[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019039153A1 - 車両用空気調和装置 - Google Patents

車両用空気調和装置 Download PDF

Info

Publication number
WO2019039153A1
WO2019039153A1 PCT/JP2018/027199 JP2018027199W WO2019039153A1 WO 2019039153 A1 WO2019039153 A1 WO 2019039153A1 JP 2018027199 W JP2018027199 W JP 2018027199W WO 2019039153 A1 WO2019039153 A1 WO 2019039153A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
refrigerant
temperature
heating
air
Prior art date
Application number
PCT/JP2018/027199
Other languages
English (en)
French (fr)
Inventor
徹也 石関
竜 宮腰
耕平 山下
Original Assignee
サンデン・オートモーティブクライメイトシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブクライメイトシステム株式会社 filed Critical サンデン・オートモーティブクライメイトシステム株式会社
Priority to CN201880051404.XA priority Critical patent/CN110997371B/zh
Priority to DE112018004722.9T priority patent/DE112018004722T5/de
Priority to US16/634,710 priority patent/US11104205B2/en
Publication of WO2019039153A1 publication Critical patent/WO2019039153A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/14Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit
    • B60H1/143Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit the heat being derived from cooling an electric component, e.g. electric motors, electric circuits, fuel cells or batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/321Control means therefor for preventing the freezing of a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00928Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising a secondary circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00949Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising additional heating/cooling sources, e.g. second evaporator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00961Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising means for defrosting outside heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3248Cooling devices information from a variable is obtained related to pressure
    • B60H2001/325Cooling devices information from a variable is obtained related to pressure of the refrigerant at a compressing unit

