Abstract
The purpose of this work is the synthesis of two series of layered silicate materials with different ratios (10, 30, 50, 80 and 100) of Cu(NO3)2, or Zn(NO3)2 by ion-exchange method. Several analysis techniques have been used such as X-ray diffraction, energy dispersive X-ray spectroscopy, thermogravimetric analysis, scanning electron microscope and Fourier transform infrared spectroscopy. The results revealed that ion-exchange method of copper and zinc with different ratios did not affect the structure of Na-magadiite. The gap between the theoretical and experimental ion-exchange are in agreement. Antibacterial activity test against Escherichia coli, Rhizobium sp. and Staphylococcus demonstrate that when ratio was (30, 50, 80 and 100) the antibacterial activity of the layered silicate materials showed high antibacterial activity.
Similar content being viewed by others
References
A. Top, S. Ülkü, Silver, zinc, and copper exchange in a Na-clinoptilolite and resulting effect on antibacterial activity. Appl. Clay Sci. 27, 13–19 (2004)
K. Malachová, P. Praus, Z. Rybková, O. Kozák, Antibacterial and antifungal activities of silver, copper and zinc montmorillonites. Appl. Clay Sci. 53, 642–645 (2011)
X. Rong, Q. Huang, X. He, H. Chen, P. Cai, W. Liang, Interaction of Pseudomonas putida with kaolinite and montmorillonite: a combination study by equilibrium adsorption, ITC, SEM and FTIR. Colloids Surf. B 64, 49–55 (2008)
H. Chen, X. He, X. Rong, W. Chen, P. Cai, W. Liang, S. Li, Q. Huang, Adsorption and biodegradation of carbaryl on montmorillonite, kaolinite and goethite. Appl. Clay Sci. 46, 102–108 (2009)
S.M. Auerbach, K.A. Carrado, P.K. Dutta, Handbook of Layered Materials, CRC Press, (2004)
M.I. Carretero, Clay minerals and their beneficial effects upon human health. A review. Appl. Clay Sci. 21, 155–163 (2002)
C. Hu, Z. Xu, M. Xia, Antibacterial effect of Cu2+-exchanged montmorillonite on Aeromonas hydrophila and discussion on its mechanism. Vet Microbiol 109, 83–88 (2005)
C.-H. Hu, M.-S. Xia, Adsorption and antibacterial effect of copper-exchanged montmorillonite on Escherichia coli K 88. Appl. Clay Sci. 31, 180–184 (2006)
T. Guo, S. Cao, R. Su, Z. Li, P. Hu, Z. Xu, Adsorptive, property of Cu2+-loaded montmorillonite clays for Escherichia coli K 88 in vitro. J. Environ. Sci. 23, 1808–1815 (2011)
S. Sohrabnezhad, M.M. Moghaddam, T. Salavatiyan, Synthesis and characterization of CuO–montmorillonite nanocomposite by thermal decomposition method and antibacterial activity of nanocomposite. Spectrochim. Acta A 125, 73–78 (2014)
J.F. Martucci, R.A. Ruseckaite, Antibacterial activity of gelatin/copper (II)-exchanged montmorillonite films. Food Hydrocolloids 64, 70–77 (2017)
S.Z. Tan, K.H. Zhang, L.L. Zhang, Y.S. Xie, Y.L. Liu, Preparation, and characterization of the antibacterial Zn2+ or/and Ce3+ loaded montmorillonites. Chin. J. Chem. 26, 865–869 (2008)
M. Rivera-Garza, M. Olguın, I. Garcıa-Sosa, D. Alcántara, G. Rodrıguez-Fuentes, Silver supported on natural Mexican zeolite as an antibacterial material. Microporous Mesoporous Mater. 39, 431–444 (2000)
G. Čík, H. Bujdáková, F. Šeršeň, Study of fungicidal and antibacterial effect of the Cu(II)-complexes of thiophene oligomers synthesized in ZSM-5 zeolite channels. Chemosphere 44, 313–319 (2001)
B. Dizman, J.C. Badger, M.O. Elasri, L.J. Mathias, Antibacterial fluoromicas: a novel delivery medium. Appl. Clay Sci. 38, 57–63 (2007)
