Abstract
In this work, the ion-exchange reaction of the sodium silicate Na-magadiite with cupric ions was studied and the mode of interaction of the intercalated Cu2+ ions with silicate sheet was investigated. To do this, Na-magadiite was first synthesized using a hydrothermal method and characterized. It is then used to prepare Cu-exchanged magadiite materials with different copper contents by an ion-exchange reaction. The solids obtained were characterized by chemical and thermogravimetric analyses, powder X-ray diffraction, UV–Visible diffuse reflectance and Fourier transform spectroscopy, scanning electron microscopy and transmission electron microscopy. The results show that magadiite has a high affinity to copper ions and that the experimental exchange rate can be easily predicted. They show also that the intercalated Cu2+ ions are non-hydrated and are in direct interactions with the terminal interlayer ≡Si–O− groups, to which they are also probably strongly linked. Furthermore, the interlayer copper oxide species phase formed are in form of small particles homogeneously dispersed. Finally, the introduction of Cu2+ ions into the interlayer space does not substantially affect the structure of the Cu-exchanged materials but rather tends to stabilize it by increasing the decomposition temperature of the silanol groups .
Similar content being viewed by others
References
Ágnes F, Imre K, Niwa S-I, Toba M, Kiyozumi Y, Mizukami F (1999) Mesoporous materials synthesized by intercalation of silicate tubes between magadiite layers. Appl Catal A 176:L153–L158. doi:10.1016/s0926-860x(98)00238-5
Almond GG, Harris RK, Franklin KR (1997) A structural consideration of kanemite, octosilicate, magadiite and kenyaite. J Mater Chem 7:681–687. doi:10.1039/a606856a
Auerbach SM, Carrado KA, Dutta PK (2004) Handbook of Layered Materials. CRC Press, Boca Raton
Balek V, Malek Z, Yariv S, Matuschek G (1999) Characterization of montmorillonite saturated with various cations. J Therm Anal Calorim 56:67–76. doi:10.1007/s10973-007-8761-9
Benkhatou S, Djelad A, Sassi M, Bouchekara M, Bengueddach A (2016) Lead (II) removal from aqueous solutions by organic thiourea derivatives intercalated magadiite. Desalination Water Treat 57:9383–9395. doi:10.1080/19443994.2015.1030701
Bi Y et al (2012) Role of the Al source in the synthesis of aluminum magadiite. Appl Clay Sci 57:71–78. doi:10.1016/j.clay.2012.01.005
Brandt A, Schwieger W, Bergk KH (1988) Development of a model structure for the sheet silicate hydrates ilerite, magadiite, and kenyaite. Cryst Res Technol 23:1201–1203. doi:10.1002/crat.2170230927
Bray H, Redfern S (1999) Kinetics of dehydration of Ca-montmorillonite. Phys Chem Miner 26:591–600. doi:10.1007/s002690050223
Brenn U, Schwieger W, Wuttig K (1999) Rearrangement of cationic surfactants in magadiite. Colloid Polym Sci 277:394–399. doi:10.1007/s003960050398
Brindley G (1969) Unit cell of magadiite in air, in vacuo, and under other conditions. Am Miner 54:1583
Chen Y, Yu G (2013) Synthesis and optical properties of composites based on ZnS nanoparticles embedded in layered magadiite. Clay Miner 48:739–748. doi:10.1180/claymin.2013.048.5.06
Chen Y, Yu G, Li F, Wei J (2013) Structure and photoluminescence of composites based on CdS enclosed in magadiite. Clays Clay Miner 61:26–33. doi:10.1346/ccmn.2013.0610103
Chen Y, Yu G, Li F, Wei J (2014) Structure and photoluminescence of composite based on ZnO particles inserted in layered magadiite. Appl Clay Sci 88:163–169. doi:10.1016/j.clay.2013.12.014
