WO2018211754A1 - 防振装置 - Google Patents
防振装置 Download PDFInfo
- Publication number
- WO2018211754A1 WO2018211754A1 PCT/JP2018/004388 JP2018004388W WO2018211754A1 WO 2018211754 A1 WO2018211754 A1 WO 2018211754A1 JP 2018004388 W JP2018004388 W JP 2018004388W WO 2018211754 A1 WO2018211754 A1 WO 2018211754A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pores
- liquid
- liquid chamber
- chamber
- radial direction
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F13/00—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
- F16F13/04—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
- F16F13/06—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
- F16F13/08—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
- F16F13/10—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like
- F16F13/105—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like characterised by features of partitions between two working chambers
- F16F13/107—Passage design between working chambers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K5/00—Arrangement or mounting of internal-combustion or jet-propulsion units
- B60K5/12—Arrangement of engine supports
- B60K5/1208—Resilient supports
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F13/00—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
- F16F13/04—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
- F16F13/06—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
- F16F13/08—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
- F16F13/10—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F2224/00—Materials; Material properties
- F16F2224/04—Fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F2230/00—Purpose; Design features
- F16F2230/30—Sealing arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F2230/00—Purpose; Design features
- F16F2230/36—Holes, slots or the like
Definitions
- the present invention relates to a vibration isolator that is applied to, for example, automobiles and industrial machines and absorbs and attenuates vibrations of a vibration generating unit such as an engine.
- a cylindrical first attachment member connected to one of the vibration generating portion and the vibration receiving portion, a second attachment member connected to the other, and both of these attachments
- a configuration includes an elastic body that couples members, and a partition member that partitions a liquid chamber in a first mounting member in which a liquid is sealed into a main liquid chamber and a sub liquid chamber.
- the partition member is formed with a restriction passage that communicates the main liquid chamber and the sub liquid chamber.
- this vibration isolator for example, a large load (vibration) is input from the unevenness of the road surface, etc., and the load is input in the reverse direction due to the rebound of the elastic body after the fluid pressure in the main fluid chamber suddenly increases.
- the main liquid chamber is suddenly depressurized. Then, cavitation in which a large number of bubbles are generated in the liquid due to this sudden negative pressure is generated, and abnormal noise may be generated due to cavitation collapse in which the generated bubbles collapse. Therefore, for example, by providing a valve body in the restriction passage as in the vibration isolator shown in Patent Document 1 below, the main liquid chamber can be negatively pressured even when large amplitude vibration is input. Suppressing configurations are known.
- the conventional vibration isolator has a problem that the structure is complicated by providing the valve body, and tuning of the valve body is required, which increases the manufacturing cost. Further, the provision of the valve body reduces the degree of freedom in design, and as a result, the vibration isolation characteristics may be reduced.
- the present invention has been made in view of the above circumstances, and an object thereof is to provide a vibration isolator capable of suppressing the occurrence of abnormal noise due to cavitation collapse without reducing the vibration isolation characteristics with a simple structure. To do.
- a vibration isolator includes a cylindrical first mounting member coupled to one of a vibration generating unit and a vibration receiving unit, a second mounting member coupled to the other, and both the mounting members.
- An elastic body that elastically connects the liquid chamber, and a partition member that divides the liquid chamber in the first mounting member in which the liquid is sealed into a first liquid chamber and a second liquid chamber, and the partition member
- a liquid-filled vibration isolator having a restriction passage communicating the first liquid chamber and the second liquid chamber, wherein the restriction passage opens to the first liquid chamber.
- a second communication part that opens to the second liquid chamber, and a main body channel that communicates the first communication part and the second communication part, and includes the first communication part and the second communication part.
- At least one has a plurality of pores, and in the main body flow path, the first communication part and the second communication part In a connection portion with at least one of the parts, a swirling flow of liquid is formed according to the flow velocity of the liquid from the other side of the first communication part and the second communication part, and the liquid is A vortex chamber that flows out through the plurality of pores is disposed, and the barrier in which the plurality of pores are formed extends in a direction intersecting a vortex axis along a central axis of the vortex chamber, Among these, in the plan view of the barrier, the flow resistance of the pores located inside the swirl radial direction intersecting the vortex axis is lower than the flow resistance of the pores located outside the swirl radial direction.
- the vibration isolator 10 includes a cylindrical first attachment member 11 connected to one of the vibration generating unit and the vibration receiving unit, and one of the vibration generating unit and the vibration receiving unit.
- the second mounting member 12 to be connected, the elastic body 13 that elastically connects the first mounting member 11 and the second mounting member 12 to each other, and the main liquid chamber (first liquid chamber) to be described later in the first mounting member 11 ) 14 and a partition member 16 that divides into a secondary liquid chamber (second liquid chamber) 15.
- the direction along the central axis O1 of the first mounting member 11 is referred to as the axial direction.
- the second mounting member 12 side along the axial direction is referred to as an upper side
- the partition member 16 side is referred to as a lower side.
- a direction orthogonal to the central axis O1 is referred to as a radial direction
- a direction around the central axis O1 is referred to as a circumferential direction.
- the first mounting member 11, the second mounting member 12, and the elastic body 13 are each formed in a circular shape or an annular shape in a plan view, and are arranged coaxially with the central axis O1.
- the second mounting member 12 is connected to an engine as a vibration generating unit, and the first mounting member 11 is connected to a vehicle body as a vibration receiving unit. This suppresses transmission of engine vibration to the vehicle body.
- the second mounting member 12 is a columnar member extending in the axial direction, and is formed in a hemispherical shape whose lower end bulges downward, and a flange 12a above the lower end of the hemispherical shape. have.
- a screw hole 12b extending downward from the upper end surface of the second mounting member 12 is formed, and a bolt (not shown) serving as an engine-side mounting tool is screwed into the screw hole 12b.
- the second mounting member 12 is disposed in the upper end opening of the first mounting member 11 via the elastic body 13.
- the elastic body 13 is a rubber body that is vulcanized and bonded to the upper end opening of the first mounting member 11 and the outer peripheral surface of the lower portion of the second mounting member 12, respectively, and interposed between them.
- the upper end opening of the mounting member 11 is closed from above.
- the elastic body 13 is sufficiently in close contact with the second mounting member 12 by the upper end of the elastic body 13 coming into contact with the flange portion 12a of the second mounting member 12, and follows better due to the displacement of the second mounting member 12.
- a rubber film 17 is integrally formed on the lower end portion of the elastic body 13 to liquid-tightly cover the inner peripheral surface of the first mounting member 11 and the inner peripheral portion of the lower end opening edge.
- an elastic body made of synthetic resin or the like can be used in addition to rubber.
- the first mounting member 11 is formed in a cylindrical shape having a flange 18 at a lower end portion, and is connected to a vehicle body or the like as a vibration receiving portion via the flange 18. A portion of the inside of the first attachment member 11 located below the elastic body 13 is a liquid chamber 19.