Definitions

  • the present invention relates to a heat pump type air conditioner for air conditioning a vehicle interior of a vehicle, and more particularly to a vehicle air conditioner suitable for a hybrid car or an electric car equipped with a heat generating device such as a battery.
  • a compressor that compresses and discharges a refrigerant
  • a radiator that is provided on the vehicle interior side and that dissipates the refrigerant, and that is provided on the vehicle interior side
  • the heating mode heating operation which dissipates the heat dissipated in the radiator in the heat exchanger and the cooling mode dissipates the heat discharged in the outdoor heat exchanger in the outdoor heat exchanger.
  • a system has been developed which switches and executes a mode (cooling operation) (see, for example, Patent Document 1).
  • a battery heat generating device mounted on a vehicle becomes hot due to self-heating during charging or discharging. If charging and discharging are performed in such a state, deterioration proceeds, and there is a risk of causing malfunction and eventually breakage. Therefore, there has also been developed a system in which the temperature of the secondary battery (battery) can be adjusted by circulating air (heat medium) cooled by the refrigerant circulating in the refrigerant circuit to the battery (for example, Patent Document 2).
  • heat from a heat generating device such as a battery can be used to heat the vehicle interior by allowing the refrigerant to absorb heat from the heat medium, delaying the progress of frost formation on the outdoor heat exchanger As well as being able to do so, even when the outdoor heat exchanger is frosted and can not absorb heat from the outside air, it becomes possible to heat the vehicle interior with heat absorption from the heat medium.
  • a heat generating device such as a battery
  • the present invention has been made to solve such conventional technical problems, and can be used for a vehicle that can eliminate the inconvenience due to a reduction in heating capacity when switching from heat absorption from the outside air to heat absorption from a heat medium.
  • An object of the present invention is to provide an air conditioner.
  • the air conditioner for a vehicle heats the air supplied from the air flow passage to the vehicle compartment from the air flow passage by radiating the refrigerant and the air flow passage through which the air supplied to the vehicle is circulated.
  • the heating device temperature control device includes a heating device for heating the heat medium, and a refrigerant-heat medium heat exchanger for exchanging heat between the refrigerant and the heat medium, The controller discharges from the compressor Has a heat medium absorption / heating mode in which heat is radiated from the cooled refrigerant by the radiator and the heat released
  • the air conditioner for a vehicle according to claim 2 is characterized in that, in the above-mentioned invention, the control device may not be able to absorb heat from outside air by the outdoor heat exchanger when a predetermined outside air heat absorption impossible prediction determination condition is satisfied in heating operation.
  • the outside air heat absorption impossible prediction determination condition is that the suction refrigerant temperature Ts of the compressor has decreased to a predetermined value Ts1 or less, the amount of frost formation on the outdoor heat exchanger Has increased to a predetermined value Fr1 or more, the progress rate of frost formation on the outdoor heat exchanger has increased to a predetermined value X1 or more, the outside air temperature Tam has decreased to a predetermined value Tam1 or less, and the reduction speed of the outside air temperature Tam Is characterized in that it includes at least one of rising to a predetermined value Y1 or more.
  • the control device is a target heating capacity TGQhp of a radiator, a target blowout temperature TAO which is a target value of air temperature blown out into a vehicle compartment, an air flow passage
  • the threshold value T1 is determined based on at least one of the voltage BLV of the indoor blower ventilating to and the target heater temperature TCO which is a target value of the temperature of the air on the downwind side of the radiator.
  • the outdoor heat exchanger uses the outdoor heat exchanger when a predetermined outdoor air heat absorption determination condition is satisfied.
  • the outdoor air heat absorption determination condition is that the suction refrigerant temperature Ts of the compressor is a predetermined value Ts2 or more lower than the predetermined value Ts1;
  • the frost formation amount is a predetermined value Fr2 or less, which is greater than the predetermined value Fr1
  • the advancing speed of frost formation on the outdoor heat exchanger is a predetermined value X2 or less, which is faster than the predetermined value X1
  • the outside air temperature Tam is greater than the predetermined value Tam1. It is characterized in that it includes at least one of a low predetermined value Tam2 or more and a decrease rate of the outside air temperature Tam equal to or less than a predetermined value Y2 faster than the predetermined value Y1.
  • the compressor for compressing the refrigerant, the air flow passage through which the air supplied to the vehicle compartment flows, and the radiator for radiating the heat of the refrigerant and heating the air supplied from the air flow passage to the vehicle compartment And an outdoor heat exchanger provided outside the vehicle compartment for absorbing heat, and a control device, wherein the control device causes at least the refrigerant discharged from the compressor to be dissipated by the radiator and dissipated
  • the air conditioner for a vehicle that executes a heating operation of absorbing heat with an outdoor heat exchanger after reducing the pressure, heat generation for circulating the heat medium to the heat generating device mounted on the vehicle and adjusting the temperature of the heat generating device
  • An apparatus temperature adjusting device comprising: a heating device for heating a heat medium; and a refrigerant-heat medium heat exchanger for exchanging heat between a refrigerant and the heat medium; But discharge from the compressor Since the heat medium absorption / heating mode of absorbing heat by the refrigerant-heat medium
  • the control device switches the heating operation to the heat medium absorption / heating mode
  • the heating device is switched by the heating device before switching to the heat medium absorption / heating mode.
  • the heat medium heat absorption / heating mode is switched, so that the heating capacity when switching from the heating operation to the heat medium heat absorption / heating mode can be sufficiently secured.
  • the outdoor heat exchanger determines that there is a possibility that heat can not be absorbed from the outdoor air, and the temperature of the heat medium It is judged whether or not the threshold T1 or less, and if it is the threshold T1 or less, heating of the heat medium by the heating device is started, and it waits for the temperature of the heat medium to rise to at least a temperature higher than the threshold T1.
  • the suction refrigerant temperature Ts of the compressor is lowered to the predetermined value Ts1 or less, and the amount of frost formation on the outdoor heat exchanger is predetermined.
  • the increase rate to the value Fr1 or more, the progress rate of frost formation to the outdoor heat exchanger is increased to the predetermined value X1 or more, the outside air temperature Tam is reduced to the predetermined value Tam1 or less, and the fall speed of the outside air temperature Tam is specified It is preferable to include at least one of rising to a value Y1 or more.
  • the control device comprises a target heating capacity TGQhp of the radiator, a target blowing temperature TAO which is a target value of the air temperature blown out into the vehicle compartment, and a voltage BLV of the indoor fan ventilating the air flow passage. If the threshold value T1 is determined based on at least one of the target heater temperature TCO, which is the target value of the air temperature on the downwind side of the radiator, the heating medium needs to be heated by the heating device It becomes possible to appropriately determine whether or not to avoid heating by unnecessary heating devices.
  • the outdoor heat exchanger determines that the heat absorption from the outdoor air is possible. If heat is absorbed by the outdoor heat exchanger and the refrigerant-heat medium heat exchanger so that the heat dissipated by the outdoor heat exchanger can be absorbed by the outdoor heat exchanger, heat absorption from the heat medium and heat absorption from the heat medium At the same time, it absorbs heat from the outside air and can heat the passenger compartment.
  • the suction refrigerant temperature Ts of the compressor is equal to or higher than a predetermined value Ts2 lower than the predetermined value Ts1, frost formation on the outdoor heat exchanger
  • the amount is not less than the predetermined value Fr2 which is larger than the predetermined value Fr1
  • the advancing speed of frost formation on the outdoor heat exchanger is not more than the predetermined value X2 which is higher than the predetermined value X1
  • the outside air temperature Tam is lower than the predetermined value Tam1
  • FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 according to an embodiment of the present invention.
  • the vehicle according to the embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and the battery 55 is mounted on the vehicle. It is driven by supplying an electric motor (not shown) and travels, and the vehicle air conditioner 1 of the present invention is also driven by the power of the battery 55.
  • EV electric vehicle
  • an engine internal combustion engine
  • the battery 55 is mounted on the vehicle. It is driven by supplying an electric motor (not shown) and travels, and the vehicle air conditioner 1 of the present invention is also driven by the power of the battery 55.
  • the vehicle air conditioner 1 of the embodiment performs heating operation by heat pump operation using the refrigerant circuit R in an electric vehicle which can not be heated by engine waste heat, and further performs dehumidifying heating operation, internal cycle operation, dehumidifying cooling
  • the air conditioning of the vehicle interior is performed by selectively executing each air conditioning operation of the operation and the cooling operation.
  • the present invention is applicable not only to electric vehicles as vehicles but also to so-called hybrid vehicles that use an engine and an electric motor for traveling, and is also applicable to ordinary vehicles traveling with an engine. Needless to say.
  • the vehicle air conditioner 1 of the embodiment performs air conditioning (heating, cooling, dehumidification, and ventilation) of a vehicle interior of an electric vehicle, and includes an electric compressor 2 for compressing a refrigerant, and vehicle interior air. Is disposed in the air flow passage 3 of the HVAC unit 10 through which air is circulated, and the high-temperature high-pressure refrigerant discharged from the compressor 2 flows in via the refrigerant pipe 13G and dissipates the refrigerant into the vehicle compartment
  • the outdoor expansion valve 6 is an electric valve that decompresses and expands the refrigerant during heating, functions as a radiator that dissipates the refrigerant during cooling, and functions as an evaporator that absorbs the refrigerant during heating, between the refrigerant and the outside air.
  • An indoor expansion valve 8 comprising an outdoor heat exchanger 7 for heat exchange and a motor-operated valve (a mechanical expansion valve may be used) for decompressing and expanding the refrigerant, and provided in the air flow passage 3 for cooling and dehumidifying vehicles Heat absorption to refrigerant from inside and outside the room
  • a heat absorber 9 to the accumulator 12 and the like are sequentially connected by a refrigerant pipe 13, the refrigerant circuit R is formed.
  • the outdoor expansion valve 6 decompresses and expands the refrigerant that flows out of the radiator 4 and flows into the outdoor heat exchanger 7 and can be completely closed.
  • the outdoor heat exchanger 7 is provided with an outdoor fan 15.
  • the outdoor fan 15 exchanges heat between the outdoor air and the refrigerant by forcibly ventilating the outdoor air to the outdoor heat exchanger 7, whereby the outdoor fan 15 is also outdoors when the vehicle is stopped (that is, the vehicle speed is 0 km / h).
  • the heat exchanger 7 is configured to ventilate outside air.
  • reference numeral 23 in the drawing denotes a shutter called a grille shutter. When the shutter 23 is closed, traveling air is prevented from flowing into the outdoor heat exchanger 7.
  • the refrigerant pipe 13A connected to the refrigerant outlet side of the outdoor heat exchanger 7 is connected to the refrigerant pipe 13B via the check valve 18. In the check valve 18, the refrigerant pipe 13B side is in the forward direction.
  • the refrigerant pipe 13B is connected to the indoor expansion valve 8 via a solenoid valve 17 as an on-off valve opened at the time of cooling.
  • the solenoid valve 17 and the indoor expansion valve 8 constitute a valve device for controlling the inflow of the refrigerant into the heat absorber 9.
  • the refrigerant pipe 13A that has exited from the outdoor heat exchanger 7 is branched, and the branched refrigerant pipe 13D is a refrigerant pipe 13C located on the outlet side of the heat absorber 9 via the solenoid valve 21 opened at the time of heating. It is connected by communication.
  • refrigerant piping 13C after refrigerant piping 13D joins is connected to accumulator 12 via non-return valve 40, and accumulator 12 is connected to a refrigerant suction side of compressor 2.
  • the accumulator 12 side is in the forward direction.
  • the refrigerant pipe 13E at the outlet side of the radiator 4 is branched into the refrigerant pipe 13J and the refrigerant pipe 13F in front of the outdoor expansion valve 6 (the refrigerant upstream side), and one branched refrigerant pipe 13J is the outdoor expansion valve 6 Are connected to the refrigerant inlet side of the outdoor heat exchanger 7.
  • the other branched refrigerant pipe 13F is the refrigerant downstream side of the check valve 18 via the solenoid valve 22 opened at the time of dehumidification, and is located on the refrigerant upstream side of the solenoid valve 17. It is connected in communication with the connection part with.
  • the refrigerant pipe 13F is connected in parallel to the series circuit of the outdoor expansion valve 6, the outdoor heat exchanger 7, and the check valve 18, and the outdoor expansion valve 6, the outdoor heat exchanger 7, and the check valve It becomes a circuit which bypasses 18.
  • a solenoid valve 20 is connected in parallel to the outdoor expansion valve 6.
  • suction ports for the outside air suction port and the inside air suction port are formed (represented by the suction port 25 in FIG. 1), this suction port A suction switching damper 26 is provided at 25 for switching the air introduced into the air flow passage 3 between inside air (inside air circulation) which is air in the vehicle compartment and outside air (introduction of outside air) which is air outside the vehicle outside.
  • an indoor blower (blower fan) 27 for supplying the introduced internal air and the external air to the air flow passage 3 is provided.
  • An air mix damper 28 is provided to adjust the rate of ventilation to the vessel 4. Furthermore, in the air flow passage 3 on the air downstream side of the radiator 4, the outlets (shown as the outlet 29 representatively in FIG. 1) of the FOOT (foot), VENT (vent), and DEF (def) are formed.
  • the blowout port 29 is provided with a blowout port switching damper 31 which switches and controls the blowout of air from the blowout ports.
  • the vehicle air conditioner 1 of the present invention is provided with a heat generating device temperature adjusting device 61 for circulating the heat medium through the battery 55 to adjust the temperature of the battery 55.
  • the battery 55 is taken as an example of the heat generating device according to the present invention.
  • the heat generating device is not limited thereto, and may be an electric motor for traveling, an inverter for controlling the motor, or the like.
  • the heat generating device temperature adjusting device 61 of this embodiment includes a circulation pump 62 as a circulating device for circulating the heat medium to the battery 55 (heat generating device), a heat medium heating heater 66 as a heating device, and a refrigerant-heat medium.
  • a heat exchanger 64 is provided, to which a battery 55 is annularly connected by a heat medium pipe 68.
  • the heat medium heating heater 66 is connected to the discharge side of the circulation pump 62, and the inlet of the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 is connected to the outlet of the heat medium heater 66.
  • the inlet of the battery 55 is connected to the outlet of the heat medium flow path 64A, and the outlet of the battery 55 is connected to the suction side of the circulation pump 62.
  • water a refrigerant such as HFO-1234f, a liquid such as a coolant, or a gas such as air can be used as a heat medium used in the heat-generating apparatus temperature adjustment device 61.
  • water is employed as the heat medium.
  • the heat medium heating heater 66 is composed of an electric heater such as a PTC heater.
  • a jacket structure is provided around the battery 55 so that, for example, a heat medium can flow in heat exchange relationship with the battery 55.
  • the heat medium discharged from the circulation pump 62 reaches the heat medium heating heater 66, and if the heat medium heating heater 66 generates heat, it is heated there, and then It flows into the heat medium channel 64 A of the refrigerant-heat medium heat exchanger 64.
  • the heat medium leaving the heat medium channel 64 A of the refrigerant-heat medium heat exchanger 64 reaches the battery 55. The heat medium exchanges heat with the battery 55 there and then is drawn into the circulation pump 62 and circulated in the heat medium pipe 68.
  • the refrigerant downstream side (forward direction side) of the check valve 18 One end of a branch pipe 72 as a branch circuit is connected to a refrigerant upstream side of the valve 17.
  • the branch pipe 72 is provided with an auxiliary expansion valve 73 formed of a motor-operated valve.
  • the auxiliary expansion valve 73 is capable of reducing and expanding the refrigerant flowing into a later-described refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64 and capable of being fully closed.
  • the other end of the branch pipe 72 is connected to the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64, and one end of the refrigerant pipe 74 is connected to the outlet of the refrigerant flow path 64B.
  • the other end is connected to the refrigerant pipe 13C in front of the accumulator 12 (on the refrigerant upstream side of the accumulator 12 and on the refrigerant downstream side of the check valve 40).
  • these auxiliary expansion valves 73 and so forth constitute a part of the refrigerant circuit R, and at the same time constitute a part of the heat-generating apparatus temperature adjustment device 61.
  • reference numeral 32 denotes a controller (ECU) as a control device.
