[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Decoration of Inorganic Substrates with Metallic Nanoparticles and Their Application as Antimicrobial Agents

  • Chapter
  • First Online:
Metal Nanoparticles in Pharma

Abstract

Effect on antimicrobial activity observed for several types of hybrid materials is described in our chapter. The substrates for functional antimicrobial particles are natural clay minerals and carbon materials for this review limited to graphite/graphene and carbon nanoparticles (nanotubes and fullerenes). Short description of substrate materials and their properties is followed by discussion of the effect of selected most popular antimicrobial metals (silver, copper) and several oxides (zinc, titanium and copper oxides) and it is conferred for Gram positive and Gram negative bacterial strains. The methods for preparation of such particles may vary but the most used are intercalation and decoration methods from solution for the clay minerals. Nanoparticles (NPs) of metals and metal oxides on carbon and nanocarbon materials are prepared using physico-chemical approach. The research confirmed that the shape and size of functional NPs can depend on used substrate, preparation conditions and used method. Interestingly, it was found that Ag-clay sample was as effective as the free Ag+ions. Generally, it was found the size of active surface area, mobility and availability of potential active particles (ions or nanoparticles) and chemical state of them plays an important role in antimicrobial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akhavan O, Azimirad R, Safa S. Functionalized carbon nanotubes in ZnO thin films for photoinactivation of bacteria. Mater Chem Phys. 2011;130(1–2):598–602.

    Article  CAS  Google Scholar 

  • Bagchi B, Kar S, Dey SK, Bhandary S, Roy D, Mukhopadhyay TK, et al. In situ synthesis and antibacterial activity of copper nanoparticle loaded natural montmorillonite clay based on contact inhibition and ion release. Colloid Surf B-Biointerfaces. 2013;108:358–65.

    Article  CAS  Google Scholar 

  • Baker C, Pradhan A, Pakstis L, Pochan DJ, Shah SI. Synthesis and antibacterial properties of silver nanoparticles. J Nanosci Nanotechnol. 2005;5:244–9.

    Article  CAS  PubMed  Google Scholar 

  • Benaliouche F, Hidous N, Guerza M, Zouad Y, Boucheffa Y. Characterization and water adsorption properties of Ag and Zn-exchanged A zeolites. Microporous Mesoporous Mater. 2015;209:184–8.

    Article  CAS  Google Scholar 

  • Braydich-Stolle L, Hussain S, Schlager J, Hofmann MC. In vitro cytotoxicity of nanoparticles in mammalian germ line stem cells. Toxicol Sci. 2005;88:412–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brigatti MF, Galan E, Theng BKG. Structures and mineralogy of clay minerals. In: Bergaya F, Theng BKG, Lagaly G, editors. Handbook of clay science. Oxford: Elsevier; 2006. p. 19–86.

    Chapter  Google Scholar 

  • Bykkam S, Narsingam S, Ahmadipour M, Dayakar T, et al. Few layered graphene sheet decorated by ZnO nanoparticles for anti-bacterial application. Superlattice Microst. 2015;83:776–84.

    Article  CAS  Google Scholar 

  • Cao B, Cao S, Dong P, Gao J, Wang J. High antibacterial activity of ultrafine TiO2/graphene sheets nanocomposites under visible light irradiation. Mater Lett. 2013;93:349–52.

    Article  CAS  Google Scholar 

  • Cao GF, Sun Y, Chen JG, Song LP, Jiang JQ, Liu ZT, Liu ZW. Sutures modified by silver-loaded montmorillonite with antibacterial properties. Appl Clay Sci. 2014;93-94:102–6.

    Article  CAS  Google Scholar 

  • Cataldo F, Da Ros T. Medicinal chemistry and pharmacological potential of fullerenes and carbon nanotubes. Trieste: Springer; 2008.

    Book  Google Scholar 

  • Chang YN, Zhang M, Xia L, Zhang J, Xing G. The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials. 2012;5:2850–71.

    Article  CAS  PubMed Central  Google Scholar 

  • Chang Y, Ou X, Zeng G, Gong J, Deng C. Synthesis of magnetic graphene oxide-TiO2 and their antibacterial properties under solar irradiation. Appl Surf Sci. 2015;343:1–10.

