Abstract
Nanotechnology promises many interesting changes for better life. Nanotechnology can be used to improve health, wealth, products and quality of life. Food nanopackaging is still a rather unexplored field of nanoscience and food science. Here I review developments in nano-packaging. This chapter describes first biobased food packaging for biodegradable packaging. Biobased packaging is indeed an alternative to conventional packaging with non-degradable plastic polymers that are a threat to the environment. Biobased packaging reduces waste, extend the shelf life, and enhance food quality. The next section discusses nanomaterials that improve packaging, such as better barrier properties, mechanical strength, flexibility and stability. Active packaging refers to the use of active materials such as antimicrobials and oxygen scavenging reagents. Smart packaging is the use of nanosensors and nanodevices that detect freshness or contaminants in foods or monitor changes in packaging conditions or integrity. The last section discusses safety issues and heath concerns of nanopackaging.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abad E, Zampolli S, Marco S (2007) Flexible tag microlab development: gas sensors integration in RFID flexible tags for food logistic. Sens Act B Chem 127(1):2–7
Abad E, Palacio F, Nuin M, De Z’arate AG, Juarros A, G’omez J, Marco S (2009) Rfid smart tag for traceability and cold chain monitoring of foods: demonstration in an intercontinental fresh fish logistic chain. J Food Eng 93(4):394–399
Adame D, Beall GW (2009) Direct measurement of the constrained polymer region in polyamide/clay nanocomposites and the implications for gas diffusion. App Clay Sci 42:545–552
Aguzzi C, Cerezo P, Viseras C, Caramella C (2007) Use of clays as drug delivery systems: possibilities and limitations. App Clay Sci 36:22–36
Ahuja T, Mir IA, Kumar D, Rajesh (2007) Biomolecular immobilization on conducting polymers for biosensing applications. Biomaterials 28:791–805
Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mat Sci Eng R 28(1–2):1–63
Alexandre B, Langevin D, Mederic P, Aubry T, Couderc H, Nguyen QT et al (2009) Water barrier properties of polyamide 12/montmorillonite nanocomposite membranes: structure and volume fraction effects. J Membrane Sci 328(1–2):186–204
An J, Zhang M, Wang S, Tang J (2008) Physical, chemical and microbiological changes in stored green asparagus spears as affected by coating of silver nanoparticles-PVP. LWT- Food Sci Technol 41(6):1100–1107
Anpo M, Kishiguchi S, Ichihashi Y, Takeuchi M, Yamashita H, Ikeue K et al (2001) The design and development of second-generation titanium oxide photocatalysts able to operate under visible light irradiation by applying a metal ion-implantation method. Res Chem Interm 27(4–5):459–467
Arshak K, Adley C, Moore E, Cunniffe C, Campion M, Harris J (2007) Characterisation of polymer nanocomposite sensors for quantification of bacterial cultures. Sens Act B 126:226–231
Asadi G, Mousavi M (2006) Application of nanotechnology in food packaging. Available: http://iufost.edpsciences.org
Avella M, De Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93:467–474
Avena-Bustillos RJ, Krochta JM, Saltveit ME (1997) Water vapour resistance of red delicious apples and celery sticks coated with edible caseinate-acetylated monoglyceride films. J Food Sci 62(2):51–354
Baldwin EA, Nisperos MO, Chen X, Hagenmaier RD (1996) Improving storage life of cut apples and potato with edible coating. Post Biol Technol 9(2):151–163
Bandyopadhyay S, Chen R, Giannelis EP (1999) Biodegradable organic-inorganic hybrids based on poly (L lactide). Poly Mater Sci Eng 81:159–160
Bertini F, Canetti M, Audisio G, Costa G, Falqui L (2006) Characterization and thermal degradation of polypropylene–montmorillonite nanocomposites. Poly Degrad Stab 91:600–605