  • the controller 32 is constituted by a microcomputer as an example of a computer provided with a processor, and at its input, an outside air temperature sensor 33 for detecting the outside air temperature (Tam) of the vehicle and an outside air humidity sensor for detecting outside air humidity 34, an HVAC suction temperature sensor 36 for detecting the temperature of air drawn into the air flow passage 3 from the suction port 25, an inside air temperature sensor 37 for detecting the temperature of air in the vehicle compartment (interior air) An indoor humidity sensor 38 for detecting humidity, and indoor CO for detecting carbon dioxide concentration in a vehicle compartment 2 A concentration sensor 39, an outlet temperature sensor 41 for detecting the temperature of air blown out from the outlet 29 into the vehicle compartment, a discharge pressure sensor 42 for detecting the discharge refrigerant pressure (discharge pressure Pd) of the compressor 2, and a compressor
  • the discharge temperature sensor 43 for detecting the discharge refrigerant temperature of 2
  • the suction temperature sensor 44 for detecting the suction refrigerant temperature Ts of the compressor 2
  • the temperature of the radiator 4 in the embodiment
  • the outdoor heat exchanger temperature TXO is the evaporation temperature of the refrigerant in the outdoor heat exchanger 7
  • a battery temperature sensor that detects the temperature of the battery 55 (the temperature of the battery 55 itself or the temperature of the heat medium leaving the battery 55 or the temperature of the heat medium entering the battery 55) as an input of the controller 32 76, a heating medium heating heater temperature sensor 77 for detecting the temperature of the heating medium heating heater 66 (the temperature of the heating medium heating heater 66 itself), and the temperature of the heating medium (heating medium temperature Tw) leaving the heating medium heater 66
  • the heat medium temperature sensor 80 to be detected
  • the first outlet temperature sensor 78 to detect the temperature of the heat medium leaving the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64
  • the outputs of the second outlet temperature sensor 79 for detecting the temperature are also connected.
  • the compressor 2 the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, the outlet switching damper 31, and the outdoor expansion Valve 6, indoor expansion valve 8, solenoid valve 22 (dehumidifying), solenoid valve 17 (cooling), solenoid valve 21 (heating), solenoid valve 20 (bypass) solenoid valves, shutter 23, circulation pump 62, heat A medium heating heater 66 and an auxiliary expansion valve 73 are connected. And the controller 32 controls these based on the output of each sensor and the setting input by the air conditioning operation unit 53. Next, the operation of the vehicle air conditioner 1 of the embodiment having the above configuration will be described.
  • the controller 32 switches and executes each air conditioning operation of heating operation, dehumidifying heating operation, internal cycle operation, dehumidifying cooling operation, and cooling operation, and adjusts the temperature of the battery 55 within a predetermined appropriate temperature range Do.
  • each air conditioning operation of the refrigerant circuit R will be described.
  • (1) Heating operation First, the heating operation will be described with reference to FIG. FIG. 3 shows the flow of the refrigerant (solid arrow) in the refrigerant circuit R in the heating operation.
  • the controller 32 opens the solenoid valve 21 (for heating) to open the solenoid valve 17 (cooling Close).
  • the solenoid valve 22 for dehumidification
  • the solenoid valve 20 for bypass
  • the shutter 23 is opened.
  • the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the rate at which the air blown out from the indoor blower 27 is ventilated to the radiator 4.
  • the high temperature / high pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated to the radiator 4, the air in the air flow passage 3 is heated by the high temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. Deprived, cooled, condensed and liquefied.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 via the refrigerant pipes 13E and 13J.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 evaporates, and heat is pumped up (running heat) from running or from the outside air ventilated by the outdoor blower 15 (heat absorption). That is, the refrigerant circuit R is a heat pump.
  • the low temperature refrigerant having left the outdoor heat exchanger 7 passes sequentially through the refrigerant pipe 13A, the refrigerant pipe 13D, the solenoid valve 21 and the check valve 40, enters the accumulator 12 from the refrigerant pipe 13C, and is separated into gas and liquid there.
  • the circulation in which the gas refrigerant is sucked into the compressor 2 is repeated. Since the air heated by the radiator 4 is blown out from the blowout port 29, this heats the passenger compartment.
  • the controller 32 generates a target radiator pressure PCO (a radiator 4) from a target heater temperature TCO (a target value of a heating temperature TH described later, which is a temperature of air on the leeward side of the radiator 4) calculated from a target outlet temperature TAO described later.
  • a target radiator pressure PCO a target radiator pressure
  • TCO target value of a heating temperature TH described later, which is a temperature of air on the leeward side of the radiator 4
  • TAO target outlet temperature
  • FIG. 4 shows the flow of refrigerant (solid arrow) in the refrigerant circuit R in the dehumidifying and heating operation.
  • the controller 32 opens the solenoid valve 22 and the solenoid valve 17 in the state of the heating operation. Also, the shutter 23 is opened.
  • a part of the condensed refrigerant flowing through the refrigerant pipe 13E through the radiator 4 is branched, and the branched refrigerant flows into the refrigerant pipe 13F through the solenoid valve 22 and flows from the refrigerant pipe 13B to the indoor expansion valve 8
  • the remaining refrigerant flows to the outdoor expansion valve 6. That is, a part of the divided refrigerant is reduced in pressure by the indoor expansion valve 8 and then flows into the heat absorber 9 to evaporate.
  • the controller 32 controls the opening degree of the indoor expansion valve 8 so as to maintain the degree of superheat (SH) of the refrigerant at the outlet of the heat absorber 9 at a predetermined value.
  • the air Since the moisture in the air blown out from the indoor blower 27 condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
  • the remaining refrigerant which has been divided and flows into the refrigerant pipe 13J is reduced in pressure by the outdoor expansion valve 6, and then evaporated in the outdoor heat exchanger 7.
  • the refrigerant evaporated by the heat absorber 9 exits to the refrigerant pipe 13C and joins with the refrigerant from the refrigerant pipe 13D (refrigerant from the outdoor heat exchanger 7), and then passes through the check valve 40 and the accumulator 12 sequentially to the compressor 2 Repeat the inhaled circulation.
  • the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, whereby dehumidifying and heating of the vehicle interior is performed.
  • the controller 32 controls the number of revolutions of the compressor 2 based on the target radiator pressure PCO calculated from the target heater temperature TCO and the radiator pressure PCI (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47.
  • the valve opening degree of the outdoor expansion valve 6 is controlled based on the temperature (heat absorber temperature Te) of the heat absorber 9 detected by the heat absorber temperature sensor 48.
  • the controller 32 In the internal cycle operation, the controller 32 fully closes the outdoor expansion valve 6 in the dehumidifying and heating operation state (fully closed position). However, the solenoid valve 21 is kept open, and the refrigerant outlet of the outdoor heat exchanger 7 is in communication with the refrigerant suction side of the compressor 2. That is, since this internal cycle operation is in a state in which the outdoor expansion valve 6 is fully closed by control of the outdoor expansion valve 6 in the dehumidifying and heating operation, this internal cycle operation can also be grasped as a part of the dehumidifying and heating operation The shutter 23 is open).
  • the condensed refrigerant flowing through the refrigerant pipe 13E through the radiator 4 passes through the solenoid valve 22 and the refrigerant All flow in the piping 13F.
  • the refrigerant flowing through the refrigerant pipe 13F passes from the refrigerant pipe 13B to the indoor expansion valve 8 through the solenoid valve 17.
  • the refrigerant flows into the heat absorber 9 and evaporates. At this time, the moisture in the air blown out from the indoor blower 27 condenses and adheres to the heat sink 9, so that the air is cooled and dehumidified.
  • the refrigerant evaporated by the heat absorber 9 flows through the refrigerant pipe 13C, and repeats circulation in which the refrigerant is sucked into the compressor 2 sequentially through the check valve 40 and the accumulator 12. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, this means that dehumidifying and heating of the vehicle interior is performed. However, in this internal cycle operation, the air flow on the indoor side Since the refrigerant is circulated between the radiator 4 (heat radiation) and the heat absorber 9 (heat absorption) in the passage 3, heating of heat from the outside air is not performed, and heating for the power consumption of the compressor 2 is performed. Ability is demonstrated.
  • the dehumidifying ability is high but the heating ability is lowered compared to the dehumidifying and heating operation.
  • the outdoor expansion valve 6 is closed, the solenoid valve 21 is open, and the refrigerant outlet of the outdoor heat exchanger 7 is in communication with the refrigerant suction side of the compressor 2, so the liquid in the outdoor heat exchanger 7 is The refrigerant flows through the refrigerant pipe 13D and the solenoid valve 21 to the refrigerant pipe 13C, is collected by the accumulator 12, and the inside of the outdoor heat exchanger 7 is in the state of the gas refrigerant.
  • the controller 32 controls the rotational speed of the compressor 2 based on the temperature of the heat absorber 9 or the radiator pressure PCI (high pressure of the refrigerant circuit R) described above. At this time, the controller 32 controls the compressor 2 by selecting the lower one of the compressor target rotational speed obtained from either calculation, depending on the temperature of the heat absorber 9 or the radiator pressure PCI. (4) Dehumidifying cooling operation Next, the dehumidifying and cooling operation will be described with reference to FIG. FIG.
  • FIG. 6 shows the flow of refrigerant (solid arrow) in the refrigerant circuit R in the dehumidifying and cooling operation.
  • the controller 32 opens the solenoid valve 17 and closes the solenoid valve 21.
  • the solenoid valve 22 and the solenoid valve 20 are closed.
  • the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the rate at which the air blown out from the indoor blower 27 is ventilated to the radiator 4.
  • the shutter 23 is opened. Thereby, the high temperature / high pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4.
  • the air in the air flow passage 3 is ventilated to the radiator 4, the air in the air flow passage 3 is heated by the high temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is taken away, cooled, and condensed and liquefied.
  • the refrigerant leaving the radiator 4 passes through the refrigerant pipe 13E to reach the outdoor expansion valve 6, and then flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 which is controlled to be open.
  • the refrigerant flowing into the outdoor heat exchanger 7 is air-cooled and condensed by traveling there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant leaving the outdoor heat exchanger 7 passes through the refrigerant pipe 13A and the check valve 18, enters the refrigerant pipe 13B, and further passes through the solenoid valve 17 and reaches the indoor expansion valve 8.
  • the refrigerant flows into the heat absorber 9 and evaporates.
  • the moisture in the air blown out from the indoor blower 27 condenses and adheres to the heat sink 9, so that the air is cooled and dehumidified.
  • the refrigerant evaporated by the heat absorber 9 passes through the refrigerant pipe 13C, passes through the check valve 40, reaches the accumulator 12, and passes through the same to repeat the circulation sucked into the compressor 2.
  • the air that has been cooled by the heat absorber 9 and dehumidified is reheated (reheating: the heat radiation capacity is lower than that during heating) in the process of passing through the radiator 4, so that dehumidifying and cooling of the vehicle interior is performed. become.
  • the controller 32 sets the heat sink temperature Te to the target heat sink temperature TEO based on the temperature of the heat sink 9 (heat sink temperature Te) detected by the heat sink temperature sensor 48 and the target heat sink temperature TEO as its target value.
  • a target radiator pressure PCO (radiator pressure PCI) calculated from the radiator pressure PCI (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47 and the target heater temperature TCO while controlling the rotational speed of the compressor 2
  • the required reheat amount by the radiator 4 is obtained by controlling the opening degree of the outdoor expansion valve 6 so as to set the radiator pressure PCI to the target radiator pressure PCO based on the target value of.
  • FIG. 7 shows the flow of refrigerant (solid arrow) in the refrigerant circuit R in the cooling operation.
  • the controller 32 opens the solenoid valve 20 in the dehumidifying and cooling operation state (the degree of opening of the outdoor expansion valve 6 is free).
  • the air mix damper 28 is in the state of adjusting the rate of air being ventilated to the radiator 4. Also, the shutter 23 is opened. Thereby, the high temperature / high pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Although the air in the air flow passage 3 is ventilated to the radiator 4, the proportion thereof is small (only because of reheating at the time of cooling), so it passes through almost here and the refrigerant leaving the radiator 4 is It reaches the outdoor expansion valve 6 through the refrigerant pipe 13E.
  • the solenoid valve 20 since the solenoid valve 20 is open, the refrigerant passes through the solenoid valve 20, passes through the refrigerant pipe 13J, flows into the outdoor heat exchanger 7 as it is, and is outside air ventilated by traveling or by the outdoor fan 15. It is air cooled and condensed and liquefied.
  • the refrigerant leaving the outdoor heat exchanger 7 passes through the refrigerant pipe 13A and the check valve 18, enters the refrigerant pipe 13B, and further passes through the solenoid valve 17 and reaches the indoor expansion valve 8. After the refrigerant is depressurized by the indoor expansion valve 8, the refrigerant flows into the heat absorber 9 and evaporates.
  • the moisture in the air blown out from the indoor blower 27 condenses and adheres to the heat absorber 9, and the air is cooled.
  • the refrigerant evaporated by the heat absorber 9 exits the refrigerant pipe 13C, passes through the check valve 40, reaches the accumulator 12, passes through the accumulator 12, and repeats the circulation sucked into the compressor 2.
  • the air that has been cooled and dehumidified by the heat absorber 9 is blown out from the blowout port 29 into the vehicle compartment, whereby cooling of the vehicle compartment is performed.
  • the controller 32 controls the number of rotations of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
  • the controller 32 calculates the above-mentioned target blowing temperature TAO from the following formula (I).
  • the target blowing temperature TAO is a target value of the temperature of the air blown out from the blowout port 29 into the vehicle compartment.
  • TAO (Tset ⁇ Tin) ⁇ K + Tbal (f (Tset, SUN, Tam)) (I)
  • Tset is the set temperature of the vehicle interior set by the air conditioning operation unit 53
  • Tin is the temperature of the vehicle interior air detected by the inside air temperature sensor 37
  • K is a coefficient
  • Tbal is the set temperature Tset
  • the solar radiation sensor 51 detects it.
  • the balance value is calculated from the amount of solar radiation SUN to be detected and the outside air temperature Tam detected by the outside air temperature sensor 33.
  • the target blowing temperature TAO is higher as the outside air temperature Tam is lower, and decreases as the outside air temperature Tam increases.
  • the controller 32 selects one of the air conditioning operations among the above-mentioned air conditioning operations based on the outside air temperature Tam detected by the outside air temperature sensor 33 and the target air outlet temperature TAO.
  • the air conditioning operations are selected and switched according to changes in the environment and setting conditions such as the outside air temperature Tam and the target blowing temperature TAO.
  • the air volume ratio SW is a ratio for ventilating the air passing through the heat absorber 9 to the radiator 4 and changes from 0 (do not ventilate to the radiator 4) to 1 (ventilate all the air to the radiator 4)
  • TH for calculating the air volume ratio SW of the air mix damper 28 is the temperature (heating temperature) of the air on the leeward side of the radiator 4 described above, and the controller 32 estimates it from the equation (II) of the first-order lag calculation shown below.
  • TH (INTL ⁇ TH0 + Tau ⁇ THz) / (Tau + INTL) ⁇ (II)
  • INTL is a calculation cycle (constant)
  • Tau is a first-order lag time constant
  • TH0 is a steady-state value of the heating temperature TH in a steady state before the first-order lag calculation
  • THz is a previous value of the heating temperature TH.
  • the target battery temperature TBO (the target value of the temperature of the battery 55 (battery temperature Tb)
  • Tb battery temperature
  • + 35 ° C. is set.
  • TGQhp target heating capacity of the vehicle compartment required for the radiator 4 using the following formulas (III) and (IV)
  • the potential heating capacity Qhp is calculated.
  • TGQhp (TCO-Te) x Cpa x rho x Qair
  • Qhp f (Tam, NC, BLV, VSP, FANVout, Te) ..
  • Te is the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48
  • Cpa is the specific heat of the air flowing into the radiator 4 [kj / kg ⁇ K]
  • is the density of the air flowing into the radiator 4 ( Specific volume) [kg / m 3 ]
  • Qair is the amount of air passing through the radiator 4 [m 3 / H] (estimated from the blower voltage BLV of the indoor fan 27, etc.)
  • VSP is the vehicle speed obtained from the vehicle speed sensor 52
  • FANVout is the voltage of the outdoor fan 15.
  • the controller 32 requests the heat generating device temperature adjustment device 61 using, for example, the following equation (V) based on the temperature of the battery 55 (battery temperature Tb) detected by the battery temperature sensor 76 and the target battery temperature TBO described above.
  • the required battery cooling capacity Qbat which is the cooling capacity of the battery 55, is calculated.
  • Qbat (Tb-TBO) x k1 x k2 ⁇ ⁇ ⁇ (V)
  • k1 is the specific heat [kj / kg ⁇ K] of the heat medium circulating in the heat generating apparatus temperature regulator 61
  • k2 is the flow rate of the heat medium [m 3 / H].
  • the formula for calculating the required battery cooling capacity Qbat is not limited to the above, and may be calculated in consideration of other factors related to battery cooling. If the battery temperature Tb is lower than the target battery temperature TBO (Tb ⁇ TBO), the required battery cooling capacity Qbat calculated by the above equation (V) is negative. It is closed, and the heat generating apparatus temperature adjustment device 61 is also stopped. On the other hand, when the battery temperature Tb rises due to charge and discharge etc. and becomes higher than the target battery temperature TBO during the heating operation described above (TBO ⁇ Tb), the required battery cooling capacity Qbat calculated by the equation (V) is positive In the embodiment, the controller 32 opens the auxiliary expansion valve 73 and operates the heat-generating-apparatus temperature regulator 61 to start cooling the battery 55.
