[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2021131150A1 - 冷蔵庫 - Google Patents

冷蔵庫 Download PDF

Info

Publication number
WO2021131150A1
WO2021131150A1 PCT/JP2020/031338 JP2020031338W WO2021131150A1 WO 2021131150 A1 WO2021131150 A1 WO 2021131150A1 JP 2020031338 W JP2020031338 W JP 2020031338W WO 2021131150 A1 WO2021131150 A1 WO 2021131150A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
air passage
air
storage chamber
door
Prior art date
Application number
PCT/JP2020/031338
Other languages
English (en)
French (fr)
Inventor
良二 河井
慎一郎 岡留
晴樹 額賀
福太郎 岡田
義明 藤木
浩和 中村
利広 小松
Original Assignee
日立グローバルライフソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立グローバルライフソリューションズ株式会社 filed Critical 日立グローバルライフソリューションズ株式会社
Publication of WO2021131150A1 publication Critical patent/WO2021131150A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/08Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation using ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/14Collecting or removing condensed and defrost water; Drip trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/02Doors; Covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D25/00Charging, supporting, and discharging the articles to be cooled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices

Definitions

  • the present invention relates to a refrigerator.
  • a refrigerator equipped with a storage room in which the indoor temperature can be set in either the refrigerating temperature zone or the freezing temperature zone is known.
  • a refrigerator main body, a first storage chamber provided above the refrigerator main body and having a first door with double doors, and a first storage chamber below the first storage chamber are juxtaposed via upper and lower partition walls.
  • a second storage room having a second door and a third storage room having a third door, which are partitioned by left and right partition walls, are provided, and the height of the second door and the upper end of the third door from the floor surface.
  • 950 ⁇ 50 mm and the refrigerator is described in which the first door, the second door, and the third door are each evenly divided with respect to the width dimension of the refrigerator body.
  • the refrigerator described in Patent Document 1 includes a switching chamber that can be switched to a plurality of different temperature zones as a third storage chamber (see paragraph 0030 of Patent Document 1).
  • the height dimension of the switching chamber is larger than the width dimension (see FIG. 7). Therefore, depending on the operating state of the refrigerator, air tends to flow downward due to natural convection inside the switching chamber, and the temperature distribution tends to be large. As a result, the lower part of the switching chamber is overcooled, and uneven cooling is likely to occur, which lowers the reliability of the refrigerator.
  • the problem to be solved by the present invention is to provide a refrigerator with improved reliability.
  • the room temperature can be set in either the refrigerating temperature zone or the freezing temperature zone, and the first storage chamber having a height dimension larger than the width dimension and the first storage chamber in front view.
  • the first storage chamber and the second storage chamber are arranged on the back side of the first storage chamber and the second storage chamber so as to straddle both the second storage chamber arranged next to the chamber and the first storage chamber and the second storage chamber. It includes a cooler that integrally cools the 1 storage chamber and the 2nd storage chamber, and a first heating mechanism arranged below the room of the 1st storage chamber.
  • FIG. 1 is a cross-sectional view taken along the line AA of FIG.
  • FIG. 1 is a cross-sectional view taken along the line BB of FIG.
  • It is a figure explaining the refrigerating cycle provided in the refrigerator of this embodiment. It is a figure explaining the arrangement place of the condensed refrigerant pipe. It is a cross-sectional view in the horizontal direction of the heat insulating partition wall which separates a temperature switching chamber and a freezing chamber. It is a figure explaining the arrangement part of the heating mechanism in a temperature switching chamber.
  • the present invention is not limited to the following contents and the illustrated contents, and can be arbitrarily modified and carried out within a range that does not significantly impair the effects of the present invention.
  • the present invention can be implemented by combining different embodiments.
  • the same members will be designated by the same reference numerals in different embodiments, and duplicate description will be omitted.
  • the same name is used for those having the same function, and duplicate explanations are omitted.
  • the hatching may be omitted for the sake of simplification.
  • FIG. 1 is a front view of the refrigerator 1 of the present embodiment.
  • the AA line will be described later with reference to FIG. 3, and the BB line will be described later with reference to FIG.
  • the external dimensions of the refrigerator 1 are, for example, 900 mm in width, 788 mm in depth, and 1840 mm in height, but are not limited thereto.
  • the refrigerator 1 is provided with an electric heater 93 and a front edge heat radiating pipe 50d (see FIG. 8, both of which are first heating mechanisms 91) below the temperature switching chamber 3.
  • the lower part of the temperature switching chamber 3 can be heated, and uneven cooling in the temperature switching chamber 3 can be suppressed.
  • the overall configuration of the refrigerator 1 the configuration of each chamber such as the temperature switching chamber 3 and the evaporator chamber 8 will be described first, and then the first heating mechanism 91 arranged below the temperature switching chamber 3 will be described. explain.
  • the refrigerator 1 is provided with doors 2a and 2b on the front side of the heat insulating box 10 so that the refrigerating chamber 2 (see FIG. 2) can be exposed by opening.
  • the door 2a first door
  • the door 2b second door
  • the refrigerator 1 includes a door 3a capable of exposing the temperature switching chamber 3 (described later) by opening the refrigerator 1 and a door 4a capable of exposing the freezing chamber 4 (described later) by opening the refrigerator 1.
  • the door 3a is rotatably fixed to the front side on the same side (one end side) as the door 2a.
  • the door 4a is rotatably fixed to the front side on the same side (the other end side) as the door 2b.
  • the inside of the doors 2a, 2b, 3a, 4a is mainly filled with polyurethane foam, which is a foam heat insulating material.
  • the refrigerator 1 is provided with an operation unit 25 for operating the temperature setting inside the refrigerator on the outer surface of the door 2a.
  • the room temperature of the temperature switching chamber 3 can be set by operating the operation unit 25.
  • the height position (height from the floor surface) of the operation unit 25 is, for example, 1200 mm at the lower end and 1300 mm at the upper end, but is not limited thereto.
  • FIG. 2 is a front view of the inside of the refrigerator 1 of the present embodiment.
  • FIG. 2 corresponds to a front view of the state in which the doors 2a, 2b, 3a, and 4a are removed in FIG.
  • the refrigerator 1 has a refrigerating chamber 2 (third storage chamber) inside the heat insulating box 10, a temperature switching chamber 3 (first storage chamber) and a freezing chamber 4 (first storage chamber) provided on the left and right below the refrigerating chamber 2. 2 storage room).
  • the refrigerating chamber 2, the temperature switching chamber 3, and the freezing chamber 4 are all configured to have a height dimension larger than a width dimension.
  • the width dimension of the temperature switching chamber 3 and the width dimension of the freezing chamber 4 are the same.
  • the height dimension of the temperature switching chamber 3 and the height dimension of the freezing chamber 4 are the same.
  • the width dimension W of the temperature switching chamber 3 and the freezing chamber 4 is, for example, 355 mm
  • the height dimension H is, for example, 665 mm, but the present invention is not limited thereto.
  • the room temperature of the refrigerating room 2 is set to the refrigerating temperature zone.
  • the refrigerating temperature zone set in the refrigerating chamber 2 is, for example, 0 ° C. or higher, and specifically, for example, about 4 ° C. on average.
  • the temperature switching chamber 3 can set the room temperature in either the refrigerating temperature zone or the freezing temperature zone.
  • the temperature switching chamber 3 is used as a refrigerating chamber or a freezing chamber according to the user's selection in the operation unit 25.
  • the refrigerating temperature zone set in the temperature switching chamber 3 is, for example, the same refrigerating temperature zone as the refrigerating chamber 2, but the indoor temperature of the temperature switching chamber 3 does not have to be the same as the indoor temperature of the refrigerating chamber 2.
  • the freezing temperature zone set in the temperature switching chamber 3 is, for example, less than 0 ° C., specifically, for example, about -18 ° C.
  • the freezing chamber 4 is arranged next to the temperature switching chamber 3 in front view, and the indoor temperature is set to the freezing temperature zone.
  • the freezing temperature zone set in the freezing chamber 4 is, for example, the same freezing temperature zone as the freezing chamber 4, but the indoor temperature of the freezing chamber 4 is not the same as the indoor temperature of the temperature switching chamber 3 set in the freezing temperature zone. You may.
  • the refrigerating room 2, the temperature switching room 3, and the freezing room 4 are separated by a heat insulating partition wall 28 extending in the left-right direction. Further, the temperature switching chamber 3 and the freezing chamber 4 are separated by a heat insulating partition wall 29 extending in the vertical direction.
  • the upper part of the refrigerating chamber 2 is partitioned by storage shelves 31a, 31b, 31c to form a storage space.
  • the refrigerator 1 includes refrigerating chamber discharge ports 11a, 11b, 11c that blow air into each storage space formed by compartments formed by storage shelves 31a, 31b, 31c.
  • the width dimension (inner dimension) of the storage containers 32a and 32b is, for example, 320 mm.
  • a drawer-type storage container 32c (second container) that can be used by opening the door 2b is provided in the upper part on the lower right side of the refrigerator compartment 2.
  • a closed container 33 (second container) that can be opened and closed by a lid (not shown) arranged on the front surface is provided.
  • the closed container 33 is also configured to be usable by opening the door 2b.
  • the width dimension (inner dimension) of the storage container 32c is, for example, 320 mm, and the width dimension (inner dimension) of the closed container 33 is, for example, 300 mm.
  • drawer-type storage containers 34a, 34b, 34c, 35a, 35b, 35c having three upper and lower stages are provided, respectively.
  • Refrigerator 1 is equipped with an automatic ice maker 40 on the upper left side of the freezer chamber 4. Further, the refrigerator 1 includes a water storage tank 42 (third container) for storing water for ice making.
  • the width dimension (inner dimension) of the water storage tank 42 is 65 mm.
  • the water storage tank 42 is arranged between the storage containers 32a and 32b (first container), the storage container 32c, and the closed container 33 (both are the second containers). Ice is made by supplying the water in the water storage tank 42 to the automatic ice maker 40 by a water supply pump (not shown).
  • the ice generated by the automatic ice maker 40 is separated into the storage container 35a by the rotation of the ice tray 40a by a motor (not shown).
  • FIG. 3 is a cross-sectional view taken along the line AA of FIG.
  • the storage container 36c, the refrigerating chamber air passage 110, and the return air passage 120 will be described later with reference to FIGS. 4, 9 and 10, respectively.
  • the refrigerator 1 includes a partition plate 2c that is connected to either the door 2a or the door 2b and is arranged so as to close the gap 2d when the door 2a and the door 2b are closed.
  • the partition plate 2c is arranged on the back side of the door 2a and the door 2b.
  • the partition plate 2c when the door 2a is opened, the partition plate 2c is maintained in a state of being connected to the door 2b, and the door 2a is opened by separating the door 2a and the partition plate 2c. Further, for example, when the door 2b is opened, the partition plate 2c is maintained in a state of being connected to the door 2a, and the door 2b is opened by separating the door 2b and the partition plate 2c.
  • the water storage tank 42 (third container) is arranged on the back side of the partition plate 2c.
  • the water storage tank 42 can be arranged in a hard-to-reach area.
  • Space efficiency may be improved by installing a storage container for small items such as seasonings, an egg storage container, and the like as a third container.
  • FIG. 4 is a cross-sectional view taken along the line BB of FIG.
  • the cooling chamber air passage 110, the second fan 19, the first fan 9, and the temperature switching chamber air passage 111 will be described later with reference to FIGS. 8 and 9.
  • the refrigerator 1 is provided with storage containers 36a, 36b, 36c inside the door 2a. Although not shown, a storage container is also provided inside the door 2b at the same height as the storage containers 36a, 36b, 36c.
  • the refrigerator 1 is provided with a storage container 34 inside the refrigerator of the door 3a. Although not shown, a storage container is also provided inside the door 3b at the same height as the storage container 34.