Bharadwaj RK (2001) Modeling the barrier properties of polymer-layered silicate nanocomposites. Macromolecules 34:9189–9192
Bharadwaj RK, Mehrabi AR, Hamilton C, Murga MF, Chavira A, Thompson AK (2002) Structure-property relationships in cross-linked polyestereclay nanocomposites. Polymer 43:3699–3705
Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, de Heer C et al (2009) Review of health safety aspects of nanotechnologies in food production. Reg Toxicol Pharm 53(1):52–62
Brody AL (2003) “Nano, nano” food packaging technology. Food Technol 57(1):52–54
Brody AL (2006) Nano and food packaging technologies converge. Food Technol 60(3):92–94
Brody AL (2007) Case studies on nanotechnologies for food packaging. Food Technol 07:102–107
Cabedo L, Gimenez E, Lagaron JM, Gavara R, Saura JJ (2004) Development of EVOH–kaolinite nanocomposites. Polymer 45(15):5233–5238
Cabedo L, Feijoo JL, Villanueva MP, Lagaron JM, Gimenez E (2006) Optimization of biodegradable nanocomposites based on a PLA/PCL blends for food packaging applications. Macromol Symp 233:191–197
Cagri A, Ustunol Z, Ryser ET (2004) Antimicrobial edible films and coatings. J Food Prot 67:833–848
Cha D, Chinnan M (2004) Biopolymer-based antimicrobial packaging: a review. Critic Rev Food Sci Nutrit 44:223–237
Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Poly Sci 23:1273–1335
Chang J-H, Uk-An Y, Sur GS (2003) Poly (lactic acid) nanocomposites with various organoclays. I. Thermomechanical properties, morphology, and gas permeability. J Poly Sci B: Poly Phys 41:94–103
Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R (2008) Applications and implications of nanotechnologies for the food sector. Food Additives Cont 25(3):241–258
Chawengkijwanich C, Hayata Y (2008) Development of TiO2 powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. Int J Food Microb 123(3):288–292
Chen B, Evans JRG (2005) Thermoplastic starcheclay nanocomposites and their characteristics. Carbo Poly 61(4):455–463
Chen GX, Hao GJ, Guo TY, Song MD, Zhang BH (2004) Crystallization kinetics of poly (3-hydroxybutyrate-co-3- hydroxyvalerate)/clay nanocomposites. J App Poly Sci 93:655–661
Cheng Q, Li C, Pavlinek V, Saha P, Wang H (2006) Surface-modified antibacterial TiO2/Ag+ nanoparticles: preparation and properties. Appl Surf Sci 252:4154–4160
Choi HJ, Kim JH, Kim J (1997) Mechanical spectroscopy studies on biodegradable synthetic and biosynthetic aliphatic polyesters. Macromol Symp 119:149–155
Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L et al (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17:5255–5262
Commission Regulation (EU) No. 10/2011 of 14 of January 2011 on plastic material and articles intended to come in contact with food. Off J Eur Union
Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E (2014) Evaluasian and simulation of silver and copper nanoparticle migration from polyethylene nanocomposites to food and an associated exposure assessment. J Agric Food Chem 62(6):1403–1411
Cyras VP, Manfredi LB, Ton-That MT, Vazquez A (2008) Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite films. Carbo Poly 73:55–63
Damm C, Munstedt H, Rosch A (2007) Long-term antimicrobial polyamide 6/silver-nanocomposites. J Mater Sci 42(15):6067–6073
Damm C, Munstedt H, Rosch A (2008) The antimicrobial efficacy of polyamide 6/silver-nano- and microcomposites. Mate Chem Phys 108:61–66
Darder M, Colila M, Ruiz-Hitky E (2003) Biopolymer-clay nanocomposites based on chitosan intercalated in montmorllonite. Chem Mater 15:3774–378
Dasgupta N, Ranjan S, Mundekkad D, Ramalingam C, Shanker R, Kumar A (2015) Nanotechnology in agrofood: from field to plate. Food Res Int 69:381–400