  • the controller 32 compares the both with the target heating capacity TGQhp and the required battery cooling capacity Qbat, and in the embodiment, the first heat medium heat absorption / heating mode described herein and the second heat medium described later.
  • the medium heat absorption / heating mode (both the heat medium heat absorption / heating mode in the present invention) are switched and executed.
  • the target heating capacity TGQhp is larger than the required battery cooling capacity Qbat in a situation where the heating load in the vehicle compartment is large (for example, the temperature of the inside air is low) and the calorific value of the battery 55 is small (the cooling load is small).
  • TGQhp> Qbat the controller 32 executes the first heat medium heat absorption / heating mode.
  • FIG. 8 shows the flow of the refrigerant (solid arrow) of the refrigerant circuit R and the flow of the heat medium (broken arrow) of the heat-generating apparatus temperature adjustment device 61 in the first heat medium absorption / heating mode.
  • the controller 32 further opens the solenoid valve 22 and opens the auxiliary expansion valve 73 to control the valve opening degree in the heating operation of the refrigerant circuit R shown in FIG. 3. State. Then, the circulation pump 62 of the heat generating device temperature adjustment device 61 is operated.
  • a part of the refrigerant that has exited from the radiator 4 is branched on the refrigerant upstream side of the outdoor expansion valve 6, passes through the refrigerant pipe 13F, and reaches the refrigerant upstream side of the solenoid valve 17.
  • the refrigerant then enters the branch pipe 72 and is decompressed by the auxiliary expansion valve 73, and then flows through the branch pipe 72 into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64 and evaporates. At this time, it exerts an endothermic effect.
  • the refrigerant evaporated in the refrigerant flow path 64B repeats circulation that is sucked into the compressor 2 sequentially through the refrigerant pipe 74, the refrigerant pipe 13C, and the accumulator 12 (indicated by solid arrows in FIG. 8).
  • the heat medium discharged from the circulation pump 62 passes through the heat medium heating heater 66 and reaches the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 in the heat medium pipe 68, where it evaporates in the refrigerant flow path 64B.
  • the heat medium is cooled by heat absorption.
  • the heat medium cooled by the endothermic action of the refrigerant exits the refrigerant-heat medium heat exchanger 64 and reaches the battery 55, cools the battery 55, and repeats the circulation sucked into the circulation pump 62 (broken line in FIG. 8) Indicated by an arrow).
  • the refrigerant of the refrigerant circuit R evaporates in the outdoor heat exchanger 7 and the refrigerant-heat medium heat exchanger 64 and absorbs heat from the outside air, and the heat generating device temperature regulator It also absorbs heat from the heat medium 61 (battery 55).
  • the heat medium heating heater 66 When the heat medium heating heater 66 generates heat, the heat medium discharged from the circulation pump 62 of the heat generating device temperature adjustment device 61 is heated by the heat medium heating heater 66 and then the heat medium flow of the refrigerant-heat medium heat exchanger 64 Since the heat flows into the passage 64A, the heat of the heat medium heating heater 66 is also pumped up by the refrigerant evaporating in the refrigerant passage 64B, and the heating capacity Qhp by the radiator 4 increases to achieve the target heating capacity TGQhp. You will be able to The controller 32 stops the heat generation of the heat medium heating heater 66 (non-energization) when the heating capacity Qhp can achieve the target heating capacity TGQhp.
  • FIG. 9 shows the flow of the refrigerant (solid arrow) of the refrigerant circuit R and the flow of the heat medium (broken arrow) of the heat-generating apparatus temperature adjustment device 61 in the second heat medium absorption / heating mode.
  • the controller 32 closes the solenoid valves 17, 20, 21 to fully close the outdoor expansion valve 6, opens the solenoid valve 22, opens the auxiliary expansion valve 73, and opens the same. To control the degree. Then, the compressor 2 and the indoor blower 27 are operated, and the circulation pump 62 of the heat-generating apparatus temperature adjustment device 61 is also operated. Thereby, all the refrigerant
  • the refrigerant then enters the branch pipe 72 and is decompressed by the auxiliary expansion valve 73, and then flows through the branch pipe 72 into the refrigerant channel 64B of the refrigerant-heat medium heat exchanger 64 and evaporates. At this time, it exerts an endothermic effect.
  • the refrigerant evaporated in the refrigerant flow path 64B repeats circulation that is sucked into the compressor 2 sequentially through the refrigerant pipe 74, the refrigerant pipe 13C, and the accumulator 12 (indicated by solid arrows in FIG. 9).
  • the heat medium discharged from the circulation pump 62 passes through the heat medium heating heater 66 and reaches the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 in the heat medium pipe 68, where it evaporates in the refrigerant flow path 64B.
  • the heat medium is cooled by heat absorption.
  • the heat medium cooled by the heat absorption function of the refrigerant exits the refrigerant-heat medium heat exchanger 64 and reaches the battery 55, cools the battery 55, and repeats the circulation sucked into the circulation pump 62 (broken line in FIG. 9) Indicated by an arrow).
  • the refrigerant of the refrigerant circuit R evaporates in the refrigerant-heat medium heat exchanger 64, and heat absorption only from the heat medium (battery 55) of the heating device temperature adjustment device 61. Do. As a result, the refrigerant does not flow into the outdoor heat exchanger 7, and the refrigerant draws heat only from the battery 55 through the heat medium, thereby solving the problem of frost formation on the outdoor heat exchanger 7, The battery 55 is cooled, and the heat pumped up from the battery 55 can be transferred to the radiator 4 to heat the vehicle interior. In the case of the dehumidifying and heating operation (FIG. 4), the internal cycle operation (FIG.
  • step S3 After starting the heating operation described above in step S1 of FIG. 10, the controller 32 executes step S3 while performing the heating operation in step S2, and the outdoor heat exchanger 7 can absorb the refrigerant from the outside air. It is judged whether there is a possibility of disappearing.
  • the determination condition in step S3 is referred to as an outside air heat absorption impossible prediction determination condition.
  • the outside air heat absorption impossible prediction determination condition is, for example, any of (i) to (v) shown below, a combination thereof, or all of them.
  • the suction refrigerant temperature Ts of the compressor 2 detected by the suction temperature sensor 44 is lowered to a predetermined value Ts1 or less.
  • the amount of frost formation on the outdoor heat exchanger 7 has increased to a predetermined value Fr1 or more.
  • the advancing speed of frost formation on the outdoor heat exchanger 7 has increased to a predetermined value X1 or more.
  • the outside air temperature Tam detected by the outside air temperature sensor 33 has dropped to a predetermined value Tam1 or less.
  • the decrease rate of the outside air temperature Tam detected by the outside air temperature sensor 33 has increased to a predetermined value Y1 or more.
  • the amount of frost formation and the progress rate of frost formation under the above conditions (ii) and (iii) are, for example, the outdoor heat exchanger temperature TXO of the outdoor heat exchanger 7 and the outdoor heat exchanger pressure PXO, and the outdoor heat exchanger 7 It can be determined from the difference between those values when there is no frost formation (the frost-free outdoor heat exchanger temperature TXObase, the frost-free outdoor heat exchanger pressure PXObase in advance).
  • the respective predetermined values Ts1, Fr1, X1, Tam1, Y1 are determined in advance by experiment as values at which the outdoor heat exchanger 7 may not be able to absorb heat from the outside air.
  • step S3 when any one of the above conditions (i) to (v), or a combination thereof, or all of them holds in the step S3, the controller 32 holds the outdoor air heat absorption impossible prediction judgment condition, and the outdoor thermal energy It is determined that there is a possibility that the refrigerant can not absorb heat from the outside air in the exchanger 7, and the process proceeds to step S4 to operate the circulation pump 62 of the heat-generating apparatus temperature adjustment device 61 to circulate the heat medium through the heat medium pipe 68.
  • step S5 determines whether the temperature of the heat medium (heat medium temperature Tw) leaving the heat medium heater 66 is less than or equal to a predetermined threshold T1. Do.
  • the controller 32 has the heat medium endothermic transferable heat medium temperature MAP shown in FIG.
  • the heat medium endothermic transferable heat medium temperature MAP indicates the relationship between the above-described target heating capacity TGQhp and the above-mentioned threshold T1 which is the heat medium temperature Tw that can not achieve it, and the target of the radiator 4 As the heating capacity TGQhp becomes higher, the threshold T1 also becomes higher.
  • the threshold T1 may be determined based on all of these.
  • the controller 32 determines the threshold T1 from the heat medium endothermic transferable heat medium temperature MAP and the target heating capacity TGQhp at that time in step S5, and determines whether the heat medium temperature Tw is equal to or less than the threshold T1.
  • the controller 32 determines that heat absorption from the heat medium can not heat the vehicle interior, and proceeds from step S5 to step S9 to perform heat medium preheating operation.
  • the controller 32 energizes the heat medium heating heater 66 to generate heat.
  • the heat medium circulated by the circulation pump 62 is heated by the heat medium heater 66, so the heat medium temperature Tw rises.
  • step S6 the controller 32 determines whether the outdoor heat exchanger 7 can absorb the refrigerant from the outside air.
  • the determination condition in this step S6 is referred to as an open air heat absorption determination condition.
  • the outside air heat absorption determination condition is, for example, any one of (vi) to (x) shown below, a combination thereof, or all of them.
  • the suction refrigerant temperature Ts of the compressor 2 detected by the suction temperature sensor 44 is equal to or higher than a predetermined value Ts2 lower than the predetermined value Ts1.
  • the amount of frost formation on the outdoor heat exchanger 7 is equal to or less than a predetermined value Fr2 larger than the predetermined value Fr1.
  • the advancing speed of frost formation on the outdoor heat exchanger 7 is equal to or less than a predetermined value X2 which is higher than the predetermined value X1.
  • the outside air temperature Tam detected by the outside air temperature sensor 33 is equal to or higher than a predetermined value Tam2 lower than the predetermined value Tam1.
  • the decrease rate of the outside air temperature Tam detected by the outside air temperature sensor 33 is equal to or less than a predetermined value Y2 faster than the predetermined value Y1.
  • Each of the predetermined values Ts2, Fr2, X2, Tam2, Y2 is determined in advance as a value capable of absorbing heat from outside air in the outdoor heat exchanger 7 in advance. Then, when any one of the above conditions (vi) to (x), or a combination thereof, or all of them holds in the step S6, the controller 32 holds the outdoor air heat absorption possible determination condition, and the outdoor heat is still It is determined in the exchanger 7 that the refrigerant can absorb heat from the outside air, and the process proceeds to step S7 to execute the first heat medium heat absorption / heating mode (FIG. 8) described above (first heat medium heat absorption / Switch to heating mode).
  • the refrigerant of the refrigerant circuit R evaporates in the outdoor heat exchanger 7 and the refrigerant-heat medium heat exchanger 64 as described above, absorbs heat from the outside air, and generates a temperature control device for heat generating equipment. Since heat is also absorbed from the heat medium 61, the heat is drawn from the battery 55 or the heat medium heater 66 (when energized) via the heat medium, and the drawn heat is transferred to the radiator 4 to It can be used to heat the room.
  • step S6 when the outdoor air heat absorption possible determination condition is not satisfied in step S6, it is determined that the heat absorption from the outdoor air in the outdoor heat exchanger 7 is not possible, and the process proceeds to step S8 and the above-described second heat medium heat absorption / heating Execute the mode (FIG. 9) (switch to the second heat medium absorption / heating mode). Further, the heat medium heating heater 66 is caused to generate heat as necessary. As a result, the heat pumped up from the battery 55 and the heating medium heating heater 66 can be transported to the radiator 4 to heat the vehicle interior.
  • FIG. 9 switch to the second heat medium absorption / heating mode
  • Time t1 in FIG. 12 indicates the time when the heat medium preheating operation is started in step S9 in FIG. 10, and t2 indicates the time when the second heat medium heat absorption / heating mode is started in step S8.
  • the heat medium temperature Tw is low (for example, 0 ° C.
  • the heat medium preheating operation as in step S9 of the embodiment is not performed, the heat medium temperature Tw As indicated by P1, the discharge pressure of the compressor 2 becomes low as shown by P1 in the ph diagram of FIG. Even when the heating / heating mode is started, the heating temperature TH is temporarily lowered as shown by a broken line in FIG. 12 (the rotation speed NC of the compressor 2 is also lowered). Therefore, the passenger has a sense of incongruity.
  • the heat medium preheating operation is performed in step S9 before switching from the heating operation to the second heat medium absorption / heating mode as in the present invention, the heat medium temperature Tw starts to increase from time t1 and at time t2.
  • the discharge pressure of the compressor 2 is increased, and the second heat medium heat absorption /
  • the heating temperature TH rises without significantly decreasing from the target blowing temperature TAO as shown by the solid line in FIG. 12 (the rotation speed NC of the compressor 2 also rises).
  • the battery 55 mounted on the vehicle heat generating device temperature adjusting device 61 for circulating the heat medium to the heat generating device to adjust the temperature of the battery 55 is provided.
  • the device 61 includes a heat medium heating heater 66 for heating the heat medium, and a refrigerant-heat medium heat exchanger 64 for heat exchange between the refrigerant and the heat medium, and the controller 32 discharges from the compressor 2
  • the radiator 4 radiates heat by the radiator 4, and after decompressing the refrigerant, the refrigerant-heat medium heat exchanger 64 absorbs heat by the refrigerant-heat medium heat exchanger 64 so as to have first and second heat medium absorption / heating modes.
  • the heat medium of the heat generating device temperature adjustment device 61 can absorb heat to heat the vehicle interior. It will be.
  • the controller 32 switches from the heating operation to the first and second heat medium absorption / heating modes, if the heat medium temperature Tw is equal to or lower than the predetermined threshold value T1, the first and second heat medium absorption / heating Before switching to the mode, the heating medium is heated by the heating medium heating heater 66 to raise the temperature of the heating medium, and then the first and second heating medium heat absorption / heating modes are switched, so the heating operation is performed.
  • Tw the heat medium temperature
  • the temperature of the heat medium is low, and the mode is switched to the first and second heat medium absorption / heating modes, and the temperature of the air blown out from the blowout port 29 into the vehicle compartment (the blowout temperature matches the heating temperature TH) ) Temporarily decreases, and it is possible to eliminate the inconvenience that the passenger feels uncomfortable or uncomfortable. Further, in the embodiment, when the predetermined outdoor air heat absorption impossible prediction determination condition is satisfied in the heating operation, the controller 32 determines that the outdoor heat exchanger 7 may not be able to absorb heat from the outdoor air, and the temperature of the heat medium is a threshold T1.
  • the heating medium heater 66 It is judged whether it is below or not, if it is below the threshold T1, heating of the heat medium by the heating medium heater 66 is started, and the temperature of the heat medium is higher than at least the threshold T1 (whether it is higher than the threshold T1, Since the temperature is shifted to the first and second heat medium heat absorption / heating modes after waiting to rise to a temperature higher than T1 + ⁇ 1, the heating operation is switched to the first and second heat medium heat absorption / heating modes. It will be possible to switch smoothly.
  • the controller 32 is a target heating capacity TGQhp of the radiator 4, a target blowout temperature TAO which is a target value of an air temperature blown out into the vehicle compartment, and a blower voltage BLV of the indoor blower 27 ventilating to the air flow passage 3. Since the threshold value T1 is determined based on at least one of the target heater temperature TCO, which is the target value of the air temperature (heating temperature TH) on the downwind side of the radiator 4, the heating medium heating heater It becomes possible to appropriately determine whether the heating medium needs to be heated or not, and to avoid unnecessary heating by the heating medium heating heater 66.
  • the controller 32 determines that the heat absorption from the outside air is possible in the outdoor heat exchanger 7 when the predetermined outdoor air heat absorption determination condition is satisfied, and the refrigerant that has dissipated the heat in the radiator 4 is the outdoor heat exchanger 7 and the first heat medium heat absorption / heating mode for absorbing heat in the refrigerant-heat medium heat exchanger 64 are executed, so when heat absorption from outside air is possible in the outdoor heat exchanger 7, the heat medium is used. In addition to the heat absorption of the heat absorption from the outside air, it becomes possible to heat the passenger compartment.
  • the suction refrigerant temperature Ts of the compressor 2 is equal to or higher than a predetermined value Ts2 lower than the predetermined value Ts1, and the amount of frost formation on the outdoor heat exchanger 7 is higher than the predetermined value Fr1.
  • the advancing speed of frost formation on the outdoor heat exchanger 7 is equal to or less than the predetermined value X2 higher than the predetermined value X1
  • the outside air temperature Tam is the predetermined value Tam2 or more lower than the predetermined value It is preferable that at least one of the fact that the rate of decrease of the outside air temperature Tam is equal to or less than a predetermined value Y2 faster than the predetermined value Y1.
  • the configurations of the refrigerant circuit R and the heat generating apparatus temperature adjusting device 61 described in the above embodiments are not limited thereto, and it is needless to say that changes can be made without departing from the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

