[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

タグ

machinelearningとnlpに関するyassのブックマーク (23)

  • 手元に置いておくと安心できる、情報系の人向けな日本語の本のリスト - EchizenBlog-Zwei

    最近、人にを薦める事が多くなった。とりあえずこの辺を読むといいですよ的なリストを作っておくと便利だと思ったので作ることにした。 以下、「事前知識のいらない入門」「事前知識はいらないけど格的な」「事前知識がないと何言ってるかわからないけど有益な情報が満載な」の3つにわけて列挙する。 事前知識のいらない入門 数式少なめ、脳負荷の小さめなをいくつか。何をやるにしてもデータ構造、アルゴリズム、数学はやっておくと幸せになれるよ。 情報検索と言語処理 データマイニングとか自然言語処理とかやりたい人にはとりあえずこれ。さすがに古い話が多くなってきたのでそろそろ新しい入門用情報検索がでないかなあと思っている。 図解・ベイズ統計「超」入門 伝説のベイジアン先生がベイズの基礎を教えてくれる。ベイズやりたい人はこれ。 珠玉のプログラミング データ構造とかアルゴリズムとかの考え方の基礎を教えてく

    手元に置いておくと安心できる、情報系の人向けな日本語の本のリスト - EchizenBlog-Zwei
  • NIPS2013読み会でword2vec論文の紹介をしました

    先週、 @sla さん主催のNIPS2013読み会で、word2vec論文(正確には続報)の紹介をしました。 ちょっと解説を書きます。 このところの深層学習ブームは自然言語処理にも来ていて、それらのウチの1つと言われています(が、全然deepっぽさはない)。 最初のモチベーションがどういうところにあったかというのは、ちょっと色々だと思いますが(おそらく最初は言語モデルにおける低頻度語の確率をウマイことモデル化・推定したかったんではないかな)、何はともあれ単語の意味的なあるいは統語的な振る舞いをベクトル表現で表すという研究が流行っております。 ベクトル表現というのは、1つの単語wに対して、その単語を「表現」するようなベクトル v(w) を作ります。 そんなこといわれても、作れば?ということなんですが、できたベクトルに対して何かしら「都合のいい」性質ができることが真の目標です。 「都合のいい」

  • 自然言語処理における類似度学習(機械学習における距離学習)について - 武蔵野日記

    Twitter でグラフ理論に関する話題が上がっていたので、最近調べている距離学習(distance metric learning)について少しまとめてみる。カーネルとか距離(類似度)とかを学習するという話(カーネルというのは2点間の近さを測る関数だと思ってもらえれば)。 この分野では Liu Yang によるA comprehensive survey on distance metric learning (2005) が包括的なサーベイ論文として有名なようだが、それのアップデート(かつ簡略)版として同じ著者によるAn overview of distance metric learning (2007) が出ているので、それをさらに簡略化してお届けする(元論文自体文は3ページしかないし、引用文献のあとに表が2ページあって、それぞれ相違点と共通点がまとまっているので、これを見ると非

    自然言語処理における類似度学習(機械学習における距離学習)について - 武蔵野日記
  • 機械学習と自然言語処理とビッグデータ - Preferred Networks Research & Development

    岡野原です。 情報処理学会主催の連続セミナー「ビッグデータとスマートな社会」での機械学習の回、自然言語処理の回での講演資料を公開しました。 今年はビッグデータという言葉が広まったということで、このテーマで話す機会が多かったです。今はビッグデータというとそれを支えるインフラ、クラウド、DBなどがまず注目されていますが、我々としては実際それを使って何をするのか、何が実現できるのかというところを注目しています。 PFIは元々こうしたデータを分析して価値を提供する(検索エンジンとかもその範疇に入ると思います)ことをずっと続けてきたわけですが、ビッグデータという言葉が広まってくれたおかげでこの考えがより受け入れられ様々な業界の方と随分と話がしやすくなったと思います。 以下の講演資料では、今ビッグデータの中でも機械学習と自然言語処理の分野において我々がどこに注目しているのかを話をしました。

    機械学習と自然言語処理とビッグデータ - Preferred Networks Research & Development
  • ノンパラベイズ入門の入門

    2017年2月17日に行われた統計数理研究所での研究集会『因果推論の基礎』での講演内容です(配布用の改変あり)。スライドだけだと口頭での説明がないので分かりにくい部分もあるかもしれません。 [http://www.ism.ac.jp/events/2017/meeting0216_17.html:title]

    ノンパラベイズ入門の入門
  • 潜在的意味インデキシング(LSI)徹底入門 - あらびき日記

    この記事は abicky.net の 潜在的意味インデキシング(LSI)徹底入門 に移行しました

    潜在的意味インデキシング(LSI)徹底入門 - あらびき日記
  • 大規模データ時代に求められる自然言語処理 - Preferred Networks Research & Development

    話の内容は、自然言語処理が実世界で具体的にどのように応用されているのか、またその時に感じた課題についてです。 後半の「何が必要とされているか」、あたりの話からは私や会社が特に重点的に取り組んでいる事そのものの話もなります。