- a partition member 16 is provided at the lower end portion of the first attachment member 11, and a diaphragm 20 is further provided below the partition member 16.
- the partition member 16 is a member formed of metal or resin.
- the partition member 16 includes a disk-shaped partition plate 35 extending in the radial direction, and an annular plate-shaped outer periphery that is connected to the outer peripheral edge of the lower surface of the partition plate 35 and projects radially outward from the partition plate 35. Part 22.
- the outer peripheral surface of the partition plate 35 extends in both the axial direction and the circumferential direction, and is in liquid-tight contact with the inner peripheral surface of the cylindrical rubber film 17.
- the upper surface of the outer peripheral portion 22 is in contact with the lower end opening edge of the first mounting member 11.
- the diaphragm 20 is made of an elastic material such as rubber or soft resin, and is formed in a bottomed cylindrical shape. In a state in which a part of the upper end portion of the diaphragm 20 is fluid-tightly engaged with an annular mounting groove 16 a formed on the lower surface of the outer peripheral portion 22 of the partition member 16, the upper end portion of the diaphragm 20 is connected to the outer peripheral portion 22. It is sandwiched in the axial direction by the lower surface and the ring-shaped holder 21 positioned below the partition member 16.
- the outer peripheral portion 22 of the partition member 16 and the holder 21 are arranged in this order on the lower end opening edge of the first mounting member 11 in this order downward, and are fixed integrally with the screw 23.
- the diaphragm 20 is attached to the lower end opening of the first attachment member 11 via the partition member 16.
- the bottom portion of the diaphragm 20 has a shape that is deep on the outer peripheral side and shallow at the center.
- various conventionally known shapes can be adopted in addition to such a shape.
- the liquid chamber 19 is formed in the first attachment member 11 by attaching the diaphragm 20 to the first attachment member 11 via the partition member 16 in this way.
- the liquid chamber 19 is disposed in the first mounting member 11, that is, inside the first mounting member 11 in plan view, and is a sealed space that is liquid-tightly sealed by the elastic body 13 and the diaphragm 20. .
- the liquid chamber 19 is filled (filled) with the liquid L.
- the liquid chamber 19 is partitioned into a main liquid chamber 14 and a sub liquid chamber 15 by a partition member 16.
- the main liquid chamber 14 is formed by using the lower surface 13a of the elastic body 13 as a part of the wall surface.
- the rubber film 17 and the partition member 16 that cover the elastic body 13 and the inner peripheral surface of the first mounting member 11 in a liquid-tight manner.
- the inner volume changes due to the deformation of the elastic body 13.
- the auxiliary liquid chamber 15 is a space surrounded by the diaphragm 20 and the partition member 16, and the internal volume changes due to the deformation of the diaphragm 20.
- the vibration isolator 10 having such a configuration is a compression-type device that is mounted and used so that the main liquid chamber 14 is positioned on the upper side in the vertical direction and the auxiliary liquid chamber 15 is positioned on the lower side in the vertical direction. .
- the partition member 16 is provided with a restriction passage 24 that communicates the main liquid chamber 14 and the sub liquid chamber 15.
- the restriction passage 24 is a main body flow that communicates the first communication portion 26 that opens to the main liquid chamber 14, the second communication portion 27 that opens to the sub-liquid chamber 15, and the first communication portion 26 and the second communication portion 27. And a path 25.
- the main body flow path 25 has a circumferential flow path 25 a communicating with the second communication section 27 and a vortex chamber 25 b communicating with the first communication section 26. That is, the vortex chamber 25 b is arranged in the main body flow path 25 at the connection portion with the first communication portion 26.
- the circumferential flow path 25 a is defined by a circumferential groove 35 a formed on the outer circumferential surface of the partition plate 35 in the partition member 16 and extending in the circumferential direction, and an inner circumferential surface of the rubber film 17.
- the circumferential flow path 25a extends along the circumferential direction in the partition plate 35, and the flow path direction and the circumferential direction of the circumferential flow path 25a are equivalent to each other.
- the circumferential direction flow path 25a is formed in the circular arc shape arrange
- the partition plate 35 is formed with a circular recess 35 b that opens toward the main liquid chamber 14 in a plan view.
- the partition plate 35 is provided with a lid portion 36 that closes the opening of the recess portion 35b.
- the recess portion 35b and the lid portion 36 form a vortex chamber 25b having a circular space in plan view.
- the central axis O2 of the vortex chamber 25b of the present embodiment is arranged in parallel with the central axis O1 and at a position different from the central axis O1 in plan view.
- One end portion along the circumferential direction of the circumferential flow path 25a is open to the inner surface of the recess 35b, and thus the circumferential flow path 25a and the vortex chamber 25b communicate with each other.
- the recess 35b may be formed in a non-circular shape in plan view, for example, an ellipse.
- the vortex chamber 25b is connected to the circumferential flow path 25a so that a swirling flow of the liquid L can be formed inside according to the flow velocity of the liquid L flowing from the second communication portion 27 through the circumferential flow path 25a.
- the vortex chamber 25b is connected to the circumferential flow path 25a so that the circumferential flow path 25a substantially extends in a tangential direction at a connection portion between the vortex chamber 25b and the circumferential flow path 25a.
- the connection mode is not limited to this, and the vortex chamber 25b may be connected to the circumferential flow path 25a so that a swirl flow can be formed in response to the inflow of the liquid L.
- the central axis O2 is hereinafter referred to as a vortex axis. That is, the vortex axis is along the central axis O2.
- the direction along the vortex axis is referred to as the vortex axis direction.
- a direction orthogonal to (or intersecting with) the vortex axis is referred to as a turning radial direction.
- the second communication portion 27 includes an opening 32 that opens to the sub-liquid chamber 15.
- the opening 32 is disposed in a part of the partition plate 35 that forms the other end along the circumferential direction of the circumferential flow path 25 a in the main body flow path 25.
- the lid portion 36 is a member formed of metal or resin.
- the lid portion 36 is a disc-shaped barrier 36a that fits into the opening of the recess 35b and forms the vortex chamber 25b between the lid 35b and an annular shape that extends upward from the outer peripheral edge of the barrier 36a.
- the connecting portion 36b has an annular plate-like flange 36c that protrudes outward from the upper end portion of the connecting portion 36b in a direction orthogonal to the central axis O2.
- the lid 36 is fixed to the partition plate 35 by the flange 36c being liquid-tightly contacted and screwed to the peripheral edge of the opening of the recess 35b in the partition plate 35.
- the barrier 36a extends in a direction perpendicular to the vortex axis.
- the barrier 36a may extend in a direction intersecting the vortex axis.
- the first communication portion 26 includes a plurality of pores 31 formed so as to penetrate the barrier 36a in the vortex axis direction. Since the plurality of pores 31 communicate with the vortex chamber 25b and the main liquid chamber 14, the vortex chamber 25b allows the liquid L that has flowed from the second communication portion 27 through the circumferential flow path 25a to the plurality of pores. 31 can flow out to the main liquid chamber 14.