    Article  CAS  Google Scholar 

  • Chung CJ, Su CW, He JL. Antimicrobial efficacy of photocatalytic TiO2 coatings prepared by arc ion plating. Surf Coat Technol. 2007a;202(4–7):1302–7.

    Article  CAS  Google Scholar 

  • Chung CJ, Su CW, He JL. Microstructural effect on the antimicrobial efficacy of arc ion plated TiO2. J Mater Res. 2007b;22:3137–43.

    Article  CAS  Google Scholar 

  • Chung CJ, Lin HI, Hsieh PY, Chen KC, He JL, Leyland A, et al. Growth behavior and microstructure of arc ion plated titanium dioxide. Surf Coat Technol. 2009;204:915–22.

    Article  CAS  Google Scholar 

  • Chung CJ, Tsou HK, Chen HL, Hsieh PY, He JL. Low temperature preparation of phase-tunable and antimicrobial titanium dioxide coating on biomedical polymer implants for reducing implant-related infections. Surf Coat Technol. 2011;205:5035–9.

    Article  CAS  Google Scholar 

  • Copcia VE, Luchian C, Dunca S, Bilba N, Hristodor CM. Antibacterial activity of silver-modified natural clinoptilolite. J Mater Sci. 2011;46:7121–8.

    Article  CAS  Google Scholar 

  • Costa C, Conte A, Buonocore GG, Del Nobile MA. Antimicrobial silver-montmorillonite nanoparticles to prolong the shelf life of fresh fruit salad. Int J Food Microbiol. 2011;148:164–7.

    CAS  PubMed  Google Scholar 

  • Costa C, Conte A, Buonocore GG, Lavorgna M, Del Nobile MA. Calcium-alginate coating loaded with silver-montmorillonite nanoparticles to prolong the shelf-life of fresh-cut carrots. Food Res Int. 2012;48:164–9.

    Article  CAS  Google Scholar 

  • Dankovich TA, Smith JA. Incorporation of copper nanoparticles into paper for point-of-use water purification. Water Res. 2014;63:245–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dědková K, Matějová K, Lang J, Peikertová P, Mamulová Kutláková K, Neuwirthová L, et al. Antibacterial activity of kaolinite/nanoTiO2 composites in relation to irradiation time. J Photochem Photobiol B Biol. 2014;135:17–22.

    Article  CAS  Google Scholar 

  • Dědková K, Janíková B, Matějová K, Peikertová P, Neuwirthová L, Holešinský J, Kukutschová J. Preparation, characterization and antibacterial properties of ZnO/kaoline nanocomposites. J Photochem Photobiol B Biol. 2015a;148:113–7.

    Article  CAS  Google Scholar 

  • Dědková K, Lang J, Matějová K, Peikertová P, Holešinsky J, Vodárek V, et al. Nanostructured composite material graphite/TiO2 and its antibacterial activity under visible light irradiation. J Photochem Photobiol B-Biol. 2015b;149:265–71.

    Article  CAS  Google Scholar 

  • Dědková K, Janíková B, Matějová K, Čabanová K, Váňa R, Kalup A, et al. ZnO/graphite composites and its antibacterial activity at different conditions. J Photochem Photobiol B Biol. 2015c;151:256–63.

    Article  CAS  Google Scholar 

  • Dědková K, Mamulová Kutlákova K, Matějová K, Kukutschová J. The study of the antibacterial activity of kaolinite/ZnO composites. Adv Sci Lett. 2016;22(3):695–8.

    Article  Google Scholar 

  • Deryabin DG, Davydova OK, Yankina ZZ, Vasilchenko AS, Miroshnikov SA, Kornev AB, et al. The activity of [60] fullerene derivatives bearing amine and carboxylic solubilizing groups against Escherichia coli: a comparative study. J Nanomater. 2014;2014:1–9.

    Article  CAS  Google Scholar 

  • Drelich J, Li B, Bowen P, Hwang JY, Mills O, Hoffman D. Vermiculite decorated with copper nanoparticles: novel antibacterial hybrid material. Appl Surf Sci. 2011;257:9435–43.

    Article  CAS  Google Scholar 

  • Esteban-Cubillo A, Pecharromán C, Aguilar E, Santarén J, Moya JS. Antibacterial activity of copper monodispersed nanoparticles into sepiolite. J Mater Sci. 2006;41:5208–12.

    Article  CAS  Google Scholar 

  • Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of an antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 2000;662–8.