外気からの吸熱から熱媒体からの吸熱に切り換えるときの暖房能力の低下による不都合を解消することができる車両用空気調和装置を提供する。 発熱機器温度調整装置61は、熱媒体加熱ヒータ66と冷媒‐熱媒体熱交換器64を有する。圧縮機2から吐出された冷媒を放熱器4にて放熱させ、放熱した当該冷媒を減圧した後、冷媒‐熱媒体熱交換器で吸熱させる第1、第2の熱媒体吸熱/暖房モードを有し、暖房運転から第1、第2の熱媒体吸熱/暖房モードに切り換える際、熱媒体の温度が所定の閾値T1以下である場合、切り換える前に熱媒体加熱ヒータにより熱媒体を加熱する。

Description

車両用空気調和装置
 本発明は、車両の車室内を空調するヒートポンプ方式の空気調和装置、特にバッテリ等の発熱機器を備えたハイブリッド自動車や電気自動車に好適な車両用空気調和装置に関するものである。
 近年の環境問題の顕在化から、バッテリから供給される電力で走行用の電動モータを駆動するハイブリッド自動車や電気自動車が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、冷媒を圧縮して吐出する圧縮機と、車室内側に設けられて冷媒を放熱させる放熱器と、車室内側に設けられて冷媒を吸熱させる吸熱器と、車室外側に設けられて外気が通風されると共に、冷媒を吸熱又は放熱させる室外熱交換器が接続された冷媒回路を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外熱交換器において吸熱させる暖房モード(暖房運転)と、圧縮機から吐出された冷媒を室外熱交換器において放熱させ、吸熱器において吸熱させる冷房モード(冷房運転)を切り換えて実行するものが開発されている(例えば、特許文献1参照)。
 一方、車両に搭載された例えばバッテリ(発熱機器)は充電中、或いは、放電中の自己発熱で高温となる。このような状態で充放電を行うと、劣化が進行し、やがては作動不良を起こして破損する危険性がある。そこで、冷媒回路を循環する冷媒により冷却された空気(熱媒体)をバッテリに循環させることで二次電池(バッテリ)の温度を調整することができるようにしたものも開発されている(例えば、特許文献2参照)。
特開2014−213765号公報 特開2016−90201号公報
 ここで、熱媒体から冷媒が吸熱できるようにすることで、バッテリ等の発熱機器の熱を車室内の暖房に利用できるようにすれば、室外熱交換器への着霜の進行を遅延させることできるようになると共に、室外熱交換器が着霜して外気から吸熱することができなくなった場合にも、熱媒体からの吸熱で車室内の暖房を行うことが可能となる。
 しかしながら、室外熱交換器で外気から吸熱する運転状態から熱媒体から吸熱する運転状態に切り換わったとき、当該熱媒体の温度が冷えている場合、暖房能力が著しく低下して、車室内に吹き出される空気の温度が一時的に低下し、搭乗者に不快感や違和感を与える問題がある。
 本発明は、係る従来の技術的課題を解決するために成されたものであり、外気からの吸熱から熱媒体からの吸熱に切り換えるときの暖房能力の低下による不都合を解消することができる車両用空気調和装置を提供することを目的とする。
 本発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、車室外に設けられて冷媒を吸熱させるための室外熱交換器と、制御装置を備え、この制御装置により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房運転を実行するものであって、車両に搭載された発熱機器に熱媒体を循環させて当該発熱機器の温度を調整するための発熱機器温度調整装置を備え、この発熱機器温度調整装置は、熱媒体を加熱するための加熱装置と、冷媒と熱媒体とを熱交換させるための冷媒−熱媒体熱交換器を有し、制御装置は、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、冷媒−熱媒体熱交換器にて吸熱させる熱媒体吸熱/暖房モードを有し、暖房運転から熱媒体吸熱/暖房モードに切り換える際、熱媒体の温度が所定の閾値T1以下である場合、熱媒体吸熱/暖房モードに切り換える前に、加熱装置により熱媒体を加熱し、当該熱媒体の温度を上昇させた後、熱媒体吸熱/暖房モードに切り換えることを特徴とする。
 請求項2の発明の車両用空気調和装置は、上記発明において制御装置は、暖房運転において所定の外気吸熱不可予測判定条件が成立した場合、室外熱交換器で外気から吸熱できなくなる可能性ありと判定し、熱媒体の温度が閾値T1以下であるか否か判断して、当該閾値T1以下であれば加熱装置による熱媒体の加熱を開始し、当該熱媒体の温度が少なくとも閾値T1より高い温度に上昇するのを待って熱媒体吸熱/暖房モードに移行することを特徴とする。
 請求項3の発明の車両用空気調和装置は、上記発明において外気吸熱不可予測判定条件は、圧縮機の吸込冷媒温度Tsが所定値Ts1以下に低下したこと、室外熱交換器への着霜量が所定値Fr1以上に増加したこと、室外熱交換器への着霜の進行速度が所定値X1以上に上昇したこと、外気温度Tamが所定値Tam1以下に低下したこと、外気温度Tamの低下速度が所定値Y1以上に上昇したこと、のうちの少なくとも一つを含むことを特徴とする。
 請求項4の発明の車両用空気調和装置は、上記各発明において制御装置は、放熱器の目標暖房能力TGQhp、車室内に吹き出される空気温度の目標値である目標吹出温度TAO、空気流通路に通風する室内送風機の電圧BLV、放熱器の風下側の空気の温度の目標値である目標ヒータ温度TCO、のうちの少なくとも一つに基づいて閾値T1を決定することを特徴とする。
 請求項5の発明の車両用空気調和装置は、上記各発明において制御装置は、熱媒体吸熱/暖房モードを実行する際、所定の外気吸熱可能判定条件が成立した場合、室外熱交換器で外気からの吸熱が可能と判定し、放熱器にて放熱した冷媒を室外熱交換器と冷媒−熱媒体熱交換器にて吸熱させることを特徴とする。
 請求項6の発明の車両用空気調和装置は、上記発明において外気吸熱可能判定条件は、圧縮機の吸込冷媒温度Tsが所定値Ts1より低い所定値Ts2以上であること、室外熱交換器への着霜量が所定値Fr1より多い所定値Fr2以下であること、室外熱交換器への着霜の進行速度が所定値X1より早い所定値X2以下であること、外気温度Tamが所定値Tam1より低い所定値Tam2以上であること、外気温度Tamの低下速度が所定値Y1より早い所定値Y2以下であること、のうちの少なくとも一つを含むことを特徴とする。
 本発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、車室外に設けられて冷媒を吸熱させるための室外熱交換器と、制御装置を備え、この制御装置により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房運転を実行する車両用空気調和装置において、車両に搭載された発熱機器に熱媒体を循環させて当該発熱機器の温度を調整するための発熱機器温度調整装置を備え、この発熱機器温度調整装置は、熱媒体を加熱するための加熱装置と、冷媒と熱媒体とを熱交換させるための冷媒−熱媒体熱交換器を有し、制御装置が、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、冷媒−熱媒体熱交換器にて吸熱させる熱媒体吸熱/暖房モードを有するので、この熱媒体吸熱/暖房モードに切り換えれば、発熱機器温度調整装置の熱媒体から吸熱して効率良く車室内の暖房を行い、例えば室外熱交換器への着霜を抑制しながら、適切に発熱機器の冷却を行い、或いは、室外熱交換器が着霜して外気から吸熱できなくなった場合にも、発熱機器温度調整装置の熱媒体から吸熱して車室内を暖房することができるようになる。
 特に、制御装置は、暖房運転から熱媒体吸熱/暖房モードに切り換える際、熱媒体の温度が所定の閾値T1以下である場合、熱媒体吸熱/暖房モードに切り換える前に、加熱装置により熱媒体を加熱し、当該熱媒体の温度を上昇させた後、熱媒体吸熱/暖房モードに切り換えるので、暖房運転から熱媒体吸熱/暖房モードに切り換わるときの暖房能力を十分に確保することができるようになる。これにより、熱媒体の温度が低い状態で熱媒体吸熱/暖房モードに切り換わり、吹出温度が一時的に低下して搭乗者が不快感や違和感を覚える不都合も解消することが可能となる。
 また、請求項2の発明の如く制御装置が、暖房運転において所定の外気吸熱不可予測判定条件が成立した場合、室外熱交換器で外気から吸熱できなくなる可能性ありと判定し、熱媒体の温度が閾値T1以下であるか否か判断して、当該閾値T1以下であれば加熱装置による熱媒体の加熱を開始し、当該熱媒体の温度が少なくとも閾値T1より高い温度に上昇するのを待って熱媒体吸熱/暖房モードに移行するようにすれば、暖房運転から熱媒体吸熱/暖房モードへの切り換えを円滑に行うことができるようになる。
 尚、この場合の外気吸熱不可予測判定条件としては、請求項3の発明の如く、圧縮機の吸込冷媒温度Tsが所定値Ts1以下に低下したこと、室外熱交換器への着霜量が所定値Fr1以上に増加したこと、室外熱交換器への着霜の進行速度が所定値X1以上に上昇したこと、外気温度Tamが所定値Tam1以下に低下したこと、外気温度Tamの低下速度が所定値Y1以上に上昇したこと、のうちの少なくとも一つを含むことが好適である。
 また、請求項4の発明の如く制御装置が、放熱器の目標暖房能力TGQhp、車室内に吹き出される空気温度の目標値である目標吹出温度TAO、空気流通路に通風する室内送風機の電圧BLV、放熱器の風下側の空気の温度の目標値である目標ヒータ温度TCO、のうちの少なくとも一つに基づいて閾値T1を決定するようにすれば、加熱装置により熱媒体を加熱する必要があるか否かを適切に判定し、不必要な加熱装置による加熱を回避することができるようになる。
 また、請求項5の発明の如く制御装置が、熱媒体吸熱/暖房モードを実行する際、所定の外気吸熱可能判定条件が成立した場合、室外熱交換器で外気からの吸熱が可能と判定し、放熱器にて放熱した冷媒を室外熱交換器と冷媒−熱媒体熱交換器にて吸熱させるようにすれば、室外熱交換器において外気からの吸熱が可能な場合、熱媒体からの吸熱と合わせて外気からも吸熱し、車室内を暖房することができるようになる。
 尚、この場合の外気吸熱可能判定条件としては、請求項6の発明の如く、圧縮機の吸込冷媒温度Tsが所定値Ts1より低い所定値Ts2以上であること、室外熱交換器への着霜量が所定値Fr1より多い所定値Fr2以下であること、室外熱交換器への着霜の進行速度が所定値X1より早い所定値X2以下であること、外気温度Tamが所定値Tam1より低い所定値Tam2以上であること、外気温度Tamの低下速度が所定値Y1より早い所定値Y2以下であること、のうちの少なくとも一つであることが好適である。
本発明を適用した一実施形態の車両用空気調和装置の構成図である。 図1の車両用空気調和装置のコントローラの電気回路のブロック図である。 図2のコントローラによる暖房運転を説明する図である。 図2のコントローラによる除湿暖房運転を説明する図である。 図2のコントローラによる内部サイクル運転を説明する図である。 図2のコントローラによる除湿冷房運転を説明する図である。 図2のコントローラによる冷房運転を説明する図である。 図2のコントローラによる第1の熱媒体吸熱/暖房モードを説明する図である。 図2のコントローラによる第2の熱媒体吸熱/暖房モードを説明する図である。 外気吸熱不可となる可能性があるときの図2のコントローラによる暖房運転から第1の熱媒体吸熱/暖房モード、第2の熱媒体吸熱/暖房モードへの切換制御を説明するフローチャートである。 図2のコントローラが有する熱媒体吸熱移行可能熱媒体温度MAPを説明する図である。 外気吸熱不可となる可能性があるに暖房運転から第2の熱媒体吸熱/暖房モードに切り換えるときの各部の温度変化を説明する図である。 熱媒体予熱運転を実施する場合の冷媒回路のp−h線図である。 熱媒体予熱運転を実施しない場合の冷媒回路のp−h線図である。
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。
 図1は本発明の一実施例の車両用空気調和装置1の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、車両にバッテリ55が搭載され、このバッテリ55に充電された電力を走行用の電動モータ(図示せず)に供給することで駆動し、走行するものであり、本発明の車両用空気調和装置1も、バッテリ55の電力で駆動されるものとする。
 即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路Rを用いたヒートポンプ運転により暖房運転を行い、更に、除湿暖房運転や内部サイクル運転、除湿冷房運転、冷房運転の各空調運転を選択的に実行することで車室内の空調を行うものである。
 尚、車両として電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車にも本発明が有効であり、更には、エンジンで走行する通常の自動車にも適用可能であることは云うまでもない。
 実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒が冷媒配管13Gを介して流入し、この冷媒を車室内に放熱させる放熱器4と、暖房時に冷媒を減圧膨張させる電動弁から成る室外膨張弁6と、冷房時には冷媒を放熱させる放熱器として機能し、暖房時には冷媒を吸熱させる蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる電動弁(機械式膨張弁でも良い)から成る室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に車室内外から冷媒に吸熱させる吸熱器9と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。室外膨張弁6は放熱器4から出て室外熱交換器7に流入する冷媒を減圧膨張させると共に全閉も可能とされている。
 尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。また、図中23はグリルシャッタと称されるシャッタである。このシャッタ23が閉じられると、走行風が室外熱交換器7に流入することが阻止される構成とされている。
 また、室外熱交換器7の冷媒出口側に接続された冷媒配管13Aは、逆止弁18を介して冷媒配管13Bに接続されている。尚、逆止弁18は冷媒配管13B側が順方向とされている。この冷媒配管13Bは冷房時に開放される開閉弁としての電磁弁17を介して室内膨張弁8に接続されている。実施例では、これら電磁弁17及び室内膨張弁8が、吸熱器9への冷媒の流入を制御するための弁装置を構成する。
 また、室外熱交換器7から出た冷媒配管13Aは分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される電磁弁21を介して吸熱器9の出口側に位置する冷媒配管13Cに連通接続されている。そして、冷媒配管13Dが合流した後の冷媒配管13Cは、逆止弁40を介してアキュムレータ12に接続され、アキュムレータ12は圧縮機2の冷媒吸込側に接続されている。尚、逆止弁40はアキュムレータ12側が順方向とされている。
 更に、放熱器4の出口側の冷媒配管13Eは室外膨張弁6の手前(冷媒上流側)で冷媒配管13Jと冷媒配管13Fに分岐しており、分岐した一方の冷媒配管13Jが室外膨張弁6を介して室外熱交換器7の冷媒入口側に接続されている。また、分岐した他方の冷媒配管13Fは除湿時に開放される電磁弁22を介して逆止弁18の冷媒下流側であって、電磁弁17の冷媒上流側に位置する冷媒配管13Aと冷媒配管13Bとの接続部に連通接続されている。
 これにより、冷媒配管13Fは室外膨張弁6、室外熱交換器7及び逆止弁18の直列回路に対して並列に接続されたかたちとなり、室外膨張弁6、室外熱交換器7及び逆止弁18をバイパスする回路となる。また、室外膨張弁6には電磁弁20が並列に接続されている。
 また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環)と、車室外の空気である外気(外気導入)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。
 また、放熱器4の空気上流側における空気流通路3内には、当該空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を放熱器4に通風する割合を調整するエアミックスダンパ28が設けられている。更に、放熱器4の空気下流側における空気流通路3には、FOOT(フット)、VENT(ベント)、DEF(デフ)の各吹出口(図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口から空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。
 更に、本発明の車両用空気調和装置1は、バッテリ55に熱媒体を循環させて当該バッテリ55の温度を調整するための発熱機器温度調整装置61を備えている。尚、実施例ではバッテリ55を本発明における発熱機器の一例として採り上げているが、発熱機器としてはそれに限らず、走行用の電動モータやそれを制御するインバータ等であってもよい。
 この実施例の発熱機器温度調整装置61は、バッテリ55(発熱機器)に熱媒体を循環させるための循環装置としての循環ポンプ62と、加熱装置としての熱媒体加熱ヒータ66と、冷媒−熱媒体熱交換器64を備え、それらとバッテリ55が熱媒体配管68にて環状に接続されている。
 実施例の場合、循環ポンプ62の吐出側に熱媒体加熱ヒータ66が接続され、熱媒体加熱ヒータ66の出口に冷媒−熱媒体熱交換器64の熱媒体流路64Aの入口が接続され、この熱媒体流路64Aの出口にバッテリ55の入口が接続され、バッテリ55の出口が循環ポンプ62の吸込側に接続されている。
 この発熱機器温度調整装置61で使用される熱媒体としては、例えば水、HFO−1234fのような冷媒、クーラント等の液体、空気等の気体が採用可能である。尚、実施例では水を熱媒体として採用している。また、熱媒体加熱ヒータ66はPTCヒータ等の電気ヒータから構成されている。更に、バッテリ55の周囲には例えば熱媒体が当該バッテリ55と熱交換関係で流通可能なジャケット構造が施されているものとする。
 そして、循環ポンプ62が運転されると、循環ポンプ62から吐出された熱媒体は熱媒体加熱ヒータ66に至り、熱媒体加熱ヒータ66が発熱されている場合にはそこで加熱された後、次に冷媒−熱媒体熱交換器64の熱媒体流路64Aに流入する。この冷媒−熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体はバッテリ55に至る。熱媒体はそこでバッテリ55と熱交換した後、循環ポンプ62に吸い込まれることで熱媒体配管68内を循環される。
 一方、冷媒回路Rの冷媒配管13Fの出口、即ち、冷媒配管13Fと冷媒配管13A及び冷媒配管13Bとの接続部には、逆止弁18の冷媒下流側(順方向側)であって、電磁弁17の冷媒上流側に位置して分岐回路としての分岐配管72の一端が接続されている。この分岐配管72には電動弁から構成された補助膨張弁73が設けられている。この補助膨張弁73は冷媒−熱媒体熱交換器64の後述する冷媒流路64Bに流入する冷媒を減圧膨張させると共に全閉も可能とされている。そして、分岐配管72の他端は冷媒−熱媒体熱交換器64の冷媒流路64Bに接続されており、この冷媒流路64Bの出口には冷媒配管74の一端が接続され、冷媒配管74の他端はアキュムレータ12の手前(アキュムレータ12の冷媒上流側であって、逆止弁40の冷媒下流側)の冷媒配管13Cに接続されている。そして、これら補助膨張弁73等も冷媒回路Rの一部を構成すると同時に、発熱機器温度調整装置61の一部をも構成することになる。
