[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Preparation and characterization of layered silicate magadiite intercalated by Cu2+ and Zn2+ for antibacterial behavior

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The purpose of this work is the synthesis of two series of layered silicate materials with different ratios (10, 30, 50, 80 and 100) of Cu(NO3)2, or Zn(NO3)2 by ion-exchange method. Several analysis techniques have been used such as X-ray diffraction, energy dispersive X-ray spectroscopy, thermogravimetric analysis, scanning electron microscope and Fourier transform infrared spectroscopy. The results revealed that ion-exchange method of copper and zinc with different ratios did not affect the structure of Na-magadiite. The gap between the theoretical and experimental ion-exchange are in agreement. Antibacterial activity test against Escherichia coli, Rhizobium sp. and Staphylococcus demonstrate that when ratio was (30, 50, 80 and 100) the antibacterial activity of the layered silicate materials showed high antibacterial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Top, S. Ülkü, Silver, zinc, and copper exchange in a Na-clinoptilolite and resulting effect on antibacterial activity. Appl. Clay Sci. 27, 13–19 (2004)

    Article  CAS  Google Scholar 

  2. K. Malachová, P. Praus, Z. Rybková, O. Kozák, Antibacterial and antifungal activities of silver, copper and zinc montmorillonites. Appl. Clay Sci. 53, 642–645 (2011)

    Article  Google Scholar 

  3. X. Rong, Q. Huang, X. He, H. Chen, P. Cai, W. Liang, Interaction of Pseudomonas putida with kaolinite and montmorillonite: a combination study by equilibrium adsorption, ITC, SEM and FTIR. Colloids Surf. B 64, 49–55 (2008)

    Article  CAS  Google Scholar 

  4. H. Chen, X. He, X. Rong, W. Chen, P. Cai, W. Liang, S. Li, Q. Huang, Adsorption and biodegradation of carbaryl on montmorillonite, kaolinite and goethite. Appl. Clay Sci. 46, 102–108 (2009)

    Article  CAS  Google Scholar 

  5. S.M. Auerbach, K.A. Carrado, P.K. Dutta, Handbook of Layered Materials, CRC Press, (2004)

  6. M.I. Carretero, Clay minerals and their beneficial effects upon human health. A review. Appl. Clay Sci. 21, 155–163 (2002)

    Article  CAS  Google Scholar 

  7. C. Hu, Z. Xu, M. Xia, Antibacterial effect of Cu2+-exchanged montmorillonite on Aeromonas hydrophila and discussion on its mechanism. Vet Microbiol 109, 83–88 (2005)

    Article  CAS  Google Scholar 

  8. C.-H. Hu, M.-S. Xia, Adsorption and antibacterial effect of copper-exchanged montmorillonite on Escherichia coli K 88. Appl. Clay Sci. 31, 180–184 (2006)

    Article  CAS  Google Scholar 

  9. T. Guo, S. Cao, R. Su, Z. Li, P. Hu, Z. Xu, Adsorptive, property of Cu2+-loaded montmorillonite clays for Escherichia coli K 88 in vitro. J. Environ. Sci. 23, 1808–1815 (2011)

    Article  CAS  Google Scholar 

  10. S. Sohrabnezhad, M.M. Moghaddam, T. Salavatiyan, Synthesis and characterization of CuO–montmorillonite nanocomposite by thermal decomposition method and antibacterial activity of nanocomposite. Spectrochim. Acta A 125, 73–78 (2014)

    Article  CAS  Google Scholar 

  11. J.F. Martucci, R.A. Ruseckaite, Antibacterial activity of gelatin/copper (II)-exchanged montmorillonite films. Food Hydrocolloids 64, 70–77 (2017)

    Article  CAS  Google Scholar 

  12. S.Z. Tan, K.H. Zhang, L.L. Zhang, Y.S. Xie, Y.L. Liu, Preparation, and characterization of the antibacterial Zn2+ or/and Ce3+ loaded montmorillonites. Chin. J. Chem. 26, 865–869 (2008)