D. Zhao, J. Zhou, N. Liu, Preparation and characterization of Mingguang palygorskite supported with silver and copper for antibacterial behavior. Appl. Clay Sci. 33, 161–170 (2006)
V. Maurin, C. Croutxé-Barghorn, X. Allonas, J. Brendlé, J. Bessières, A. Merlin, E. Masson, UV powder coatings containing synthetic Ag-beidellite for antibacterial properties. Appl. Clay Sci. 96, 73–80 (2014)
H.P. Eugster, Hydrous sodium silicates from Lake Magadi, Kenya: precursors of bedded chert. Science 157, 1177–1180 (1967)
M. Ogawa, K. Saito, M. Sohmiya, A controlled spatial distribution of functional units in the two dimensional nanospace of layered silicates and titanates. Dalton Trans. 43, 10340–10354 (2014)
C. Eypert-Blaison, E. Sauzéat, M. Pelletier, L.J. Michot, F. Villiéras, B. Humbert, Hydration mechanisms and swelling behavior of Na-magadiite. Chem. Mater. 13, 1480–1486 (2001)
R.A. Fletcher, D.M. Bibby, Synthesis of kenyaite and magadiite in the presence of various anions. Clay Clay Minerals 35, 318–320 (1987)
Y.-R. Wang, S.-F. Wang, L.-C. Chang, Hydrothermal synthesis of magadiite. Appl. Clay Sci. 33, 73–77 (2006)
M. Ogawa, Y. Ide, M. Mizushima, Controlled spatial separation of Eu ions in layered silicates with different layer thickness. Chem. Commun. (Camb) 46, 2241–2243 (2010)
A.R. Nunes, A.O. Moura, A.G. Prado, Calorimetric aspects of adsorption of pesticides 2,4-D, diuron and atrazine on a magadiite surface. J. Therm. Anal. Calorim. 106, 445–452 (2011)
S. Benkhatou, A. Djelad, M. Sassi, M. Bouchekara, A. Bengueddach, Lead (II) removal from aqueous solutions by organic thiourea derivatives intercalated magadiite. Desalin. Water Treat. 57, 9383–9395 (2016)
S. Peng, Q. Gao, Z. Du, J. Shi, Precursors of TAA-magadiite nanocomposites. Appl. Clay Sci. 31, 229–237 (2006)
D.L. Guerra, A.A. Pinto, J.A. de Souza, C. Airoldi, R.R. Viana, Kinetic and thermodynamic uranyl (II) adsorption process into modified Na-Magadiite and Na-Kanemite. J. Hazard Mater. 166, 1550–1555 (2009)
Y. Ide, N. Ochi, M. Ogawa, Effective and selective adsorption of Zn2+ from seawater on a layered silicate. Angew. Chem. 123, 680–682 (2011)
I. Fujita, K. Kuroda, M. Ogawa, Synthesis of interlamellar silylated derivatives of magadiite and the adsorption behavior for aliphatic alcohols. Chem. Mater. 15, 3134–3141 (2003)
G.L. Paz, E.C. Munsignatti, H.O. Pastore, Novel catalyst with layered structure: metal substituted magadiite. J. Mol. Catal. A (2016)
S.J. Kim, M.H. Kim, G. Seo, Y.S. Uh, Preparation, of tantalum-pillared magadiite and its catalytic performance in Beckmann rearrangement. Res. Chem. Intermed. 38, 1181–1190 (2012)
X. Sun, J. King, J.L. Anthony, Molecular sieve synthesis in the presence of tetraalkylammonium and dialkylimidazolium molten salts. Chem. Eng. J. 147, 2–5 (2009)
S.J. Kim, G. Lee, Y.K. Ryu, B.-Y. Yu, Preparation and photoluminescent properties of Eu (III) containing M-layered silicates (M = Li, Na, K, Rb, Cs). Res. Chem. Intermed. 38, 1191–1202 (2012)
Y. Chen, G. Yu, Synthesis, and optical properties of composites based on ZnS nanoparticles embedded in layered magadiite. Clay Miner. 48, 739–748 (2013)
Y. Chen, G. Yu, F. Li, J. Wei, Structure and photoluminescence of composite based on ZnO particles inserted in layered magadiite. Appl. Clay Sci. 88, 163–169 (2014)
Y. Chen, G. Yu, F. Li, J. Wei, Structure and photoluminescence of composites based on CdS enclosed in magadiite. Clay Clay Miner. 61, 26–33 (2013)