 補助膨張弁73が開いている場合、冷媒配管13Fや室外熱交換器7から出た冷媒(一部又は全ての冷媒)はこの補助膨張弁73で減圧された後、冷媒−熱媒体熱交換器64の冷媒流路64Bに流入し、そこで蒸発する。冷媒は冷媒流路64Bを流れる過程で熱媒体流路64Aを流れる熱媒体から吸熱した後、アキュムレータ12を経て圧縮機2に吸い込まれることになる。
 次に、図2において32は制御装置としてのコントローラ(ECU)である。このコントローラ32は、プロセッサを備えたコンピュータの一例としてのマイクロコンピュータから構成されており、その入力には車両の外気温度(Tam)を検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれる空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO濃度センサ39と、吹出口29から車室内に吹き出される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力(吐出圧力Pd)を検出する吐出圧力センサ42と、圧縮機2の吐出冷媒温度を検出する吐出温度センサ43と、圧縮機2の吸込冷媒温度Tsを検出する吸込温度センサ44と、放熱器4の温度(実施例では放熱器4を出た直後の冷媒の温度:放熱器温度TCI)を検出する放熱器温度センサ46と、放熱器4の冷媒圧力(放熱器4内、又は、放熱器4を出た直後の冷媒の圧力:放熱器圧力PCI)を検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器9を経た空気の温度、又は、吸熱器9自体の温度:吸熱器温度Te)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力(吸熱器9内、又は、吸熱器9を出た直後の冷媒の圧力)を検出する吸熱器圧力センサ49と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52と、設定温度や空調運転の切り換えを設定するための空調(エアコン)操作部53と、室外熱交換器7の温度(室外熱交換器7から出た直後の冷媒の温度、又は、室外熱交換器7自体の温度:室外熱交換器温度TXO。室外熱交換器7が蒸発器として機能するとき、室外熱交換器温度TXOは室外熱交換器7における冷媒の蒸発温度となる)を検出する室外熱交換器温度センサ54と、室外熱交換器7の冷媒圧力(室外熱交換器7内、又は、室外熱交換器7から出た直後の冷媒の圧力:室外熱交換器圧力PXO。室外熱交換器7における冷媒の蒸発圧力となる)を検出する室外熱交換器圧力センサ56の各出力が接続されている。
 また、コントローラ32の入力には更に、バッテリ55の温度(バッテリ55自体の温度、又は、バッテリ55を出た熱媒体の温度、或いは、バッテリ55に入る熱媒体の温度)を検出するバッテリ温度センサ76と、熱媒体加熱ヒータ66の温度(熱媒体加熱ヒータ66自体の温度)検出する熱媒体加熱ヒータ温度センサ77と、熱媒体加熱ヒータ66を出た熱媒体の温度(熱媒体温度Tw)を検出する熱媒体温度センサ80と、冷媒−熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体の温度を検出する第1出口温度センサ78と、冷媒流路64Bを出た冷媒の温度を検出する第2の出口温度センサ79の各出力も接続されている。
 一方、コントローラ32の出力には、前記圧縮機2と、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吹出口切換ダンパ31と、室外膨張弁6、室内膨張弁8と、電磁弁22(除湿)、電磁弁17(冷房)、電磁弁21(暖房)、電磁弁20(バイパス)の各電磁弁と、シャッタ23、循環ポンプ62、熱媒体加熱ヒータ66、補助膨張弁73が接続されている。そして、コントローラ32は各センサの出力と空調操作部53にて入力された設定に基づいてこれらを制御するものである。
 以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。コントローラ32は実施例では暖房運転と、除湿暖房運転と、内部サイクル運転と、除湿冷房運転と、冷房運転の各空調運転を切り換えて実行すると共に、バッテリ55の温度を所定の適温範囲内に調整する。先ず、冷媒回路Rの各空調運転について説明する。
 (1)暖房運転
 最初に、図3を参照しながら暖房運転について説明する。図3は暖房運転における冷媒回路Rの冷媒の流れ(実線矢印)を示している。コントローラ32により(オートモード)、或いは、空調操作部53へのマニュアル操作(マニュアルモード)により暖房運転が選択されると、コントローラ32は電磁弁21(暖房用)を開放し、電磁弁17(冷房用)を閉じる。また、電磁弁22(除湿用)、電磁弁20(バイパス用)を閉じる。尚、シャッタ23は開放する。
 そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4に通風される割合を調整する状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
 放熱器4内で液化した冷媒は放熱器4を出た後、冷媒配管13E、13Jを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる(吸熱)。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び冷媒配管13D、電磁弁21、逆止弁40を順次経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4にて加熱された空気は吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。
 コントローラ32は、後述する目標吹出温度TAOから算出される目標ヒータ温度TCO(放熱器4の風下側の空気の温度である後述する加熱温度THの目標値)から目標放熱器圧力PCO(放熱器4の圧力PCIの目標値)を算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御すると共に、放熱器温度センサ46が検出する放熱器4の温度(放熱器温度TCI)及び放熱器圧力センサ47が検出する放熱器圧力PCIに基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度を制御する。前記目標ヒータ温度TCOは基本的にはTCO=TAOとされるが、制御上の所定の制限が設けられる。
 (2)除湿暖房運転
 次に、図4を参照しながら除湿暖房運転について説明する。図4は除湿暖房運転における冷媒回路Rの冷媒の流れ(実線矢印)を示している。除湿暖房運転では、コントローラ32は上記暖房運転の状態において電磁弁22と電磁弁17を開放する。また、シャッタ23は開放する。これにより、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の一部が分流され、この分流された冷媒が電磁弁22を経て冷媒配管13Fに流入し、冷媒配管13Bから室内膨張弁8に流れ、残りの冷媒が室外膨張弁6に流れるようになる。即ち、分流された一部の冷媒が室内膨張弁8にて減圧された後、吸熱器9に流入して蒸発する。
 コントローラ32は吸熱器9の出口における冷媒の過熱度(SH)を所定値に維持するように室内膨張弁8の弁開度を制御するが、このときに吸熱器9で生じる冷媒の吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。分流されて冷媒配管13Jに流入した残りの冷媒は、室外膨張弁6で減圧された後、室外熱交換器7で蒸発することになる。
 吸熱器9で蒸発した冷媒は、冷媒配管13Cに出て冷媒配管13Dからの冷媒(室外熱交換器7からの冷媒)と合流した後、逆止弁40及びアキュムレータ12を順次経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。
 コントローラ32は目標ヒータ温度TCOから算出される目標放熱器圧力PCOと放熱器圧力センサ47が検出する放熱器圧力PCI(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御すると共に、吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて室外膨張弁6の弁開度を制御する。
 (3)内部サイクル運転
 次に、図5を参照しながら内部サイクル運転について説明する。図5は内部サイクル運転における冷媒回路Rの冷媒の流れ(実線矢印)を示している。内部サイクル運転では、コントローラ32は上記除湿暖房運転の状態において室外膨張弁6を全閉とする(全閉位置)。但し、電磁弁21は開いた状態を維持し、室外熱交換器7の冷媒出口は圧縮機2の冷媒吸込側に連通させておく。即ち、この内部サイクル運転は除湿暖房運転における室外膨張弁6の制御で当該室外膨張弁6を全閉とした状態であるので、この内部サイクル運転も除湿暖房運転の一部と捉えることができる(シャッタ23は開)。
 但し、室外膨張弁6が閉じられることにより、室外熱交換器7への冷媒の流入は阻止されることになるので、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒は電磁弁22を経て冷媒配管13Fに全て流れるようになる。そして、冷媒配管13Fを流れる冷媒は冷媒配管13Bより電磁弁17を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は冷媒配管13Cを流れ、逆止弁40及びアキュムレータ12を順次経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより、車室内の除湿暖房が行われることになるが、この内部サイクル運転では室内側の空気流通路3内にある放熱器4(放熱)と吸熱器9(吸熱)の間で冷媒が循環されることになるので、外気からの熱の汲み上げは行われず、圧縮機2の消費動力分の暖房能力が発揮される。除湿作用を発揮する吸熱器9には冷媒の全量が流れるので、上記除湿暖房運転に比較すると除湿能力は高いが、暖房能力は低くなる。
 また、室外膨張弁6は閉じられるものの、電磁弁21は開いており、室外熱交換器7の冷媒出口は圧縮機2の冷媒吸込側に連通しているので、室外熱交換器7内の液冷媒は冷媒配管13D及び電磁弁21を経て冷媒配管13Cに流出し、アキュムレータ12に回収され、室外熱交換器7内はガス冷媒の状態となる。これにより、電磁弁21を閉じたときに比して、冷媒回路R内を循環する冷媒量が増え、放熱器4における暖房能力と吸熱器9における除湿能力を向上させることができるようになる。
 コントローラ32は吸熱器9の温度、又は、前述した放熱器圧力PCI(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御する。このとき、コントローラ32は吸熱器9の温度によるか放熱器圧力PCIによるか、何れかの演算から得られる圧縮機目標回転数の低い方を選択して圧縮機2を制御する。
 (4)除湿冷房運転
 次に、図6を参照しながら除湿冷房運転について説明する。図6は除湿冷房運転における冷媒回路Rの冷媒の流れ(実線矢印)を示している。除湿冷房運転では、コントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁22、電磁弁20を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4に通風される割合を調整する状態とする。また、シャッタ23は開放する。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
 放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至り、開き気味で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13A、逆止弁18を経て冷媒配管13Bに入り、更に電磁弁17を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は冷媒配管13Cを経て逆止弁40を通過し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程でリヒート(再加熱:暖房時よりも放熱能力は低い)されるので、これにより車室内の除湿冷房が行われることになる。
 コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEOに基づき、吸熱器温度Teを目標吸熱器温度TEOにするように圧縮機2の回転数を制御すると共に、放熱器圧力センサ47が検出する放熱器圧力PCI(冷媒回路Rの高圧圧力)と目標ヒータ温度TCOから算出される目標放熱器圧力PCO(放熱器圧力PCIの目標値)に基づき、放熱器圧力PCIを目標放熱器圧力PCOにするように室外膨張弁6の弁開度を制御することで放熱器4による必要なリヒート量を得る。
 (5)冷房運転
 次に、図7を参照しながら冷房運転について説明する。図7は冷房運転における冷媒回路Rの冷媒の流れ(実線矢印)を示している。冷房運転では、コントローラ32は上記除湿冷房運転の状態において電磁弁20を開く(室外膨張弁6の弁開度は自由)。尚、エアミックスダンパ28は放熱器4に空気が通風される割合を調整する状態とする。また、シャッタ23は開放する。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されるものの、その割合は小さくなるので(冷房時のリヒートのみのため)、ここは殆ど通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至る。このとき電磁弁20は開放されているので冷媒は電磁弁20を経て冷媒配管13Jを通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7を出た冷媒は冷媒配管13A、逆止弁18を経て冷媒配管13Bに入り、更に電磁弁17を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着し、空気は冷却される。
 吸熱器9で蒸発した冷媒は冷媒配管13Cに出て逆止弁40を通過し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。この冷房運転においては、コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて圧縮機2の回転数を制御する。
 (6)空調運転の切り換えとエアミックスダンパ28の制御
 コントローラ32は下記式(I)から前述した目標吹出温度TAOを算出する。この目標吹出温度TAOは、吹出口29から車室内に吹き出される空気の温度の目標値である。
 TAO=(Tset−Tin)×K+Tbal(f(Tset、SUN、Tam))
                                   ・・(I)
 ここで、Tsetは空調操作部53で設定された車室内の設定温度、Tinは内気温度センサ37が検出する車室内空気の温度、Kは係数、Tbalは設定温度Tsetや、日射センサ51が検出する日射量SUN、外気温度センサ33が検出する外気温度Tamから算出されるバランス値である。そして、一般的に、この目標吹出温度TAOは外気温度Tamが低い程高く、外気温度Tamが上昇するに伴って低下する。
 そして、コントローラ32は起動時には外気温度センサ33が検出する外気温度Tamと目標吹出温度TAOとに基づいて上記各空調運転のうちの何れかの空調運転を選択する。また、起動後は外気温度Tamや目標吹出温度TAO等の環境や設定条件の変化に応じて前記各空調運転を選択し、切り換えていくものである。
 また、コントローラ32は、SW=(TAO−Te)/(TH−Te)の式で得られる風量割合SWでエアミックスダンパ28を制御する。この風量割合SWは吸熱器9を経た空気を、放熱器4に通風する割合であり、0(放熱器4に通風しない)から1(全ての空気を放熱器4に通風する)の間で変化する。
 このエアミックスダンパ28の風量割合SWを算出するTHは、前述した放熱器4の風下側の空気の温度(加熱温度)であり、コントローラ32が下記に示す一次遅れ演算の式(II)から推定する。
 TH=(INTL×TH0+Tau×THz)/(Tau+INTL) ・・(II)
 ここで、INTLは演算周期(定数)、Tauは一次遅れの時定数、TH0は一次遅れ演算前の定常状態における加熱温度THの定常値、THzは加熱温度THの前回値である。このように加熱温度THを推定することで、格別な温度センサを設ける必要がなくなる。尚、コントローラ32は前述した運転モードによって上記時定数Tau及び定常値TH0を変更することにより、上述した推定式(II)を運転モードによって異なるものとし、加熱温度THを推定する。
 (7)バッテリ55の温度調整
 次に、図8、図9を参照しながらコントローラ32によるバッテリ55の温度調整制御について説明する。前述した如くバッテリ55は自己発熱等により温度が高くなった状態で充放電を行うと、劣化が進行する。そこで、実施例の車両用空気調和装置1のコントローラ32は、上記の如き空調運転を実行しながら、発熱機器温度調整装置61により、バッテリ55の温度を適温範囲内に冷却する。このバッテリ55の適温範囲は一般的には+25℃以上+45℃以下とされているため、実施例ではこの適温範囲内にバッテリ55の温度(バッテリ温度Tb)の目標値である目標バッテリ温度TBO(例えば、+35℃)を設定するものとする。
 (7−1)第1の熱媒体吸熱/暖房モード(熱媒体吸熱/暖房モード)
 コントローラ32は、暖房運転(図3)においては、例えば下記式(III)、(IV)を用いて放熱器4に要求される車室内の暖房能力である目標暖房能力TGQhpと、放熱器4が発生可能な暖房能力Qhpを算出している。
 TGQhp=(TCO−Te)×Cpa×ρ×Qair       ・・(III)
 Qhp=f(Tam、NC、BLV、VSP、FANVout、Te)・・(IV)
 ここで、Teは吸熱器温度センサ48が検出する吸熱器9の温度、Cpaは放熱器4に流入する空気の比熱[kj/kg・K]、ρは放熱器4に流入する空気の密度(比体積)[kg/m]、Qairは放熱器4を通過する風量[m/h](室内送風機27のブロワ電圧BLVなどから推定)、VSPは車速センサ52から得られる車速、FANVoutは室外送風機15の電圧である。
 また、コントローラ32は、バッテリ温度センサ76が検出するバッテリ55の温度(バッテリ温度Tb)と上述した目標バッテリ温度TBOとに基づき、例えば下記式(V)を用いて発熱機器温度調整装置61に要求されるバッテリ55の冷却能力である要求バッテリ冷却能力Qbatを算出している。
 Qbat=(Tb−TBO)×k1×k2              ・・(V)
 ここで、k1は発熱機器温度調整装置61内を循環する熱媒体の比熱[kj/kg・K]、k2は熱媒体の流量[m/h]である。尚、要求バッテリ冷却能力Qbatを算出する式は上記に限られるものでは無く、上記以外のバッテリ冷却に関連する他のファクターを加味して算出してもよい。
 バッテリ温度Tbが目標バッテリ温度TBOより低い場合(Tb<TBO)は、上記式(V)で算出される要求バッテリ冷却能力Qbatはマイナスとなるため、実施例ではコントローラ32は補助膨張弁73を全閉とし、発熱機器温度調整装置61も停止している。一方、前述した暖房運転中に、充放電等によりバッテリ温度Tbが上昇し、目標バッテリ温度TBOより高くなった場合(TBO<Tb)、式(V)で算出される要求バッテリ冷却能力Qbatがプラスに転じるので、実施例ではコントローラ32は補助膨張弁73を開き、発熱機器温度調整装置61を運転してバッテリ55の冷却を開始する。