  • the refrigerator 1 is provided with an evaporator chamber 8 so as to straddle both the temperature switching chamber 3 and the freezing chamber 4 on the back side of the temperature switching chamber 3 and the freezing chamber 4.
  • the evaporator chamber 8 is arranged on the back side of the temperature switching chamber 3 and the freezing chamber 4 so as to communicate with at least the temperature switching chamber 3 (both the temperature switching chamber 3 and the freezing chamber 4 in the illustrated example).
  • the refrigerator 1 includes an evaporator 7 inside the evaporator chamber 8.
  • the evaporator 7 is arranged on the back side of the temperature switching chamber 3 and the freezing chamber 4 so as to straddle both the temperature switching chamber 3 and the freezing chamber 4, and integrally cools the temperature switching chamber 3 and the freezing chamber 4 from the back side. It is a thing.
  • the evaporator 7 constitutes a refrigeration cycle 48 (see FIG. 5) together with the compressor 24, which will be described in detail later.
  • the refrigerator 1 is provided with a defrost heater 21 below the evaporator 7 to melt the frost grown in the evaporator 7.
  • the liquid water produced by melting the frost is drained to the evaporating dish 26 (see FIG. 6).
  • the refrigerator 1 includes a heat insulating member 27 between the evaporator chamber 8 and the temperature switching chamber 3.
  • the refrigerator 1 includes a machine room 5 below the evaporator room 8, and a compressor 24 inside the machine room 5.
  • the compressor 24, together with the evaporator 7, constitutes a refrigeration cycle 48.
  • the refrigeration cycle 48 will be described with reference to FIG.
  • FIG. 5 is a diagram illustrating a refrigerating cycle 48 provided in the refrigerator 1 of the present embodiment.
  • the refrigeration cycle 48 includes a compressor 24, a condensed refrigerant pipe 50 as a condensing mechanism that condenses by heat dissipation, an evaporator 7, and a capillary tube 53 as a depressurizing mechanism.
  • the condensed refrigerant pipe 50 includes a defrosting water heating pipe 50a, a machine room radiator 50b, a side heat radiating pipe 50c, a front edge heat radiating pipe 50d, and a rear heat radiating pipe 50e.
  • the condensed refrigerant pipe 50 is arranged along the front surface, side surface, and back surface ends of the refrigerator 1. The location of the condensed refrigerant pipe 50 in the refrigerator 1 will be described with reference to FIG.
  • FIG. 6 is a diagram for explaining the arrangement location of the condensed refrigerant pipe 50.
  • the defrosting water heating pipe 50a is installed in the evaporating dish 26 in the machine room 5.
  • the machine room radiator 50b is a fin tube type heat exchanger and is installed in the machine room 5.
  • the machine room radiator 50b is ventilated by a machine room fan (not shown).
  • the side heat radiating pipe 50c is arranged inside the heat insulating box 10 forming the left side surface of the heat insulating box 10.
  • the front edge heat radiating pipe 50d includes a front edge portion 10a forming the front edge of the temperature switching chamber 3, a front edge portion 10b forming the front edge of the freezing chamber 4, and a heat insulating partition wall 28, among the heat insulating box bodies 10. It is located inside the front edge of 29.
  • the front edge heat radiating pipe 50d is arranged so as to surround the openings of the temperature switching chamber 3 and the freezing chamber 4.
  • the rear heat dissipation pipe 50e is arranged inside the heat insulating box 10 forming the back surface of the heat insulating box 10.
  • the heat insulating partition wall 29 including the front edge heat radiating pipe 50d will be described with reference to FIG. 7.
  • FIG. 7 is a cross-sectional view of the heat insulating partition wall 29 that separates the temperature switching chamber 3 and the freezing chamber 4 in the horizontal direction.
  • the heat insulating partition wall 29 includes a steel plate 29a arranged on the front edge side and a resin member 29b arranged on the surfaces of the temperature switching chamber 3 and the freezing chamber 4 on each chamber side.
  • a heat insulating member 72 such as expanded polystyrene is mounted inside the heat insulating partition wall 29.
  • the front edge heat radiating pipe 50d is arranged so as to make substantially contact with the steel plate 29a.
  • the thickness of the steel plate 29a is, for example, 0.8 mm, but the thickness is not limited to this.
  • the heat of the front edge heat radiating pipe 50d is satisfactorily transferred, and dew condensation near the front edge of the heat insulating partition wall 29 on the temperature switching chamber 3 side can be suppressed.
  • the steel plate 29a includes bent portions 71a extending from both left and right ends to the back surface side.
  • the dimension of the bent portion 71a in the depth direction is L1.
  • L1 is, for example, 3 mm or more and 20 mm or less (10 mm in the illustrated example). By setting L1 to this range, it is possible to easily achieve both suppression of dew condensation near the front edge of the heat insulating partition wall 29 on the temperature switching chamber 3 side and sufficient refrigeration and freezing performance in the temperature switching chamber 3.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 24 dissipates heat through the condensed refrigerant pipe 50 and condenses.
  • the front edge portion 10a (see FIG. 6) including the lower part of the temperature switching chamber 3 is heated by the high temperature and high pressure refrigerant.
  • the refrigerant condensed by flowing through the condensed refrigerant pipe 50 is depressurized by the capillary tube 53 after removing water by the dryer 51.
  • a low-temperature refrigerant is generated, and the generated low-temperature refrigerant flows through the evaporator 7.
  • the temperature of the evaporator 7 becomes low, and the low temperature evaporator 7 cools the temperature switching chamber 3 and the freezing chamber 4.
  • the refrigerant evaporated in the evaporator 7 is returned to the compressor 24 after gas-liquid separation in the gas-liquid separator 54 and heat exchange by contact with the capillary tube 53 in the heat exchange unit 57.
  • FIG. 8 is a diagram illustrating a portion where the heating mechanism is arranged in the temperature switching chamber 3.
  • the refrigerator 1 is provided with a first heating mechanism 91 below the temperature switching chamber 3.
  • the first heating mechanism 91 can heat the lower part of the room when the lower part of the room becomes too cold, and can suppress uneven cooling.
  • the first heating mechanism 91 includes, for example, at least one of the condensed refrigerant pipe 50 and the electric heater 93.
  • the first heating mechanism 91 includes both the front edge heat radiating pipe 50d as the condensed refrigerant pipe 50 and the electric heater 93 arranged in a plane from the bottom surface to the back surface of the temperature switching chamber 3. Only one of them may be used.
  • the lower part of the temperature switching chamber 3 can be heated by at least one of the heat of the refrigerant flowing through the condensed refrigerant pipe 50 and the heat generated from the electric heater 93.
  • the heat generated in the refrigeration cycle 48 (see FIG. 5) can be used, and the power consumption for heating can be suppressed.
  • the electric heater 93 the evaporator 7 can be heated even when the refrigerant is not flowing, that is, even when the operation of the evaporator 7 is stopped.
  • the electric heater 93 is arranged on the surface of the heat insulating member 27 (not shown in FIG. 8) arranged below and on the back side of the temperature switching chamber 3.
  • the electric heater 93 is an aluminum foil heater in which, for example, a heating wire (not shown, a silicon cord heater as an example) and an aluminum foil are fixed on one side of a double-sided adhesive tape, and the other side of the double-sided adhesive tape can be attached to the heating surface. Is.
  • the surface on which the aluminum foil is installed is the effective heating surface.
  • the first heating mechanism 91 is arranged below the temperature switching chamber discharge port 12c arranged at the bottom of the plurality of temperature switching chamber discharge ports 12a, 12b, 12c. Details will be described later with reference to FIG. 9, but when the temperature switching chamber air passage 111 is closed by the air passage blocking member 101b, the relatively cold air in the temperature switching chamber air passage 111 is arranged at the bottom for temperature switching. It is discharged to the temperature switching chamber 3 through the chamber discharge port 12c. Therefore, by arranging the first heating mechanism 91 below the temperature switching chamber discharge port 12c arranged at the bottom, overcooling on the lower side of the temperature switching chamber discharge port 12c arranged at the bottom is suppressed. it can. The air discharged from the temperature switching chamber discharge ports 12a, 12b, 12c to the temperature switching chamber 3 enters the return air passage 120 through the temperature switching chamber return port 15.
  • the refrigerator 1 includes a second heating mechanism 92 arranged on a heat insulating partition wall 29 (partition wall) on the freezing chamber 4 side of the temperature switching chamber 3.
  • the second heating mechanism 92 is arranged on the surface of the heat insulating member 72 (see FIG. 7) inside the heat insulating partition wall 29.
  • the refrigerator 1 is provided with a third heating mechanism 90 at a position that covers at least the evaporator 7 in front view on the back side of the temperature switching chamber 3.
  • the second heating mechanism 92 is arranged on the surface of the heat insulating member 27 (see FIG. 4).
  • the third heating mechanism 90 is, for example, an electric heater of the same type as the electric heater 93.
  • the flow of the refrigerant to the evaporator 7 is stopped, and the operation of the evaporator 7 is stopped.
  • the evaporator 7 since the evaporator 7 remains cold, the vicinity of the evaporator 7 is cooled inside the temperature switching chamber 3 without discharging air to the temperature switching chamber 3 and the like, and the temperature switching chamber 3 is cooled. Natural convection occurs inside the. As a result, the lower part tends to be cooled, especially when the refrigerating temperature zone is set.
  • the cooling unevenness in the temperature switching chamber 3 can be suppressed.
  • the lower part of the temperature switching chamber 3 can be heated by restarting the operation of the evaporator 7 when the lower part becomes too cold and flowing a high temperature refrigerant through the condensed refrigerant pipe 50 (particularly the front edge heat radiating pipe 50d). ..
  • the evaporator 7 is arranged so as to straddle both the temperature switching chamber 3 and the freezing chamber 4. Therefore, since the cooling in the temperature switching chamber 3 is performed together with the cooling in the freezing chamber 4, it is not intended in the temperature switching chamber 3 as compared with a refrigerator equipped with an evaporator (not shown) that cools only the temperature switching chamber 3. Cooling is likely to occur. Therefore, by heating the lower part of the temperature switching chamber 3 by the first heating mechanism 91, uneven cooling in the temperature switching chamber 3 can be suppressed.
  • the freezing chamber 4 is arranged next to the temperature switching chamber 3.
  • the indoor temperature of the freezing chamber 4 is lower than the indoor temperature of the temperature switching chamber 3. Therefore, when the operation of the evaporator 7 is stopped, the temperature switching chamber 3 is more likely to be cooled by the freezing chamber 4. As a result, the lower part becomes easier to cool due to the natural convection generated inside the temperature switching chamber 3. Therefore, the first heating mechanism 91 can suppress uneven cooling in the temperature switching chamber 3.
  • FIG. 9 is a diagram for explaining the flow of air exchanged between the temperature switching chamber 3, the freezing chamber 4, the refrigerating chamber 2, and the evaporator chamber 8.
  • FIG. 9 shows the internal structure of the heat insulating box 10 in a front view, and the broken line in FIG. 9 indicates a member (for example, evaporation) formed on the back side of the temperature switching chamber 3, the freezing chamber 4, and the refrigerating chamber 2.
  • the first fan 9 and the like housed in the instrument chamber 8) are shown.
  • the solid line arrow indicates the air flow inside each of the temperature switching chamber 3, the freezing chamber 4, and the refrigerating chamber 2, and the broken line arrow indicates the back surface of the temperature switching chamber 3, the freezing chamber 4, and the refrigerating chamber 2. Shows the air flow on the side.
  • the refrigerator 1 is provided with a first fan 9 (blower fan) for flowing air through the temperature switching chamber air passage 111 near the inlet of the temperature switching chamber air passage 111 (described later) in the evaporator chamber 8.
  • the first fan 9 is arranged above the evaporator 7.
  • the first fan 9 is, for example, a turbo fan (rearward fan) which is a centrifugal fan.
  • Refrigerator 1 is provided with a temperature switching chamber air passage 111 (second air passage) on the left side of the first fan 9.
  • the temperature switching chamber air passage 111 extends in the height direction on the back side of the temperature switching chamber 3 and allows the air in the evaporator chamber 8 to flow to the temperature switching chamber discharge ports 12a, 12b, 12c.