Dailey JS, Pinnavaia TJ (1992a) Intercalative reaction of a cobalt (III) cage complex, Co (sep) 3+, with magadiite, a layered sodium silicate. J Incl Phenom Macrocycl Chem 13:47–61. doi:10.1007/bf01076670
Dailey JS, Pinnavaia TJ (1992b) Silica-pillared derivatives of H+-magadiite, a crystalline hydrated silica. Chem Mater 4:855–863. doi:10.1021/cm00022a022
Ding Z, Frost RL (2004) Study of copper adsorption on montmorillonites using thermal analysis methods. J Colloid Interface Sci 269:296–302. doi:10.1016/j.jcis.2003.08.043
Eugster HP (1967) Hydrous sodium silicates from Lake Magadi, Kenya: precursors of bedded chert. Science 157:1177–1180. doi:10.1126/science.157.3793.1177
Eypert-Blaison C, Michot LJ, Humbert B, Pelletier M, Villiéras Fand Jean-Baptiste d'Espinose de la caillerie (2002a) Hydration water and swelling behavior of magadiite The H+, Na+, K+, Mg2+, and Ca2+ exchanged forms. J Phys Chem B 106:730–742. doi:10.1021/jp012981n
Eypert-Blaison C, Villiéras F, Michot L, Pelletier M, Humbert B, Ghanbaja J, Yvon J (2002b) Surface heterogeneity of kanemite, magadiite and kenyaite: a high-resolution gas adsorption study. Clay Miner 37:531–542. doi:10.1180/0009855023730056
Feng F, Balkus KJ (2003) Synthesis of kenyaite, magadiite and octosilicate using poly (ethylene glycol) as a template. J Porous Mater 10:5–15. doi:10.1023/A:1024078332686
Fletcher RA, Bibby DM (1987) Synthesis of kenyaite and magadiite in the presence of various anions. Clays Clay Miner 35:318–320. doi:10.1346/CCMN.1987.0350410
Geist MF, Peyratout CS, Kurth DG (2015) Intercalation of nickel (II) and iron (II) metallosupramolecular polyelectrolytes in montmorillonite: nanocomposites and their electrorheological properties. Chem Nano Mat 1:489–496. doi:10.1002/cnma.201500065
Ghazi A, Ghasemi E, Mahdavian M, Ramezanzadeh B, Rostami M (2015) The application of benzimidazole and zinc cations intercalated sodium montmorillonite as smart ion exchange inhibiting pigments in the epoxy ester coating. Corros Sci 94:207–217. doi:10.1016/j.corsci.2015.02.007
Groothaert MH, van Bokhoven JA, Battiston AA, Weckhuysen BM, Schoonheydt RA (2003) Bis (μ-oxo) dicopper in Cu-ZSM-5 and its role in the decomposition of NO: a combined in situ XAFS, UV–Vis–Near-IR, and kinetic study. J Am Chem Soc 125:7629–7640. doi:10.1021/ja029684w
Huang Y, Jiang Z, Schwieger W (1999) Vibrational spectroscopic studies of layered silicates. Chem Mater 11:1210–1217. doi:10.1021/cm980403m
Ismagilov Z et al (2004) Linear nanoscale clusters of CuO in Cu-ZSM-5 catalysts. Appl Surf Sci 226:88–93. doi:10.1016/j.apsusc.2003.11.035
Isoda K, Kuroda K, Ogawa M (2000) Interlamellar grafting of γ-methacryloxypropylsilyl groups on magadiite and copolymerization with methyl methacrylate. Chem Mater 12:1702–1707. doi:10.1021/cm0000494
Iznaga IR, Petranovskii V, Fuentes GR, Mendoza C, Aguilar AB (2007) Exchange and reduction of Cu2+ ions in clinoptilolite. J Colloid Interface Sci 316:877–886. doi:10.1016/j.jcis.2007.06.021
Jalil A et al (2013) Tailoring the current density to enhance photocatalytic activity of CuO/HY for decolorization of malachite green. J Electroanal Chem 701:50–58. doi:10.1016/j.jelechem.2013.05.003
Kim SJ, Kim MH, Seo G, Uh YS (2012a) Preparation of tantalum-pillared magadiite and its catalytic performance in Beckmann rearrangement. Res Chem Intermed 38:1181–1190. doi:10.1007/s11164-011-0457-x