- the plurality of pores 31 are arranged in a grid pattern in the plan view of the barrier 36a.
- the plurality of pores 31 are arranged at equal intervals in a direction perpendicular to the one direction and a plurality of straight lines arranged to be parallel to each other at equal intervals in one direction. They are arranged at the intersections with a plurality of other straight lines that are arranged so as to be parallel to each other.
- the plurality of pores 31 have a plurality of first pores 31a, a plurality of second pores 31b, a plurality of third pores 31c, and a plurality of fourth pores 31d.
- one first pore 31a is disposed at a position that coincides with the central axis O2 in plan view, and the other plurality of first pores 31a are the first first pores 31a.
- the pores 31a are arranged so as to surround a square ring.
- the plurality of second pores 31b, the plurality of third pores 31c, and the plurality of fourth pores 31d are also arranged in a square ring shape, and the plurality of pores 31 extend from the inside to the outside in the swirl radial direction.
- the first pore 31a, the second pore 31b, the third pore 31c, and the fourth pore 31d are arranged in this order.
- the plurality of fourth pores 31d of the present embodiment are arranged in parallel with the square sides formed by the plurality of third pores 31c, but are not arranged near the corners of the square.
- Each pore 31 is formed in a substantially circular shape in plan view.
- the inner diameters of the plurality of pores 31 gradually increase from the pores 31 located on the outer side in the swirling radial direction toward the pores 31 located on the inner side, that is, the fourth pore 31d, the third pore 31c,
- the two pores 31b and the first pore 31a increase in order.
- the inner diameter of the pore 31 located inside the turning radius direction is larger than the inner diameter of the pore 31 located outside the turning radius direction.
- each inner diameter of the plurality of first pores 31a is 1.5 mm
- each inner diameter of the plurality of second pores 31b is 1.3 mm
- each of the plurality of third pores 31c are examples of the plurality of third pores 31c.
- the inner diameter is 0.9 mm, and each inner diameter of the plurality of fourth pores 31d is 0.4 mm.
- the inner diameter of each pore 31 is constant over the entire length of each flow path.
- the flow resistance of the pores 31 is decreased. Therefore, the flow resistance of the plurality of pores 31 is changed from the pores 31 positioned outside in the swirl radial direction to the pores 31 positioned inside. It gradually decreases as you go to.
- the flow resistance of the pores 31 located on the inner side in the swirl radial direction is lower than the flow resistance of the pores 31 located on the outer side in the swirl radial direction.
- the two attachment members 11 and 12 are relatively displaced while elastically deforming the elastic body 13 when a vibration is input. Then, the liquid pressure of at least one of the main liquid chamber 14 and the sub liquid chamber 15 fluctuates, and the liquid L tries to flow between the main liquid chamber 14 and the sub liquid chamber 15 through the restriction passage 24. At this time, the liquid flows into the restriction passage 24 through one of the first communication portion 26 and the second communication portion 27, passes through the main body flow path 25, and then passes through the first communication portion 26 and the second communication portion 27. It flows out of the restricted passage 24 through the other of them.
- the pores 31 are caused to drop while being lost by the barrier 36a in which these pores 31 are formed. Since it circulates, the flow velocity of the liquid L flowing into the main liquid chamber 14 can be suppressed. Moreover, since the liquid L circulates through the plurality of pores 31 instead of a single pore, the liquid L can be branched and circulated, and the liquid L that has passed through the individual pores 31 can be circulated. The flow rate can be reduced.
- the vibration isolator 10 Even if a large load (vibration) is input to the vibration isolator 10, the liquid L that has flowed into the main liquid chamber 14 through the pores 31, the liquid L in the main liquid chamber 14, It is possible to suppress the flow velocity difference generated between the two, and to suppress the generation of vortices due to the flow velocity difference and the generation of bubbles due to the vortices. Even if bubbles are generated not in the main liquid chamber 14 but in the restriction passage 24, the generated bubbles are separated from each other in the main liquid chamber 14 by passing the liquid L through the plurality of pores 31. Therefore, it is possible to prevent the bubbles from joining and growing and to easily maintain the bubbles in a finely dispersed state. As described above, the generation of bubbles itself can be suppressed, and even if bubbles are generated, the bubbles can be easily maintained in a finely dispersed state. However, it is possible to suppress the generated abnormal noise.
- the swirl chamber 25b changes from the plurality of pores 31 to the outer fine pore 31 in the swirl radial direction (for example, the third fine hole 31c and the fourth fine hole 31d).
- the flow rate of the liquid L that flows in and flows out into the main liquid chamber 14 is higher than that when it flows into the inner pores 31 (for example, the first pore 31a and the second pore 31b) in the swirling radial direction.
- the flow resistance of the pores 31 located on the inner side in the swirl radial direction is lower than the flow resistance of the pores 31 located on the outer side in the swirl radial direction.
- the liquid L flowing through the outer pore 31 in the swirl radial direction is caused to have a larger pressure loss and its flow rate is reduced. Can do. Therefore, the flow rate difference generated between the liquid L that has flowed into the main liquid chamber 14 through the fine pores 31 in the swirling radial direction among the plurality of fine holes 31 and the liquid L in the main liquid chamber 14. Can be suppressed, and the generation of vortices due to the flow velocity difference and the generation of bubbles due to the vortices can be suppressed.
- the flow velocity of the swirl flow in the vortex chamber 25b gradually decreases from the outside to the inside in the swirl radial direction.
- the flow resistance of the plurality of pores 31 is gradually decreased from the pore 31 located on the outer side in the swirling radial direction toward the pore 31 located on the inner side.
- the amount of decrease in the flow velocity of the liquid L can be gradually decreased from the outer side to the inner side in the swirl radial direction, so that the flow velocity of the liquid that has passed through the plurality of pores 31 is made uniform regardless of the position in the swirl radial direction. be able to.
- a lid portion 37 is used instead of the lid portion 36 of the above embodiment.
- the lid part 37 is a member formed of metal or resin.
- the lid portion 37 includes a disk-shaped barrier 37a extending in a direction perpendicular to the vortex axis, a connecting portion 36b extending upward from the outer peripheral edge of the barrier 37a, and a flange 36c. Yes.
- the lower surface of the barrier 37a extends in a direction perpendicular to the vortex axis, and the distance between the upper surface and the lower surface of the barrier 37a in the vortex axis direction gradually decreases from the outer side to the inner side in the turning radius direction. For this reason, the plate
- the first communication portion 26 includes a plurality of pores 38 formed so as to penetrate the barrier 37a in the vortex axis direction.
- the plurality of pores 38 are arranged in the same manner as the plurality of pores 31 of the above-described embodiment in plan view, and each pore 38 is formed in a substantially circular shape in plan view.
- the inner diameters of the plurality of pores 38 are all the same, and the inner diameter of each pore 38 is constant over the entire length of each flow path.
- the flow path lengths of the plurality of pores 38 also differ from the pores 38 positioned on the outer side in the swirl radial direction. It decreases gradually toward the pore 38 located inside.