  • the temperature switching chamber air passage 111 is formed between the temperature switching chamber 3 and the evaporator chamber 8 so as to be partitioned from the evaporator chamber 8 (see FIG. 4).
  • the lower end of the temperature switching chamber air passage 111 is closed, and the air flowing through the temperature switching chamber air passage 111 and reaching the lower end of the temperature switching chamber air passage 111 is discharged to the temperature switching chamber 3 through the temperature switching chamber discharge port 12c.
  • the refrigerator 1 is provided above the first fan 9 and on the back side of the refrigerating chamber 2 with a refrigerating chamber air passage 110 that sends air that has exchanged heat with the evaporator 7 to the refrigerating chamber 2.
  • the refrigerator 1 is provided with refrigerating chamber discharge ports 11a, 11b, 11c communicating with the refrigerating chamber 2 in front of the refrigerating chamber air passage 110, and the air that has exchanged heat with the evaporator 7 is the refrigerating chamber discharge ports 11a, 11b, 11c. It is supplied to the refrigerating room 2 through.
  • the refrigerator 1 includes an air passage blocking member 101a that controls the opening and closing of the air blowing state to the refrigerating chamber 2.
  • the air passage blocking member 101a is, for example, a damper.
  • the temperature of the refrigerating chamber 2 can be adjusted by adjusting the opening degree by the air passage blocking member 101a.
  • the refrigerator 1 is provided with a second fan 19 above the air passage blocking member 101a, that is, on the downstream side of the air flow of the air passage blocking member 101a.
  • the second fan 19 is, for example, a propeller fan which is an axial fan. The amount of air supplied to the refrigerating chamber 2 is adjusted by driving the second fan 19.
  • the refrigerator 1 is provided with a plurality of temperature switching chamber discharge ports 12a, 12b, 12c (first discharge ports) for discharging the air of the evaporator chamber 8 to the temperature switching chamber 3 in front of the temperature switching chamber air passage 111.
  • the temperature switching chamber discharge ports 12a, 12b, and 12c are formed side by side in the height direction. Specifically, the temperature switching chamber discharge port 12a is formed at the highest position. On the other hand, the temperature switching chamber discharge port 12c is formed at the lowest position.
  • the air that has exchanged heat with the evaporator 7 is supplied to the temperature switching chamber 3 through the temperature switching chamber discharge ports 12a, 12b, 12c.
  • Refrigerator 1 includes an air passage blocking member 101b.
  • the air passage blocking member 101b is arranged in the temperature switching chamber air passage 111, and is arranged above the temperature switching chamber discharge port 12a arranged at the top of the plurality of temperature switching chamber discharge ports 12a, 12b, 12c. It is a thing.
  • the air passage blocking member 101b is, for example, a damper.
  • FIG. 10 is a perspective view of the air passage blocking member 101b provided in the air passage 111 of the temperature switching chamber.
  • the air passage blocking member 101b is fixed to the frame body 81 forming an opening 80 through which air flows, and the frame body 81 so as to be rotatable with respect to the frame body 81, and an elastic plate 82b is arranged on one surface thereof.
  • An opening / closing plate 82 is provided.
  • the opening / closing plate 82 is, for example, a resin plate, and the resin constituting the opening / closing plate 82 is exposed on the surface on the side where the elastic plate 82b is not arranged.
  • the elastic plate 82b is made of a flexible material such as urethane foam or polyethylene foam.
  • the air passage blocking member 101b is configured so that the opening 80 can be closed when the elastic plate 82b comes into contact with the frame body 81 by the rotation of the opening / closing plate 82.
  • the rotation of the opening / closing plate 82 is performed by a stepping motor (not shown) housed in the motor housing portion 83.
  • the opening area of the opening 80 of the air passage blocking member 101b is, for example, 3825 mm 2 (85 mm ⁇ 45 mm), but is not limited thereto.
  • the indoor temperature of the temperature switching chamber 3 can be controlled by opening and closing the air passage blocking member 101b.
  • the indoor temperature of the temperature switching chamber 3 can be set to the refrigerating temperature zone by increasing the time ratio in which the air passage blocking member 101b is closed.
  • the indoor temperature of the temperature switching chamber 3 can be set to the refrigerating temperature zone by increasing the time ratio in which the air passage blocking member 101b is kept open.
  • Refrigerator 1 is provided with a freezer chamber air passage 112 on the right side of the first fan 9.
  • the freezing chamber air passage 112 extends in the height direction on the back side of the freezing chamber 4.
  • the refrigerator 1 is provided with freezer chamber discharge ports 13a, 13b, 13c, 13d in front of the freezer compartment air passage 112.
  • the air that has exchanged heat with the evaporator 7 is supplied to the freezer chamber 4 through the freezer chamber discharge ports 13a, 13b, 13c, and 13d.
  • the refrigerator 1 includes a temperature switching chamber return port 15 (first return port) for returning the air inside the temperature switching chamber 3 to the evaporator chamber 8.
  • a temperature switching chamber return port 15 first return port
  • the air inside the temperature switching chamber 3 can be returned to the evaporator chamber 8 and the returned air can be cooled by the evaporator 7.
  • the temperature switching chamber return port 15 is formed above the evaporator 7 in front view.
  • the center position P1 of the opening height of the temperature switching chamber return port 15 is arranged above the height center position P2 of the evaporator 7.
  • the upper end P3 of the evaporator 7 is arranged below the lower end P4 of the opening of the temperature switching chamber return port 15.
  • the evaporator 7 is a fin tube type heat exchanger, and the height dimension of the evaporator 7 can be considered as the dimension of the fin installation portion.
  • the operation of the refrigerating cycle 48 is stopped.
  • the driving of the first fan 9 and the second fan 19 is also stopped.
  • the evaporator 7 remains cold for some time, so that the cold evaporator 7 can produce cold air. Even if cold air flows downward due to natural convection when such air is generated, the temperature switching chamber return port 15 is formed above the evaporator 7, so that the cold air passes through the temperature switching chamber return port 15. The backflow to the temperature switching chamber 3 can be suppressed. As a result, unintentional overcooling in the temperature switching chamber 3 can be suppressed.
  • the refrigerator 1 is formed in the refrigerating chamber 2 and includes a refrigerating chamber return port 14 (second return port) for returning the air inside the refrigerating chamber 2 to the evaporator chamber 8.
  • the refrigerator 1 includes a return air passage 120 (first air passage) that connects the refrigerating chamber return port 14 and the evaporator chamber 8.
  • the refrigerating chamber return port 14 is formed in front of the return air passage 120.
  • the return air passage 120 extends in the height direction on the back side of the temperature switching chamber 3 and the refrigerating chamber 2.
  • the lower end of the return air passage 120 is open, and the return air passage 120 communicates with the evaporator chamber 8. Therefore, the air flowing downward through the return air passage 120 turns back at the lower end of the evaporator chamber 8, flows upward, contacts the evaporator 7, and then reaches the first fan 9 (see FIG. 12).
  • the temperature switching chamber return port 15 formed in the temperature switching chamber 3 is formed in front of the return air passage 120.
  • the air passage from the temperature switching chamber return port 15 to the evaporator chamber 8 and the refrigerating chamber return port 14 to the evaporator chamber 8 Can be shared with the air passage leading to. As a result, space can be saved and space efficiency can be improved.
  • the refrigerator 1 is provided with freezer compartment return ports 16a and 16b on the left and right sides of the lower back surface of the freezer compartment 4 to return the air that has cooled the freezer compartment 4 to the evaporator chamber 8.
  • the freezer return ports 16a and 16b are formed substantially below the evaporator 7 when viewed from the front. Therefore, the air in the freezer chamber 4 returns to the evaporator chamber 8 from below the evaporator chamber 8 through the freezer chamber return ports 16a and 16b.
  • the air that has returned to the evaporator chamber 8 through the freezer chamber return ports 16a and 16b flows upward and comes into contact with the evaporator 7 and then reaches the first fan 9 (see FIG. 12).
  • Refrigerator 1 is provided with a temperature sensor and a door open / close detection sensor (not shown).
  • the refrigerator 1 includes an operation control device (not shown) that operates the refrigerator 1 based on the values detected by these sensors.
  • the operation control device includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), an I / F (interface), and the like.
  • the operation control device is embodied by the CPU executing a predetermined control program stored in the ROM.
  • FIG. 11 is an enlarged view of the vicinity of the first fan 9 in the evaporator chamber 8 when viewed from the front.
  • the inclination angle of the temperature switching chamber air passage 111 is, for example, 6 ° or more as an angle ⁇ with respect to the vertical direction (vertical direction), and is 18 ° in the illustrated example.
  • 6 ° or more By setting the inclination angle to 6 ° or more, it is possible to make it easier for water to flow downward when water adheres to the bottom surface of the air passage 11 of the temperature switching chamber.
  • the refrigerator 1 has a temperature switching chamber air passage 111 and an evaporator chamber 8 (see FIGS. 9 and 12, not shown in FIG. 11) on the downstream side of the air flow of the air passage blocking member 101b in the temperature switching chamber air passage 111.
  • a communication air passage 115 for communication is provided.
  • one surface on which the elastic plate 82b is arranged is arranged on the side of the evaporator chamber 8, and the other surface on the opposite side to the one surface is the temperature switching chamber discharge ports 12a, 12b. It is arranged in the air passage 111 of the temperature switching chamber so as to be arranged on the side of 12c (see FIG. 5). Even if dew condensation and frost are formed on the opening / closing plate 82 due to the high humidity air of the temperature switching chamber 3, the dew condensation and frost are generated on the side where the elastic plate 82b is not arranged. On the other hand, the elastic plate 82b is in contact with low-temperature, low-humidity air dehumidified by the evaporator 7. Therefore, by arranging the air passage blocking member 101b in this way, dew condensation and frost can be less likely to occur on the elastic plate 82b, and the sealing function of the elastic plate 82b can be ensured.
  • FIG. 12 is a side view showing an enlarged view of the vicinity of the first fan 9 in the evaporator chamber 8.
  • the refrigerator 1 includes an air passage blocking member 101a in the air passage 110 of the refrigerating chamber.
  • the air passage blocking member 101a has the same configuration as the above-mentioned air passage blocking member 101b except that the size of the opening 80 is different.
  • the opening area of the air passage blocking member 101a is, for example, 2800 mm 2 (width 100 mm ⁇ height 28 mm).
  • the air passage blocking member 101a is arranged so that the opening / closing plate 82 opens downward. As a result, even if the dew condensation water generated above the air passage blocking member 101a (downstream of the air flow) flows down, the retention of the dew condensation water by the opening / closing plate 82 can be suppressed. Further, the front edge 110a of the refrigerating chamber air passage 110 is arranged on the back side of the trailing edge 9b of the blade of the first fan 9. As a result, it is possible to prevent the flowing water from the air passage 110 of the refrigerating chamber from dripping onto the blades of the first fan 9.
  • the present invention is not limited to the above-mentioned examples, and includes various modifications. That is, the above-described examples have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. Further, it is possible to add / delete / replace a part of the configuration of the embodiment with another configuration.
  • Refrigerator 10 Insulated box 101a, 101b Air passage blocking member 10a, 10b Front edge 11 Temperature switching chamber air passage 110 Refrigerator chamber air passage 110a Front edge 111 Temperature switching chamber air passage (second air passage) 112 Freezer room air passage 115 Communication air passages 11a, 11b, 11c Refrigerator room discharge port 120 Return air passage (first air passage) 12a, 12b, 12c Temperature switching chamber discharge port (first discharge port) 13a, 13b, 13c, 13d Freezer compartment discharge port 14 Refrigerator chamber return port (second return port) 15 Temperature switching chamber return port (1st return port) 16a, 16b Freezer return port 19 2nd fan 2 Refrigerator room (3rd storage room) 21 Defrost heater 24 Compressor 25 Operation unit 26 Evaporating dish 27 Insulation member 28, 29 Insulation partition wall 29a Steel plate 29b Resin member 2a Door (first door) 2b door (second door) 3a, 4a Door 2c Partition plate 2d Gap 3 Temperature switching room (1st storage room) 31a, 31b, 31