    大規模データ時代に求められる自然言語処理 - Preferred Networks Research & Development
  • overlasting.net

    overlasting.net 2019 Copyright. All Rights Reserved. The Sponsored Listings displayed above are served automatically by a third party. Neither the service provider nor the domain owner maintain any relationship with the advertisers. In case of trademark issues please contact the domain owner directly (contact information can be found in whois). Privacy Policy

  • WebDB Forum 2011 で「 CRF を使った Web 本文抽出」を発表してきました - 木曜不足

    昨年に引き続き、今年も WebDB Forum 2011 のサイボウズの企業セッションでの発表の機会をいただきましたので、「 CRF を使った Web 文抽出」について話をさせていただきました。 CRF を使った Web 文抽出 for WebDB Forum 2011 View more presentations from Shuyo Nakatani この発表は、過去に2回(自然言語処理勉強会@東京(TokyoNLP) 第1回、確率の科学研究会 第1回)で話をさせてもらったことと、WebDB Forum という場であること、さらに発表時間が 20分*1ということを考えて、今回は非常にスリムな内容になっています。 CRF についてはズバッとはしょって、その代わりに系列ラベリングを文抽出に使うというのはどういうことか、という図を入れましたので、さらっと読むには一番わかりやすいのでは

    WebDB Forum 2011 で「 CRF を使った Web 本文抽出」を発表してきました - 木曜不足
  • データマイニング2010 - データベース高度利用者養成

    レポート3について † ナイーブベイズでUSPSデータの予測をする問題は,現状のライブラリでは動かないことが判明しましたので,回答しなくて結構です. ↑ レポート4について † SVMのレポートの所,デフォルトでは回帰分類(regression)を行って数値予測をしてしまいます. 正しくクラス分類を行うために,モデルの作成の所は,以下の様に typeを追加してください. svm(training_data,training_class,type="C-classification", mode="〜") ↑

  • Graham Neubig - チュートリアル資料

    学校での講義 Fall 2025: Inference Algorithms for Language Modeling (CS11-663/763 @ CMU) Spring 2025: Large Language Models and Applications (CS11-967 @ CMU) Fall 2024: Advanced NLP (CS11-711 @ CMU) Spring 2024: Advanced NLP (CS11-711 @ CMU) Fall 2022: Advanced NLP (CS11-711 @ CMU) Spring 2022: Multilingual NLP (CS11-737 @ CMU) Fall 2021: Advanced NLP (CS11-711 @ CMU) Spring 2021: Neural Networks for NLP

  • 「言語処理のための機械学習入門」を参考に各種モデルに対するEMアルゴリズムを実装したよ - nokunoの日記

    Amazonにもレビューを書いたのですが、高村さんの「言語処理のための機械学習入門」を読みました。実はこのを読むのは2回目で、1回目はドラフト版のレビューをさせていただく機会があったのですが、そのときは「言語処理研究者のための機械学習入門」というタイトルで、ちょっと敷居が高いのではないかとコメントしたら「研究者」の部分が削られたという経緯があったりしました。 それはともかくとして、以前読んだときは時間もなくて実装までする暇はなかったのですが、今度はもうちょっとじっくり読みたいなということで、このブログに書いてみようと思います。EMアルゴリズムは教師なし学習を確率モデルと最尤推定でやろうとするときに必ず出てくる手法で、隠れ変数や欠損値を含む色々なモデルに適用できる汎用的なフレームワークになっています。一般的には混合ガウス分布の場合をまず説明して、それがk-means法の一般化した形になって

  • overlasting.net

    overlasting.net 2020 Copyright. All Rights Reserved. The Sponsored Listings displayed above are served automatically by a third party. Neither the service provider nor the domain owner maintain any relationship with the advertisers. In case of trademark issues please contact the domain owner directly (contact information can be found in whois). Privacy Policy

  • 大規模文字列解 析の理論と実践@IBISML - DO++

    IBISML 第一回研究会の招待講演での発表資料です。参考文献などを追加しました。 "大規模文字列解 析の理論と実践" (pdf|pptx) 最初はもっとサーベイ的にしたかったのですが、まとめあげられず、テーマを部分文字列の計量に絞ってやりました。後半の予備スライドにそのへんの名残があります。 番で口頭で説明したところは、スライドだけだと追いづらいかもしれません。 --- 研究会は武田ホールで立ち見がでるくらい盛況でした。 プログラムを見ていただければわかるとおもいますが、みなさん非常に濃い内容でした。 久しぶりのこうした研究会参加で大変刺激になりました。

    大規模文字列解 析の理論と実践@IBISML - DO++
  • NLP2010 言語処理学会チュートリアル - DO++

    今日から開催されている言語処理学会のチュートリアルで ”超高速テキスト処理のためのアルゴリズムとデータ構造” というタイトルで発表させていただきました。 チュートリアル資料はこちら(pdf)です。(出典などは適宜追加します) 今までいろいろなところで話してきた、オンライン学習、文字列、疎ベクトルデータ構造を最新の話を追加して、さらに乱択化(Hash Kernel, 乱択化SVD)を解説しています。 発表自体は途中でブルースクリーンが出るということもありましたが、なんとか終えられてよかったです。 これに付随していろいろツールを公開する予定だったがまにあわなかった。そのうち公開します