- the flow path length of the pores 38 located on the inner side in the swirl radial direction is shorter than the flow path length of the pores 38 located on the outer side in the swirl radial direction.
- the flow resistance of the pores 38 located on the inner side in the turning radial direction is lower than the flow resistance of the pores 38 located on the outer side in the turning radial direction.
- the flow path length of the pore is the length of the pore measured along the central axis of the pore. Also in this modification, the same effect as the above-described embodiment can be obtained.
- the plurality of pores 31 have four types of pores 31 including a first pore 31a, a second pore 31b, a third pore 31c, and a fourth pore 31d.
- a first pore 31a a first pore 31a
- a second pore 31b a third pore 31c
- a fourth pore 31d a fourth pore 31d.
- One of the two types of pores is provided on the inner side of the swirling radial direction
- the other of the two types of pores is provided on the outer side of the swirling radial direction.
- the flow resistance of the pores only needs to be lower than the flow resistance of the other pore.
- the plurality of pores 31 of the above embodiment differ only in the inner diameter
- the plurality of pores 38 in the modified example differ only in the flow path length. Any of the channel lengths may be different.
- each of the plurality of pores 31 and 38 is formed in a substantially circular shape in plan view, but may be formed in a non-circular shape in plan view, for example, an elliptical shape or a polygonal shape.
- the plurality of pores 31 and 38 may be formed in a tapered shape that gradually decreases in diameter along the axial direction from the vortex chamber 25b side to the main liquid chamber 14 side.
- the inner diameter of the pore means the smallest inner diameter of the pore.
- the plurality of pores 31 and 38 may be arranged in a multiple annular shape coaxial with the vortex axis in plan view, or may be arranged on a plurality of straight lines extending radially from the vortex axis in plan view. Good.
- the plurality of pores 31 and 38 are formed extending in one direction, but the pores may be bent in the middle.
- the flow path length of the pore is the length of the pore measured along the central axis of the pore.
- the second communication portion 27 may include a plurality of openings and pores that open into the sub liquid chamber 15.
- the vortex chamber 25b is arranged at the connection portion with the first communication portion 26, while the vortex chamber is arranged at the connection portion with the second communication portion 27,
- the vortex chamber may not be disposed at the connection portion with the first communication portion 26, and the second communication portion 27 may include a plurality of pores.
- the vortex chamber arranged at the connection portion with the second communication portion 27 forms a swirling flow of the liquid L according to the flow velocity of the liquid L flowing from the first communication portion 26, The liquid L is caused to flow into the secondary liquid chamber 15 through the plurality of pores of the second communication portion 27.
- vortex chambers may be separately arranged at both connection portions between the first communication portion 26 and the second communication portion 27.
- the central axis O2 of the vortex chamber 25b is arranged at a position different from the central axis O1 in plan view, but the vortex chamber 25b may be arranged coaxially with the central axis O1.
- the central axis O2 of the vortex chamber 25b is parallel to the central axis O1, but the vortex chamber 25b may be arranged so that the central axis O2 is not parallel to the central axis O1.
- the partition member 16 may have any shape as long as the main liquid chamber 14 and the sub liquid chamber 15 can be partitioned.
- the lid portion 36 includes the barrier 36a, the coupling portion 36b, and the flange 36c.
- the lid portion 36 is formed in a plate shape extending in a direction perpendicular to the vortex axis. Also good.
- a plurality of pores are formed in the lid 36, and at least a portion of the lid 36 where the plurality of pores are formed corresponds to the barrier of the present invention.
- the partition plate 35 is formed with a recess that opens toward the auxiliary liquid chamber 15, and the lid portion closes the opening of the recess from the auxiliary liquid chamber 15 side, whereby a vortex is formed between the lid portion and the recess.
- a chamber may be formed, and a plurality of holes communicating the vortex chamber and the main liquid chamber 14 may be formed in the partition plate 35 so as to open to the bottom surface of the recess.
- the portion where the plurality of pores are formed in the partition plate 35 corresponds to the barrier of the present invention.
- partition member 16 is arrange
- the sub liquid chamber 15 may be formed from the lower surface to the bottom surface of the diaphragm 20.
- the compression type vibration isolator 10 which a positive pressure acts on the main liquid chamber 14 by the support load acting was demonstrated, the main liquid chamber 14 is located in the vertical lower side, and The present invention can also be applied to a suspension type vibration isolator in which the sub liquid chamber 15 is mounted so as to be positioned on the upper side in the vertical direction and a negative pressure is applied to the main liquid chamber 14 when a support load is applied.
- the partition member 16 partitioned off the liquid chamber 19 in the 1st attachment member 11 into the main liquid chamber 14 and the sub liquid chamber 15 which have the elastic body 13 in a part of wall surface.
- the elastic body 13 may be provided, and instead of providing the secondary liquid chamber 15, a pressure receiving liquid chamber having the elastic body 13 at a part of the wall surface may be provided.
- the partition member 16 partitions the liquid chamber 19 in the first mounting member 11 in which the liquid L is sealed into the first liquid chamber 14 and the second liquid chamber 15, and the first liquid chamber 14 and the second liquid chamber 15. At least one of the above can be appropriately changed to another configuration having the elastic body 13 in a part of the wall surface.
- the vibration isolator 10 according to the present invention is not limited to an engine mount of a vehicle, and can be applied to other than the engine mount.
- the present invention can be applied to a mount of a generator mounted on a construction machine, or can be applied to a mount of a machine installed in a factory or the like.
- both mounting members are relatively displaced while elastically deforming the elastic body, and the hydraulic pressure of at least one of the first liquid chamber and the second liquid chamber varies. Then, the liquid tries to flow between the first liquid chamber and the second liquid chamber through the restriction passage. At this time, the liquid flows into the restriction passage through one of the first communication portion and the second communication portion, passes through the main body flow path, and then passes through the other of the first communication portion and the second communication portion. Spill from.
- the liquid flows into the first liquid chamber or the second liquid chamber from the restriction passage through the plurality of pores, the liquid flows through each of the pores while being subjected to pressure loss by the barrier in which these pores are formed.
- the flow rate of the liquid flowing into the first liquid chamber or the second liquid chamber can be suppressed.
- the liquid flows through a plurality of pores instead of a single pore, it is possible to divide the liquid into a plurality of channels and reduce the flow rate of the liquid that has passed through the individual pores. Can do.
- a large load vibration
- the liquid that has passed through the pores and flowed into the first liquid chamber or the second liquid chamber, and the first liquid chamber or the second liquid chamber It is possible to suppress the difference in flow velocity generated between the liquid and the liquid and the generation of vortices due to the flow velocity difference and the generation of bubbles due to the vortices.
- the generated bubbles are caused to pass between the first liquid chamber or the second liquid by passing the liquid through the plurality of pores. It becomes possible to make it separate in a liquid chamber, it can suppress that a bubble joins and grows, and can make it easy to maintain a bubble in the state disperse
- the vortex chamber provided in the connection portion with one of the first communication portion and the second communication portion has the first communication portion and the second communication portion.