Dasgupta N, Shivendu R, Patra D, Srivastava P, Kumar A, Ramalingam C (2016a) Bovine serum albumin interacts with silver nanoparticles with a “side-on” or “end on” conformation. Chem Biol Interact 253:100–111. doi:10.1016/j.cbi.2016.05.018
Dasgupta N, Shivendu R, Bhavapriya R, Venkatraman M, Chidambaram R, Avadhani GS, Ashutosh K (2016b) Thermal co-reduction approach to vary size of silver nanoparticle: its microbial and cellular toxicology. Environ Sci Pollut Res 23(5):4149–4163. doi:10.1007/s11356-015-4570-z
Dasgupta N, Shivendu R, Shraddha M, Ashutosh K, Chidambaram R (2016c) Fabrication of food grade vitamin E nanoemulsion by low energy approach: characterization and its application. Int J Food Prop 19:700–708. doi:10.1080/10942912.2015.1042587
De Carvalho AJF, Curvelo AAS, Agnelli JAM (2001) A first insight on composites of thermoplastic starch and kaolin. Carbo Poly 45:189–194
Dean K, Yu L, Wu DY (2007) Preparation and characterization of meltextruded thermoplastic starch/clay nanocomposites. Compos Sci Technol 67:413–421
Decher G, Schlenoff JB (2003) Multilayer thin films: sequential assembly of nanocomposite materials. Wiley-VCH, Weinheim, p 543
Del Nobile MA, Conte A, Buonocore GG, Incoronato AL, Massaro A, Panza O (2009) Active packaging by extrusion processing of recyclable and biodegradable polymers. J Food Eng 93(1):1–6
Di Y, Iannace S, Di Maio ED, Nicolais L (2003) Nanocomposites by melt intercalation based on polycaprolactone and organoclay. J Poly Sci B: Poly Phys 41:670–678
Doi Y, Steinbuechel A (2002) Polyesters. III, Applications and commercial products. In: Biopolymers, 4. Wiley-VCH Verlag GmbH, Weinheim
Doyle ME (2006) Nanotechnology: a brief literature review. Available: http://www.wisc.xv.edu/fri/briefs/FRIBrief_Nanotech_Lit_Rev.pdf
Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363(1):1–24
Echegoyen Y, Nerín C (2013) Nanoparticle release from nano-silver antimicrobial food containers. Food Chem Toxicol 62:16–22
El Amin A (2005) Consumers and regulators push food packaging innovation. Available at: http://foodproductiondaily.com/news/ng.asp?n=63704
El Amin A (2007) Nanoscale particles designed to block UV light. FoodProductionDaily.com Europe. 18 October. Available at: http://foodproductiondaily.com/news/ng.asp?id=80676
El Ghaouth AE, Arul J, Ponnampalam R, Boulet M (1991) Use of chitosan coating to reduce water loss and maintain quality of cucumber and bell pepper fruits. J Food Process Preserv 15:359–368
Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C: Photochem Rev 1(1):1–21
Galdikas A, Mironas A, Senuliene V, Setkus A, Zelenin D (2000) Response time based output of metal oxide gas sensors applied to evaluation of meat freshness with neural signal analysis. Sens Actuat B 69:258–265
Gelover S, Gomez LA, Reyes K, Leal MT (2006) A practical demonstration of water disinfection using TiO2 films and sunlight. Water Res 40:3274–3280
Gonera A, Cornillon P (2002) Gelatinization of starch/gum/sugar system studied by using DSC, NMR and CSLM. Starch 54:508–516
Gorrasi G, Tortora M, Vittoria V, Galli G, Chiellini E (2002) Transport and mechanical properties of blends of poly (3-caprolactone) and a modified montmorillonite- poly (3-caprolactone) nanocomposite. J Poly Sci, B Poly Phys 40:1118–1124
Gorrasi G, Tortora M, Vittoria V, Pollet E, Alexandre M, Dubois P (2004) Physical properties of poly (3-caprolactone) layered silicate nanocomposites prepared by controlled grafting polymerization. J Poly Sci B Poly Phys 42:1466–1475
Gu HW, Ho PL, Tong E, Wang L, Xu B (2003) Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett 3:1261–1263
Guilbert S, Cuq B, Gontard N (1997) Recent innovations in edible and/or biodegradable packaging materials. Food Additives Cont 14(6):741–751