    Article  CAS  Google Scholar 

  13. M. Rivera-Garza, M. Olguın, I. Garcıa-Sosa, D. Alcántara, G. Rodrıguez-Fuentes, Silver supported on natural Mexican zeolite as an antibacterial material. Microporous Mesoporous Mater. 39, 431–444 (2000)

    Article  CAS  Google Scholar 

  14. G. Čík, H. Bujdáková, F. Šeršeň, Study of fungicidal and antibacterial effect of the Cu(II)-complexes of thiophene oligomers synthesized in ZSM-5 zeolite channels. Chemosphere 44, 313–319 (2001)

    Article  Google Scholar 

  15. B. Dizman, J.C. Badger, M.O. Elasri, L.J. Mathias, Antibacterial fluoromicas: a novel delivery medium. Appl. Clay Sci. 38, 57–63 (2007)

    Article  CAS  Google Scholar 

  16. D. Zhao, J. Zhou, N. Liu, Preparation and characterization of Mingguang palygorskite supported with silver and copper for antibacterial behavior. Appl. Clay Sci. 33, 161–170 (2006)

    Article  CAS  Google Scholar 

  17. V. Maurin, C. Croutxé-Barghorn, X. Allonas, J. Brendlé, J. Bessières, A. Merlin, E. Masson, UV powder coatings containing synthetic Ag-beidellite for antibacterial properties. Appl. Clay Sci. 96, 73–80 (2014)

    Article  CAS  Google Scholar 

  18. H.P. Eugster, Hydrous sodium silicates from Lake Magadi, Kenya: precursors of bedded chert. Science 157, 1177–1180 (1967)

    Article  CAS  Google Scholar 

  19. M. Ogawa, K. Saito, M. Sohmiya, A controlled spatial distribution of functional units in the two dimensional nanospace of layered silicates and titanates. Dalton Trans. 43, 10340–10354 (2014)

    Article  CAS  Google Scholar 

  20. C. Eypert-Blaison, E. Sauzéat, M. Pelletier, L.J. Michot, F. Villiéras, B. Humbert, Hydration mechanisms and swelling behavior of Na-magadiite. Chem. Mater. 13, 1480–1486 (2001)

    Article  CAS  Google Scholar 

  21. R.A. Fletcher, D.M. Bibby, Synthesis of kenyaite and magadiite in the presence of various anions. Clay Clay Minerals 35, 318–320 (1987)

    Article  CAS  Google Scholar 

  22. Y.-R. Wang, S.-F. Wang, L.-C. Chang, Hydrothermal synthesis of magadiite. Appl. Clay Sci. 33, 73–77 (2006)

    Article  Google Scholar 

  23. M. Ogawa, Y. Ide, M. Mizushima, Controlled spatial separation of Eu ions in layered silicates with different layer thickness. Chem. Commun. (Camb) 46, 2241–2243 (2010)

    Article  CAS  Google Scholar 

  24. A.R. Nunes, A.O. Moura, A.G. Prado, Calorimetric aspects of adsorption of pesticides 2,4-D, diuron and atrazine on a magadiite surface. J. Therm. Anal. Calorim. 106, 445–452 (2011)

    Article  CAS  Google Scholar 

  25. S. Benkhatou, A. Djelad, M. Sassi, M. Bouchekara, A. Bengueddach, Lead (II) removal from aqueous solutions by organic thiourea derivatives intercalated magadiite. Desalin. Water Treat. 57, 9383–9395 (2016)

    Article  CAS  Google Scholar 

  26. S. Peng, Q. Gao, Z. Du, J. Shi, Precursors of TAA-magadiite nanocomposites. Appl. Clay Sci. 31, 229–237 (2006)

    Article  CAS  Google Scholar 

  27. D.L. Guerra, A.A. Pinto, J.A. de Souza, C. Airoldi, R.R. Viana, Kinetic and thermodynamic uranyl (II) adsorption process into modified Na-Magadiite and Na-Kanemite. J. Hazard Mater. 166, 1550–1555 (2009)

    Article  CAS  Google Scholar 

  28. Y. Ide, N. Ochi, M. Ogawa, Effective and selective adsorption of Zn2+ from seawater on a layered silicate. Angew. Chem. 123, 680–682 (2011)