- the liquid flowing into the vortex chamber flows from the outer side to the inner side in the swirl radial direction while swirling around the vortex axis along the central axis of the vortex chamber.
- the fluid friction of the liquid, etc. the flow velocity of the swirling flow decreases from the outer side to the inner side in the swirling radial direction.
- the swirl chamber flows from the plurality of pores into the outer pores in the swirling radial direction and flows out to the first liquid chamber or the second liquid chamber.
- the flow velocity of the liquid tends to be higher than when it flows into the pores inside the swirling radial direction. That is, the flow velocity of the liquid flowing through the plurality of pores tends to be higher on the outer side than on the inner side in the swirling radial direction.
- the flow resistance of the pores located on the inner side in the turning radial direction is lower than the flow resistance of the pores located on the outer side in the turning radial direction.
- the liquid flowing through the outer pore in the swirling radial direction can be caused to have a larger pressure loss and the flow velocity can be reduced. Therefore, between the liquid that has passed through the pores on the outer side in the swirling radial direction and flowed into the first liquid chamber or the second liquid chamber and the liquid in the first liquid chamber or the second liquid chamber among the plurality of pores. It is possible to suppress the flow velocity difference caused by the vortex, and it is possible to suppress the generation of vortices due to the flow velocity difference and the generation of bubbles due to the vortices.
- an inner diameter of the pore located inside the turning radius direction may be larger than an inner diameter of the pore located outside the turning radius direction.
- the inner diameter of the pore When the inner diameter of the pore is increased, the flow resistance of the pore is reduced. For this reason, among the plurality of pores, the inner diameter of the pores located inside the swirling radial direction is made larger than the inner diameter of the pores located outside the swirling radial direction, thereby being positioned inside the swirling radial direction.
- the flow resistance of the pores to be made can be made lower than the flow resistance of the pores located on the outer side in the turning radius direction.
- the channel length of the pores located on the inner side in the turning radius direction may be shorter than the channel length of the pores located on the outer side in the turning radius direction.
- the flow resistance of the pore decreases.
- the flow path length of the pores located on the inner side in the swirl radial direction is made shorter than the flow path length of the pores located on the outer side in the swirl radial direction, thereby turning the swirl diameter
- the flow resistance of the pores located inside in the direction can be made lower than the flow resistance of the pores located outside in the turning radial direction.
- the flow resistance of the plurality of pores may be gradually reduced from the pores located on the outer side in the swirling radial direction toward the pores located on the inner side.
- the flow velocity of the swirl flow in the vortex chamber gradually decreases from the outside to the inside in the swirl radial direction. For this reason, by gradually decreasing the flow resistance of the plurality of pores from the pores located on the outer side in the swirling radial direction toward the pores located on the inner side, the flow velocity reduction amount of the liquid that has passed through the plurality of pores can be reduced. It can be gradually decreased from the outside in the swirl radial direction to the inside, and therefore the flow velocity of the liquid that has passed through the plurality of pores can be made uniform regardless of the position in the swirl radial direction.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Combined Devices Of Dampers And Springs (AREA)
