;270:200–6.
Hu CH, Gu LY, Luan ZS, Song J, Zhu K. Effects of montmorillonite-zinc oxide hybrid on performance, diarrhea, intestinal permeability and morphology of weanling pigs. Anim Feed Sci Technol. 2012;177:108–15.
Hundáková M, Valášková M, Pazdziora E, Matějová K, Študentová S. Structural and antibacterial properties of original vermiculite and acidified vermiculite with silver. In: Proceedings of the 3rd International Conference NANOCON 2011; 2011 Sep 21–23; Brno, CZ; Ostrava: Tanger Ltd, 2011. p. 617–22.
Hundáková M, Valášková M, Seidlerová J, Pazdziora E, Matějová K. Preparation and evaluation of different antibacterial Ag-montmorillonites. In: Proceedings of the 4th International Conference NANOCON 2012; 2012 Oct 23–25; Brno, CZ. Ostrava: Tanger Ltd; 2013a. p. 591–5.
Hundáková M, Valášková M, Tomášek V, Pazdziora E, Matějová K. Silver and/or copper vermiculites and their antibacterial effect. Acta Geodyn Geomater. 2013b;10(1):97–104.
Hundáková M, Valášková M, Samlíková M, Pazdziora E. Vermiculite with Ag and Cu used as an antibacterial nanofiller in polyethylene. GeoSci Eng. 2014a;LX(3):28–39.
Hundáková M, Valášková M, Seidlerová J. Stability of silver and copper on clay minerals in water and their antibacterial activity. In: Proceedings of the 5th International Conference NANOCON 2013; 2013 Oct 16–18; Brno, CZ; Ostrava: Tanger Ltd; 2014b. p. 632–7.
Hundáková M, Simha Martynková G, Valášková M, Měřínská D, Pazdziora E. Antibacterial polypropylene/Ag-kaolinite, preparation and characterization. Adv Sci Lett. 2016;22(3):656–60.
Huo C, Yang H. Synthesis and characterization of ZnO/palygorskite. Appl Clay Sci. 2010;50(3):362–6.
Jakobsen L, Andersen AS, Friis-Møller A, Jørgensen B, Krogfelt KA, Frimodt-Møller N. Silver resistance: an alarming public health concern? Int J Antimicrob Agents. 2011;38(5):454–5.
Jankauskaitė V, Vitkauskienė A, Lazauskas A, Baltrusaitis J, Prosyčevas I, Andrulevičius M. Bactericidal effect of graphene oxide/Cu/Ag nanoderivatives against Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus. Int J Pharm. 2016;511(1):90–7.
Jiao LF, Ke YL, Xiao K, Song ZH, Lu JJ, Hu CH. Effects of zinc-exchanged montmorillonite with different zinc loading capacities on growth performance, intestinal microbiota, morphology and permeability in weaned piglets. Appl Clay Sci. 2015;113:40–3.
Johari SA, Kalbassi MR, Soltani M, Yu IJ. Application of nanosilver-coated zeolite as water filter media for fungal disinfection of rainbow trout (Oncorhynchus mykiss) eggs. Aquacult Int. 2016;24:23–38.
Jones CM, Hoek EMV. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res. 2010;12:1531–51.
Jones N, Ray B, Ranjit KT, Manna AC. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett. 2008;279(1):71–6.
Jung JH, Hwang GB, Lee JE, Bae GN. Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their application to antimicrobial air filtration. Langmuir. 2011;27:10256–64.
Karel FB, Koparal AS, Kaynak E. Development of silver ion doped antibacterial clays and investigation of their antibacterial activity. Adv Mater Sci Eng. 2015;2015:1–6. ID: 409078
Kawahara K, Tsuruda K, Morishita M, Uchida M. Antibacterial effect of silver-zeolite on oral bacteria under anaerobic conditions. Dent Mater. 2000;16:452–5.
Kheiralla ZMH, Rushdy AA, Betiha MA, Yakob NAN. High-performance antibacterial of montmorillonite decorated with silver nanoparticles using microwave assisted method. J Nanopart Res. 2014;16:2560.
Kokura S, Handa O, Takagi T, Ishikawa T, Naito Y, Yoshikawa T. Silver nanoparticles as a safe preservative for use in cosmetics. Nanomed-Nanotechnol Biol Med. 2010;6:570–4.
Koli VB, Dhodamani AG, Raut AV, Thorat ND, Pawar SH, Delekar SD. Visible light photo-induced antibacterial activity of TiO2-MWCNTs nanocomposites with varying the contents of MWCNTs. J Photochem Photobiol A-Chem. 2016;328:50–8.
Kollef MH, Afessa B, Anzueto A, Veremakis C, Kerr KM, Margolis BD, et al. Silver coated endotracheal tubes and incidence of ventilator-associated pneumonia. JAMA. 2008;300(7):805–13.