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Refrigerator Housings (AREA)

Abstract

信頼性を向上させた冷蔵庫を提供する。この冷蔵庫は、冷蔵温度帯又は冷凍温度帯の何れかに室内温度を設定可能であり、幅寸法よりも高さ寸法が大きく構成された温度切替室3と、正面視で温度切替室3の隣に配置された冷凍室4と、温度切替室3及び冷凍室4の双方に跨るように温度切替室3及び冷凍室4の背面側に配置され、温度切替室3及び冷凍室4を一体に冷却する蒸発器7と、温度切替室3の室内下方に配置された前縁放熱配管50d及び電気ヒータ93とを備える。

Description

冷蔵庫
 本発明は冷蔵庫に関する。
 冷蔵温度帯又は冷凍温度帯の何れかに室内温度を設定可能な貯蔵室を備えた冷蔵庫が知られている。特許文献1には、冷蔵庫本体と、この冷蔵庫本体の上部に設けられ、観音開きの第1扉を有する第1貯蔵室と、この第1貯蔵室の下方に上下区画壁を介して並設され、左右区画壁により区画された、第2扉を有する第2貯蔵室及び第3扉を有する第3貯蔵室と、を備え、前記第2扉と前記第3扉の上端の床面からの高さを950±50mmとし、前記第1扉、前記第2扉と前記第3扉を、それぞれ前記冷蔵庫本体の幅寸法に対し均等に分割したことを特徴とする冷蔵庫が記載される。
特開2005-274073号公報
 特許文献1に記載の冷蔵庫は、第3貯蔵室として、複数の異なる温度帯に切り替え可能な切替室を備える(特許文献1の段落0030参照)。切替室の高さ寸法は、幅寸法よりも大きい(同図7参照)。従って、冷蔵庫の運転状態によっては、切替室の内部で空気が自然対流によって下方に流れ、温度分布が大きくなり易い。この結果、切替室の下方に冷え過ぎが生じて冷却むらが生じ易くなり、冷蔵庫の信頼性が低下する。
 本発明が解決しようとする課題は、信頼性を向上させた冷蔵庫の提供である。
 本発明の冷蔵庫は、冷蔵温度帯又は冷凍温度帯の何れかに室内温度を設定可能であり、幅寸法よりも高さ寸法が大きく構成された第1貯蔵室と、正面視で前記第1貯蔵室の隣に配置された第2貯蔵室と、前記第1貯蔵室及び前記第2貯蔵室の双方に跨るように前記第1貯蔵室及び前記第2貯蔵室の背面側に配置され、前記第1貯蔵室及び前記第2貯蔵室を一体に冷却する冷却器と、前記第1貯蔵室の室内下方に配置された第1加熱機構とを備える。
本実施形態の冷蔵庫の正面図である。 本実施形態の冷蔵庫内部の正面図である。 図1のA-A線断面図である。 図1のB-B線断面図である。 本実施形態の冷蔵庫に備えられる冷凍サイクルを説明する図である。 凝縮冷媒配管の配置場所を説明する図である。 温度切替室と冷凍室とを区切る断熱仕切壁の水平方向への断面図である。 温度切替室での加熱機構の配置部位を説明する図である。 第1貯蔵室、第2貯蔵室及び第3貯蔵室と冷却器室との間でやり取りされる空気の流れを説明する図である。 温度切替室送風路に備えられる風路閉塞部材の斜視図である。 正面視で冷却器室における第1ファンの近傍を拡大して示す図である。 側面視で冷却器室における第1ファンの近傍を拡大して示す図である。
 以下、本発明を実施するための形態(本実施形態)を説明する。ただし、本発明は以下の内容及び図示の内容になんら限定されず、本発明の効果を著しく損なわない範囲で任意に変形して実施できる。本発明は、異なる実施形態同士を組み合わせて実施できる。以下の記載において、異なる実施形態において同じ部材については同じ符号を付し、重複する説明は省略する。また、同じ機能のものについては同じ名称を使用し、重複する説明は省略する。以下に示す断面図において、図示の簡略化のために、ハッチングの図示を省略することがある。
 図1は、本実施形態の冷蔵庫1の正面図である。A-A線については図3を参照しながら、B-B線については図4を参照しながら、後記する。冷蔵庫1の外形寸法は、例えば、幅900mm、奥行き788mm、高さ1840mmであるが、これに限定されない。詳細は後記するが、冷蔵庫1は、温度切替室3の下方に電気ヒータ93及び前縁放熱配管50d(図8参照。いずれも第1加熱機構91)を備える。これにより、温度切替室3の下方を加熱でき、温度切替室3での冷却むらを抑制できる。以下、便宜のため、はじめに冷蔵庫1の全体構成、温度切替室3及び蒸発器室8等の各室の構成を説明し、その後、温度切替室3の下方に配置される第1加熱機構91について説明する。
 冷蔵庫1は、断熱箱体10の正面側に、開けることで冷蔵室2(図2参照)を露出可能な扉2a,2bを備える。扉2a(第1扉)は、冷蔵庫1の一端側に正面側へ回動可能に固定される。扉2b(第2扉)が、冷蔵庫1の他端側に正面側へ回動可能に固定される。また、冷蔵庫1は、開けることで温度切替室3(後記する)を露出可能な扉3aと、開けることで冷凍室4(後記する)を露出可能な扉4aとを備える。扉3aは、扉2aと同じ側(一端側)に正面側へ回動可能に固定される。扉4aは、扉2bと同じ側(他端側)に正面側へ回動可能に固定される。扉2a,2b,3a,4aの内部には、主に発泡断熱材であるポリウレタンフォームが充填される。
 冷蔵庫1は、扉2aの庫外側表面に、庫内の温度設定の操作を行う操作部25を備える。操作部25への操作により、温度切替室3の室内温度を設定できる。操作部25の高さ位置(床面からの高さ)は、例えば、下端が1200mm、上端が1300mmであるがこれに限定されない。
 図2は、本実施形態の冷蔵庫1内部の正面図である。図2は、上記図1において扉2a,2b,3a,4aを外した状態の正面図に相当する。
 冷蔵庫1は、断熱箱体10の内部に、冷蔵室2(第3貯蔵室)と、冷蔵室2の下部に左右に併設された温度切替室3(第1貯蔵室)及び冷凍室4(第2貯蔵室)とを備える。冷蔵室2、温度切替室3及び冷凍室4は、いずれも、幅寸法よりも高さ寸法が大きく構成される。図示の例では、温度切替室3の幅寸法と冷凍室4の幅寸法とは同じである。また、温度切替室3の高さ寸法と冷凍室4の高さ寸法とは同じである。具体的には例えば、温度切替室3及び冷凍室4の幅寸法Wはいずれも例えば355mm、高さ寸法Hは例えば665mmであるが、これらに限定されない。
 冷蔵室2は、室内温度を冷蔵温度帯に設定される。冷蔵室2に設定される冷蔵温度帯は、例えば0℃以上であり、具体的には例えば平均的に4℃程度である。温度切替室3は、冷蔵温度帯又は冷凍温度帯の何れかに室内温度を設定可能である。操作部25での使用者の選択により、温度切替室3は冷蔵室又は冷凍室として使用される。温度切替室3に設定される冷蔵温度帯は、例えば冷蔵室2と同じ冷蔵温度帯であるが、温度切替室3の室内温度は冷蔵室2の室内温度と同じでなくてもよい。温度切替室3に設定される冷凍温度帯は、例えば0℃未満であり、具体的には例えば-18℃程度である。冷凍室4は、正面視で温度切替室3の隣に配置され、室内温度を冷凍温度帯に設定される。冷凍室4に設定される冷凍温度帯は、例えば冷凍室4と同じ冷凍温度帯であるが、冷凍室4の室内温度は冷凍温度帯に設定された温度切替室3の室内温度と同じでなくてもよい。
 冷蔵室2と温度切替室3及び冷凍室4とは、左右方向に延在する断熱仕切壁28により区切られる。また、温度切替室3と冷凍室4は、上下方向に延在する断熱仕切壁29により区切られる。冷蔵室2の上部は、収納棚31a,31b,31cにより区画されることで貯蔵スペースが形成される。冷蔵庫1は、収納棚31a,31b,31cによる区画によって形成された各貯蔵スペースに空気を吹き出す冷蔵室吐出口11a,11b,11cを備える。
 冷蔵室2の下部左側には、扉2aを開けることで使用可能な上下二段の引出し式の収納容器32a,32b(第1容器)が備えられる。収納容器32a,32bの幅寸法(内寸)は例えば320mmである。また、冷蔵室2の下部右側の上段には、扉2bを開けることで使用可能な引き出し式の収納容器32c(第2容器)が備えられる。収納容器32cの下方には、前面に配置された蓋体(図示しない)により開閉可能な密閉容器33(第2容器)が備えられる。密閉容器33も、扉2bを開けることで使用可能に構成される。収納容器32cの幅寸法(内寸)は例えば320mm、密閉容器33の幅寸法(内寸)は例えば300mmである。温度切替室3及び冷凍室4の内部には、それぞれ上下三段の引き出し式の収納容器34a,34b,34c,35a,35b,35cが備えられる。