 その場合、コントローラ32は上記目標暖房能力TGQhpと要求バッテリ冷却能力Qbatに基づき、両者を比較して、実施例ではここで説明する第1の熱媒体吸熱/暖房モードと、後述する第2の熱媒体吸熱/暖房モード(何れも本発明における熱媒体吸熱/暖房モード)を切り換えて実行する。
 先ず、車室内の暖房負荷が大きく(例えば内気の温度が低く)、且つ、バッテリ55の発熱量が小さい(冷却負荷が小さい)状況で、目標暖房能力TGQhpが要求バッテリ冷却能力Qbatよりも大きい場合(TGQhp>Qbat)、コントローラ32は第1の熱媒体吸熱/暖房モードを実行する。図8はこの第1の熱媒体吸熱/暖房モードにおける冷媒回路Rの冷媒の流れ(実線矢印)と発熱機器温度調整装置61の熱媒体の流れ(破線矢印)を示している。
 この第1の熱媒体吸熱/暖房モードでは、コントローラ32は図3に示した冷媒回路Rの暖房運転の状態で、更に電磁弁22を開き、補助膨張弁73も開いてその弁開度を制御する状態とする。そして、発熱機器温度調整装置61の循環ポンプ62を運転する。これにより、放熱器4から出た冷媒の一部が室外膨張弁6の冷媒上流側で分流され、冷媒配管13Fを経て電磁弁17の冷媒上流側に至る。冷媒は次に分岐配管72に入り、補助膨張弁73で減圧された後、分岐配管72を経て冷媒−熱媒体熱交換器64の冷媒流路64Bに流入して蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は、冷媒配管74、冷媒配管13C及びアキュムレータ12を順次経て圧縮機2に吸い込まれる循環を繰り返す(図8に実線矢印で示す)。
 一方、循環ポンプ62から吐出された熱媒体は熱媒体加熱ヒータ66を経て熱媒体配管68内を冷媒−熱媒体熱交換器64の熱媒体流路64Aに至り、そこで冷媒流路64B内で蒸発する冷媒により吸熱され、熱媒体は冷却される。冷媒の吸熱作用で冷却された熱媒体は、冷媒−熱媒体熱交換器64を出てバッテリ55に至り、当該バッテリ55を冷却した後、循環ポンプ62に吸い込まれる循環を繰り返す(図8に破線矢印で示す)。
 このようにして第1の熱媒体吸熱/暖房モードでは、冷媒回路Rの冷媒が室外熱交換器7と冷媒−熱媒体熱交換器64にて蒸発し、外気から吸熱すると共に発熱機器温度調整装置61の熱媒体(バッテリ55)からも吸熱する。これにより、熱媒体を介してバッテリ55から熱を汲み上げ、バッテリ55を冷却しながら、汲み上げた熱を放熱器4に搬送し、車室内の暖房に利用することができるようになる。
 この第1の熱媒体吸熱/暖房モードにおいて、上記のように外気からの吸熱とバッテリ55から吸熱によっても前述した放熱器4の暖房能力Qhpにより目標暖房能力TGQhpを達成できない場合(TGQhp>Qhp)、コントローラ32は熱媒体加熱ヒータ66を発熱させる(通電)。
 熱媒体加熱ヒータ66が発熱すると、発熱機器温度調整装置61の循環ポンプ62から吐出された熱媒体は、熱媒体加熱ヒータ66で加熱された後、冷媒−熱媒体熱交換器64の熱媒体流路64Aに流入するようになるので、熱媒体加熱ヒータ66の熱も冷媒流路64Bで蒸発する冷媒により汲み上げられるようになり、放熱器4による暖房能力Qhpが増大して目標暖房能力TGQhpを達成することができるようになる。尚、コントローラ32は暖房能力Qhpが目標暖房能力TGQhpを達成できるようになった時点で熱媒体加熱ヒータ66の発熱を停止する(非通電)。
 (7−2)第2の熱媒体吸熱/暖房モード
 次に、車室内の暖房負荷とバッテリ55の冷却負荷が略同じ場合、即ち、目標暖房能力TGQhpと要求バッテリ冷却能力Qbatが等しいか、近似する場合(TGQhp≒Qbat)、コントローラ32は第2の熱媒体吸熱/暖房モードを実行する。図9はこの第2の熱媒体吸熱/暖房モードにおける冷媒回路Rの冷媒の流れ(実線矢印)と発熱機器温度調整装置61の熱媒体の流れ(破線矢印)を示している。
 この第2の熱媒体吸熱/暖房モードでは、コントローラ32は電磁弁17、20、21を閉じ、室外膨張弁6を全閉とし、電磁弁22を開き、補助膨張弁73も開いてその弁開度を制御する状態とする。そして、圧縮機2及び室内送風機27を運転し、発熱機器温度調整装置61の循環ポンプ62も運転する。これにより、放熱器4から出た全ての冷媒が電磁弁22に流れ、冷媒配管13Fを経て電磁弁17の冷媒上流側に至るようになる。冷媒は次に分岐配管72に入り、補助膨張弁73で減圧された後、分岐配管72を経て冷媒−熱媒体熱交換器64の冷媒流路64Bに流入して蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は、冷媒配管74、冷媒配管13C及びアキュムレータ12を順次経て圧縮機2に吸い込まれる循環を繰り返す(図9に実線矢印で示す)。
 一方、循環ポンプ62から吐出された熱媒体は熱媒体加熱ヒータ66を経て熱媒体配管68内を冷媒−熱媒体熱交換器64の熱媒体流路64Aに至り、そこで冷媒流路64B内で蒸発する冷媒により吸熱され、熱媒体は冷却される。冷媒の吸熱作用で冷却された熱媒体は、冷媒−熱媒体熱交換器64を出てバッテリ55に至り、当該バッテリ55を冷却した後、循環ポンプ62に吸い込まれる循環を繰り返す(図9に破線矢印で示す)。
 このようにして第2の熱媒体吸熱/暖房モードでは、冷媒回路Rの冷媒が冷媒−熱媒体熱交換器64にて蒸発し、発熱機器温度調整装置61の熱媒体(バッテリ55)のみから吸熱する。これにより、冷媒は室外熱交換器7に流入せず、冷媒は熱媒体を介してバッテリ55のみから熱を汲み上げることになるので、室外熱交換器7への着霜の問題を解消しながら、バッテリ55を冷却し、当該バッテリ55から汲み上げた熱を放熱器4に搬送して車室内を暖房することができるようになる。
 尚、前述した除湿暖房運転(図4)、内部サイクル運転(図5)、除湿冷房運転(図6)及び冷房運転(図7)の場合にも、補助膨張弁73を開いてその弁開度を制御し、循環ポンプ62を運転することにより、冷媒−熱媒体熱交換器64の冷媒流路64Bで冷媒を蒸発させ、熱媒体から吸熱することで、バッテリ55を冷却し、その温度を調整することができる。
 (8)外気吸熱不可となる可能性があるときの暖房運転から第1、第2の熱媒体吸熱/暖房モードへの切換制御
 次に、図10~図14を参照しながら、暖房運転(図3)において室外熱交換器7で外気から吸熱することができなくなる(外気吸熱不可)可能性があるときの暖房運転から第1、第2の熱媒体吸熱/暖房モードへの切換制御について説明する。
 コントローラ32は、図10のステップS1で前述した暖房運転を開始した後、ステップS2で暖房運転を実行しているあいだ、ステップS3を実行して、室外熱交換器7で外気から冷媒が吸熱できなくなる可能性があるか否か判断している。このステップS3における判定条件を外気吸熱不可予測判定条件と称する。この外気吸熱不可予測判定条件は、例えば以下に示す(i)~(v)の何れか、又は、それらの組み合わせ、若しくは、それらの全てである。
 (i)吸込温度センサ44が検出する圧縮機2の吸込冷媒温度Tsが所定値Ts1以下に低下したこと。
 (ii)室外熱交換器7への着霜量が所定値Fr1以上に増加したこと。
 (iii)室外熱交換器7への着霜の進行速度が所定値X1以上に上昇したこと。
 (iv)外気温度センサ33が検出する外気温度Tamが所定値Tam1以下に低下したこと。
 (v)外気温度センサ33が検出する外気温度Tamの低下速度が所定値Y1以上に上昇したこと。
 室外熱交換器7に着霜が成長した状態や外気温度Tamが低下する環境では室外熱交換器7で冷媒が外気から吸熱することができなくなる可能性が出てくる。尚、上記条件(i)は、外気温度Tamが低下し、或いは、室外熱交換器7に着霜が成長して外気からの吸熱が困難になると、圧縮機2の吸込冷媒温度Tsが低下してくることに基づく。また、上記条件(ii)、(iii)における着霜量や着霜の進行速度は、例えば室外熱交換器7の室外熱交換器温度TXOや室外熱交換器圧力PXOと、室外熱交換器7に着霜が無いときのそれらの値(無着霜時室外熱交換器温度TXObase、無着霜時室外熱交換器圧力PXObase。予め求めておく)との差から求めることができる。
 上記各所定値Ts1、Fr1、X1、Tam1、Y1は、室外熱交換器7で外気から吸熱できなくなる可能性が出て来る値として予め実験により求めておく。そして、コントローラ32は、ステップS3で上記条件(i)~(v)の何れか、又は、それらの組み合わせ、若しくは、それらの全てが成立する場合、外気吸熱不可予測判定条件が成立し、室外熱交換器7で冷媒が外気から吸熱できなくなる可能性があると判定し、ステップS4に進んで先ず発熱機器温度調整装置61の循環ポンプ62を運転し、熱媒体配管68に熱媒体を循環させる。
 次に、コントローラ32はステップS5で熱媒体温度センサ80の出力に基づき、熱媒体加熱ヒータ66を出た熱媒体の温度(熱媒体温度Tw)が、所定の閾値T1以下であるか否か判断する。この場合、コントローラ32は図11に示す熱媒体吸熱移行可能熱媒体温度MAPを保有している。この熱媒体吸熱移行可能熱媒体温度MAPは、前述した目標暖房能力TGQhpと、それを達成することができない熱媒体温度Twである上記閾値T1との関係を示すものであり、放熱器4の目標暖房能力TGQhpが高くなる程、閾値T1も高くなる。
 尚、係る目標暖房能力TGQhp以外にも、前述した目標吹出温度TAOや室内送風機27のブロワ電圧BLV、前述した目標ヒータ温度TCOのうちの何れか、又は、それらと目標暖房能力TGQhpとの組み合わせ、或いは、これらの全てに基づいて閾値T1を決定してもよい。
 コントローラ32は、ステップS5でこの熱媒体吸熱移行可能熱媒体温度MAPとその時点の目標暖房能力TGQhpから閾値T1を決定し、熱媒体温度Twがこの閾値T1以下であるか否か判断する。そして、熱媒体温度Twが低く、閾値T1以下である場合は、コントローラ32は熱媒体からの吸熱では車室内を暖房することができないと判断し、ステップS5からステップS9に進み、熱媒体予熱運転を開始する。
 この熱媒体予熱運転では、コントローラ32は熱媒体加熱ヒータ66に通電して発熱させる。これにより、循環ポンプ62で循環される熱媒体は熱媒体加熱ヒータ66で加熱されるようになるので、熱媒体温度Twは上昇していく。そして、熱媒体温度Twが閾値T1(所定のヒステリシスα1を持たせた値(T1+α1)でもよい。)より高くなった場合、コントローラ32はステップS6に進む。
 このステップS6では、コントローラ32は未だ室外熱交換器7で外気から冷媒が吸熱することが可能か否か判断する。このステップS6における判定条件を外気吸熱可能判定条件と称する。この外気吸熱可能判定条件は、例えば以下に示す(vi)~(x)の何れか、又は、それらの組み合わせ、若しくは、それらの全てである。
 (vi)吸込温度センサ44が検出する圧縮機2の吸込冷媒温度Tsが前記所定値Ts1より低い所定値Ts2以上であること。
 (vii)室外熱交換器7への着霜量が前記所定値Fr1より多い所定値Fr2以下であること。
 (viii)室外熱交換器7への着霜の進行速度が前記所定値X1より早い所定値X2以下であること。
 (ix)外気温度センサ33が検出する外気温度Tamが前記所定値Tam1より低い所定値Tam2以上であること。
 (x)外気温度センサ33が検出する外気温度Tamの低下速度が前記所定値Y1より早い所定値Y2以下であること。
 上記各所定値Ts2、Fr2、X2、Tam2、Y2は、未だ室外熱交換器7で外気から吸熱が可能な値として予め実験により求めておく。そして、コントローラ32は、ステップS6で上記条件(vi)~(x)の何れか、又は、それらの組み合わせ、若しくは、それらの全てが成立する場合、外気吸熱可能判定条件が成立し、未だ室外熱交換器7で冷媒が外気から吸熱することが可能であると判定し、ステップS7に進んで前述した第1の熱媒体吸熱/暖房モード(図8)を実行する(第1の熱媒体吸熱/暖房モードに切り換える)。
 この第1の熱媒体吸熱/暖房モードでは、前述した如く冷媒回路Rの冷媒が室外熱交換器7と冷媒−熱媒体熱交換器64にて蒸発し、外気から吸熱すると共に発熱機器温度調整装置61の熱媒体からも吸熱するようになるので、熱媒体を介してバッテリ55や熱媒体加熱ヒータ66(通電されているとき)から熱を汲み上げ、汲み上げた熱を放熱器4に搬送し、車室内の暖房に利用することができるようになる。
 他方、ステップS6で外気吸熱可能判定条件が成立していない場合、室外熱交換器7における外気からの吸熱が不可であると判定し、ステップS8に進んで前述した第2の熱媒体吸熱/暖房モード(図9)を実行する(第2の熱媒体吸熱/暖房モードに切り換える)。また、必要に応じて熱媒体加熱ヒータ66を発熱させる。これにより、バッテリ55や熱媒体加熱ヒータ66から汲み上げた熱を放熱器4に搬送して車室内を暖房することができるようになる。
 ここで、図12は暖房運転から上記第2の熱媒体吸熱/暖房モードに移行したときの目標吹出温度TAO、加熱温度TH、熱媒体温度Twの変化を示している。また、NCは圧縮機2の回転数であり、L1は室外熱交換器7の着霜量、L2は圧縮機2の回転数NCの最大値MAXNCを示している。そして、図12中の時刻t1は図10のステップS9で熱媒体予熱運転を開始した時点、t2はステップS8で第2の熱媒体吸熱/暖房モードを開始した時点をそれぞれ示している。
 熱媒体温度Twが低い状態(前述した閾値T1以下の例えば0℃等)であって、実施例のステップS9のような熱媒体予熱運転を行わない場合、熱媒体温度Twは図12中に破線で示すように時刻t1から上昇していくことになるため、図14のp−h線図中のP1で示す如く、圧縮機2の吐出圧力は低くなり、時刻t2で第2の熱媒体吸熱/暖房モードを開始しても、加熱温度THは図12中破線で示す如く一時的に低下してしまう(圧縮機2の回転数NCも低下する)。そのため、搭乗者は違和感を持つことになる。
 一方、本発明の如く暖房運転から第2の熱媒体吸熱/暖房モードに切り換える前に、ステップS9で熱媒体予熱運転を実行すると、時刻t1から熱媒体温度Twは上昇していき、時刻t2では閾値T1より高くなっているため(例えば、+20℃)、図13のp−h線図中のP2で示す如く、圧縮機2の吐出圧力は高くなり、時刻t2で第2の熱媒体吸熱/暖房モードを開始することで、加熱温度THは図12中実線で示す如く目標吹出温度TAOから大きく下がること無く、上昇していくようになる(圧縮機2の回転数NCも上昇する)。
 以上詳述した如く本発明では、車両に搭載されたバッテリ55(発熱機器に熱媒体を循環させて当該バッテリ55の温度を調整するための発熱機器温度調整装置61を備え、この発熱機器温度調整装置61は、熱媒体を加熱するための熱媒体加熱ヒータ66と、冷媒と熱媒体とを熱交換させるための冷媒−熱媒体熱交換器64を有し、コントローラ32が、圧縮機2から吐出された冷媒を放熱器4にて放熱させ、放熱した当該冷媒を減圧した後、冷媒−熱媒体熱交換器64にて吸熱させる第1、第2の熱媒体吸熱/暖房モードを有するようにしたので、第1、第2の熱媒体吸熱/暖房モードに切り換えれば、発熱機器温度調整装置61の熱媒体から吸熱して効率良く車室内の暖房を行い、例えば室外熱交換器7への着霜を抑制しながら、適切にバッテリ55の冷却を行い、或いは、室外熱交換器7が着霜して外気から吸熱できなくなった場合にも、発熱機器温度調整装置61の熱媒体から吸熱して車室内を暖房することができるようになる。
 特に、コントローラ32は、暖房運転から第1、第2の熱媒体吸熱/暖房モードに切り換える際、熱媒体温度Twが所定の閾値T1以下である場合、第1、第2の熱媒体吸熱/暖房モードに切り換える前に、熱媒体加熱ヒータ66により熱媒体を加熱し、当該熱媒体の温度を上昇させた後、第1、第2の熱媒体吸熱/暖房モードに切り換えるようにしたので、暖房運転から第1、第2の熱媒体吸熱/暖房モードに切り換わるときの暖房能力を十分に確保することができるようになる。これにより、熱媒体の温度が低い状態で第1、第2の熱媒体吸熱/暖房モードに切り換わり、吹出口29から車室内に吹き出される空気の温度(吹出温度。加熱温度THに一致する)が一時的に低下して搭乗者が不快感や違和感を覚える不都合も解消することが可能となる。
 また、実施例ではコントローラ32は、暖房運転において所定の外気吸熱不可予測判定条件が成立した場合、室外熱交換器7で外気から吸熱できなくなる可能性ありと判定し、熱媒体の温度が閾値T1以下であるか否か判断して、当該閾値T1以下であれば熱媒体加熱ヒータ66による熱媒体の加熱を開始し、当該熱媒体の温度が少なくとも閾値T1より高い温度(閾値T1より高いか、T1+α1より高い温度)に上昇するのを待って第1、第2の熱媒体吸熱/暖房モードに移行するようにしているので、暖房運転から第1、第2の熱媒体吸熱/暖房モードへの切り換えを円滑に行うことができるようになる。
 この外気吸熱不可予測判定条件は、実施例の如く圧縮機2の吸込冷媒温度Tsが所定値Ts1以下に低下したこと、室外熱交換器7への着霜量が所定値Fr1以上に増加したこと、室外熱交換器7への着霜の進行速度が所定値X1以上に上昇したこと、外気温度Tamが所定値Tam1以下に低下したこと、外気温度Tamの低下速度が所定値Y1以上に上昇したこと、のうちの少なくとも一つを含むことが好適である。
 また、実施例ではコントローラ32が、放熱器4の目標暖房能力TGQhp、車室内に吹き出される空気温度の目標値である目標吹出温度TAO、空気流通路3に通風する室内送風機27のブロワ電圧BLV、放熱器4の風下側の空気の温度(加熱温度TH)の目標値である目標ヒータ温度TCO、のうちの少なくとも一つに基づいて閾値T1を決定するようにしているので、熱媒体加熱ヒータ66により熱媒体を加熱する必要があるか否かを適切に判定し、不必要な熱媒体加熱ヒータ66による加熱を回避することができるようになる。
 また、実施例ではコントローラ32は、所定の外気吸熱可能判定条件が成立した場合、室外熱交換器7で外気からの吸熱が可能と判定し、放熱器4にて放熱した冷媒を室外熱交換器7と冷媒−熱媒体熱交換器64にて吸熱させる第1の熱媒体吸熱/暖房モードを実行するようにしているので、室外熱交換器7において外気からの吸熱が可能な場合、熱媒体からの吸熱と合わせて外気からも吸熱し、車室内を暖房することができるようになる。
 この外気吸熱可能判定条件としては、実施例の如く圧縮機2の吸込冷媒温度Tsが所定値Ts1より低い所定値Ts2以上であること、室外熱交換器7への着霜量が所定値Fr1より多い所定値Fr2以下であること、室外熱交換器7への着霜の進行速度が所定値X1より早い所定値X2以下であること、外気温度Tamが所定値Tam1より低い所定値Tam2以上であること、外気温度Tamの低下速度が所定値Y1より早い所定値Y2以下であること、のうちの少なくとも一つであることが好適である。
 尚、上記各実施例で説明した冷媒回路Rや発熱機器温度調整装置61の構成はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能であることは云うまでもない。
 1 車両用空気調和装置
 2 圧縮機
 3 空気流通路
 4 放熱器
 6 室外膨張弁
 7 室外熱交換器
 8 室内膨張弁
 9 吸熱器
 17、20、21、22 電磁弁
 27 室内送風機
 28 エアミックスダンパ
 32 コントローラ(制御装置)
 55 バッテリ(発熱機器)
 61 発熱機器温度調整装置
 62 循環ポンプ
 64 冷媒−熱媒体熱交換器
 66 熱媒体加熱ヒータ(加熱装置)
 72 分岐配管(分岐回路)
 73 補助膨張弁
 80 熱媒体温度センサ
 R 冷媒回路