Li B, Yu S, Hwang JY, Shi S. Antibacterial vermiculite nano-material. J Minerals Mater Charact Eng. 2002;1:61–8.
Li Z, Fan L, Zhang T, Li K. Facile synthesis of Ag nanoparticles supported on MWCNTs with favorable stability and their bactericidal properties. J Hazard Mater. 2011;187:466–72.
Liu S, Wei L, Hao L, Fang N, Chang MW, Xu R, et al. Sharper and faster ‘nano darts’ kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano. 2009;3(12):3891–902.
Liu S, Keong A, Xu R, Wei J, Tan CM, Yanga Y, Chen Y. Antibacterial action of dispersed single-walled carbon nanotubes on Escherichia coli and Bacillus subtilis investigated by atomic force microscopy. Nanoscale. 2010;2:2744.
Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang R, et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano. 2011;5(9):6971–80.
Liu L, Bai H, Liu J, Sun DD. Multifunctional graphene oxide-TiO2-Ag nanocomposites for high performance water disinfection and decontamination under solar irradiation. J Hazard Mater. 2013;261:214–23.
Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, et al. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res. 2006;5:916–24.
Lu W, Senapati D, Wang S, Tovmachenko O, Kumar Singh A, Hongtao Y, et al. Effect of surface coating on the toxicity of silver nanomaterials on human skin keratinocytes. Chem Phys Lett. 2010;487:92–6.
Maeda K. Basic studies on possible clinical application of antibacterial zeolite. Nesshou. 1987;13:316–21.
Magaña SM, Quintana P, Aguilar DH, Toledo JA, Ángeles-Chávez C, Cortés MA, et al. Antibacterial activity of montmorillonites modified with silver. J Mol Catal A-Chem. 2008;281:192–9.
Malachová K, Praus P, Pavlíčková Z, Turicová M. Activity of antibacterial compounds immobilised on montmorillonite. Appl Clay Sci. 2009;43:364–8.
Malachová K, Praus P, Rybková Z, Kozák O. Antibacterial and antifungal activities of silver, copper and zinc montmorillonites. Appl Clay Sci. 2011;53(4):642–5.
Martynková GS, Valášková M. Antimicrobial nanocomposites based on natural modified materials: a review of carbons and clays. J Nanosci Nanotechnol. 2014;14(1):673–93.
Meghana S, Kabra P, Chakraborty S, Padmavathy N. Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC Adv. 2015;5:12293–9.
Miyoshi H, Ohno H, Sakai K, Okamura N, Kourai H. Characterization and photochemical and antibacterial properties of highly stable silver nanoparticles prepared on montmorillonite clay in n-hexanol. J Colloid Interface Sci. 2010;345:433–41.
Mizuno K, Zhiyentayev T, Huang L, Khalil S, Nasim F, Tegos GP, et al. Antimicrobial photodynamic therapy with functionalized fullerenes: quantitative structure-activity relationships. J Nanomed Nanotechnol. 2011;2(2):1–9.
Motshekga SC, Ray SS, Onyango MS, Momba MNB. Microwave-assisted synthesis, characterization and antibacterial activity of Ag/ZnO nanoparticles supported bentonite clay. J Hazard Mater. 2013;262:439–46.
Narayan RJ, Abernathy H, Riester L, Berry CJ, Brigmon R. Antimicrobial properties of diamond-like carbon-silver-platinum nanocomposite thin films. J Mater Eng Perform. 2005;14:435–40.
Özdemir G, Limoncu MH, Yapar S. The antibacterial effect of heavy metal and cetylpridinium-exchanged montmorillonites. Appl Clay Sci. 2010;48:319–23.
Panáček A, Kvítek L, Prucek R, Kolář M, Večeřová R, Pizúrová N, et al. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem. 2006;110:16248–53.
Pant B, Raj H, Barakat NAM, Park M, Jeon K. Carbon nanofibers decorated with binary semiconductor (TiO2/ZnO) nanocomposites for the effective removal of organic pollutants and the enhancement of antibacterial activities. Ceram Int. 2013;39(6):7029–35.
Pant B, Singh P, Park M, Park S, Kim H. General one-pot strategy to prepare Ag- TiO2 decorated reduced graphene oxide nanocomposites for chemical and biological disinfectant. J Alloys Compd. 2016;671:51–9.
Parolo ME, Fernández LG, Zajonkovsky I, Sánchez MP, Baschini M. Antibacterial activity of materials synthesized from clay minerals. In: Méndez-Vilas A, editor. Science against microbial pathogens: communicating current research and technological advances, vol. 1: FORMATEX; 2011. p. 144–51. ISBN-13: 978-84-939843-1-1.