N. Mizukami, M. Tsujimura, K. Kuroda, M. Ogawa, Preparation and characterization of Eu-magadiite intercalation compounds. Clay Clay Miner. 50, 799–806 (2002)
W. Schwieger, T. Selvam, O. Gravenhorst, N. Pfänder, R. Schlögl, G. Mabande, Intercalation of [Pt (NH 3) 4] 2+ ions into layered sodium silicate magadiite: a useful method to enhance their stabilisation in a highly dispersed state. J. Phys. Chem. Solids 65, 413–420 (2004)
J.S. Dailey, T.J. Pinnavaia, Intercalative reaction of a cobalt (III) cage complex, Co (sep) 3+, with magadiite, a layered sodium silicate. J. Incl. Phenom. Mol. Recognit. Chem. 13, 47–61 (1992)
M. Ogawa, K. Kuroda, Preparation of inorganic-organic nanocomposites through intercalation of organoammonium ions into layered silicates. Bull. Chem. Soc. Jpn. 70, 2593–2618 (1997)
M. Sassi, J. Miehé-Brendlé, J. Patarin, A. Bengueddach, Na-magadiite prepared in a water/alcohol medium: synthesis, characterization and use as a host material to prepare alkyltrimethylammonium-and Si-pillared derivates. Clay Miner. 40, 369–378 (2005)
M. Ogawa, Photoisomerization of azobenzene in the interlayer space of magadiite. J. Mater. Chem. 12, 3304–3307 (2002)
N. Miyamoto, R. Kawai, K. Kuroda, M. Ogawa, Intercalation of a cationic cyanine dye into the layer silicate magadiite. Appl. Clay Sci. 19, 39–46 (2001)
M. Ogawa, Y. Takizawa, Intercalation of tris (2,2′-bipyridine) ruthenium (II) into a layered silicate, magadiite, with the aid of a crown ether. J. Phys. Chem. B 103, 5005–5009 (1999)
M. Ogawa, M. Yamamoto, K. Kuroda, Intercalation of an amphiphilic azobenzene derivative into the interlayer space of a layered silicate, magadiite. Clay Miner. 36, 263–266 (2001)
Z. Wang, T.J. Pinnavaia, Intercalation of poly (propyleneoxide) amines (Jeffamines) in synthetic layered silicas derived from ilerite, magadiite, and kenyaite. J. Mater. Chem. 13, 2127–2131 (2003)
K. Isoda, K. Kuroda, M. Ogawa, Interlamellar grafting of γ-methacryloxypropylsilyl groups on magadiite and copolymerization with methyl methacrylate. Chem. Mater. 12, 1702–1707 (2000)
M. Ogawa, M. Miyoshi, K. Kuroda, Perfluoroalkylsilylation of the interlayer silanol groups of a layered silicate, magadiite. Chem. Mater. 10, 3787–3789 (1998)
Z. Zhang, S. Saengkerdsub, S. Dai, Intersurface ion-imprinting synthesis on layered magadiite hosts. Chem. Mater. 15, 2921–2925 (2003)
C. Eypert-Blaison, L.J. Michot, B. Humbert, M. Pelletier, F. Villiéras, J.-B. d. E. d. l, C. §, Hydration water and swelling behavior of magadiite. The H+, Na+, K+, Mg2+, and Ca2+ exchanged forms. J. Phys. Chem. B 106, 730–742 (2002)
K. Ozawa, F. Iso, Y. Nakao, Z. Cheng, H. Fujii, M. Hase, H. Yamaguchi, Preparation and characterization of Ag-magadiite nanocomposites. J. Eur. Ceram. Soc. 27, 2665–2669 (2007)
K. Ozawa, Y. Nakao, Z. Cheng, D. Wang, M. Osada, R. Okada, K. Saeki, H. Itoh, F. Iso, Fabrication of novel composites of ZnO-nanoparticles and magadiite. Mater. Lett. 63, 366–369 (2009)
Y. Ide, A. Fukuoka, M. Ogawa, Preparation of Au nanoparticles in the interlayer space of a layered alkali silicate modified with alkylthiol groups. Chem. Mater. 19, 964–966 (2007)
M. Cui, Y. Zhang, X. Liu, L. Wang, C. Meng, Changes of medium-range structure in the course of crystallization of zeolite omega from magadiite. Microporous Mesoporous Mater. 200, 86–91 (2014)