Gutierrez-Tauste D, Domenech X, Casan-Pastor N, Ayllon JA (2007) Characterization of methylene blue/TiO2 hybrid thin films prepared by the liquid phase deposition (LPD) method: application for fabrication of lightactivated colorimetric oxygen indicators. J Photochem Photobiol A Chem 187:45–52
Hankermeyer CR, Tjeerdema RS (1999) Polyhydroxybutyrate: plastic made and degraded by microorganisms. Rev Environ Cont Toxicol 159:1–24
Haynie DT, Zhang L, Zhao W, Rudra JS (2006) Protein-inspired multilayer nanofilms: science, technology and medicine. Nanomed Nanotechnol Biol Med 2:150–157
Hu AW, Fu ZH (2003) Nanotechnology and its application in packaging and packaging machinery. Pack Eng 24:22–24
Huang L, Li DQ, Lin YJ, Wei M, Evans DG, Duan X (2005) Controllable preparation of nano-MgO and investigation of its bactericidal properties. J Inor Biochem 99:986–993
Ishiaku US, Pang KW, Lee WS, Ishak ZAM (2002) Mechanical properties and enzymic degradation of thermoplastic and granular sago starch filled poly (3-caprolactone). Eur Poly J 38:393–401
Jain A, Shivendu R, Nandita D, Chidambaram R (2016) Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit Rev Food Sci. doi:10.1080/10408398.2016.1160363
Jawahar P, Balasubramanian M (2006) Preparation and properties of polyester based nanocomposite gel coat system. J Nanomater 4 [article ID 21656]
Johnston JH, Borrmann T, Rankin D, Cairns M, Grindrod JE, McFarlane A (2008) Nano-structured composite calcium silicate and some novel applications. Cur App Phys 8(3–4):504–507
Joseph T, Morrison M (2006) Nanotechnology in agriculture and food. www.nanoforum.org/nf06~modul~showmore~folder~99999~scid~377~.html?action=longview_publication
Kang S, Pinault M, Pfefferle LD, Elimelech M (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23:8670–8673
Kaplan DL (1998) Biopolymers from renewable resources. Springer, Berlin
Kim M, Pometto OR III (1994) Food packaging potential of some novel degradable starch-polyethylene plastics. J Food Protec 57:1007–1012
Kim B, Kim D, Cho D, Cho S (2003) Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria. Chemosphere 52(1):277–281
Kim TY, Lee YH, Park KH, Kim SJ, Cho SY (2005) A study of photocatalysis of TiO2 coated onto chitosan beads and activated carbon. Res Chem Interm 31(4–6):343–358
Kirwan MJ, Strawbridge JW (2003) Plastics in food packaging. In: Coles R, Mc Dowel D, Kirwan MJ (eds) Food packaging technologi. Blackwell Publishing Ltd, Oxford, pp 174–240
Koo OM, Rubinstein I, Onyuksel H (2005) Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomed Nanotechnol Biol Med 1:193–212
Kumar R, Munstedt H (2005) Silver ion release from antimicrobial polyamide/silver composites. Biomaterials 26:2081–2088
Kuswandi B, Wicaksono Y, Jayus, Abdullah A, Heng LY, Ahmad M (2011) Smart packaging: sensors for monitoring of food quality and safety. Sens Inst Food Qual Safe 5:137–146
Kuswandi B, Jayus, Restanty A, Abdullah A, Heng LY, Ahmad M (2012) A novel colorimetric food package label for fish spoilage based on polyaniline film. Food Cont 25:184
Lagaron JM, Cabedo L, Cava D, Feijoo JL, Gavara R, Gimenez E (2005) Improving packaged food quality and safety. Part 2: nanocomposites. Food Additives Cont 22(10):994–998
Lee SR, Park HM, Lim HL, Kang T, Li X, Cho WJ (2002) Microstructure, tensile properties, and biodegradability of aliphatic polyester/clay nanocomposites. Polymer 43:2495–2500
Lee CH, An DS, Park HJ, Lee DS (2003) Wide spectrum antimicrobial packaging materials incorporating nisin and chitosan in the coating. Pack Technol Sci 16:99–106
Lee SK, Sheridan M, Mills A (2005) Novel UV-activated colorimetric oxygen indicator. Chem Mater 17(10):2744–2751
Lenz RW, Marchessault RH (2005) Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules 61:1–8
Li B, Rozas J, Haynie DT (2006) Structural stability of polypeptide nanofilms under extreme conditions. Biotechnol Prog 22:111–117