Pazdziora E, Matějová K, Valášková M, Holešová S, Hundáková M. Comparison of antibacterial and antiprotozoal effects of nanoparticles Zn2+, Cu2+ a Ag+ intercalated on clay minerals. In: Proceedings of the 2nd International Conference NANOCON 2010; 2010 Oct 12–14; Olomouc, CZ; Ostrava: Tanger Ltd; 2010. p. 460–4.
Perdikaki A, Galeou A, Pilatos G, Karatasios I, Kanellopoulos KH, Prombona A, Karanikolos GN. Ag and Cu monometallic and Ag/Cu bimetallic nanoparticle–graphene composites with enhanced antibacterial performance. ACS Appl Mater Interfaces. 2016;8(41):27498–510.
Pourabolghasem H, Ghorbanpour M, Shayegh R. Antibacterial activity of copper-doped montmorillonite nanocomposites prepared by alkaline ion exchange method. J Phys Sci. 2016;27(2):1–12.
Pouraboulghasem H, Ghorbanpour M, Shayegh R, Lotfiman S. Synthesis, characterization and antimicrobial activity of alkaline ion-exchanged ZnO/bentonite nanocomposites. J Cent South Univ. 2016;23(4):787–92.
Rai VR, Bai AJ. Nanoparticles and their potential application as antimicrobials. In: Méndez-Vilas A, editor. Science against microbial pathogens: communicating current research and technological advances. Badajoz: FORMATEX; 2011. p. 197–209.
Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27:76–83.
Ravichandran K, Chidhambaram N, Gobalakrishnan S. Copper and graphene activated ZnO nanopowders for enhanced photocatalytic and antibacterial activities. J Phys Chem Solids. 2016;93:82–90.
Rivera-Garza M, Olguín MT, García-Sosa I, Alcántara D, Rodríguez-Fuentes G. Silver supported on natural Mexican zeolite as an antibacterial material. Microporous Mesoporous Mater. 2000;39:431–44.
Roguska A, Belcarz A, Pisarek M, Ginalska G, Lewandowska M. TiO2 nanotube composite layers as delivery system for ZnO and Ag nanoparticles – an unexpected overdose effect decreasing their antibacterial efficacy. Mater Sci Eng C Mater Biol Appl. 2015;51:158–66.
Rosa-Gomez de la I, Olguina MT, Alcantara D. Antibacterial behavior of silver-modified clinoptilolite-heulandite rich tuff on coliform microorganisms from wastewater in a column system. J Environ Manag. 2008;88:853–63.
Rosa-Gomez de la I, Olguina MT, Alcantara D. Silver-modified mexican clinoptilolite-rich tuffs with various particle sizes as antimicrobial agents against Escherichia coli. J Mex Chem Soc. 2010;54(3):139–42.
Russell AD. Principles of antimicrobial activity and resistance. In: Block SS, editor. Disinfection, sterilization and preservatives. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 31–56.
Salim MM, Malek NANN. Characterization and antibacterial activity of silver exchanged regenerated NaY zeolite from surfactant-modified NaY zeolite. Mater Sci Eng C. 2016;59:70–7.
Santos MF, Oliveira CM, Tachinski CT, Fernandes MP, Pich CT, Angioletto E, et al. Bactericidal properties of bentonite treated with Ag+ and acid. Int J Miner Process. 2011;100:51–3.
Shameli K, Ahmad MB, Zargar M, Wan Yunus WMZ, Rustaiyan A, Ibrahim NA. Synthesis of silver nanoparticles in montmorillonite and their antibacterial behavior. Int J Nanomedicine. 2011;6:581–90.
Shameli K, Ahmad MB, Al-Mulla EAJ, Shabanzadeh P, Bagheri S. Antibacterial effect of silver nanoparticles on talc composites. Res Chem Intermed. 2013;41(1):251–63.
Shvedova AA, Pietroiusti A, Fadeel B, Kagan VE. Mechanisms of carbon nanotube-induced toxicity: focus on oxidative stress. Toxicol Appl Pharmacol. 2012;261(2):121–33.
Sohrabnezhad S, Mehdipour Moghaddam MJ, Salavatiyan T. Synthesis and characterization of CuO-montmorillonite nanocomposite by thermal decomposition method and antibacterial activity of nanocomposite. Spectrochim Acta Pt A-Mol Biomol Spectr. 2014;125:73–8.
Sohrabnezhad S, Pourahmad A, Mehdipour Moghaddam MJ, Sadeghi A. Study of antibacterial activity of Ag and Ag2CO3 nanoparticles stabilized over montmorillonite. Spectroc Acta Pt A-Mol Biomol Spectr. 2015;136:1728–33.
Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004;275:177–82.
Song J, Li Y, Hu CH. Effects of copper-exchanged montmorillonite, as alternative to antibiotic, on diarrhea, intestinal permeability and proinflammatory cytokine of weanling pigs. Appl Clay Sci. 2013;77-78:52–5.