    Google Scholar 

  • Fernández-Ibáñez P, Polo-López MI, Malato S, Wadhwa S, Hamilton JWJ, Dunlop PSM, et al. Solar photocatalytic disinfection of water using titanium dioxide graphene composites. Chem Eng J. 2015;261:36–44.

    Article  CAS  Google Scholar 

  • Gao P, Ng K, Sun DD. Sulfonated graphene oxide-ZnO-Ag photocatalyst for fast photodegradation and disinfection under visible light. J Hazard Mater. 2013;262:826–35.

    Article  CAS  PubMed  Google Scholar 

  • Girase B, Depan D, Shah JS, Xu W, Misra RDK. Silver–clay nanohybrid structure for effective and diffusion-controlled antimicrobial activity. Mater Sci Eng C. 2011;31:1759–66.

    Article  CAS  Google Scholar 

  • Gu N, Gao J, Wang K, Yang X, Dong W. ZnO-montmorillonite as photocatalyst and flocculant for inhibition of cyanobacterial bloom. Water Air Soil Pollut. 2015;226(5):136–47.

    Article  CAS  Google Scholar 

  • Guerra R, Lima E, Viniegra M, Guzman A, Lara V. Growth of Escherichia coli and Salmonella typhi inhibited by fractal silver nanoparticles supported on zeolites. Microporous Mesoporous Mater. 2012;147:267–73.

    Article  CAS  Google Scholar 

  • Gurr JR, Wang ASS, Chen CH, Jan KY. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology. 2005;213(1–2):66–73.

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K, Irie H, Fujishima A. TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys. 2005;44(12):8269–85.

    Article  CAS  Google Scholar 

  • Holtz RD, Lima BA, Souza Filho AG, Brocchi M, Alves OL. Nanostructured silver vanadate as a promising antibacterial additive to water-based paints. Nanomed-Nanotechnol Biol Med. 2012;8:935–40.

    Article  CAS  Google Scholar 

  • Hrenovic J, Milenkovic J, Daneu N, Matonickin Kepcija R, Rajic N. Antimicrobial activity of metal oxide nanoparticles supported onto natural clinoptilolite. Chemosphere. 2012;88:1103–7.

    Article  CAS  PubMed  Google Scholar 

  • Hrenovic J, Milenkovic J, Goic-Barisic I, Rajic N. Antibacterial activity of modified natural clinoptilolite against clinical isolates of Acinetobacter baumannii. Microporous Mesoporous Mater. 2013;169:148–52.

    Article  CAS  Google Scholar 

  • Hu CH, Xia MS. Adsorption and antibacterial effect of copper-exchanged montmorillonite on Escherichia coli K88. Appl Clay Sci. 2006;31:180–4.

    Article  CAS  Google Scholar 

  • Hu CH, Xu ZR, Xia MS. Antibacterial effect of Cu2+-exchanged montmorillonite on Aeromonas hydrophila and discussion on its mechanism. Vet Microbiol. 2005;109:83–8.

    Article  CAS  PubMed  Google Scholar 

  • Hu CH, Xu Y, Xia MS, Xiong L, Xu ZR. Effects of Cu2+-exchanged montmorillonite on growth performance, microbial ecology and intestinal morphology of Nile tilapia (Oreochromis niloticus). Aquaculture. 2007;270:200–6.

    Article  CAS  Google Scholar 

  • Hu CH, Gu LY, Luan ZS, Song J, Zhu K. Effects of montmorillonite-zinc oxide hybrid on performance, diarrhea, intestinal permeability and morphology of weanling pigs. Anim Feed Sci Technol. 2012;177:108–15.

    Article  CAS  Google Scholar 

  • Hundáková M, Valášková M, Pazdziora E, Matějová K, Študentová S. Structural and antibacterial properties of original vermiculite and acidified vermiculite with silver. In: Proceedings of the 3rd International Conference NANOCON 2011; 2011 Sep 21–23; Brno, CZ; Ostrava: Tanger Ltd, 2011. p. 617–22.

    Google Scholar 

  • Hundáková M, Valášková M, Seidlerová J, Pazdziora E, Matějová K. Preparation and evaluation of different antibacterial Ag-montmorillonites. In: Proceedings of the 4th International Conference NANOCON 2012; 2012 Oct 23–25; Brno, CZ. Ostrava: Tanger Ltd; 2013a. p. 591–5.