Abstract
本発明の制限通路(24)は、第1液室に開口する第1連通部(26)、第2液室に開口する第2連通部(27)、および第1連通部と第2連通部とを連通する本体流路(25)を備え、第1連通部および第2連通部の少なくとも一方は、複数の細孔(31)を備え、本体流路において、第1連通部および第2連通部の少なくとも一方との接続部分には、第1連通部および第2連通部のうちの他方側からの液体の流速に応じて液体の旋回流を形成し、この液体を、複数の細孔を通して流出させる渦室(25b)が配置され、複数の細孔が形成された障壁(36a)は、渦室の中心軸線(O2)に沿う渦軸に交差する方向に延在し、複数の細孔のうち、障壁の平面視において前記渦軸に交差する旋回径方向の内側に位置する細孔の流通抵抗が、旋回径方向の外側に位置する細孔の流通抵抗よりも低い。
Description
本発明は、例えば自動車や産業機械等に適用され、エンジン等の振動発生部の振動を吸収および減衰する防振装置に関する。
本願は、2017年5月18日に日本に出願された特願2017-098942号に基づき優先権を主張し、その内容をここに援用する。
本願は、2017年5月18日に日本に出願された特願2017-098942号に基づき優先権を主張し、その内容をここに援用する。
この種の防振装置として、従来から、振動発生部および振動受部のうちの一方に連結される筒状の第1取付部材、および他方に連結される第2取付部材と、これらの両取付部材を連結する弾性体と、液体が封入された第1取付部材内の液室を主液室と副液室とに区画する仕切部材と、を備える構成が知られている。仕切部材には、主液室と副液室とを連通する制限通路が形成されている。この防振装置では、振動入力時に、両取付部材が弾性体を弾性変形させながら相対的に変位し、主液室の液圧を変動させて制限通路に液体を流通させることで、振動を吸収および減衰している。
ところで、この防振装置では、例えば路面の凹凸等から大きな荷重(振動)が入力され、主液室の液圧が急激に上昇した後、弾性体のリバウンド等によって逆方向に荷重が入力されたときに、主液室が急激に負圧化されることがある。すると、この急激な負圧化により液中に多数の気泡が生成されるキャビテーションが発生し、さらに生成した気泡が崩壊するキャビテーション崩壊に起因して、異音が生じることがある。
そこで、例えば下記特許文献1に示される防振装置のように、制限通路内に弁体を設けることで、大きな振幅の振動が入力されたときであっても、主液室の負圧化を抑制する構成が知られている。
そこで、例えば下記特許文献1に示される防振装置のように、制限通路内に弁体を設けることで、大きな振幅の振動が入力されたときであっても、主液室の負圧化を抑制する構成が知られている。
しかしながら、前記従来の防振装置では、弁体が設けられることで構造が複雑になり、弁体のチューニングも必要となるため、製造コストが増加するといった課題がある。また、弁体を設けることで設計自由度が低下し、結果として防振特性が低下する可能性もある。
本発明は前記事情に鑑みてなされたもので、簡易な構造で防振特性を低下させることなく、キャビテーション崩壊に起因する異音の発生を抑えることができる防振装置を提供することを目的とする。
本発明に係る防振装置は、振動発生部および振動受部のうちのいずれか一方に連結される筒状の第1取付部材、および他方に連結される第2取付部材と、これら両取付部材を弾性的に連結する弾性体と、液体が封入された前記第1取付部材内の液室を第1液室と第2液室とに区画する仕切部材と、を備えるとともに、前記仕切部材に、前記第1液室と前記第2液室とを連通する制限通路が形成された液体封入型の防振装置であって、前記制限通路は、前記第1液室に開口する第1連通部、前記第2液室に開口する第2連通部、および前記第1連通部と前記第2連通部とを連通する本体流路を備え、前記第1連通部および前記第2連通部のうちの少なくとも一方は、複数の細孔を備え、前記本体流路において、前記第1連通部および前記第2連通部のうちの少なくとも一方との接続部分には、前記第1連通部および前記第2連通部のうちの他方側からの液体の流速に応じて液体の旋回流を形成し、この液体を、前記複数の細孔を通して流出させる渦室が配置され、前記複数の細孔が形成された障壁は、前記渦室の中心軸線に沿う渦軸に交差する方向に延在し、前記複数の細孔のうち、前記障壁の平面視において前記渦軸に交差する旋回径方向の内側に位置する細孔の流通抵抗が、前記旋回径方向の外側に位置する細孔の流通抵抗よりも低い。
本発明によれば、簡易な構造で防振特性を低下させることなく、キャビテーション崩壊に起因する異音の発生を抑えることができる。
以下、本発明に係る防振装置の実施の形態について、図1および図2に基づいて説明する。
図1に示すように、防振装置10は、振動発生部および振動受部のいずれか一方に連結される筒状の第1取付部材11と、振動発生部および振動受部のいずれか他方に連結される第2取付部材12と、第1取付部材11および第2取付部材12を互いに弾性的に連結する弾性体13と、第1取付部材11内を後述する主液室(第1液室)14と副液室(第2液室)15とに区画する仕切部材16と、を備える液体封入型の防振装置である。
図1に示すように、防振装置10は、振動発生部および振動受部のいずれか一方に連結される筒状の第1取付部材11と、振動発生部および振動受部のいずれか他方に連結される第2取付部材12と、第1取付部材11および第2取付部材12を互いに弾性的に連結する弾性体13と、第1取付部材11内を後述する主液室(第1液室)14と副液室(第2液室)15とに区画する仕切部材16と、を備える液体封入型の防振装置である。
以下、第1取付部材11の中心軸線O1に沿う方向を軸方向という。また、軸方向に沿う第2取付部材12側を上側、仕切部材16側を下側という。また、防振装置10を軸方向から見た平面視において、中心軸線O1に直交する方向を径方向といい、中心軸線O1周りに周回する方向を周方向という。
なお、第1取付部材11、第2取付部材12、および弾性体13はそれぞれ、平面視した状態で円形状若しくは円環状に形成されるとともに、中心軸線O1と同軸に配置されている。
なお、第1取付部材11、第2取付部材12、および弾性体13はそれぞれ、平面視した状態で円形状若しくは円環状に形成されるとともに、中心軸線O1と同軸に配置されている。
この防振装置10が例えば自動車に装着される場合、第2取付部材12が振動発生部としてのエンジンに連結され、第1取付部材11が振動受部としての車体に連結される。これにより、エンジンの振動が車体に伝達することが抑えられる。
第2取付部材12は、軸方向に延在する柱状部材であり、下端部が下方に向けて膨出する半球面状に形成されるとともに、この半球面状の下端部より上方に鍔部12aを有している。第2取付部材12には、その上端面から下方に向かって延びるねじ孔12bが穿設され、このねじ孔12bにエンジン側の取付け具となるボルト(図示せず)が螺合される。第2取付部材12は、弾性体13を介して、第1取付部材11の上端開口部に配置されている。
弾性体13は、第1取付部材11の上端開口部と第2取付部材12の下部の外周面とにそれぞれ加硫接着されて、これらの間に介在させられたゴム体であって、第1取付部材11の上端開口部を上側から閉塞している。弾性体13は、その上端部が第2取付部材12の鍔部12aに当接することで、第2取付部材12に充分に密着し、第2取付部材12の変位により良好に追従するようになっている。弾性体13の下端部には、第1取付部材11における内周面と下端開口縁の内周部とを液密に被覆するゴム膜17が一体に形成されている。なお、弾性体13としては、ゴム以外にも合成樹脂等からなる弾性体を用いることも可能である。