Sui M, Zhang L, Sheng L, Huang S, She L. Synthesis of ZnO coated multi-walled carbon nanotubes and their antibacterial activities. Sci Total Environ. 2013;452-453:148–54.
Tang J, Chen Q, Xu L, Zhang S, Feng L, Cheng L, et al. Graphene oxide–silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms. ACS Appl Mater Interfaces. 2013;5(9):3867–74.
Tegos GP, Demidova TN, Arcila-Lopez D, Lee H, Wharton T, Gali H, et al. Cationic fullerenes are effective and selective antimicrobial photosensitizers. Chem Biol. 2005;12(10):1127–35.
Tekin R, Bac N. Antimicrobial behavior of ion-exchanged zeolite X containing fragrance. Microporous Mesoporous Mater. 2016;234:55–60.
Tong G, Yulong M, Peng G, Zirong X. Antibacterial effects of the cu(II)-exchanged montmorillonite on Escherichia coli K88 and Salmonella choleraesius. Vet Microbiol. 2005;105:113–22.
Top A, Ülkü S. Silver, zinc, and copper exchange in a Na-clinoptilolite and resulting effect on antibacterial activity. Appl Clay Sci. 2004;27:13–9.
Üreyen ME, Doğan A, Koparal AS. Antibacterial functionalization of cotton and polyester fabrics with a finishing agent based on silver-doped calcium phosphate powders. Text Res J. 2012;82(17):1731–42.
Valášková M, Martynkova GS. Vermiculite: structural properties and examples of the use, clay minerals in nature-their characterization, modification and application. InTech.; 2012. p. 326. ISBN 978-953-51-0738-5.
Valášková M, Hundáková M, Mamulová Kutláková K, Seidlerová J, Čapková P, Pazdziora E, et al. Preparation and characterization of antibacterial silver/vermiculites and silver/montmorillonites. Geochim Cosmochim Acta. 2010;74:6287–300.
Vargas-Reus MA, Memarzadeha K, Huang J, Renc GG, Allakera RP. Antimicrobial activity of nanoparticulate metal oxides against peri-implantitis pathogens. Int J Antimicrob Agents. 2012;40:135–9.
Vincent M, Hartemann P, Engels-Deutsch M. Antimicrobial applications of copper. Int J Hyg Environ Health. 2016;219:585–91.
Wang S, Peng Y. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem Eng J. 2010;156:11–24.
Xia MS, Hu CH, Xu ZR. Effects of copper bearing montmorillonite on the growth performance, intestinal microflora and morphology of weanling pigs. Anim Feed Sci Technol. 2005;118:307–17.
Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PJJ. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 2012;12:4271–5.
Xu G, Qiao X, Qiu X, Chen J. Preparation and characterization of nano-silver loaded montmorillonite with strong antibacterial activity and slow release property. J Mater Sci Technol. 2011;27(8):685–90.
Yamamoto O, Sawai J, Sasamoto T. Activated carbon sphere with antibacterial characteristics. Mater Trans. 2002;43(5):1069–73.
Yang X, Ebrahimi A, Li J, Cui Q. Fullerene-biomolecule conjugates and their biomedicinal applications. Int J Nanomedicine. 2014;9:77–92.
Yuan W, Jiang G, Che J, Qi X, Xu R, Chang MW, et al. Deposition of silver nanoparticles on multiwalled carbon nanotubes grafted with hyperbranched poly(amidoamine) and their antimicrobial effects. J Phys Chem C. 2008;112:18754–9.
Zhang Y, Chen Y, Zhang H, Zhang B, Liu J. Potent antibacterial activity of a novel silver nanoparticle-halloysite nanotube nanocomposite powder. J Inorg Biochem. 2013;118:59–64.
Zhao D, Zhou J, Liu N. Preparation and characterization of Mingguang palygorskite supported with silver and copper for antibacterial behavior. Appl Clay Sci. 2006;33:161–70.
Zhou Y, Xia M, Ye Y, Hu C. Antimicrobial ability of Cu2+-montmorillonite. Appl Clay Sci. 2004;27:215–8.
Acknowledgement
This chapter was created with support of the Project No. LO1203 “Regional Materials Science and Technology Centre – Feasibility Program” funded by Ministry of Education, Youth and Sports of the Czech Republic and by the MSMT (SP2016/75 and SP2017/86).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Hundáková, M., Dědková, K., Martynková, G.S. (2017). Decoration of Inorganic Substrates with Metallic Nanoparticles and Their Application as Antimicrobial Agents. In: Rai, Ph.D, M., Shegokar, Ph.D, R. (eds) Metal Nanoparticles in Pharma. Springer, Cham. https://doi.org/10.1007/978-3-319-63790-7_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-63790-7_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-63789-1
Online ISBN: 978-3-319-63790-7
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)