    Google Scholar 

  • Hundáková M, Valášková M, Tomášek V, Pazdziora E, Matějová K. Silver and/or copper vermiculites and their antibacterial effect. Acta Geodyn Geomater. 2013b;10(1):97–104.

    Article  Google Scholar 

  • Hundáková M, Valášková M, Samlíková M, Pazdziora E. Vermiculite with Ag and Cu used as an antibacterial nanofiller in polyethylene. GeoSci Eng. 2014a;LX(3):28–39.

    Google Scholar 

  • Hundáková M, Valášková M, Seidlerová J. Stability of silver and copper on clay minerals in water and their antibacterial activity. In: Proceedings of the 5th International Conference NANOCON 2013; 2013 Oct 16–18; Brno, CZ; Ostrava: Tanger Ltd; 2014b. p. 632–7.

    Google Scholar 

  • Hundáková M, Simha Martynková G, Valášková M, Měřínská D, Pazdziora E. Antibacterial polypropylene/Ag-kaolinite, preparation and characterization. Adv Sci Lett. 2016;22(3):656–60.

    Article  Google Scholar 

  • Huo C, Yang H. Synthesis and characterization of ZnO/palygorskite. Appl Clay Sci. 2010;50(3):362–6.

    Article  CAS  Google Scholar 

  • Jakobsen L, Andersen AS, Friis-Møller A, Jørgensen B, Krogfelt KA, Frimodt-Møller N. Silver resistance: an alarming public health concern? Int J Antimicrob Agents. 2011;38(5):454–5.

    Article  CAS  PubMed  Google Scholar 

  • Jankauskaitė V, Vitkauskienė A, Lazauskas A, Baltrusaitis J, Prosyčevas I, Andrulevičius M. Bactericidal effect of graphene oxide/Cu/Ag nanoderivatives against Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus. Int J Pharm. 2016;511(1):90–7.

    Article  CAS  Google Scholar 

  • Jiao LF, Ke YL, Xiao K, Song ZH, Lu JJ, Hu CH. Effects of zinc-exchanged montmorillonite with different zinc loading capacities on growth performance, intestinal microbiota, morphology and permeability in weaned piglets. Appl Clay Sci. 2015;113:40–3.

    Article  CAS  Google Scholar 

  • Johari SA, Kalbassi MR, Soltani M, Yu IJ. Application of nanosilver-coated zeolite as water filter media for fungal disinfection of rainbow trout (Oncorhynchus mykiss) eggs. Aquacult Int. 2016;24:23–38.

    Article  CAS  Google Scholar 

  • Jones CM, Hoek EMV. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res. 2010;12:1531–51.

    Article  CAS  Google Scholar 

  • Jones N, Ray B, Ranjit KT, Manna AC. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett. 2008;279(1):71–6.

    Article  CAS  PubMed  Google Scholar 

  • Jung JH, Hwang GB, Lee JE, Bae GN. Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their application to antimicrobial air filtration. Langmuir. 2011;27:10256–64.

    Article  CAS  PubMed  Google Scholar 

  • Karel FB, Koparal AS, Kaynak E. Development of silver ion doped antibacterial clays and investigation of their antibacterial activity. Adv Mater Sci Eng. 2015;2015:1–6. ID: 409078

    Article  CAS  Google Scholar 

  • Kawahara K, Tsuruda K, Morishita M, Uchida M. Antibacterial effect of silver-zeolite on oral bacteria under anaerobic conditions. Dent Mater. 2000;16:452–5.

    Article  CAS  PubMed  Google Scholar 

  • Kheiralla ZMH, Rushdy AA, Betiha MA, Yakob NAN. High-performance antibacterial of montmorillonite decorated with silver nanoparticles using microwave assisted method. J Nanopart Res. 2014;16:2560.

    Article  CAS  Google Scholar 

  • Kokura S, Handa O, Takagi T, Ishikawa T, Naito Y, Yoshikawa T. Silver nanoparticles as a safe preservative for use in cosmetics. Nanomed-Nanotechnol Biol Med. 2010;6:570–4.