第1取付部材11は、下端部にフランジ18を有する円筒状に形成され、フランジ18を介して振動受部としての車体等に連結される。第1取付部材11の内部のうち、弾性体13より下方に位置する部分が、液室19となっている。本実施形態では、第1取付部材11の下端部に仕切部材16が設けられ、さらにこの仕切部材16の下方にダイヤフラム20が設けられている。
仕切部材16は、金属や樹脂によって形成された部材である。仕切部材16は、径方向に延在する円板状の仕切板35と、仕切板35の下面の外周縁に連結されるとともに仕切板35よりも径方向外側に突出する円環板状の外周部22と、を有している。仕切板35の外周面は、軸方向および周方向の双方向に延びており、円筒状のゴム膜17の内周面に液密に当接している。外周部22の上面は、第1取付部材11の下端開口縁に当接している。
ダイヤフラム20は、ゴムや軟質樹脂等の弾性材料からなり、有底円筒状に形成されている。ダイヤフラム20の上端部の一部が、仕切部材16の外周部22の下面に形成された円環状の取付溝16aに液密に係合した状態で、ダイヤフラム20の上端部は、外周部22の下面と、仕切部材16より下方に位置するリング状の保持具21と、によって軸方向に挟まれている。ゴム膜17の下端部の一部が、外周部22の上面に形成された円環状の保持溝16bに係合した状態で、仕切部材16の外周部22の上面に、ゴム膜17の下端部が液密に当接している。
このような構成のもとに、第1取付部材11の下端開口縁に、仕切部材16の外周部22、および保持具21が下方に向けてこの順に配置されるとともに、ねじ23によって一体に固定されることにより、ダイヤフラム20は、仕切部材16を介して第1取付部材11の下端開口部に取り付けられている。なお図示の例では、ダイヤフラム20の底部が、外周側で深く中央部で浅い形状になっている。ただし、ダイヤフラム20の形状としては、このような形状以外にも、従来公知の種々の形状を採用することができる。
そして、このように第1取付部材11に仕切部材16を介してダイヤフラム20が取り付けられたことにより、前記したように第1取付部材11内に液室19が形成されている。液室19は、第1取付部材11内、すなわち平面視して第1取付部材11の内側に配設され、弾性体13とダイヤフラム20とにより液密に封止された密閉空間となっている。そして、この液室19に液体Lが封入(充填)されている。
液室19は、仕切部材16によって主液室14と副液室15とに区画されている。主液室14は、弾性体13の下面13aを壁面の一部として形成されたもので、この弾性体13と第1取付部材11の内周面を液密に覆うゴム膜17と仕切部材16とによって囲まれた空間であり、弾性体13の変形によって内容積が変化する。副液室15は、ダイヤフラム20と仕切部材16とによって囲まれた空間であり、ダイヤフラム20の変形によって内容積が変化する。このような構成からなる防振装置10は、主液室14が鉛直方向上側に位置し、副液室15が鉛直方向下側に位置するように取り付けられて用いられる、圧縮式の装置である。
図1および図2に示すように、仕切部材16には、主液室14と副液室15とを連通する制限通路24が設けられている。制限通路24は、主液室14に開口する第1連通部26と、副液室15に開口する第2連通部27と、第1連通部26と第2連通部27とを連通する本体流路25と、を備えている。
本体流路25は、第2連通部27に連通する周方向流路25aと、第1連通部26に連通する渦室25bと、を有している。すなわち、本体流路25において、第1連通部26との接続部分に、渦室25bが配置されている。周方向流路25aは、仕切部材16における仕切板35の外周面に周方向に延在して形成された周溝35aと、ゴム膜17の内周面と、によって画成されている。周方向流路25aは、仕切板35内で周方向に沿って延びていて、周方向流路25aの流路方向と周方向とは同等の方向になっている。周方向流路25aは、中心軸線O1と同軸に配置された円弧状に形成され、周方向に沿って仕切板35のほぼ半周にわたって延びている。
仕切板35には、主液室14に向けて開口する平面視円形の凹部35bが形成されている。仕切板35には、凹部35bの開口部を閉塞する蓋部36が配設されており、凹部35bと蓋部36とによって、平面視円形の空間を備える渦室25bが形成されている。本実施形態の渦室25bの中心軸線O2は、中心軸線O1と平行し、かつ平面視で中心軸線O1と異なる位置に配設されている。周方向流路25aの周方向に沿う一方の端部は、凹部35bの内側面に開口しており、よって周方向流路25aと渦室25bとは互いに連通している。なお、凹部35bは、平面視非円形、例えば楕円形等に形成されていてもよい。
渦室25bは、第2連通部27から周方向流路25aを通して流入する液体Lの流速に応じて液体Lの旋回流を内部で形成可能なように、周方向流路25aに連結されている。
例えば、渦室25bの周方向流路25aとの連結部分における接線方向に周方向流路25aが略延在するように、渦室25bが周方向流路25aに連結されている。ただし、連結の態様はこれに限られず、液体Lの流入に応じて旋回流が形成可能なように、渦室25bが周方向流路25aに連結されていればよい。渦室25b内に形成される旋回流は、中心軸線O2回りに形成されるため、以下、この中心軸線O2を渦軸という。すなわち、この渦軸は中心軸線O2に沿っている。前記渦軸に沿う方向を、渦軸方向という。平面視において、前記渦軸に直交(または交差)する方向を、旋回径方向という。
例えば、渦室25bの周方向流路25aとの連結部分における接線方向に周方向流路25aが略延在するように、渦室25bが周方向流路25aに連結されている。ただし、連結の態様はこれに限られず、液体Lの流入に応じて旋回流が形成可能なように、渦室25bが周方向流路25aに連結されていればよい。渦室25b内に形成される旋回流は、中心軸線O2回りに形成されるため、以下、この中心軸線O2を渦軸という。すなわち、この渦軸は中心軸線O2に沿っている。前記渦軸に沿う方向を、渦軸方向という。平面視において、前記渦軸に直交(または交差)する方向を、旋回径方向という。
第2連通部27は、副液室15に開口する開口部32を備えている。開口部32は、仕切板35のうち、本体流路25における周方向流路25aの周方向に沿う他方の端部を形成する部分に配置されている。
蓋部36は、金属や樹脂によって形成された部材である。蓋部36は、凹部35bの開口部に嵌合し凹部35bとの間に渦室25bを形成する円板状の障壁36aと、障壁36aの外周縁から上方に向けて延在する円環状の連結部36bと、中心軸線O2に直交する方向で連結部36bの上端部から外側に向けて突出する円環板状のフランジ36cと、を有している。フランジ36cが仕切板35における凹部35bの開口周縁部に液密に当接してねじ止めされることで、蓋部36は仕切板35に固定されている。
障壁36aは、前記渦軸に直交する方向に延在している。なお、障壁36aが、前記渦軸に交差する方向に延在してもよい。第1連通部26は、障壁36aを渦軸方向に貫通して形成された複数の細孔31を備えている。複数の細孔31は、渦室25bと主液室14とを連通しているため、渦室25bは、第2連通部27から周方向流路25aを通して流入した液体Lを、複数の細孔31を通して主液室14に流出可能となっている。
複数の細孔31は、障壁36aの平面視において、碁盤目状に配置されている。言い換えれば、複数の細孔31は、障壁36aの平面視において、一方向に等間隔をあけて互いに平行となるように配置された複数の直線と、前記一方向に直交する方向に等間隔をあけて互いに平行となるように配置された他の複数の直線と、の交点にそれぞれ配置されている。
複数の細孔31は、複数の第1細孔31aと、複数の第2細孔31bと、複数の第3細孔31cと、複数の第4細孔31dと、を有している。複数の第1細孔31aのうち、1つの第1細孔31aが、平面視で中心軸線O2と一致する位置に配置され、それ以外の複数の第1細孔31aが、前記1つの第1細孔31aを正方形環状に囲んで配置されている。複数の第2細孔31b、複数の第3細孔31c、および複数の第4細孔31dも、それぞれ正方形環状に配置されており、複数の細孔31は、旋回径方向の内側から外側に向けて、第1細孔31a、第2細孔31b、第3細孔31c、および第4細孔31dの順に配置されている。本実施形態の複数の第4細孔31dは、複数の第3細孔31cが形成する正方形の辺と平行に配置されているが、この正方形の角部の近傍には配置されていない。