Kim SJ, Lee G, Ryu YK, Yu B-Y (2012b) Preparation and photoluminescent properties of Eu(III) containing M-layered silicates (M=Li, Na, K, Rb, Cs). Res Chem Intermed 38:1191–1202. doi:10.1007/s11164-011-0458-9
Komori Y, Miyoshi M, Hayashi S, Sugahara Y, Kuroda K (2000) Characterization of silanol groups in protonated magadiite by 1H and 2H solid-state nuclear magnetic resonance. Clays Clay Miner 48:632–637. doi:10.1346/ccmn.2000.0480604
Kwon O-Y, Shin H-S, Choi S-W (2000) Preparation of porous silica-pillared layered phase: simultaneous intercalation of amine-tetraethylorthosilicate into the H+-magadiite and intragallery amine-catalyzed hydrolysis of tetraethylorthosilicate. Chem Mater 12:1273–1278. doi:10.1021/cm990531q
Li S, Mao Y, Ploehn HJ (2016) Interlayer functionalization of magadiite with sulfur-containing organosilanes. Colloids Surf A 506:320–330. doi:10.1016/j.colsurfa.2016.06.043
Lim W, Jang J-H, Park N-Y, Paek S-M, Kim W-C, Park M (2017) Spontaneous nanoparticle formation coupled with selective adsorption in magadiite. J Mater Chem A 5:4144–4149. doi:10.1039/c7ta00038c
Macedo TR, Petrucelli GC, Airoldi C (2007) Silicic acid magadiite as a host for n-alkyldiamine guest molecules and features related to the thermodynamics of intercalation. Clays Clay Miner 55:151–159. doi:10.1346/ccmn.2007.0550204
Meunier A (2005b) Clays. Springer, Berlin, p 472
Miyamoto N, Kawai R, Kuroda K, Ogawa M (2001) Intercalation of a cationic cyanine dye into the layer silicate magadiite. Appl Clay Sci 19:39–46. doi:10.1016/s0169-1317(01)00054-0
Mizukami N, Tsujimura M, Kuroda K, Ogawa M (2002) Preparation and characterization of Eu-magadiite intercalation compounds. Clays Clay Miner 50:799–806. doi:10.1346/000986002762090335
Moura AO, Prado AG (2009) Effect of thermal dehydration and rehydration on Na-magadiite structure. J Colloid Interface Sci 330:392–398. doi:10.1016/j.jcis.2008.10.032
Murakami Y, Nanba M, Tagashira S, Sasaki Y (2006) Ion-exchange and structural properties of magadiite clay. Science 12:37–41. doi:10.11362/jcssjclayscience1960.12.Supplement2_37
Nunes AR, Moura AO, Prado AG (2011) Calorimetric aspects of adsorption of pesticides 2, 4-D, diuron and atrazine on a magadiite surface. J Therm Anal Calorim 106:445–452. doi:10.1007/s10973-011-1333-z
Ogawa M, Takahashi Y (2007) Preparation and thermal decomposition of Co (ii)-magadiite intercalation compounds. Clay Sci 13:133–138. doi:10.11362/jcssjclayscience1960.13.133
Ogawa M, Miyoshi M, Kuroda K (1998) Perfluoroalkylsilylation of the interlayer silanol groups of a layered silicate, magadiite. Chem Mater 10:3787–3789. doi:10.1021/cm980660r
Ozawa K, Iso F, Nakao Y, Cheng Z, Fujii H, Hase M, Yamaguchi H (2007) Preparation and characterization of Ag-magadiite nanocomposites. J Eur Ceram Soc 27:2665–2669. doi:10.1016/j.jeurceramsoc.2006.12.002
Ozawa K et al (2009) Fabrication of novel composites of ZnO-nanoparticles and magadiite. Mater Lett 63:366–369. doi:10.1016/j.matlet.2008.10.038
Paz GL, Munsignatti EC, Pastore HO (2016) Novel catalyst with layered structure: metal substituted magadiite. J Mol Catal A. doi:10.1016/j.molcata.2016.02.014
Praliaud H, Mikhailenko S, Chajar Z, Primet M (1998) Surface and bulk properties of Cu–ZSM-5 and Cu/Al2O3 solids during redox treatments. Correlation with the selective reduction of nitric oxide by hydrocarbons. Appl Catal B 16:359–374. doi:10.1016/s0926-3373(97)00093-3
Sassi M, Miehé-Brendlé J, Patarin J, Bengueddach A (2005) Na-magadiite prepared in a water/alcohol medium: synthesis, characterization and use as a host material to prepare alkyltrimethylammonium-and Si-pillared derivates. Clay Miner 40:369–378. doi:10.1180/0009855054030179