Claims (6)

  1.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気が流通する空気流通路と、
     前記冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
     車室外に設けられて前記冷媒を吸熱させるための室外熱交換器と、
     制御装置を備え、
     該制御装置により少なくとも、前記圧縮機から吐出された前記冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器にて吸熱させる暖房運転を実行する車両用空気調和装置において、
     車両に搭載された発熱機器に熱媒体を循環させて当該発熱機器の温度を調整するための発熱機器温度調整装置を備え、
     該発熱機器温度調整装置は、前記熱媒体を加熱するための加熱装置と、前記冷媒と前記熱媒体とを熱交換させるための冷媒−熱媒体熱交換器を有し、
     前記制御装置は、前記圧縮機から吐出された前記冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記冷媒−熱媒体熱交換器にて吸熱させる熱媒体吸熱/暖房モードを有し、
     前記暖房運転から前記熱媒体吸熱/暖房モードに切り換える際、前記熱媒体の温度が所定の閾値T1以下である場合、前記熱媒体吸熱/暖房モードに切り換える前に、前記加熱装置により前記熱媒体を加熱し、当該熱媒体の温度を上昇させた後、前記熱媒体吸熱/暖房モードに切り換えることを特徴とする車両用空気調和装置。
  2.  前記制御装置は、前記暖房運転において所定の外気吸熱不可予測判定条件が成立した場合、前記室外熱交換器で外気から吸熱できなくなる可能性ありと判定し、前記熱媒体の温度が前記閾値T1以下であるか否か判断して、当該閾値T1以下であれば前記加熱装置による前記熱媒体の加熱を開始し、当該熱媒体の温度が少なくとも前記閾値T1より高い温度に上昇するのを待って前記熱媒体吸熱/暖房モードに移行することを特徴とする請求項1に記載の車両用空気調和装置。
  3.  前記外気吸熱不可予測判定条件は、前記圧縮機の吸込冷媒温度Tsが所定値Ts1以下に低下したこと、前記室外熱交換器への着霜量が所定値Fr1以上に増加したこと、前記室外熱交換器への着霜の進行速度が所定値X1以上に上昇したこと、外気温度Tamが所定値Tam1以下に低下したこと、外気温度Tamの低下速度が所定値Y1以上に上昇したこと、のうちの少なくとも一つを含むことを特徴とする請求項2に記載の車両用空気調和装置。
  4.  前記制御装置は、前記放熱器の目標暖房能力TGQhp、前記車室内に吹き出される空気温度の目標値である目標吹出温度TAO、前記空気流通路に通風する室内送風機の電圧BLV、前記放熱器の風下側の空気の温度の目標値である目標ヒータ温度TCO、のうちの少なくとも一つに基づいて前記閾値T1を決定することを特徴とする請求項1乃至請求項3のうちの何れかに記載の車両用空気調和装置。
  5.  前記制御装置は、前記熱媒体吸熱/暖房モードを実行する際、所定の外気吸熱可能判定条件が成立した場合、前記室外熱交換器で外気からの吸熱が可能と判定し、前記放熱器にて放熱した冷媒を前記室外熱交換器と前記冷媒−熱媒体熱交換器にて吸熱させることを特徴とする請求項1乃至請求項4のうちの何れかに記載の車両用空気調和装置。
  6.  前記外気吸熱可能判定条件は、前記圧縮機の吸込冷媒温度Tsが前記所定値Ts1より低い所定値Ts2以上であること、前記室外熱交換器への着霜量が前記所定値Fr1より多い所定値Fr2以下であること、前記室外熱交換器への着霜の進行速度が前記所定値X1より早い所定値X2以下であること、外気温度Tamが前記所定値Tam1より低い所定値Tam2以上であること、外気温度Tamの低下速度が前記所定値Y1より早い所定値Y2以下であること、のうちの少なくとも一つを含むことを特徴とする請求項5に記載の車両用空気調和装置。
PCT/JP2018/027199 2017-08-24 2018-07-12 車両用空気調和装置 WO2019039153A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880051404.XA CN110997371B (zh) 2017-08-24 2018-07-12 车用空调装置
DE112018004722.9T DE112018004722T5 (de) 2017-08-24 2018-07-12 Fahrzeugklimaanlage
US16/634,710 US11104205B2 (en) 2017-08-24 2018-07-12 Vehicle air-conditioning device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-161056 2017-08-24
JP2017161056A JP6997558B2 (ja) 2017-08-24 2017-08-24 車両用空気調和装置

Publications (1)

Publication Number Publication Date
WO2019039153A1 true WO2019039153A1 (ja) 2019-02-28

Family

ID=65438632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027199 WO2019039153A1 (ja) 2017-08-24 2018-07-12 車両用空気調和装置

Country Status (5)

Country Link
US (1) US11104205B2 (ja)
JP (1) JP6997558B2 (ja)
CN (1) CN110997371B (ja)
DE (1) DE112018004722T5 (ja)
WO (1) WO2019039153A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020185962A (ja) * 2019-05-17 2020-11-19 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
CN114514130A (zh) * 2019-09-18 2022-05-17 三电汽车空调系统株式会社 车用空调装置

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102510377B1 (ko) * 2017-04-05 2023-03-16 한온시스템 주식회사 차량용 열관리 시스템의 수가열식 ptc 히터 제어 방법
JP6925288B2 (ja) * 2018-01-30 2021-08-25 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
KR102502174B1 (ko) * 2018-04-11 2023-02-21 한온시스템 주식회사 자동차의 통합 열관리 시스템
US11059351B2 (en) * 2018-04-25 2021-07-13 Ford Global Technologies, Llc System and method for heating passenger cabin with combination of power electronics and electric machine waste heat
KR102661622B1 (ko) * 2018-11-12 2024-04-29 현대자동차주식회사 차량용 공조장치
KR102712332B1 (ko) * 2018-12-06 2024-10-02 현대자동차주식회사 차량 열관리 시스템
JP7332408B2 (ja) * 2019-09-18 2023-08-23 サンデン株式会社 車両用空気調和装置
JP2021085574A (ja) * 2019-11-26 2021-06-03 株式会社神鋼環境ソリューション 熱利用システム及びその起動方法
US11421375B2 (en) * 2020-02-24 2022-08-23 Haier Us Appliance Solutions, Inc. Detecting degree of dryness in a heat pump laundry appliance
DE102020207170A1 (de) * 2020-06-09 2021-12-09 Volkswagen Aktiengesellschaft Verfahren zum Enteisen eines Wärmeübertragers eines Kraftfahrzeugs und Kraftfahrzeug mit einem Wärmeübertrager
CN111780465A (zh) * 2020-06-22 2020-10-16 上海爱斯达克汽车空调系统有限公司 无需停机的电动汽车热泵除霜系统及其运行方法
JP7014988B1 (ja) * 2020-12-02 2022-02-02 ダイキン工業株式会社 冷凍装置
JP2022128546A (ja) * 2021-02-23 2022-09-02 株式会社デンソー 空調装置
CN115122874A (zh) * 2021-09-02 2022-09-30 株式会社电装 车用热泵空调系统
DE102022112574B3 (de) * 2022-05-19 2023-08-03 Denso Automotive Deutschland Gmbh Verfahren zum Starten eines Thermomanagementsystems für Elektrofahrzeuge und Thermomanagementsystem hierfür
DE102022117374A1 (de) 2022-07-12 2024-01-18 Denso Automotive Deutschland Gmbh Verfahren zur Regelung eines Thermomanagementsystems für Elektrofahrzeuge und Thermomanagementsystem hierfür
JP2024014440A (ja) * 2022-07-22 2024-02-01 サンデン株式会社 車両用空調装置
WO2024100761A1 (ja) * 2022-11-08 2024-05-16 日産自動車株式会社 温調システムの制御方法、及び、温調システムの制御装置
DE102023203219A1 (de) 2023-04-06 2024-10-10 Volkswagen Aktiengesellschaft Verfahren zum Steuern von Kühlerrollos oder Kühlerjalousien

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011086683A1 (ja) * 2010-01-15 2011-07-21 三菱重工業株式会社 車両空調システムおよびその運転制御方法
US20160107505A1 (en) * 2014-10-21 2016-04-21 Atieva, Inc. EV Multi-Mode Thermal Management System
JP2018122653A (ja) * 2017-01-30 2018-08-09 三菱自動車工業株式会社 電動車両用空調装置
JP2018140720A (ja) * 2017-02-28 2018-09-13 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1857363A1 (fr) * 2006-05-19 2007-11-21 Lebrun Nimy Dispositif de régulation de température
EP2182304B1 (en) * 2007-07-18 2018-03-28 Mitsubishi Electric Corporation Refrigerating cycle apparatus operation control method
JP5484889B2 (ja) * 2009-12-25 2014-05-07 三洋電機株式会社 冷凍装置
DE102012204404B4 (de) * 2011-03-25 2022-09-08 Denso Corporation Wärmeaustauschsystem und Fahrzeugkältekreislaufsystem
DE102012205200B4 (de) * 2011-04-04 2020-06-18 Denso Corporation Kältemittelkreislaufvorrichtung
JP6088753B2 (ja) * 2012-06-13 2017-03-01 サンデンホールディングス株式会社 車両用空気調和装置
JP2014058239A (ja) * 2012-09-18 2014-04-03 Denso Corp 車両用空調装置
JP6125312B2 (ja) * 2013-04-26 2017-05-10 サンデンホールディングス株式会社 車両用空気調和装置
JP5761302B2 (ja) * 2013-06-04 2015-08-12 株式会社デンソー 車両用の快適温調制御装置
US9587604B2 (en) * 2014-03-19 2017-03-07 Delphi Technologies, Inc. Method for controlling a fuel heater
JP2016090201A (ja) 2014-11-11 2016-05-23 株式会社デンソー 冷凍サイクル装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011086683A1 (ja) * 2010-01-15 2011-07-21 三菱重工業株式会社 車両空調システムおよびその運転制御方法
US20160107505A1 (en) * 2014-10-21 2016-04-21 Atieva, Inc. EV Multi-Mode Thermal Management System
JP2018122653A (ja) * 2017-01-30 2018-08-09 三菱自動車工業株式会社 電動車両用空調装置
JP2018140720A (ja) * 2017-02-28 2018-09-13 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020185962A (ja) * 2019-05-17 2020-11-19 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
WO2020235262A1 (ja) * 2019-05-17 2020-11-26 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP7221789B2 (ja) 2019-05-17 2023-02-14 サンデン株式会社 車両用空気調和装置
CN114514130A (zh) * 2019-09-18 2022-05-17 三电汽车空调系统株式会社 车用空调装置
CN114514130B (zh) * 2019-09-18 2024-03-19 三电汽车空调系统株式会社 车用空调装置

Also Published As

Publication number Publication date
DE112018004722T5 (de) 2020-06-10
JP2019038352A (ja) 2019-03-14
CN110997371B (zh) 2023-03-14
CN110997371A (zh) 2020-04-10
JP6997558B2 (ja) 2022-01-17
US11104205B2 (en) 2021-08-31
US20200207182A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
JP7095848B2 (ja) 車両用空気調和装置
JP6997558B2 (ja) 車両用空気調和装置
CN110505968B (zh) 车辆用空气调和装置
JP6855281B2 (ja) 車両用空気調和装置
WO2020031569A1 (ja) 車両用空気調和装置
WO2020066719A1 (ja) 車両用空気調和装置
WO2014192741A1 (ja) 車両用空気調和装置
WO2019021710A1 (ja) 車両用空気調和装置
JP6963405B2 (ja) 車両用空気調和装置
JP7300264B2 (ja) 車両用空気調和装置
WO2019150829A1 (ja) 車両用空気調和装置
WO2020044785A1 (ja) 車両用空気調和装置
JP7031105B2 (ja) 車両用制御システム
WO2019181311A1 (ja) 車両用制御システム
WO2019058826A1 (ja) 車両用空気調和装置
WO2019163398A1 (ja) 車両用制御システム
WO2022064944A1 (ja) 車両用空調装置
JP7164986B2 (ja) 車両用空気調和装置
WO2019181310A1 (ja) 車両用空気調和装置
WO2021192760A1 (ja) 車両用空気調和装置
JP7233953B2 (ja) 車両用空気調和装置
WO2020179492A1 (ja) 車両用空気調和装置
CN113811727A (zh) 车辆用空气调节装置
WO2020100523A1 (ja) 車両用空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18847934

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18847934

Country of ref document: EP

Kind code of ref document: A1