    NLP2010 言語処理学会チュートリアル - DO++
  • PFI Christmas seminar 2009

    Loading... Flash Player 9 (or above) is needed to view presentations. We have detected that you do not have it on your computer. To install it, go here. PFI Christmas seminar 2009 - Presentation Transcript PFIセミナー 2009/12/24 研究開発チーム クリスマス・セミナー 岡野原 大輔 何はともあれ、まず Merry X’mas ! こんな日にセミナーを ルドルフ達 見てくれるのに大感謝だよ 投げやりな 僕でごめんね 僕はサンタじゃないよ 今回の発表 • 研究開発チームの活動紹介 • 今注目すべき研究を50分で俯瞰しよう! – オンライン学習の最前線 機械学習 • Multi-c

  • テキストからの評判分析と 機械学習

    テキストからの評判分析と 機械学習 鍜治伸裕 東京大学 生産技術研究所 講演の前に • 想定している聴衆 – 評判分析について専門的なことを知らない – 機械学習(ML)の素養を持っている • 講演の内容 – 評判分析という分野の解説 – 評判分析における ML の適用事例の紹介 • お断り – 自然言語処理(NLP)の話に特化 – ML を使っている論文を私の好みで選んで紹介 評判分析を概観する 評判分析はこんな技術 • 例: Yahoo!ブログ検索における「VAIO」の検索結果 肯定的評判と否定的評判の 書き込み数を集計して表示 肯定的な書き込みと否定的 な書き込みを分類して提示 背景: CGMの出現 • CGM – Consumer Generated Media のこと – 例えば Amazon に投稿されたレビューやブログなど – 一般人が作成,発信するコンテンツである点がポイン

  • ohmm(オンラインEMによるHMM学習)をリリースしました - DO++

    Ohmm-0.01をリリースしました [Ohmm 日語] [Ohmm English] これは、以前のブログで書いた、オンラインEM法をそのまま素直に隠れマルコフモデル(HMM)に対し適用したライブラリです。 使う場合は、単語(アクセス履歴とかなんでもよい)に分けられているテキストを入力として与えれば、HMMによる学習を行い、結果を出力します。他で利用できるように、パラメータを出力したり、単語のクラスタリング結果を出力します。 HMM自体は、言語情報やアクセス履歴、生物情報(DNA)といったシーケンス情報において、前後の情報を用いて各要素をクラスタリングしたい場合に用います。 ライブラリの特徴はオンラインEMの特徴通り、従来のEMよりも速く収束します。一応標準的な最適化手法(スケーリング、スパースな期待値情報の管理)もいれているので、そこそこ高速に動きます 速度的には100万語、隠れ状

    ohmm(オンラインEMによるHMM学習)をリリースしました - DO++
  • 大規模データを基にした自然言語処理 - DO++

    人工知能問題研究会 (SIG-FPAI)でタイトルの題目で一時間ほど話してきました。 発表資料 [pptx] [pdf] 話した内容は - 自然言語処理における特徴ベクトルの作り方と、性質 - オンライン学習, Perceptron, Passive Agressive (PA), Confidence Weighted Learning (CW) 確率的勾配降下法 (SGD) - L1正則化, FOLOS - 索引を用いた効率化, 全ての部分文字列を利用した文書分類 で、スライドで70枚ぐらい。今までの発表とかぶっていないのはPA CW SGD FOLOSあたりでしょうか オンライン学習、L1正則化の話がメインになっていて、その両方の最終形の 確率的勾配降下法 + FOLOSの組み合わせは任意の損失関数に対してL1/L2正則化をかけながらオンライン学習をとても簡単にできるという一昔前

    大規模データを基にした自然言語処理 - DO++
  • 最大マージン kNN と SVM の関係: kNN も最近はがんばっています - 武蔵野日記

    先日書いた機械学習における距離学習の続き。 kNN (k-nearest neighbour: k 近傍法)は Wikipedia のエントリにも書いてある通り、教師あり学習の一つで、あるインスタンスのラベルを周辺 k 個のラベルから推定する手法。memory-based learning と呼ばれることもある。単純に多数決を取る場合もあれば(同点を解決する必要があるが)、近いインスタンスの重みを大きくする場合もあるのだが、いずれにせよかなり実装は単純なので、他の機械学習との比較(ベースライン)として使われることも多い。 簡単なアルゴリズムではあるが、1-NN の場合このアルゴリズムの誤り率はベイズ誤り率(達成可能な最小誤り率)の2倍以下となることが示されたり、理論的にもそれなりにクリアになってきているのではないかと思う。また、多クラス分類がちょっと一手間な SVM (pairwise に