 冷蔵庫1は、冷凍室4の上部左側に自動製氷機40を備える。また、冷蔵庫1は、製氷用の水を貯水する貯水タンク42(第3容器)を備える。貯水タンク42の幅寸法(内寸)は65mmである。貯水タンク42は、収納容器32a,32b(第1容器)と収納容器32c及び密閉容器33(いずれも第2容器)との間に配置される。貯水タンク42の水が給水ポンプ(図示しない)によって自動製氷機40に供給されることで、製氷が行われる。自動製氷機40で生成した氷は、モータ(図示しない)による製氷皿40aの回動により、収納容器35aに離氷される。
 図3は、図1のA-A線断面図である。収納容器36c、冷蔵室送風路110、及び戻り風路120については、それぞれ図4、図9及び図10を参照しながら後記する。扉2a及び扉2bを閉めた際、扉2aと扉2bとの間にはすき間2dが形成される。そこで、冷蔵庫1は、扉2a又は扉2bの何れかに接続され、扉2a及び扉2bを閉じたときにすき間2dを閉塞するように配置される仕切り板2cを備える。仕切り板2cは、扉2a及び扉2bの背面側に配置される。例えば扉2aを開ける際、仕切り板2cは扉2bに接続された状態が維持され、扉2aと仕切り板2cとの分離により扉2aが開かれる。また、例えば扉2bを開ける際、仕切り板2cは扉2aに接続された状態が維持され、扉2bと仕切り板2cとの分離により扉2bが開かれる。
 貯水タンク42(第3容器)は、仕切り板2cの背面側に配置される。貯水タンク42を収納容器32a,32bと収納容器32c及び密閉容器33との間であって仕切り板2cの背面側に配置することで、扉2a,2bのいずれかのみを開けたときに手が届きにくい部位に貯水タンク42を配置できる。手が届きにくい部位には野菜等の食材を収納し難く無駄空間になり易いものの、このような部位に貯水タンク42を配置することで、冷蔵庫1の内部でのスペース効率を向上できる。なお、調味料等の小物入れ用収納容器、卵収納容器等を第3容器として設置することで、スペース効率を向上させてもよい。
 図4は、図1のB-B線断面図である。冷蔵室送風路110、第2ファン19、第1ファン9及び温度切替室送風路111については、図8及び図9を参照しながら後記する。冷蔵庫1は、扉2aの庫内側に、収納容器36a,36b,36cが備えられる。図示はしないが、扉2bの庫内側にも、収納容器36a,36b,36cと同じ高さ位置に収納容器が備えられる。冷蔵庫1は、扉3aの庫内側に、収納容器34が備えられる。図示はしないが、扉3bの庫内側にも、収納容器34と同じ高さ位置に収納容器が備えられる。
 冷蔵庫1は、温度切替室3及び冷凍室4の背面側において温度切替室3及び冷凍室4の双方に跨るように、蒸発器室8を備える。蒸発器室8は、温度切替室3及び冷凍室4の背面側において少なくとも温度切替室3(図示の例では温度切替室3及び冷凍室4の双方)と連通して配置される。冷蔵庫1は、蒸発器室8の内部に蒸発器7を備える。蒸発器7は、温度切替室3及び冷凍室4の双方に跨るように温度切替室3及び冷凍室4の背面側に配置され、温度切替室3及び冷凍室4を背面側から一体に冷却するものである。蒸発器7は、詳細は後記するが、圧縮機24とともに冷凍サイクル48(図5参照)を構成する。
 冷蔵庫1は、蒸発器7の下方に、蒸発器7に成長した霜を溶かす除霜ヒータ21を備える。霜が溶けて生成した液体の水は、蒸発皿26(図6参照)に排水される。冷蔵庫1は、蒸発器室8と温度切替室3との間に断熱部材27を備える。冷蔵庫1は、蒸発器室8の下方に機械室5を備え、機械室5の内部に圧縮機24を備える。圧縮機24は、蒸発器7とともに冷凍サイクル48を構成する。冷凍サイクル48については、図5を参照しながら説明する。
 図5は、本実施形態の冷蔵庫1に備えられる冷凍サイクル48を説明する図である。冷凍サイクル48は、圧縮機24と、放熱によって凝縮する凝縮機構としての凝縮冷媒配管50と、蒸発器7と、減圧機構としてのキャピラリチューブ53とを含む。凝縮冷媒配管50は、除霜水加熱配管50a、機械室放熱器50b、側面放熱配管50c、前縁放熱配管50d、及び、背面放熱配管50eを含む。凝縮冷媒配管50は、冷蔵庫1の前面、側面及び背面の各面端部に沿って配置される。冷蔵庫1における凝縮冷媒配管50の配置場所について、図6を参照しながら説明する。
 図6は、凝縮冷媒配管50の配置場所を説明する図である。図示の簡略化のため、凝縮冷媒配管50の一部の図示を省略している。除霜水加熱配管50aは、機械室5内の蒸発皿26内に設置される。機械室放熱器50bはフィンチューブ式の熱交換器であり、機械室5に設置される。機械室放熱器50bは、機械室ファン(図示しない)により通風される。側面放熱配管50cは、断熱箱体10の左側面を形成する断熱箱体10の内側に配置される。前縁放熱配管50dは、断熱箱体10のうち、温度切替室3の前縁を形成する前縁部10a、冷凍室4の前縁を形成する前縁部10b、及び、断熱仕切壁28,29の前縁の内側に配置される。前縁放熱配管50dは、温度切替室3及び冷凍室4の開口を囲うように配置される。背面放熱配管50eは、断熱箱体10の背面を形成する断熱箱体10の内側に配置される。前縁放熱配管50dを含む断熱仕切壁29について、図7を参照しながら説明する。
 図7は、温度切替室3と冷凍室4とを区切る断熱仕切壁29の水平方向への断面図である。断熱仕切壁29は、前縁側に配置される鋼板29aと、温度切替室3及び冷凍室4の各室側の表面に配置される樹脂部材29bとを備える。断熱仕切壁29の内部には、発泡ポリスチレン等の断熱部材72が実装される。鋼板29aの表面内側には、鋼板29aに略接触するように前縁放熱配管50dが配置される。鋼板29aの厚さは例えば0.8mmであるがこれに限定されない。鋼板29aに前縁放熱配管50dを略接触させることで、前縁放熱配管50dの熱が良好に伝わり、断熱仕切壁29の温度切替室3側の前縁近傍の結露を抑制できる。
 鋼板29aは、左右両端から背面側に延在する曲げ部71aを備える。曲げ部71aの奥行方向の寸法はL1である。L1は例えば3mm以上20mm以下(図示の例では10mm)である。L1をこの範囲にすることで、断熱仕切壁29の温度切替室3側の前縁近傍での結露抑制と、温度切替室3での十分な冷蔵及び冷凍性能の確保とを両立し易くできる。
 図5に戻って、冷凍サイクル48では、圧縮機24から排出された高温高圧の冷媒は、凝縮冷媒配管50を通って放熱し、凝縮する。このとき、例えば前縁放熱配管50dを冷媒が流れる際、高温高圧の冷媒により、温度切替室3の下方を含む前縁部10a(図6参照))が加熱される。凝縮冷媒配管50を流れることで凝縮した冷媒は、ドライヤ51での水分除去後、キャピラリチューブ53で減圧される。これにより低温冷媒が生成し、生成した低温冷媒は蒸発器7を流れる。これにより蒸発器7が低温になり、低温になった蒸発器7は温度切替室3及び冷凍室4を冷却する。蒸発器7で蒸発した冷媒は、気液分離器54での気液分離及び熱交換部57でのキャピラリチューブ53と接触による熱交換後、圧縮機24に戻される。
 図8は、温度切替室3での加熱機構の配置部位を説明する図である。冷蔵庫1は、温度切替室3の室内下方に、第1加熱機構91を備える。第1加熱機構91により、室内下方が冷えすぎた場合に室内下方を加熱でき、冷却むらを抑制できる。第1加熱機構91は、例えば、凝縮冷媒配管50又は電気ヒータ93の少なくとも一方を含む。図示の例では、第1加熱機構91は、凝縮冷媒配管50としての前縁放熱配管50dと、温度切替室3の底面から背面にかけて面状に配置された電気ヒータ93との双方を含むが、いずれか一方のみでもよい。
 凝縮冷媒配管50を流れる冷媒の熱、又は、電気ヒータ93から生じる熱の少なくとも一方により、温度切替室3の室内下方を加熱できる。中でも、凝縮冷媒配管50を流れる冷媒の熱を使用することで、冷凍サイクル48(図5参照)で生じた熱を使用でき、加熱のための消費電力を抑制できる。一方で、電気ヒータ93を使用することで、蒸発器7を冷媒が流通していない状態、即ち、蒸発器7の運転停止中であっても加熱できる。
 電気ヒータ93は、温度切替室3の下方及び背面側に配置される断熱部材27(図8では図示しない)の表面に配置される。電気ヒータ93は、例えば、発熱線(図示しない。一例としてシリコンコードヒータ)とアルミニウム箔とを両面粘着テープの一面で固定し、両面粘着テープの他面を加熱面に貼付可能としたアルミニウム箔ヒータである。アルミニウム箔が設置される面が有効加熱面となる。