Li H, Li F, Wang L, Sheng J, Xin Z, Zhao L et al (2009) Effect of nano-packing on preservation quality of Chinese jujube (Ziziphus jujuba Mill. var. inermis (Bunge) Rehd). Food Chem 114(2):547–552
Liao F, Chen C, Subramanian V (2005) Organic TFTs as gas sensors for electronic nose applications. Sens Actuat B: Chem 107(2):849–855
Lichtenthaler FW (2010) Carbohydrates as organic raw materials. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim. doi:10.1002/14356007
Lim ST, Hyun YH, Choi HJ, Jhon MS (2002) Synthetic biodegradable aliphatic polyester/montmorillonite nanocomposites. Chem Mater 14:1839–1844
Lin YJ, Li DQ, Wang G, Huang L, Duan X (2005) Preparation and bactericidal property of MgO nanoparticles on c-Al2O3. J Mater Sci: Mater Medic 16:53–56
Liu W, Yang H, Wang Z, Dong L, Liu J (2002) Effect of nucleating agents on the crystallization of poly(3-hydroxybutyratecohydroxy valerate). J Appl Poly Sci 86:2145–2152
Lopez-Rubio A, Gavara R, Lagaron JM (2006) Bioactive packaging: turning foods into healthier foods through biomaterials. Trends Food Sci Technol 17:567–575
Luduena LN, Alvarez VA, Vasquez A (2007) Processing and microstructure of PCL/clay nanocomposites. Mater Sci Eng A 460:121–129
Luo PG, Stutzenberger FJ (2008) Nanotechnology in the detection and control of microorganisms. In: Laskin AI, Sariaslani S, Gadd GM (eds) Advances in applied microbiology, vol 63. Elsevier, London, pp 145–181
Maddineni SB, Badal KM, Shivendu R, Nandita D (2015) Diastase assisted green synthesis of size-controllable gold nanoparticles. RSC Adv 5:26727–26733. doi:10.1039/C5RA03117F
Maisanaba S, Pichardo S, Jordá-Beneyto M, Aucejo S, Cameán AM, Jos Á (2014a) Cytotoxicity and mutagenicity studies on migration extracts from nanocomposites with potential use in food packaging. Food Chem Toxicol 66:366–372
Maisanaba S, Gutiérrez-Praena D, Puerto M, Llana-Ruiz-Cabello M, Pichardo S, Moyano R, Blanco A, Jordá-Beneyto M, Jos A (2014b) In vivo toxicity evaluation of the migration extract of an organomodified clay-poly(lactic) acid nanocomposite. J Toxicol Environ Health A 77(13):731–746
Maiti P, Batt CA, Giannelis EP (2003) Renewable plastics: synthesis and properties of PHB nanocomposites. Poly Mater Sci Eng 88:58–59
Maness PC, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA (1999) Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 65(9):4094–4098
Mangiacapra P, Gorrasi G, Sorrentino A, Vittoria V (2005) Biodegradable nanocomposites obtained by ball milling of pectin and montmorillonites. Carbohyd Polym 64:516–523
Mangiacapra P, Gorrasi G, Sorrentino A, Vittoria V (2006) Biodegradable nanocomposites obtained by ball milling of pectin and montmorillonites. Carbo Poly 64:516–523
Marras SI, Kladi KP, Tsivintzelis I, Zuburtikudis I, Panayiotou C (2008) Biodegradable polymer nanocomposites: the role of nanoclays on the thermomechanical characteristics and the electrospun fibrous structure. Acta Biomater 4(3):756–765
Mbhele ZH, Salemane MG, van Sittert CGCE, Nedeljkovic JM, Djokovic V, Luyt AS (2003) Fabrication and characterization of silver–polyvinyl alcohol nanocomposites. Chem Mater 15(26):5019–5024
McGlashan SA, Halley PJ (2003) Preparation and characterization of biodegradable starch-based nanocomposite materials. Poly Int 52:1767–1773
Miller G, Senjen R (2008) Out of the laboratory and on to our plates – nanotechnology in food and agriculture. Available: http://www.foeeurope.org/activities/nanotechnology/Docume nts/Nano_food_report.Pdf
Mills A, Hazafy D (2009) Nanocrystalline SnO2-based, UVB-activated, colourimetric oxygen indicator. Sens Act B Chem 136(2):344–349
Mills A, Doyle G, Peiro AM, Durrant J (2006) Demonstration of a novel, flexible, photocatalytic oxygen-scavenging polymer film. J Photochem Photobiol A: Chem 177:328–331