    Article  Google Scholar 

  29. I. Fujita, K. Kuroda, M. Ogawa, Synthesis of interlamellar silylated derivatives of magadiite and the adsorption behavior for aliphatic alcohols. Chem. Mater. 15, 3134–3141 (2003)

    Article  CAS  Google Scholar 

  30. G.L. Paz, E.C. Munsignatti, H.O. Pastore, Novel catalyst with layered structure: metal substituted magadiite. J. Mol. Catal. A (2016)

  31. S.J. Kim, M.H. Kim, G. Seo, Y.S. Uh, Preparation, of tantalum-pillared magadiite and its catalytic performance in Beckmann rearrangement. Res. Chem. Intermed. 38, 1181–1190 (2012)

    Article  CAS  Google Scholar 

  32. X. Sun, J. King, J.L. Anthony, Molecular sieve synthesis in the presence of tetraalkylammonium and dialkylimidazolium molten salts. Chem. Eng. J. 147, 2–5 (2009)

    Article  CAS  Google Scholar 

  33. S.J. Kim, G. Lee, Y.K. Ryu, B.-Y. Yu, Preparation and photoluminescent properties of Eu (III) containing M-layered silicates (M = Li, Na, K, Rb, Cs). Res. Chem. Intermed. 38, 1191–1202 (2012)

    Article  CAS  Google Scholar 

  34. Y. Chen, G. Yu, Synthesis, and optical properties of composites based on ZnS nanoparticles embedded in layered magadiite. Clay Miner. 48, 739–748 (2013)

    Article  CAS  Google Scholar 

  35. Y. Chen, G. Yu, F. Li, J. Wei, Structure and photoluminescence of composite based on ZnO particles inserted in layered magadiite. Appl. Clay Sci. 88, 163–169 (2014)

    Article  Google Scholar 

  36. Y. Chen, G. Yu, F. Li, J. Wei, Structure and photoluminescence of composites based on CdS enclosed in magadiite. Clay Clay Miner. 61, 26–33 (2013)

    Article  CAS  Google Scholar 

  37. N. Mizukami, M. Tsujimura, K. Kuroda, M. Ogawa, Preparation and characterization of Eu-magadiite intercalation compounds. Clay Clay Miner. 50, 799–806 (2002)

    Article  CAS  Google Scholar 

  38. W. Schwieger, T. Selvam, O. Gravenhorst, N. Pfänder, R. Schlögl, G. Mabande, Intercalation of [Pt (NH 3) 4] 2+ ions into layered sodium silicate magadiite: a useful method to enhance their stabilisation in a highly dispersed state. J. Phys. Chem. Solids 65, 413–420 (2004)

    Article  CAS  Google Scholar 

  39. J.S. Dailey, T.J. Pinnavaia, Intercalative reaction of a cobalt (III) cage complex, Co (sep) 3+, with magadiite, a layered sodium silicate. J. Incl. Phenom. Mol. Recognit. Chem. 13, 47–61 (1992)

    Article  CAS  Google Scholar 

  40. M. Ogawa, K. Kuroda, Preparation of inorganic-organic nanocomposites through intercalation of organoammonium ions into layered silicates. Bull. Chem. Soc. Jpn. 70, 2593–2618 (1997)

    Article  CAS  Google Scholar 

  41. M. Sassi, J. Miehé-Brendlé, J. Patarin, A. Bengueddach, Na-magadiite prepared in a water/alcohol medium: synthesis, characterization and use as a host material to prepare alkyltrimethylammonium-and Si-pillared derivates. Clay Miner. 40, 369–378 (2005)

    Article  CAS  Google Scholar 

  42. M. Ogawa, Photoisomerization of azobenzene in the interlayer space of magadiite. J. Mater. Chem. 12, 3304–3307 (2002)

    Article  CAS  Google Scholar 

  43. N. Miyamoto, R. Kawai, K. Kuroda, M. Ogawa, Intercalation of a cationic cyanine dye into the layer silicate magadiite. Appl. Clay Sci. 19, 39–46 (2001)