 第1加熱機構91は、複数の温度切替室吐出口12a,12b,12cのうちの最も下に配置された温度切替室吐出口12cの下方に配置される。詳細は図9を参照しながら後記するが、風路閉塞部材101bによって温度切替室送風路111を閉塞した際、温度切替室送風路111内の比較的冷たい空気は最も下に配置された温度切替室吐出口12cを通じて温度切替室3に吐出する。このため、最も下に配置された温度切替室吐出口12cの下方に第1加熱機構91を配置することで、最も下に配置された温度切替室吐出口12cの下方側での冷え過ぎを抑制できる。なお、温度切替室吐出口12a,12b,12cから温度切替室3に吐出された空気は、温度切替室戻り口15を通じ、戻り風路120に入る。
 冷蔵庫1は、温度切替室3の冷凍室4側の断熱仕切壁29(隔壁)に配置された第2加熱機構92を備える。第2加熱機構92は、断熱仕切壁29の内部の断熱部材72(図7参照)の表面に配置される。第2加熱機構92を備えることで、冷蔵温度帯に設定された温度切替室3に野菜等の高湿食材を収納した場合に、高湿食材に起因する結露を抑制できる。第2加熱機構92は、例えば電気ヒータ93と同じ種類の電気ヒータである。
 冷蔵庫1は、温度切替室3の背面側において正面視で少なくとも蒸発器7を覆う位置に、第3加熱機構90を備える。第2加熱機構92は、断熱部材27(図4参照)の表面に配置される。第3加熱機構90を備えることで、冷蔵温度帯に設定された温度切替室3に野菜等の高湿食材を収納した場合に、高湿食材に起因する結露を抑制できる。第3加熱機構90は、例えば電気ヒータ93と同じ種類の電気ヒータである。
 温度切替室3等が十分に冷却された場合、蒸発器7への冷媒の流通が停止し、蒸発器7の運転が停止する。この場合、蒸発器7は冷えたままであるから、温度切替室3等への内部に空気を吐出しなくても、温度切替室3の内部で蒸発器7の付近が冷却され、温度切替室3の内部で自然対流が生じる。この結果、特に冷蔵温度帯の設定時に下方が冷え易くなる。そこで、第1加熱機構91(蒸発器7の運転停止中には特に電気ヒータ93)によって温度切替室3の下方を加熱することで、温度切替室3での冷却むらを抑制できる。また、例えば、下方が冷えすぎたときに蒸発器7の運転を再開し、凝縮冷媒配管50(特に前縁放熱配管50d)に高温の冷媒を流すことでも、温度切替室3の下方を加熱できる。
 特に、冷蔵庫1では、蒸発器7は温度切替室3及び冷凍室4の双方に跨るように配置される。このため、温度切替室3での冷却は冷凍室4での冷却とともに行われるから、温度切替室3のみを冷却する蒸発器(図示しない)を備える冷蔵庫と比べ、温度切替室3での意図しない冷却が生じ易い。このため、第1加熱機構91によって温度切替室3の下方を加熱することで、温度切替室3での冷却むらを抑制できる。
 また、図示の例では、温度切替室3の隣に冷凍室4が配置される。例えば温度切替室3が冷蔵温度帯に設定されたとき、温度切替室3の室内温度よりも冷凍室4の室内温度が低い。このため、蒸発器7の運転停止時、温度切替室3は冷凍室4によって更に冷却され易い。この結果、温度切替室3の内部で生じる自然対流によって下方が更に冷え易くなる。そこで、第1加熱機構91によって、温度切替室3での冷却むらを抑制できる。
 図9は、温度切替室3、冷凍室4及び冷蔵室2と蒸発器室8との間でやり取りされる空気の流れを説明する図である。図9は、断熱箱体10の内部構造を正面視で示すものであり、図9中の破線は、温度切替室3、冷凍室4及び冷蔵室2の背面側に形成される部材(例えば蒸発器室8に収容される第1ファン9等)を示す。また、図9において、実線矢印は温度切替室3、冷凍室4及び冷蔵室2のそれぞれの内部での空気の流れを示し、破線矢印は温度切替室3、冷凍室4及び冷蔵室2の背面側での空気の流れを示す。
 はじめに、蒸発器室8から温度切替室3、冷凍室4及び冷蔵室2への空気の吹き出しについて説明する。冷蔵庫1は、蒸発器室8において温度切替室送風路111(後記する)の入口付近に、温度切替室送風路111に空気を流す第1ファン9(送風ファン)を備える。第1ファン9は、蒸発器7の上方に配置される。第1ファン9は、例えば遠心ファンであるターボファン(後向きファン)である。
 冷蔵庫1は、第1ファン9の左方に、温度切替室送風路111(第2風路)を備える。温度切替室送風路111は、温度切替室3の背面側に高さ方向に延在するとともに蒸発器室8の空気を温度切替室吐出口12a,12b,12cに流すものである。温度切替室送風路111は、温度切替室3と蒸発器室8との間に、蒸発器室8とは区画されて形成される(図4参照)。温度切替室送風路111の下端は閉塞され、温度切替室送風路111を流れて温度切替室送風路111の下端に至った空気は、温度切替室吐出口12cを通じて温度切替室3に吐出する。
 冷蔵庫1は、第1ファン9の上方であって冷蔵室2の背面側に、蒸発器7と熱交換した空気を冷蔵室2に送る冷蔵室送風路110を備える。冷蔵庫1は、冷蔵室送風路110の前面に、冷蔵室2と連通する冷蔵室吐出口11a,11b,11cを備え、蒸発器7と熱交換した空気は、冷蔵室吐出口11a,11b,11cを通じ、冷蔵室2に供給される。
 冷蔵庫1は、冷蔵室2への送風状態を開閉制御する風路閉塞部材101aを備える。風路閉塞部材101aは例えばダンパである。風路閉塞部材101aによる開度調整により、冷蔵室2の温度調整が可能である。また、冷蔵庫1は、風路閉塞部材101aの上方、即ち、風路閉塞部材101aの空気流れ下流側に、第2ファン19を備える。第2ファン19は例えば軸流ファンであるプロペラファンである。第2ファン19の駆動により、冷蔵室2に供給される空気の量が調整される。
 冷蔵庫1は、温度切替室送風路111の前面に、蒸発器室8の空気を温度切替室3に吐出する複数の温度切替室吐出口12a,12b,12c(第1吐出口)を備える。温度切替室吐出口12a,12b,12cは、高さ方向に並んで形成される。具体的には、最も高い位置には、温度切替室吐出口12aが形成される。一方で、最も低い位置には、温度切替室吐出口12cが形成される。蒸発器7と熱交換した空気は、温度切替室吐出口12a,12b,12cを通じ、温度切替室3に供給される。
 冷蔵庫1は、風路閉塞部材101bを備える。風路閉塞部材101bは、温度切替室送風路111に配置され、複数の温度切替室吐出口12a,12b,12cのうちの最も上に配置された温度切替室吐出口12aの上方に配置されたものである。風路閉塞部材101bは例えばダンパである。温度切替室吐出口12a,12b,12c、温度切替室送風路111及び風路閉塞部材101bを備えることで、温度切替室吐出口12a,12b,12cを通じた温度切替室3への空気の供給を制御できる。
 図10は、温度切替室送風路111に備えられる風路閉塞部材101bの斜視図である。風路閉塞部材101bは、空気が流れる開口80を形成する枠体81と、枠体81に対し回動可能になるように枠体81に固定されるとともに一方の面に弾性板82bを配置した開閉板82とを備える。開閉板82は例えば樹脂板であり、弾性板82bを配置していない側の面には、開閉板82を構成する樹脂が露出する。弾性板82bは、例えば発泡ウレタン、発泡ポリエチレン等の柔軟な材料により構成される。
 風路閉塞部材101bは、開閉板82の回動により弾性板82bが枠体81に接触することで開口80を閉塞可能に構成される。開閉板82の回動は、モータ収納部83に収容されたステッピングモータ(図示しない)により行われる。風路閉塞部材101bの開口80の開口面積は例えば3825mm(85mm×45mm)であるがこれに限定されない。
 図9に戻って、温度切替室3の室内温度は、風路閉塞部材101bの開閉により制御できる。例えば、風路閉塞部材101bを閉じた状態とする時間比率を増やすことで、温度切替室3の室内温度を冷蔵温度帯に設定できる。一方で、風路閉塞部材101bを開けた状態とする時間比率を増やすことで、温度切替室3の室内温度を冷凍温度帯に設定できる。
 冷蔵庫1は、第1ファン9の右方に、冷凍室送風路112を備える。冷凍室送風路112は、冷凍室4の背面側に高さ方向に延在するものである。冷蔵庫1は、冷凍室送風路112の前面に、冷凍室吐出口13a,13b,13c,13dを備える。蒸発器7と熱交換した空気は、冷凍室吐出口13a,13b,13c,13dを通じ、冷凍室4に供給される。
 次に、温度切替室3、冷凍室4及び冷蔵室2から蒸発器室8への空気の戻りについて説明する。冷蔵庫1は、温度切替室3の内部の空気を蒸発器室8に戻す温度切替室戻り口15(第1戻し口)を備える。温度切替室戻り口15及び蒸発器室8を備えることで、温度切替室3の内部の空気を蒸発器室8に戻し、戻された空気を蒸発器7で冷却できる。