    Article  CAS  Google Scholar 

  • Koli VB, Dhodamani AG, Raut AV, Thorat ND, Pawar SH, Delekar SD. Visible light photo-induced antibacterial activity of TiO2-MWCNTs nanocomposites with varying the contents of MWCNTs. J Photochem Photobiol A-Chem. 2016;328:50–8.

    Article  CAS  Google Scholar 

  • Kollef MH, Afessa B, Anzueto A, Veremakis C, Kerr KM, Margolis BD, et al. Silver coated endotracheal tubes and incidence of ventilator-associated pneumonia. JAMA. 2008;300(7):805–13.

    Article  CAS  PubMed  Google Scholar 

  • Li B, Yu S, Hwang JY, Shi S. Antibacterial vermiculite nano-material. J Minerals Mater Charact Eng. 2002;1:61–8.

    Google Scholar 

  • Li Z, Fan L, Zhang T, Li K. Facile synthesis of Ag nanoparticles supported on MWCNTs with favorable stability and their bactericidal properties. J Hazard Mater. 2011;187:466–72.

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Wei L, Hao L, Fang N, Chang MW, Xu R, et al. Sharper and faster ‘nano darts’ kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano. 2009;3(12):3891–902.

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Keong A, Xu R, Wei J, Tan CM, Yanga Y, Chen Y. Antibacterial action of dispersed single-walled carbon nanotubes on Escherichia coli and Bacillus subtilis investigated by atomic force microscopy. Nanoscale. 2010;2:2744.

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang R, et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano. 2011;5(9):6971–80.

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Bai H, Liu J, Sun DD. Multifunctional graphene oxide-TiO2-Ag nanocomposites for high performance water disinfection and decontamination under solar irradiation. J Hazard Mater. 2013;261:214–23.

    Article  CAS  PubMed  Google Scholar 

  • Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, et al. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res. 2006;5:916–24.

    Article  CAS  PubMed  Google Scholar 

  • Lu W, Senapati D, Wang S, Tovmachenko O, Kumar Singh A, Hongtao Y, et al. Effect of surface coating on the toxicity of silver nanomaterials on human skin keratinocytes. Chem Phys Lett. 2010;487:92–6.

    Article  CAS  Google Scholar 

  • Maeda K. Basic studies on possible clinical application of antibacterial zeolite. Nesshou. 1987;13:316–21.

    CAS  Google Scholar 

  • Magaña SM, Quintana P, Aguilar DH, Toledo JA, Ángeles-Chávez C, Cortés MA, et al. Antibacterial activity of montmorillonites modified with silver. J Mol Catal A-Chem. 2008;281:192–9.

    Article  CAS  Google Scholar 

  • Malachová K, Praus P, Pavlíčková Z, Turicová M. Activity of antibacterial compounds immobilised on montmorillonite. Appl Clay Sci. 2009;43:364–8.

    Article  CAS  Google Scholar 

  • Malachová K, Praus P, Rybková Z, Kozák O. Antibacterial and antifungal activities of silver, copper and zinc montmorillonites. Appl Clay Sci. 2011;53(4):642–5.

    Article  CAS  Google Scholar 

  • Martynková GS, Valášková M. Antimicrobial nanocomposites based on natural modified materials: a review of carbons and clays. J Nanosci Nanotechnol. 2014;14(1):673–93.

    Article  PubMed  CAS  Google Scholar 

  • Meghana S, Kabra P, Chakraborty S, Padmavathy N. Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC Adv. 2015;5:12293–9.

    Article  CAS  Google Scholar 

  • Miyoshi H, Ohno H, Sakai K, Okamura N, Kourai H. Characterization and photochemical and antibacterial properties of highly stable silver nanoparticles prepared on montmorillonite clay in n-hexanol. J Colloid Interface Sci. 2010;345:433–41.

    Article  CAS  PubMed  Google Scholar 

  • Mizuno K, Zhiyentayev T, Huang L, Khalil S, Nasim F, Tegos GP, et al. Antimicrobial photodynamic therapy with functionalized fullerenes: quantitative structure-activity relationships. J Nanomed Nanotechnol. 2011;2(2):1–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Motshekga SC, Ray SS, Onyango MS, Momba MNB. Microwave-assisted synthesis, characterization and antibacterial activity of Ag/ZnO nanoparticles supported bentonite clay. J Hazard Mater. 2013;262:439–46.