Mirzadeh A, Kokabi M (2007) The effect of composition and draw-down ratio on morphology and oxygen permeability of polypropylene nanocomposite blown films. Eur Poly J 43(9):3757–3765
Mohanty AK, Misra M, Drzal LT (2005) Natural fibers, biopolymers, and biocomposites. CRC Press LLC., Boca Raton
Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YY, Riviere JE (2005) Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett 155(13):377–384
Moraru CI, Panchapakesan CP, Huang Q, Takhistov P, Liu S, Kokini JL (2003) Nanotechnology: a new frontier in food science. Food Technol 57:24–29
Morillon V, Debeaufort F, Blond G, Capelle M, Voilley A (2002) Factors affecting the moisture permeability of lipid based edible films: a review. Crit Rev Food Sci Nutr 42:67–89
Murariu M, Ferreira AS, Pluta M, Bonnaud L, Alexandre M, Duboi P (2008) Polylactide (PLA)–CaSO4 composites toughened with low molecular weight and polymeric ester-like plasticizers and related performances. Eur Poly J 44:3842–3852
Nachay K (2007) Analyzing nanotechnology. Food Technol 61(1):34–36
Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Poly Sci 32:762–798
Nakayama A, Kawasaki N, Maeda Y, Arvanitoyannis I, Ariba S, Yamamoto N (1997) Study of biodegradability of poly (3- valerolactone-co-L-lactide). J App Poly Sci 66:741–748
Ogata N, Jimenez G, Kawai H, Ogihara T (1997) Structure and thermal/mechanical properties of poly (L-lactide)-clay blend. J Poly Sci B Poly Phys 35:389–396
Okada M (2002) Chemical syntheses of biodegradable polymers. Prog Poly Sci 27:87–133
Okamoto M, Morita S, Kim HY, Kotaka T, Tateyama H (2001) Dispersed structure change of smectic clay/poly(methyl methacrylate) nanocomposites by copolymerization with polar comonomer. Polymer 42:1201–1206
Oliva J, Paya P, Camara MA, Barba A (2007) Removal of famoxadone, fluquinconazole and trifloxystrobin residues in red wines: effects of clarification and filtration processes. J Environ Sci Health B 42:775–781
Page K, Palgrave RG, Parkin IP, Wilson M, Savin SLP, Chadwick AV (2007) Titania and silver–titania composite films on glass-potent antimicrobial coatings. J Mater Chem 17(1):95–104
Park SH, Choi HJ, Lim ST, Shin TK, Jhon MS (2001) Viscoelasticity of biodegradable polymer blends of poly(3- hydroxybutyrate) and poly(ethylene oxide). Polymer 42:5737–5742
Park HW, Lee WK, Park CY, Cho WJ, Ha CS (2003) Environmentally friendly polymer hybrids: part I. Mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites. J Mater Sci 38:909–915
Paul M-A, Alexandre M, Degee P, Henrist C, Rulmont A, Dubois P (2003) New nanocomposite materials based on plasticized poly(L-lactide) and organo-modified montmorillonites: thermal and morphological study. Polymer 44:443–450
Pehanich M (2006) Small gains in processing, packaging. Food Proc 11:46–48
Petersen K, Nielsen PV, Bertelsen G, Lawther M, Olsen MB, Nilssonk NH et al (1999) Potential of biobased materials for food packaging. Trends Food Sci Technol 10:52–68
Petersson L, Oksman K (2006) Preparation and properties of biopolymer based nanocomposite films using microcrystalline cellulose. In: Oksman K, Sain M (eds) Cellulose nanocomposites, processing, characterization and properties. ACS symposium series 938. Oxford University Press, Oxford, pp 132–150
Pitt CG (1990) Poly-_-caprolactone and its copolymers. In: Chasin M, Langer R (eds) Biodegradable polymers as drug delivery systems. Marcel Dekker, New York, pp 71–120
Pluta M, Galeski A, Alexandre M, Paul M-A, Dubois P (2002) Polylactide/montmorillonite nanocomposites and microcomposites prepared by melt blending: structure and some physical properties. J App Poly Sci 86(6):1497–1506
Qi LF, Xu ZR, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbo Res 339:2693–2700