 温度切替室戻り口15は、正面視で蒸発器7よりも上方に形成される。図示の例では、温度切替室戻り口15の開口高さの中心位置P1は、蒸発器7の高さ中心位置P2よりも上方に配置する。さらに、図示の例では、蒸発器7の上端P3は、温度切替室戻り口15の開口の下端P4よりも下方に配置される。なお、蒸発器7はフィンチューブ式の熱交換器であり、蒸発器7の高さ寸法は、フィン設置部の寸法と考えることができる。
 冷蔵室2、温度切替室3及び冷凍室4のいずれもが十分に冷却された場合、冷凍サイクル48の運転が停止される。冷凍サイクル48の運転時には、第1ファン9及び第2ファン19の駆動も停止する。冷凍サイクル48の運転停止後、蒸発器7は暫くは冷たいままであるため、冷たい蒸発器7によって冷たい空気が生じ得る。このような空気が生じた場合に冷たい空気が自然対流によって下方に流れても、温度切替室戻り口15を蒸発器7よりも上方に形成することで、温度切替室戻り口15を通じた冷たい空気の温度切替室3への逆流を抑制できる。これにより、温度切替室3での意図しない冷え過ぎを抑制できる。
 冷蔵庫1は、冷蔵室2に形成され、冷蔵室2の内部の空気を蒸発器室8に戻す冷蔵室戻り口14(第2戻し口)を備える。冷蔵庫1は、冷蔵室戻り口14と蒸発器室8とを接続する戻り風路120(第1風路)を備える。冷蔵室戻り口14は、戻り風路120の前面に形成される。戻り風路120は、温度切替室3及び冷蔵室2の背面側に高さ方向に延在する。戻り風路120の下端は開口し、戻り風路120は蒸発器室8と連通する。従って、戻り風路120を下方に流れる空気は、蒸発器室8の下端で折り返し、上方に流れて蒸発器7に接触した後、第1ファン9に至る(図12参照)。
 ここで、温度切替室3に形成された温度切替室戻り口15は、戻り風路120の前面に形成される。戻り風路120に温度切替室戻り口15及び冷蔵室戻り口14を形成することで、温度切替室戻り口15から蒸発器室8に至る風路と、冷蔵室戻り口14から蒸発器室8に至る風路とを共通化できる。これにより、省スペース化を図ることができ、スペース効率を向上できる。
 冷蔵庫1は、冷凍室4の背面下部の左右に、冷凍室4を冷却した空気を蒸発器室8に戻す冷凍室戻り口16a,16bを備える。冷凍室戻り口16a,16bは、正面視で蒸発器7のほぼ下方に形成される。従って、冷凍室4の空気は、冷凍室戻り口16a,16bを通じて蒸発器室8の下方から蒸発器室8に戻る。冷凍室戻り口16a,16bを通じて蒸発器室8に戻った空気は、上方に流れて蒸発器7に接触した後、第1ファン9に至る(図12参照)。
 冷蔵庫1は、いずれも図示しない温度センサ及び扉開閉検知センサを備える。冷蔵庫1は、これらのセンサによる検出値に基づき冷蔵庫1の運転を行う運転制御装置(図示しな)を備える。運転制御装置は、いずれも図示はしないが、例えばCPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、I/F(インターフェイス)等を備えて構成される。運転制御装置は、ROMに格納されている所定の制御プログラムがCPUによって実行されることにより具現化される。
 図11は、正面視で蒸発器室8における第1ファン9の近傍を拡大して示す図である。第1ファン9は翼の半径がL2(本実施例ではL2=60mm)であり、正面視で左回りに回転するように配置される。風路閉塞部材101bの開口80(図10参照))の高さL3(本実施例ではL3=85mm)は、第1ファン9の半径以上かつ第1ファン9の直径以下である。このようにすることで、温度切替室送風路111に空気を流し易くできるとともに、温度切替室送風路111において空気がほとんど流れない部位を削減し、スペース効率を向上できる。
 第1ファン9の翼の中心軸9aから風路閉塞部材101bの開口80の上端80aまでの寸法L4(本実施例ではL4=135mm)は、中心軸9aから風路閉塞部材101bの開口80の下端80bまでの寸法L5(本実施例ではL5=110mm)よりも長くなっている。このようにすることで、第1ファン9の回転によって左上方向に流れた空気は、開口80を通り、左下に向かう傾斜を有する温度切替室送風路111を流れる。温度切替室送風路111の傾斜角は、上下方向(鉛直方向)に対する角度θとして例えば6°以上であり、図示の例では18°である。傾斜角を6°以上にすることで、温度切替室送風路11の底面に水が付着した時に水を下方に流し易くできる。
 冷蔵庫1は、温度切替室送風路111において風路閉塞部材101bの空気流れ下流側に、温度切替室送風路111と蒸発器室8(図9、図12参照。図11では図示しない)とを連通する連通風路115を備える。連通風路115を備えることで、温度切替室送風路111の閉塞時に風路閉塞部材101bから空気が漏れたとしても、高圧側の温度切替室送風路111から低圧側の第1ファン9の上流側に空気を供給できる。これにより、温度切替室3への意図しない空気の供給を抑制し、温度切替室3での意図しない冷え過ぎを抑制できる。
 風路閉塞部材101bは、弾性板82bを配置した一方の面が蒸発器室8の側に配置されるとともに前記一方の面とは反対側の他方の面が温度切替室吐出口12a,12b,12c(図5参照)の側に配置されるように、温度切替室送風路111に配置される。もし、温度切替室3の高湿の空気によって開閉板82に結露及び霜が生じたとしても、結露及び霜は弾性板82bを配置していない側に生じる。一方で、弾性板82bには、蒸発器7によって除湿された低温低湿の空気が接触する。このため、風路閉塞部材101bをこのように配置することで、弾性板82bには結露及び霜が生じ難くでき、弾性板82bによるシール機能を確保できる。
 図12は、側面視で蒸発器室8における第1ファン9の近傍を拡大して示す図である。冷蔵庫1は、冷蔵室送風路110に、風路閉塞部材101aを備える。風路閉塞部材101aは、開口80の大きさが異なること以外は、上記の風路閉塞部材101bと同じ構成を有する。風路閉塞部材101aの開口面積は例えば2800mm(幅100mm×高さ28mm)である。
 風路閉塞部材101aは、開閉板82が下側に開くように配置される。これにより、風路閉塞部材101aの上方(空気流れ下流)で生じた結露水が流下しても、開閉板82による結露水の滞留を抑制できる。また、冷蔵室送風路110の前縁110aは、第1ファン9の翼の後縁9bより背面側に配置する。これにより、冷蔵室送風路110からの流下水が第1ファン9の翼に滴下することを抑制できる。
 以上で、実施例を説明したが、本発明は前述した実施例に限定されるものではなく、様々な変形例が含まれる。すなわち、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
1 冷蔵庫
10 断熱箱体
101a,101b 風路閉塞部材
10a,10b 前縁部
11 温度切替室送風路
110 冷蔵室送風路
110a 前縁
111 温度切替室送風路(第2風路)
112 冷凍室送風路
115 連通風路
11a,11b,11c 冷蔵室吐出口
120 戻り風路(第1風路)
12a,12b,12c 温度切替室吐出口(第1吐出口)
13a,13b,13c,13d 冷凍室吐出口
14 冷蔵室戻り口(第2戻し口)
15 温度切替室戻り口(第1戻し口)
16a,16b 冷凍室戻り口
19 第2ファン
2 冷蔵室(第3貯蔵室)
21 除霜ヒータ
24 圧縮機
25 操作部
26 蒸発皿
27 断熱部材
28,29 断熱仕切壁
29a 鋼板
29b 樹脂部材
2a 扉(第1扉)
2b 扉(第2扉)
3a,4a 扉
2c 仕切り板
2d すき間
3 温度切替室(第1貯蔵室)
31a,31b,31c 収納棚
32a,32b 収納容器(第1容器)
32c 収納容器(第2容器)
33 密閉容器(第2容器)
34a,34b,34c,35a,35b,35c 収納容器
37 外気温度センサ
38 外気湿度センサ
4 冷凍室(第2貯蔵室)
40 自動製氷機
40a 製氷皿
41 貯蔵室温度センサ
42 貯水タンク(第3容器)
43 冷凍室温度センサ
44 温度切替室温度センサ
48 冷凍サイクル
5 機械室
50 凝縮冷媒配管(第1加熱機構、冷凍サイクル)
50a 除霜水加熱配管
50b 機械室放熱器
50c 側面放熱配管
50d 前縁放熱配管(第1加熱機構)
50e 背面放熱配管
51 ドライヤ
53 キャピラリチューブ
54 気液分離器
57 熱交換部
7 蒸発器(冷却器)
71a 曲げ部
72 断熱部材
8 蒸発器室(冷却器室)
80 開口
80a 上端
80b 下端
81 枠体
82 開閉板
82b 弾性板
83 モータ収納部
9 第1ファン(送風ファン)
90 第3加熱機構
91 第1加熱機構
92 第2加熱機構
93 電気ヒータ(第1加熱機構)
9a 中心軸
9b 後縁