    Article  CAS  PubMed  Google Scholar 

  • Narayan RJ, Abernathy H, Riester L, Berry CJ, Brigmon R. Antimicrobial properties of diamond-like carbon-silver-platinum nanocomposite thin films. J Mater Eng Perform. 2005;14:435–40.

    Article  CAS  Google Scholar 

  • Özdemir G, Limoncu MH, Yapar S. The antibacterial effect of heavy metal and cetylpridinium-exchanged montmorillonites. Appl Clay Sci. 2010;48:319–23.

    Article  CAS  Google Scholar 

  • Panáček A, Kvítek L, Prucek R, Kolář M, Večeřová R, Pizúrová N, et al. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem. 2006;110:16248–53.

    Article  CAS  Google Scholar 

  • Pant B, Raj H, Barakat NAM, Park M, Jeon K. Carbon nanofibers decorated with binary semiconductor (TiO2/ZnO) nanocomposites for the effective removal of organic pollutants and the enhancement of antibacterial activities. Ceram Int. 2013;39(6):7029–35.

    Article  CAS  Google Scholar 

  • Pant B, Singh P, Park M, Park S, Kim H. General one-pot strategy to prepare Ag- TiO2 decorated reduced graphene oxide nanocomposites for chemical and biological disinfectant. J Alloys Compd. 2016;671:51–9.

    Article  CAS  Google Scholar 

  • Parolo ME, Fernández LG, Zajonkovsky I, Sánchez MP, Baschini M. Antibacterial activity of materials synthesized from clay minerals. In: Méndez-Vilas A, editor. Science against microbial pathogens: communicating current research and technological advances, vol. 1: FORMATEX; 2011. p. 144–51. ISBN-13: 978-84-939843-1-1.

    Google Scholar 

  • Pazdziora E, Matějová K, Valášková M, Holešová S, Hundáková M. Comparison of antibacterial and antiprotozoal effects of nanoparticles Zn2+, Cu2+ a Ag+ intercalated on clay minerals. In: Proceedings of the 2nd International Conference NANOCON 2010; 2010 Oct 12–14; Olomouc, CZ; Ostrava: Tanger Ltd; 2010. p. 460–4.

    Google Scholar 

  • Perdikaki A, Galeou A, Pilatos G, Karatasios I, Kanellopoulos KH, Prombona A, Karanikolos GN. Ag and Cu monometallic and Ag/Cu bimetallic nanoparticle–graphene composites with enhanced antibacterial performance. ACS Appl Mater Interfaces. 2016;8(41):27498–510.

    Article  CAS  Google Scholar 

  • Pourabolghasem H, Ghorbanpour M, Shayegh R. Antibacterial activity of copper-doped montmorillonite nanocomposites prepared by alkaline ion exchange method. J Phys Sci. 2016;27(2):1–12.

    Article  Google Scholar 

  • Pouraboulghasem H, Ghorbanpour M, Shayegh R, Lotfiman S. Synthesis, characterization and antimicrobial activity of alkaline ion-exchanged ZnO/bentonite nanocomposites. J Cent South Univ. 2016;23(4):787–92.

    Article  CAS  Google Scholar 

  • Rai VR, Bai AJ. Nanoparticles and their potential application as antimicrobials. In: Méndez-Vilas A, editor. Science against microbial pathogens: communicating current research and technological advances. Badajoz: FORMATEX; 2011. p. 197–209.

    Google Scholar 

  • Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27:76–83.

    Article  CAS  PubMed  Google Scholar 

  • Ravichandran K, Chidhambaram N, Gobalakrishnan S. Copper and graphene activated ZnO nanopowders for enhanced photocatalytic and antibacterial activities. J Phys Chem Solids. 2016;93:82–90.

    Article  CAS  Google Scholar 

  • Rivera-Garza M, Olguín MT, García-Sosa I, Alcántara D, Rodríguez-Fuentes G. Silver supported on natural Mexican zeolite as an antibacterial material. Microporous Mesoporous Mater. 2000;39:431–44.

    Article  CAS  Google Scholar 

  • Roguska A, Belcarz A, Pisarek M, Ginalska G, Lewandowska M. TiO2 nanotube composite layers as delivery system for ZnO and Ag nanoparticles – an unexpected overdose effect decreasing their antibacterial efficacy. Mater Sci Eng C Mater Biol Appl. 2015;51:158–66.