Rajesh Takashima W, Kaneto K (2004) Amperometric phenol biosensor based on covalent immobilization of tyrosinase onto an electrochemically prepared novel copolymer poly(N-3-aminopropyl pyrrole-copolymer) film. Sens Actuat B 102:271–277
Ranjan S, Dasgupta N, Chakraborty AR, Samuel SM, Ramalingam C, Shanker R, Kumar A (2014) Nanoscience and nanotechnologies in food industries: opportunities and research trends. J Nanopart Res 16(6):2464. doi:10.1007/s11051-014-2464-5
Ranjan S, Nandita D, Sudandiradoss C, Ramalingam C, Ashutosh K (2015) A novel approach to evaluate titanium dioxide nanoparticle-protein interaction through docking: an insight into the mechanism of action. P Natl A Sci India B. doi:10.1007/s40011-015-0673-z
Ranjan S, Nandita D, Bhavapriya R, Ganesh SA, Chidambaram R, Ashutosh K (2016) Microwave-irradiation-assisted hybrid chemical approach for titanium dioxide nanoparticle synthesis: microbial and cytotoxicological evaluation. Env Sci Pollut Res. doi:10.1007/s11356-016-6440-8
Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Poly Sci 33:338–356
Ravichandran R (2010) Nanoparticles in drug delivery: potential green nanobiomedicine applications. Int J Nanotechnol Biomed 1:108–130
Reddy MP, Venugopal A, Subrahmanyam M (2007) Hydroxyapatitesupported Ag–TiO2 as Escherichia coli disinfection photocatalyst. Water Res 41:379–386
Reynolds G (2007) FDA recommends nanotechnology research, but not labelling. FoodProductionDaily.com News 26 July 2007. Available at www.foodproductiondailyusa.com/news/ng.asp?n=78574
Rhim JW (2004) Increase in water vapor barrier property of biopolymer-based edible films and coatings by compositing with lipid materials. J Food Sci Biotechnol 13:528–535
Rhim JW, Ng PKW (2007) Natural biopolymer-based nanocomposite films for packaging applications. Critic Rev Food Sci Nutri 47(4):411–433
Roberts R (2007) The role of nanotechnology in brand protection. Packaging Digest January 2007. Available at: www.packagingdigest.com/articles/200701/34.p
Robertson GL (ed) (1993) Food packaging: principles and practice. Marcel Dekker, New York
Robertson JMC, Robertson PKJ, Lawton LA (2005) A comparison of the effectiveness of TiO2 photocatalysis and UVA photolysis for the destruction of three pathogenic micro-organisms. J Photochem Photobiol A Chem 175(1):51–56
Russo GM, Nicolais V, Di Maio L, Montesano S, Incarnato L (2007) Rheological and mechanical properties of nylon 6 nanocomposites submitted to reprocessing with single nd twin-screw extruders. Poly Degrad Stab 92(10):1925–1933
Sahl HG, Kordel M, Benz R (1987) Voltage-dependent depolarization of bacterial membranes and artificial lipid bilayers by the peptide antibiotic nisin. Arch Microbiol 149:120–124
Scott G (2000) Green polymers. Poly Degrad Stab 68:1–7
Scrinis G, Lyons K (2007) The emerging nanocorporate paradigm: nanotechnology and the transformation of nature, food and agrifood systems. Int J Sociol Food Agri 15(2):22–44
Silvestre C, Duraccio D, Sossio C (2011) Food packaging based on polymer nanomaterials. Prog Poly Sci 36(1):1766–1782
Sinha Ray S, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50:962–1079
Sinha Ray S, Maiti P, Okamoto M, Yamada K, Ueda K (2002a) New polylactide/layered silicate nanocomposites. Preparation, characterization and properties. Macromolecules 35:3104–3110
Sinha Ray S, Yamada K, Okamoto M, Ueda K (2002b) New polylactide/layered silicate nanocomposite: a novel biodegradable material. Nano Lett 2:1093–1096
Sinha Ray S, Yamada K, Okamoto M, Ogami A, Ueda K (2003) New polylactide/layered silicate nanocomposites. High performance biodegradable materials. Chem Mater 15:1456–1465
Siracusa V, Rocculi P, Romani S, Dalla RM (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19:634–643
Smith JP, Hoshino J, Abe Y (1995) Interactive packaging involving sachet technology. In: Rooney ML (ed) Active foodpackaging. Blackie Academic and Professional, Glasgow, pp 143–173