Claims (12)

  1.  冷蔵温度帯又は冷凍温度帯の何れかに室内温度を設定可能であり、幅寸法よりも高さ寸法が大きく構成された第1貯蔵室と、
     正面視で前記第1貯蔵室の隣に配置された第2貯蔵室と、
     前記第1貯蔵室及び前記第2貯蔵室の双方に跨るように前記第1貯蔵室及び前記第2貯蔵室の背面側に配置され、前記第1貯蔵室及び前記第2貯蔵室を一体に冷却する冷却器と、
     前記第1貯蔵室の室内下方に配置された第1加熱機構とを備える
     冷蔵庫。
  2.  凝縮機構としての凝縮冷媒配管と、蒸発器としての前記冷却器とを含む冷凍サイクルを備え、
     前記第1加熱機構は、前記凝縮冷媒配管又は電気ヒータの少なくとも一方を含む
     請求項1に記載の冷蔵庫。
  3.  前記第1貯蔵室の前記第2貯蔵室側の隔壁に配置された第2加熱機構を備える
     請求項1又は2に記載の冷蔵庫。
  4.  前記第1貯蔵室及び前記第2貯蔵室の背面側において少なくとも前記第1貯蔵室と連通して配置されるとともに、前記冷却器を内部に備える冷却器室と、
     前記第1貯蔵室の内部の空気を前記冷却器室に戻す第1戻し口とを備える
     請求項1~3の何れか1項に記載の冷蔵庫。
  5.  前記第1戻し口は、正面視で前記冷却器よりも上方に形成される
     請求項4に記載の冷蔵庫。
  6.  室内温度を冷蔵温度帯に設定された第3貯蔵室と、
     前記第3貯蔵室に形成され、前記第3貯蔵室の内部の空気を前記冷却器室に戻す第2戻し口と、
     前記第2戻し口と前記冷却器室とを接続する第1風路とを備え、
     前記第1戻し口は、前記第1風路に形成される
     請求項4又は5に記載の冷蔵庫。
  7.  前記冷却器室の空気を前記第1貯蔵室に吐出する複数の第1吐出口と、
     前記第1貯蔵室の背面側に高さ方向に延在するとともに前記冷却器室の空気を前記第1吐出口に流す第2風路と、
     前記第2風路に配置され、前記複数の第1吐出口のうちの最も上に配置された前記第1吐出口の上方に配置された風路閉塞部材とを備える
     請求項4~6の何れか1項に記載の冷蔵庫。
  8.  前記冷却器室の空気を前記第1貯蔵室に吐出する複数の第1吐出口と、
     前記第1貯蔵室の背面側に高さ方向に延在するとともに前記冷却器室の空気を前記第1吐出口に流す第2風路とを備え、
     前記第1吐出口は、高さ方向に並んで形成され、
     前記第1加熱機構は、前記複数の第1吐出口のうちの最も下に配置された前記第1吐出口の下方に配置される
     請求項4~7の何れか1項に記載の冷蔵庫。
  9.  前記冷却器室の空気を前記第1貯蔵室に吐出する複数の第1吐出口と、
     前記第1貯蔵室の背面側に高さ方向に延在するとともに前記冷却器室の空気を前記第1吐出口に流す第2風路と、
     前記第2風路に配置された風路閉塞部材とを備え、
     前記風路閉塞部材は、
     空気が流れる開口を形成する枠体と、前記枠体に対し回動可能になるように前記枠体に固定されるとともに一方の面に弾性板を配置した開閉板とを備え、前記開閉板の回動により前記弾性板が前記枠体に接触することで前記開口を閉塞可能に構成され、
     前記弾性板を配置した一方の面が前記冷却器室の側に配置されるとともに前記一方の面とは反対側の他方の面が前記第1吐出口の側に配置されるように、前記第2風路に配置される
     請求項4~8の何れか1項に記載の冷蔵庫。
  10.  前記冷却器室の空気を前記第1貯蔵室に吐出する複数の第1吐出口と、
     前記第1貯蔵室の背面側に高さ方向に延在するとともに前記冷却器室の空気を前記第1吐出口に流す第2風路と、
     前記第2風路に配置された風路閉塞部材とを備え、
     前記第2風路において前記風路閉塞部材の空気流れ下流側に、前記第2風路と前記冷却器室とを連通する連通風路を備える
     請求項4~9の何れか1項に記載の冷蔵庫。
  11.  前記冷却器室の空気を前記第1貯蔵室に吐出する複数の第1吐出口と、
     前記第1貯蔵室の背面側に高さ方向に延在するとともに前記冷却器室の空気を前記第1吐出口に流す第2風路と、
     前記第2風路に配置され、空気が流れる開口を形成する枠体と、前記枠体に対し回動可能になるように前記枠体に固定されるとともに一方の面に弾性板を配置した開閉板とを備え、前記開閉板の回動により前記弾性板が前記枠体に接触することで前記開口を閉塞可能に構成された風路閉塞部材と、
     前記冷却器室において前記第2風路の入口付近に、前記第2風路に空気を流す送風ファンとを備え、
     前記風路閉塞部材の前記開口の高さが前記送風ファンの半径以上かつ前記送風ファンの直径以下である
     請求項4~10の何れか1項に記載の冷蔵庫。
  12.  一端側に正面側へ回動可能に固定された第1扉を開けることで使用可能な第1容器と、他端側に正面側へ回動可能に固定された第2扉を開けることで使用可能な第2容器との間であって、前記第1扉又は前記第2扉の何れかに接続され、前記第1扉及び前記第2扉を閉じたときに前記第1扉と前記第2扉との間に形成されるすき間を閉塞するように配置される仕切り板の背面側に配置される第3容器を備える
     請求項1~11の何れか1項に記載の冷蔵庫。
PCT/JP2020/031338 2019-12-24 2020-08-19 冷蔵庫 WO2021131150A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019232615A JP7364459B2 (ja) 2019-12-24 2019-12-24 冷蔵庫
JP2019-232615 2019-12-24

Publications (1)

Publication Number Publication Date
WO2021131150A1 true WO2021131150A1 (ja) 2021-07-01

Family

ID=76458690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031338 WO2021131150A1 (ja) 2019-12-24 2020-08-19 冷蔵庫

Country Status (3)

Country Link
JP (1) JP7364459B2 (ja)
CN (1) CN113028707A (ja)
WO (1) WO2021131150A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176005A1 (ja) * 2022-03-15 2023-09-21 日立グローバルライフソリューションズ株式会社 冷蔵庫

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10339542A (ja) * 1997-06-10 1998-12-22 Toshiba Corp 冷蔵庫
JP2006214684A (ja) * 2005-02-07 2006-08-17 Sharp Corp 冷蔵庫
JP2009030934A (ja) * 2007-07-30 2009-02-12 Mitsubishi Electric Corp 冷蔵庫
JP2010071563A (ja) * 2008-09-19 2010-04-02 Hitachi Appliances Inc 冷蔵庫
JP2011038686A (ja) * 2009-08-10 2011-02-24 Mitsubishi Electric Corp 冷蔵庫
JP2012032068A (ja) * 2010-07-30 2012-02-16 Hitachi Appliances Inc 冷蔵庫
WO2015178025A1 (ja) * 2014-05-22 2015-11-26 パナソニックIpマネジメント株式会社 冷蔵庫

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW422332U (en) * 1997-11-07 2001-02-11 Mitsubishi Electric Corp Refrigerator
JP4316408B2 (ja) * 2004-03-26 2009-08-19 三菱電機株式会社 省スペース型冷蔵庫
JP3903065B1 (ja) * 2006-03-31 2007-04-11 日立アプライアンス株式会社 冷蔵庫
JP4781395B2 (ja) * 2008-05-28 2011-09-28 三菱電機株式会社 冷蔵庫
CN108397960A (zh) * 2011-07-31 2018-08-14 博西华家用电器有限公司 冰箱
CN106766509A (zh) * 2016-11-30 2017-05-31 青岛海尔股份有限公司 冰箱及用于冰箱的储物容器
CN109708377A (zh) * 2017-10-26 2019-05-03 日立空调·家用电器株式会社 冰箱

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10339542A (ja) * 1997-06-10 1998-12-22 Toshiba Corp 冷蔵庫
JP2006214684A (ja) * 2005-02-07 2006-08-17 Sharp Corp 冷蔵庫
JP2009030934A (ja) * 2007-07-30 2009-02-12 Mitsubishi Electric Corp 冷蔵庫
JP2010071563A (ja) * 2008-09-19 2010-04-02 Hitachi Appliances Inc 冷蔵庫
JP2011038686A (ja) * 2009-08-10 2011-02-24 Mitsubishi Electric Corp 冷蔵庫
JP2012032068A (ja) * 2010-07-30 2012-02-16 Hitachi Appliances Inc 冷蔵庫
WO2015178025A1 (ja) * 2014-05-22 2015-11-26 パナソニックIpマネジメント株式会社 冷蔵庫

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176005A1 (ja) * 2022-03-15 2023-09-21 日立グローバルライフソリューションズ株式会社 冷蔵庫

Also Published As

Publication number Publication date
JP7364459B2 (ja) 2023-10-18
JP2021101136A (ja) 2021-07-08
CN113028707A (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
US10514195B2 (en) Refrigerator
US7272949B2 (en) Refrigerator and airflow passage for ice making compartment of the same
JP5530852B2 (ja) 冷蔵庫
JP4848332B2 (ja) 冷蔵庫
JP2008249292A (ja) 冷蔵庫
US20160187048A1 (en) Refrigerator
JP6735436B2 (ja) 冷蔵庫
CN111351292B (zh) 冰箱
JP2017072336A (ja) 冷蔵庫
JP5363247B2 (ja) 冷蔵庫
WO2021131150A1 (ja) 冷蔵庫
JP2005345061A (ja) 冷蔵庫
JP2018155488A (ja) 冷蔵庫
JP6975735B2 (ja) 冷蔵庫
JP6940424B2 (ja) 冷蔵庫
JP2005016903A (ja) 冷蔵庫
KR101517622B1 (ko) 냉장고
JP2022013044A (ja) 冷蔵庫
JP7454458B2 (ja) 冷蔵庫
JP6955348B2 (ja) 冷蔵庫
US20230243573A1 (en) Refrigerator
JP4203662B2 (ja) 冷蔵庫
JP2001280794A (ja) 冷蔵庫
JP7369520B2 (ja) 冷蔵庫
JP7312148B2 (ja) 冷蔵庫

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20906935

Country of ref document: EP

Kind code of ref document: A1