Schwieger W, Heidemann D, Bergk K-H (1985) High-resolution solid-state silicon-29 nuclear magnetic resonance spectroscopic studies of synthetic sodium silicate hydrates. Revue de chimie minérale 22:639–650. doi:10.1002/chin.198621007
Schwieger W, Lagaly G, Auerbach S, Carrado K, Dutta P (2004a) Handbook of layered materials. Marcel Dekker Inc, New York
Schwieger W, Selvam T, Gravenhorst O, Pfänder N, Schlögl R, Mabande G (2004b) Intercalation of [Pt (NH3)4] 2+ ions into layered sodium silicate magadiite: a useful method to enhance their stabilisation in a highly dispersed state. J Phys Chem Solids 65:413–420. doi:10.1016/j.jpcs.2003.08.032
Selvam T, Schwieger W (2002) Synthesis and characterization of mordenite (MOR) zeolite derived from a layered silicate, Na-magadiite. Studies Surf Sci Catal 142:407–414. doi:10.1016/s0167-2991(02)80055-6
Selvam T, Inayat A, Schwieger W (2014) Reactivity and applications of layered silicates and layered double hydroxides. Dalton Trans 43:10365–10387. doi:10.1002/chin.201437283
Sun Q, Zhang C, Sun H, Zhang H (2014) Aluminated derivatives of porous magadiite heterostructures for acid-catalyzed tert-butylation of catechol. Ind Eng Chem Res 53:12224–12237. doi:10.1021/ie502266r
Thiesen PH, Beneke K, Lagaly G (2002) Silylation of a crystalline silicic acid: an MAS NMR and porosity study. J Mater Chem 12:3010–3015. doi:10.1039/b204314a
Velu S, Suzuki K, Hashimoto S, Satoh N, Ohashi F, Tomura S (2001) The effect of cobalt on the structural properties and reducibility of CuCoZnAl layered double hydroxides and their thermally derived mixed oxides. J Mater Chem 11:2049–2060. doi:10.1039/b101599k
Velu S, Wang L, Okazaki M, Suzuki K, Tomura S (2002) Characterization of MCM-41 mesoporous molecular sieves containing copper and zinc and their catalytic performance in the selective oxidation of alcohols to aldehydes. Microporous Mesoporous Mater 54:113–126. doi:10.1016/s1387-1811(02)00358-x
Wang Z, Pinnavaia TJ (2003) Intercalation of poly (propyleneoxide) amines (Jeffamines) in synthetic layered silicas derived from ilerite, magadiite, and kenyaite. J Mater Chem 13:2127–2131. doi:10.1039/b306167a
Wang Y-R, Wang S-F, Chang L-C (2006) Hydrothermal synthesis of magadiite. Appl Clay Sci 33:73–77. doi:10.1016/j.clay.2006.02.001
Wang Q, Zhang Y, Zheng J, Hu T, Meng C (2016) Synthesis, structure, optical and magnetic properties of interlamellar decoration of magadiite using vanadium oxide species. Microporous Mesoporous Mater. doi:10.1016/j.micromeso.2016.10.046
Wang Q, Zhang Y, Zheng J, Wang Y, Hu T, Meng C (2017) Metal oxide decorated layered silicate magadiite for enhanced properties: insight from ZnO and CuO decoration. Dalton Transactions. doi:10.1039/c7dt00228a
Zhang Z, Saengkerdsub S, Dai S (2003) Intersurface ion-imprinting synthesis on layered magadiite hosts. Chem Mater 15:2921–2925. doi:10.1021/cm034162g
Zones SI (1989) Synthesis of pentasil zeolites from sodium silicate solutions in the presence of quaternary imidazole compounds ZEO. Zeolites 9:458–467. doi:10.1016/0144-2449(89)90039-0
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mokhtar, A., Medjhouda, Z.A.K., Djelad, A. et al. Structure and intercalation behavior of copper II on the layered sodium silicate magadiite material. Chem. Pap. 72, 39–50 (2018). https://doi.org/10.1007/s11696-017-0255-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11696-017-0255-z