Smits ALM, Ruhnau FC, Vliegenthart JFG (1998) Ageing of starch based systems as observed by FT-IR and solid state NMR spectroscopy. Starch 50(11–12):478–483
Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bionanocomposites for food packaging applications. Trends Food Sci Technol 18(2):84–95
Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27(2):82–89
Steinbuchel A (2003) General aspects and special applications. In: Biopolymers. Wiley-VCH Verlag GmbH, Weinheim
Stewart CM, Tompkin RB, Cole MB (2002) Food safety: new concepts for the new millennium. Innov Food Sci Emer Technol 3:105–112
Stoimenov P, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686
Tan W, Zhang Y, Szeto YS, Liao L (2008) A novel method to prepare chitosan/montmorillonite nanocomposites in the presence of hydroxyl-aluminum olygomeric cations. Compos Sci Technol 68(14):2917–2921
Tharanathan RN (2003) Biodegradable films and composite coatings: past, present and future. Trends Food Sci Technol 14(3):71–78
Tortora M, Vittoria V, Galli G, Ritrovati S, Chiellini E (2002) Transport properties of modified montmorillonite-poly(3-caprolactone) nanocomposites. Macromol Mater Eng 287(4):243–249
Trznadel M (1995) Biodegradable polymer materials. Int Poly Sci Technol 22(12):58–65
Uyama H, Kuwabara M, Tsujimoto T, Nakano M, Usuki A, Kobayashi S (2003) Green nanocomposite from renewable resources: plant oil–clay hybrid materials. Chem Mater 15:2492–2494
Vermeiren L, Devlieghere F, Van Beest M, de Kruijf N, Debevere J (1999) Developments in the active packaging of foods. Trends Food Sci Technol 10:77–86
Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GAM, Webb TR (2004) Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77:117–125
Weber CJ (ed) (2000) Biobased packaging materials for the food industry. (Food biopack project, EU directorate 12). The Royal Veterinary and Agricultural University, Frederiksberg
Weiss J, Takhistov P, Mc’clements DJ (2006) Functional materials in food nanotechnology. J Food Sci 71(9):107–116
Wilhelm HM, Sierakowski MR, Souza GP, Wypych F (2003) Starch film reinforced with mineral clay. Carbo Poly 52:101–110
Xiao-e L, Green ANM, Haque SA, Mills A, Durrant JR (2004) Light-driven oxygen scavenging by titania/polymer nanocomposite films. J Photochem Photobiol A: Chem 162:253–259
Xu Y, Ren X, Hanna MA (2006) Chitosan/clay nanocomposite film preparation and characterization. J App Poly Sci 99(4):1684–1691
Yan SS, Gilbert JM (2004) Antimicrobial drug delivery in food animals and microbial food safety concerns: an overview of in vitro and in vivo factors potentially affecting the animal gut microflora. Adv Drug Deliv Rev 56:1497–1521
Yoon SY, Deng Y (2006) Clayestarch composites and their application in papermaking. J App Poly Sci 100(2):1032–1038
Yu YH, Lin CY, Yeh JM, Lin WH (2003) Preparation and properties of poly(vinyl alcohol)–clay nanocomposite materials. Polymer 44(12):3553–3560
Zheng JP, Li P, Ma YL, Yao KD (2002) Gelatine montmorillonite hybrid nanocomposite. I. Preparation and properties. J App Poly Sci 86:1189–1194
Acknowledgment
The author gratefully thanks the Higher Education, Ministry of Science, Technology & Higher Education, Republic of Indonesia for supporting this work via the Competency Grant (Hibah Kompetensi 2015/2016).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Kuswandi, B. (2016). Nanotechnology in Food Packaging. In: Ranjan, S., Dasgupta, N., Lichtfouse, E. (eds) Nanoscience in Food and Agriculture 1. Sustainable Agriculture Reviews, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-39303-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-39303-2_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-39302-5
Online ISBN: 978-3-319-39303-2
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)