Y. Wang, T. Lv, Y. Ma, F. Tian, L. Shi, X. Liu, C. Meng, Synthesis and characterization of zeolite L prepared from hydrothermal conversion of magadiite. Microporous Mesoporous Mater. 228, 86–93 (2016)
Z. Shi, Y. Wang, C. Meng, X. Liu, Hydrothermal conversion of magadiite into mordenite in the presence of cyclohexylamine. Microporous Mesoporous Mater. 176, 155–161 (2013)
Y. Wang, T. Lv, H. Wang, Y. Zhao, C. Meng, H. Liu, ZSM-5 and ferrierite synthesized by magadiite conversion method in 1,6-hexamethylenediamine system. Microporous Mesoporous Mater. 208, 66–71 (2015)
K. Kosuge, A. Yamazaki, A. Tsunashima, and R. Otsuka, Hydrothermal synthesis of magadiite and kenyaite. Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/J. Ceram. Soc. Jpn. 100, 326–331 (1992)
W. Schwieger, D. Heidemann, K.-H. Bergk, High-resolution solid-state silicon-29 nuclear magnetic resonance spectroscopic studies of synthetic sodium silicate hydrates. Revue de chimie minérale 22, 639–650 (1985)
W. Schwieger, G. Lagaly, S. Auerbach, K. Carrado, P. Dutta, Handbook of layered materials (Marcel Dekker, Inc., New York, 2004)
J.M. Rojo, E. Ruiz-Hitzky, J. Sanz, Proton-sodium exchange in magadiite. Spectroscopic study (NMR, IR) of the evolution of interlayer OH groups. Inorg. Chem. 27, 2785–2790 (1988)
W. Schwieger, G. Lagaly, S. Auerbach, K. Carrado, P. Dutta, (Marcel Dekker, Inc., New York, 2004)
H. Karge, W. Schwieger, A. Brandt, K. Bergk, Chemical, characterization, structural features, and thermal behavior of sodium and hydrogen octosilicate. Clay Clay Miner. 39, 490–497 (1991)
S.J. Kim, K.-D. Jung, O.-S. Joo, E.J. Kim, T.B. Kang, Catalytic performance of metal oxide-loaded Ta-ilerite for vapor phase Beckmann rearrangement of cyclohexanone oxime. Appl. Catal. A 266, 173–180 (2004)
B. Li, X. Li, J. Xu, X. Pang, X. Gao, Z. Zhou, Synthesis and characterization of composite molecular sieves M 1-MFI/M 2-MCM-41 (M 1, M 2 = Ni, Co) with high heteroatom content and their catalytic properties for hydrocracking of residual oil. J. Colloid Interface Sci. 346, 199–207 (2010)
S. Motke, S. Yawale, S. Yawale, Infrared spectra of zinc doped lead borate glasses. Bull. Mater. Sci. 25, 75–78 (2002)
Y. Huang, Z. Jiang, W. Schwieger, Vibrational spectroscopic studies of layered silicates. Chem. Mater. 11, 1210–1217 (1999)
R. Laughlin, J. Joannopoulos, Phonons in amorphous silica. Phys. Rev. B 16, 2942 (1977)
E. Kukulska-Zaja̧c, J. Datka, Transformations of formaldehyde molecules in Cu-ZSM-5 zeolites. J. Phys. Chem. C 111, 3471–3475 (2007)
W. Supronowicz, F. Roessner, W. Schwieger, M. Meilikhov, D. Esken, Synthesis and Properties of SN-Containing Magadiite. Clay Clay Miner. 60, 254–264 (2012)
G. Applerot, A. Lipovsky, R. Dror, N. Perkas, Y. Nitzan, R. Lubart, A. Gedanken, Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Adv. Funct. Mater. 19, 842–852 (2009)
G. Tong, M. Yulong, G. Peng, X. Zirong, Antibacterial effects of the Cu(II)-exchanged montmorillonite on Escherichia coli K88 and Salmonella choleraesuis. Vet. Microbiol. 105, 113–122 (2005)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mokhtar, A., Djelad, A., Boudia, A. et al. Preparation and characterization of layered silicate magadiite intercalated by Cu2+ and Zn2+ for antibacterial behavior. J Porous Mater 24, 1627–1636 (2017). https://doi.org/10.1007/s10934-017-0402-5
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10934-017-0402-5