    Article  CAS  Google Scholar 

  44. M. Ogawa, Y. Takizawa, Intercalation of tris (2,2′-bipyridine) ruthenium (II) into a layered silicate, magadiite, with the aid of a crown ether. J. Phys. Chem. B 103, 5005–5009 (1999)

    Article  CAS  Google Scholar 

  45. M. Ogawa, M. Yamamoto, K. Kuroda, Intercalation of an amphiphilic azobenzene derivative into the interlayer space of a layered silicate, magadiite. Clay Miner. 36, 263–266 (2001)

    Article  CAS  Google Scholar 

  46. Z. Wang, T.J. Pinnavaia, Intercalation of poly (propyleneoxide) amines (Jeffamines) in synthetic layered silicas derived from ilerite, magadiite, and kenyaite. J. Mater. Chem. 13, 2127–2131 (2003)

    Article  CAS  Google Scholar 

  47. K. Isoda, K. Kuroda, M. Ogawa, Interlamellar grafting of γ-methacryloxypropylsilyl groups on magadiite and copolymerization with methyl methacrylate. Chem. Mater. 12, 1702–1707 (2000)

    Article  CAS  Google Scholar 

  48. M. Ogawa, M. Miyoshi, K. Kuroda, Perfluoroalkylsilylation of the interlayer silanol groups of a layered silicate, magadiite. Chem. Mater. 10, 3787–3789 (1998)

    Article  CAS  Google Scholar 

  49. Z. Zhang, S. Saengkerdsub, S. Dai, Intersurface ion-imprinting synthesis on layered magadiite hosts. Chem. Mater. 15, 2921–2925 (2003)

    Article  CAS  Google Scholar 

  50. C. Eypert-Blaison, L.J. Michot, B. Humbert, M. Pelletier, F. Villiéras, J.-B. d. E. d. l, C. §, Hydration water and swelling behavior of magadiite. The H+, Na+, K+, Mg2+, and Ca2+ exchanged forms. J. Phys. Chem. B 106, 730–742 (2002)

    Article  CAS  Google Scholar 

  51. K. Ozawa, F. Iso, Y. Nakao, Z. Cheng, H. Fujii, M. Hase, H. Yamaguchi, Preparation and characterization of Ag-magadiite nanocomposites. J. Eur. Ceram. Soc. 27, 2665–2669 (2007)

    Article  CAS  Google Scholar 

  52. K. Ozawa, Y. Nakao, Z. Cheng, D. Wang, M. Osada, R. Okada, K. Saeki, H. Itoh, F. Iso, Fabrication of novel composites of ZnO-nanoparticles and magadiite. Mater. Lett. 63, 366–369 (2009)

    Article  CAS  Google Scholar 

  53. Y. Ide, A. Fukuoka, M. Ogawa, Preparation of Au nanoparticles in the interlayer space of a layered alkali silicate modified with alkylthiol groups. Chem. Mater. 19, 964–966 (2007)

    Article  CAS  Google Scholar 

  54. M. Cui, Y. Zhang, X. Liu, L. Wang, C. Meng, Changes of medium-range structure in the course of crystallization of zeolite omega from magadiite. Microporous Mesoporous Mater. 200, 86–91 (2014)

    Article  CAS  Google Scholar 

  55. Y. Wang, T. Lv, Y. Ma, F. Tian, L. Shi, X. Liu, C. Meng, Synthesis and characterization of zeolite L prepared from hydrothermal conversion of magadiite. Microporous Mesoporous Mater. 228, 86–93 (2016)

    Article  CAS  Google Scholar 

  56. Z. Shi, Y. Wang, C. Meng, X. Liu, Hydrothermal conversion of magadiite into mordenite in the presence of cyclohexylamine. Microporous Mesoporous Mater. 176, 155–161 (2013)

    Article  CAS  Google Scholar 

  57. Y. Wang, T. Lv, H. Wang, Y. Zhao, C. Meng, H. Liu, ZSM-5 and ferrierite synthesized by magadiite conversion method in 1,6-hexamethylenediamine system. Microporous Mesoporous Mater. 208, 66–71 (2015)