    Google Scholar 

  • Rosa-Gomez de la I, Olguina MT, Alcantara D. Antibacterial behavior of silver-modified clinoptilolite-heulandite rich tuff on coliform microorganisms from wastewater in a column system. J Environ Manag. 2008;88:853–63.

    Article  CAS  Google Scholar 

  • Rosa-Gomez de la I, Olguina MT, Alcantara D. Silver-modified mexican clinoptilolite-rich tuffs with various particle sizes as antimicrobial agents against Escherichia coli. J Mex Chem Soc. 2010;54(3):139–42.

    Google Scholar 

  • Russell AD. Principles of antimicrobial activity and resistance. In: Block SS, editor. Disinfection, sterilization and preservatives. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 31–56.

    Google Scholar 

  • Salim MM, Malek NANN. Characterization and antibacterial activity of silver exchanged regenerated NaY zeolite from surfactant-modified NaY zeolite. Mater Sci Eng C. 2016;59:70–7.

    Article  CAS  Google Scholar 

  • Santos MF, Oliveira CM, Tachinski CT, Fernandes MP, Pich CT, Angioletto E, et al. Bactericidal properties of bentonite treated with Ag+ and acid. Int J Miner Process. 2011;100:51–3.

    Article  CAS  Google Scholar 

  • Shameli K, Ahmad MB, Zargar M, Wan Yunus WMZ, Rustaiyan A, Ibrahim NA. Synthesis of silver nanoparticles in montmorillonite and their antibacterial behavior. Int J Nanomedicine. 2011;6:581–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shameli K, Ahmad MB, Al-Mulla EAJ, Shabanzadeh P, Bagheri S. Antibacterial effect of silver nanoparticles on talc composites. Res Chem Intermed. 2013;41(1):251–63.

    Article  CAS  Google Scholar 

  • Shvedova AA, Pietroiusti A, Fadeel B, Kagan VE. Mechanisms of carbon nanotube-induced toxicity: focus on oxidative stress. Toxicol Appl Pharmacol. 2012;261(2):121–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sohrabnezhad S, Mehdipour Moghaddam MJ, Salavatiyan T. Synthesis and characterization of CuO-montmorillonite nanocomposite by thermal decomposition method and antibacterial activity of nanocomposite. Spectrochim Acta Pt A-Mol Biomol Spectr. 2014;125:73–8.

    Article  CAS  Google Scholar 

  • Sohrabnezhad S, Pourahmad A, Mehdipour Moghaddam MJ, Sadeghi A. Study of antibacterial activity of Ag and Ag2CO3 nanoparticles stabilized over montmorillonite. Spectroc Acta Pt A-Mol Biomol Spectr. 2015;136:1728–33.

    Article  CAS  Google Scholar 

  • Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004;275:177–82.

    Article  CAS  PubMed  Google Scholar 

  • Song J, Li Y, Hu CH. Effects of copper-exchanged montmorillonite, as alternative to antibiotic, on diarrhea, intestinal permeability and proinflammatory cytokine of weanling pigs. Appl Clay Sci. 2013;77-78:52–5.

    Article  CAS  Google Scholar 

  • Sui M, Zhang L, Sheng L, Huang S, She L. Synthesis of ZnO coated multi-walled carbon nanotubes and their antibacterial activities. Sci Total Environ. 2013;452-453:148–54.

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Chen Q, Xu L, Zhang S, Feng L, Cheng L, et al. Graphene oxide–silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms. ACS Appl Mater Interfaces. 2013;5(9):3867–74.

    Article  CAS  PubMed  Google Scholar 

  • Tegos GP, Demidova TN, Arcila-Lopez D, Lee H, Wharton T, Gali H, et al. Cationic fullerenes are effective and selective antimicrobial photosensitizers. Chem Biol. 2005;12(10):1127–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tekin R, Bac N. Antimicrobial behavior of ion-exchanged zeolite X containing fragrance. Microporous Mesoporous Mater. 2016;234:55–60.

    Article  CAS  Google Scholar 

  • Tong G, Yulong M, Peng G, Zirong X. Antibacterial effects of the cu(II)-exchanged montmorillonite on Escherichia coli K88 and Salmonella choleraesius. Vet Microbiol. 2005;105:113–22.

