Comparative Recommender System Evaluation: �Benchmarking Recommendation Frameworks Video available here http://www.youtube.com/watch?v=1jHxGCl8RXc Recommender systems research is often based on comparisons of predictive accuracy: the better the evaluation scores, the better the recommender. However, it is difficult to compare results from different recommender systems due to the many options in de
We are often interested in finding users, hashtags and ads that are very similar to one another, so they may be recommended and shown to users and advertisers. To do this, we must consider many pairs of items, and evaluate how “similar” they are to one another. We call this the “all-pairs similarity” problem, sometimes known as a “similarity join.” We have developed a new efficient algorithm to so
ウェブやインターネットコマースの隆盛によって、とてつもなく巨大なデータセットが出現し、そして、データマイニングによってそれらから情報が抽出されている。 巨大なデータに対するマイニングにおいては、従来から知られているアルゴリズムがそのままでは機能しないことが多い。巨大なデータを扱う上でこれまでとは違った処理戦略や技法が必要となる。 本書はデータマイニングにおいて重要な問題の解決に使われてきており、さらに巨大なデータセットに対しても使用できる実用的なアルゴリズムを、データベースやウェブ技術の分野で著名な原著者が解説する。 まず、データマイニングの本質や、データマイニングがどのように扱われているかを概観する。次に、今後非常に大量のデータの解析を行う際に、クラウドコンピューティングとともに重要視されると考えられ、この後の章の議論に必須のものとなるマップレデュースを解説する。その後、類似するアイテム
オペレーションズ・リサーチ学会 秋季発表会 関心度(Frequency)と忘却度(Recency)に 基づくレコメンド手法 -サンプリングでは対応できないビッグデータの活用- 2013 年 9 月 12 日 株式会社 NTTデータ数理システム *岩永二郎 鍋谷昴一 梶原悠 五十嵐健太 お知らせ 社名変更 2013年9月1日をもって 「数理システム」から「NTTデータ数理システム」に 社名変更しました. 移転 2013年9月1日をもって 「東京都新宿区新宿2丁目4-3フォーシーズンビル10階」 から 「東京都新宿区信濃町35番地 信濃町煉瓦館1階」 に移転しました. 近くにお越しの際には是非ともお立ち寄りください 2013/9/12 オペレーションズ・リサーチ学会 秋季発表会 2 本日と内容 1.はじめに 2.課題の紹介 3.分析の概要 4.関心度と忘却度に基づくレコメンド手法 5.過学習の
実際のところ、リアルタイムでレコメンデーションを走らせるためには、速い計算機が必要である。 計算量を食わない簡略化したロジックを動かすとか、計算機をクラスタ化して環境を構築する、などのアプローチもあるが、GPUを使って計算を高速化するというアプローチはなかなか見かけないので面白い。 (社内でやっているところはあるかもしれないけれど、公開をしていないだけ、だったりして。) "You Might Also Like: A Multi-GPU Recommendation System" You Might Also Like: A Multi-GPU Recommendation System from NVIDIA GPU演算で、(Simpleながらも)レコメンデーション(recommendation)の計算が、CPUと比べて20倍〜300倍の早さになったよ、というスライド。 要は、Util
1. 1 RecSys ’13, Hong Kong, China, Oct. 12, 2013 Learning to Rank for Recommender Systems Alexandros Karatzogloua , Linas Baltrunasa, Yue Shib aTelefonica Research, Spain bDelft University of Technology, Netherlands 2. 2 RecSys ’13, Hong Kong, China, Oct. 12, 2013 Who are we? Alexandros, Linas Yue • Machine Learning • Recommender Systems • Data Mining, Social Networks • Multimedia Indexing & A
はてなブックマークの関連エントリ機能でお馴染みの Preferred Infrastructure さんが、オープンソースで Jubatus というレコメンデーションエンジン(ひとりひとりの好みを学習して、その人にあったアイテムを提示するためのソフトウェア)を公開しています。(もっと詳しい話はこのへんを見るといいかもしれません。) このエンジンと Ruby On Rails を利用して、閲覧者の好みにあったおすすめアニメを推薦するサイトを作ってみました。 推薦に使うための評価データがまだ少ないため、推薦結果はもうひとつかもしれませんが、多くの人がおすすめ診断を試せば、データが蓄積されておすすめの精度が上がっていくので、興味のある方は是非試していただければと思います。 Jubatus とは もともとこのエンジンは、レコメンデーションを行うための計算を、多くのコンピュータで分散処理しつつ結果を
TwitterをはじめとするマイクロブログはNPO広報にも使われはじめています。その利用状況、利点とリスクなどをご紹介します。 このスライドは、ひょうごんテック主催の第5回テックカフェにおいて発表されました。
We are thrilled to announce the general availability of the Cloudera AI Inference service, powered by NVIDIA NIM microservices, part of the NVIDIA AI Enterprise platform, to accelerate generative AI deployments for enterprises. This service supports a range of optimized AI models, enabling seamless and scalable AI inference. Background The generative AI landscape is evolving […] Read blog post
先日、全体ゼミで発表したときの内容ですが、ここにまとめときます。。GoogleNewsのレコメンドの中身を追った論文の要約です。少し前の全体ゼミで用いた資料です。ソース:Abhinandan Das,Mayur Datar,Ashutosh Garg,Shyam Rajaram,"Google News Personalization: Scalable OnlineCollaborative Filtering",WWW2007不勉強な個所が多々ありますので、誤っている箇所等ありましたら、是非ご指摘ください。 個人的には、最近のモデルベースの手法の勉強・おさらいという意味で用いているので、GoogleNews独自の拡張なり実装の部分の内容が省かれている場合があります。また、データ構造やMapReduceを用いた計算の仕組みの部分は、ここでは省略しています。。一応、 全体像 ・LSH(Lo
This is a follow-up on the hashing for linear functions post. It’s based on the HashCoFi paper that Markus Weimer, Alexandros Karatzoglou and I wrote for AISTATS'10. It deals with the issue of running out of memory when you want to use collaborative filtering for very large problems. Here’s the setting: Assume you want to do Netflix-style collaborative filtering, i.e. you want to estimate entries
A Survey of Collaborative Filtering Techniques(Xiaoyuan Su and Taghi M. Khoshgoftaar, 2009,Advances in Artificial Intelligence) 仕事で協調フィルタリングについて調べる必要が出てきたのだが、あまりよい日本語の文献を見つけられなかったため(後にしましま先生の文献を見つけた)やむなく英語の論文を検索したところ、 上記のよいサーベイ論文を見つけた。というわけでこのサーベイ論文に書かれていることに自分なりに調べたことを加えて、自分用にまとめておく。 また、一部の人達の間ではとても有名なしましま先生の論文(ドラフト版)があるので、英語が苦手な人はそちらをご覧になるとよいと思われる。 協調フィルタリングは、一言で言えばユーザとアイテムのマトリックスを用いた顧客への商品のレコメン
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く