    Article  CAS  Google Scholar 

  58. K. Kosuge, A. Yamazaki, A. Tsunashima, and R. Otsuka, Hydrothermal synthesis of magadiite and kenyaite. Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/J. Ceram. Soc. Jpn. 100, 326–331 (1992)

    Article  CAS  Google Scholar 

  59. W. Schwieger, D. Heidemann, K.-H. Bergk, High-resolution solid-state silicon-29 nuclear magnetic resonance spectroscopic studies of synthetic sodium silicate hydrates. Revue de chimie minérale 22, 639–650 (1985)

    CAS  Google Scholar 

  60. W. Schwieger, G. Lagaly, S. Auerbach, K. Carrado, P. Dutta, Handbook of layered materials (Marcel Dekker, Inc., New York, 2004)

  61. J.M. Rojo, E. Ruiz-Hitzky, J. Sanz, Proton-sodium exchange in magadiite. Spectroscopic study (NMR, IR) of the evolution of interlayer OH groups. Inorg. Chem. 27, 2785–2790 (1988)

    Article  CAS  Google Scholar 

  62. W. Schwieger, G. Lagaly, S. Auerbach, K. Carrado, P. Dutta, (Marcel Dekker, Inc., New York, 2004)

  63. H. Karge, W. Schwieger, A. Brandt, K. Bergk, Chemical, characterization, structural features, and thermal behavior of sodium and hydrogen octosilicate. Clay Clay Miner. 39, 490–497 (1991)

    Article  Google Scholar 

  64. S.J. Kim, K.-D. Jung, O.-S. Joo, E.J. Kim, T.B. Kang, Catalytic performance of metal oxide-loaded Ta-ilerite for vapor phase Beckmann rearrangement of cyclohexanone oxime. Appl. Catal. A 266, 173–180 (2004)

    Article  CAS  Google Scholar 

  65. B. Li, X. Li, J. Xu, X. Pang, X. Gao, Z. Zhou, Synthesis and characterization of composite molecular sieves M 1-MFI/M 2-MCM-41 (M 1, M 2 = Ni, Co) with high heteroatom content and their catalytic properties for hydrocracking of residual oil. J. Colloid Interface Sci. 346, 199–207 (2010)

    Article  CAS  Google Scholar 

  66. S. Motke, S. Yawale, S. Yawale, Infrared spectra of zinc doped lead borate glasses. Bull. Mater. Sci. 25, 75–78 (2002)

    Article  CAS  Google Scholar 

  67. Y. Huang, Z. Jiang, W. Schwieger, Vibrational spectroscopic studies of layered silicates. Chem. Mater. 11, 1210–1217 (1999)

    Article  CAS  Google Scholar 

  68. R. Laughlin, J. Joannopoulos, Phonons in amorphous silica. Phys. Rev. B 16, 2942 (1977)

    Article  CAS  Google Scholar 

  69. E. Kukulska-Zaja̧c, J. Datka, Transformations of formaldehyde molecules in Cu-ZSM-5 zeolites. J. Phys. Chem. C 111, 3471–3475 (2007)

    Article  Google Scholar 

  70. W. Supronowicz, F. Roessner, W. Schwieger, M. Meilikhov, D. Esken, Synthesis and Properties of SN-Containing Magadiite. Clay Clay Miner. 60, 254–264 (2012)

    Article  CAS  Google Scholar 

  71. G. Applerot, A. Lipovsky, R. Dror, N. Perkas, Y. Nitzan, R. Lubart, A. Gedanken, Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Adv. Funct. Mater. 19, 842–852 (2009)

    Article  CAS  Google Scholar 

  72. G. Tong, M. Yulong, G. Peng, X. Zirong, Antibacterial effects of the Cu(II)-exchanged montmorillonite on Escherichia coli K88 and Salmonella choleraesuis. Vet. Microbiol. 105, 113–122 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel Mokhtar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhtar, A., Djelad, A., Boudia, A. et al. Preparation and characterization of layered silicate magadiite intercalated by Cu2+ and Zn2+ for antibacterial behavior. J Porous Mater 24, 1627–1636 (2017). https://doi.org/10.1007/s10934-017-0402-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-017-0402-5

Keywords

Navigation