    Article  CAS  PubMed  Google Scholar 

  • Top A, Ülkü S. Silver, zinc, and copper exchange in a Na-clinoptilolite and resulting effect on antibacterial activity. Appl Clay Sci. 2004;27:13–9.

    Article  CAS  Google Scholar 

  • Üreyen ME, Doğan A, Koparal AS. Antibacterial functionalization of cotton and polyester fabrics with a finishing agent based on silver-doped calcium phosphate powders. Text Res J. 2012;82(17):1731–42.

    Article  CAS  Google Scholar 

  • Valášková M, Martynkova GS. Vermiculite: structural properties and examples of the use, clay minerals in nature-their characterization, modification and application. InTech.; 2012. p. 326. ISBN 978-953-51-0738-5.

    Google Scholar 

  • Valášková M, Hundáková M, Mamulová Kutláková K, Seidlerová J, Čapková P, Pazdziora E, et al. Preparation and characterization of antibacterial silver/vermiculites and silver/montmorillonites. Geochim Cosmochim Acta. 2010;74:6287–300.

    Article  CAS  Google Scholar 

  • Vargas-Reus MA, Memarzadeha K, Huang J, Renc GG, Allakera RP. Antimicrobial activity of nanoparticulate metal oxides against peri-implantitis pathogens. Int J Antimicrob Agents. 2012;40:135–9.

    Article  CAS  PubMed  Google Scholar 

  • Vincent M, Hartemann P, Engels-Deutsch M. Antimicrobial applications of copper. Int J Hyg Environ Health. 2016;219:585–91.

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Peng Y. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem Eng J. 2010;156:11–24.

    Article  CAS  Google Scholar 

  • Xia MS, Hu CH, Xu ZR. Effects of copper bearing montmorillonite on the growth performance, intestinal microflora and morphology of weanling pigs. Anim Feed Sci Technol. 2005;118:307–17.

    Article  CAS  Google Scholar 

  • Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PJJ. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 2012;12:4271–5.

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Qiao X, Qiu X, Chen J. Preparation and characterization of nano-silver loaded montmorillonite with strong antibacterial activity and slow release property. J Mater Sci Technol. 2011;27(8):685–90.

    Article  CAS  Google Scholar 

  • Yamamoto O, Sawai J, Sasamoto T. Activated carbon sphere with antibacterial characteristics. Mater Trans. 2002;43(5):1069–73.

    Article  CAS  Google Scholar 

  • Yang X, Ebrahimi A, Li J, Cui Q. Fullerene-biomolecule conjugates and their biomedicinal applications. Int J Nanomedicine. 2014;9:77–92.

    Article  PubMed  CAS  Google Scholar 

  • Yuan W, Jiang G, Che J, Qi X, Xu R, Chang MW, et al. Deposition of silver nanoparticles on multiwalled carbon nanotubes grafted with hyperbranched poly(amidoamine) and their antimicrobial effects. J Phys Chem C. 2008;112:18754–9.

    Article  CAS  Google Scholar 

  • Zhang Y, Chen Y, Zhang H, Zhang B, Liu J. Potent antibacterial activity of a novel silver nanoparticle-halloysite nanotube nanocomposite powder. J Inorg Biochem. 2013;118:59–64.

    Article  CAS  PubMed  Google Scholar 

  • Zhao D, Zhou J, Liu N. Preparation and characterization of Mingguang palygorskite supported with silver and copper for antibacterial behavior. Appl Clay Sci. 2006;33:161–70.

    Article  CAS  Google Scholar 

  • Zhou Y, Xia M, Ye Y, Hu C. Antimicrobial ability of Cu2+-montmorillonite. Appl Clay Sci. 2004;27:215–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This chapter was created with support of the Project No. LO1203 “Regional Materials Science and Technology Centre – Feasibility Program” funded by Ministry of Education, Youth and Sports of the Czech Republic and by the MSMT (SP2016/75 and SP2017/86).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kateřina Dědková .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hundáková, M., Dědková, K., Martynková, G.S. (2017). Decoration of Inorganic Substrates with Metallic Nanoparticles and Their Application as Antimicrobial Agents. In: Rai, Ph.D, M., Shegokar, Ph.D, R. (eds) Metal Nanoparticles in Pharma. Springer, Cham. https://doi.org/10.1007/978-3-319-63790-7_14

Download citation

Publish with us

Policies and ethics