各細孔31は、平面視略円形状に形成されている。複数の細孔31の内径は、旋回径方向の外側に位置する細孔31から内側に位置する細孔31に向かうにつれて漸増しており、すなわち第4細孔31d、第3細孔31c、第2細孔31b、および第1細孔31aの順に大きくなっている。言い換えれば、複数の細孔31のうち、旋回径方向の内側に位置する細孔31の内径が、旋回径方向の外側に位置する細孔31の内径よりも大きい。本実施形態では、例えば、複数の第1細孔31aの各内径は1.5mmであり、複数の第2細孔31bの各内径は1.3mmであり、複数の第3細孔31cの各内径は0.9mmであり、複数の第4細孔31dの各内径は0.4mmである。各細孔31の内径は、それぞれの流路長さの全域にわたって一定である。細孔31の内径が大きくなると、その細孔31の流通抵抗は低下するため、複数の細孔31の流通抵抗は、旋回径方向の外側に位置する細孔31から内側に位置する細孔31に向かうにつれて漸減している。言い換えれば、複数の細孔31のうち、旋回径方向の内側に位置する細孔31の流通抵抗が、旋回径方向の外側に位置する細孔31の流通抵抗よりも低い。
このような構成からなる防振装置10では、振動入力時に、両取付部材11、12が、弾性体13を弾性変形させながら相対的に変位する。すると、主液室14および副液室15のうちの少なくとも一方の液圧が変動し、液体Lが制限通路24を通って主液室14と副液室15との間を流通しようとする。このとき液体は、第1連通部26および第2連通部27のうちの一方を通して制限通路24に流入し、本体流路25内を通過した後、第1連通部26および第2連通部27のうちの他方を通して制限通路24から流出する。
ここで、特に液体Lが、複数の細孔31を通して制限通路24から主液室14に流出する際に、これらの細孔31が形成された障壁36aにより圧力損失させられながら各細孔31を流通するため、主液室14に流入する液体Lの流速を抑えることができる。しかも、液体Lが、単一の細孔ではなく複数の細孔31を流通するので、液体Lを複数に分岐させて流通させることが可能になり、個々の細孔31を通過した液体Lの流速を低減させることができる。これにより、仮に防振装置10に大きな荷重(振動)が入力されたとしても、細孔31を通過して主液室14内に流入した液体Lと、主液室14内の液体Lと、の間で生じる流速差を小さく抑えることが可能になり、流速差に起因する渦の発生、およびこの渦に起因する気泡の発生を抑えることができる。また、仮に気泡が主液室14ではなく制限通路24で発生しても、液体Lを、複数の細孔31を通過させることで、発生した気泡同士を、主液室14内で離間させることが可能になり、気泡が合流して成長するのを抑えて気泡を細かく分散させた状態に維持しやすくすることができる。
以上のように、気泡の発生そのものを抑えることができる上、たとえ気泡が発生したとしても、気泡を細かく分散させた状態に維持しやすくすることができるので、気泡が崩壊するキャビテーション崩壊が生じても、発生する異音を小さく抑えることができる。
以上のように、気泡の発生そのものを抑えることができる上、たとえ気泡が発生したとしても、気泡を細かく分散させた状態に維持しやすくすることができるので、気泡が崩壊するキャビテーション崩壊が生じても、発生する異音を小さく抑えることができる。
また、振動の入力に起因して、本体流路25の第1連通部26との接続部分に設けられた渦室25bに、第2連通部27から周方向流路25aを通して液体Lが流入すると、渦室25bに流入した液体Lは、渦室25bの中心軸線O2に沿う渦軸回りに旋回しつつ旋回径方向の外側から内側に向けて流動する。このとき、液体Lと渦室25bの内面(すなわち凹部35bの内面や障壁36aの下面)との摩擦や液体Lの流体摩擦等によって、旋回流の流速は旋回径方向の外側から内側に向かうにつれて減少する。旋回径方向の外側における旋回流の流速が高いため、渦室25bから、複数の細孔31のうち旋回径方向の外側の細孔31(例えば第3細孔31cや第4細孔31d)に流入して、主液室14に流出される液体Lの流速は、旋回径方向の内側の細孔31(例えば第1細孔31aや第2細孔31b)に流入したときと比べて高くなる傾向がある。すなわち、複数の細孔31を流通する液体Lの流速は、旋回径方向の内側よりも外側で高くなる傾向がある。
ここで本実施形態では、複数の細孔31のうち、旋回径方向の内側に位置する細孔31の流通抵抗が、旋回径方向の外側に位置する細孔31の流通抵抗よりも低い。このため、複数の細孔31のうち旋回径方向の内側の細孔31に比べ、旋回径方向の外側の細孔31を流通する液体Lをより大きく圧力損失させて、その流速を低減させることができる。よって、複数の細孔31のうち旋回径方向の外側の細孔31を通過して主液室14内に流入した液体Lと、主液室14内の液体Lと、の間で生じる流速差を小さく抑えることが可能になり、流速差に起因する渦の発生、およびこの渦に起因する気泡の発生を抑えることができる。
渦室25b内の旋回流の流速は、旋回径方向の外側から内側に向かうにつれて漸減する。本実施形態では、複数の細孔31の流通抵抗を、旋回径方向の外側に位置する細孔31から内側に位置する細孔31に向かうにつれて漸減させているので、複数の細孔31を通過した液体Lの流速減少量を旋回径方向の外側から内側に向かうにつれて漸減させることができ、よって旋回径方向の位置によらずに、複数の細孔31を通過した液体の流速を均等にすることができる。
(変形例)
前記実施形態の変形例を、図3に基づいて説明する。なお、本変形例の説明において、前記実施形態と同様の構成要素に対しては同一の符号を付し、その説明を省略する。
図3に示すように、本変形例は、前記実施形態の蓋部36に代えて、蓋部37を用いている。蓋部37は、金属や樹脂によって形成された部材である。蓋部37は、前記渦軸に直交する方向に延在する円板状の障壁37aと、障壁37aの外周縁から上方に向けて延在する連結部36bと、フランジ36cと、を有している。
前記実施形態の変形例を、図3に基づいて説明する。なお、本変形例の説明において、前記実施形態と同様の構成要素に対しては同一の符号を付し、その説明を省略する。
図3に示すように、本変形例は、前記実施形態の蓋部36に代えて、蓋部37を用いている。蓋部37は、金属や樹脂によって形成された部材である。蓋部37は、前記渦軸に直交する方向に延在する円板状の障壁37aと、障壁37aの外周縁から上方に向けて延在する連結部36bと、フランジ36cと、を有している。
障壁37aの下面は、前記渦軸に直交する方向に延在し、さらに障壁37aの上面と下面との渦軸方向での間隔が、旋回径方向の外側から内側に向かうにつれて漸減している。
このため、障壁37aの渦軸方向の板厚は、旋回径方向の外側から内側に向かうにつれて漸減している。第1連通部26は、障壁37aを渦軸方向に貫通して形成された複数の細孔38を備えている。複数の細孔38は、図示しないが、平面視において前記実施形態の複数の細孔31と同様に配置され、かつ各細孔38は、平面視略円形状に形成されている。複数の細孔38の内径は、全て同一であり、各細孔38の内径は、それぞれの流路長さの全域にわたって一定である。
このため、障壁37aの渦軸方向の板厚は、旋回径方向の外側から内側に向かうにつれて漸減している。第1連通部26は、障壁37aを渦軸方向に貫通して形成された複数の細孔38を備えている。複数の細孔38は、図示しないが、平面視において前記実施形態の複数の細孔31と同様に配置され、かつ各細孔38は、平面視略円形状に形成されている。複数の細孔38の内径は、全て同一であり、各細孔38の内径は、それぞれの流路長さの全域にわたって一定である。
障壁37aの渦軸方向の板厚が、旋回径方向の外側から内側に向かうにつれて漸減しているので、複数の細孔38の流路長さも、旋回径方向の外側に位置する細孔38から内側に位置する細孔38に向かうにつれて漸減している。言い換えれば、旋回径方向の内側に位置する細孔38の流路長さが、旋回径方向の外側に位置する細孔38の流路長さよりも短い。細孔38の流路長さが短くなると、その細孔38の流通抵抗は低下するため、複数の細孔38の流通抵抗は、旋回径方向の外側に位置する細孔38から内側に位置する細孔38に向かうにつれて漸減している。言い換えれば、旋回径方向の内側に位置する細孔38の流通抵抗が、旋回径方向の外側に位置する細孔38の流通抵抗よりも低い。なお、細孔の流路長さとは、細孔の中心軸線に沿って測った細孔の長さである。
本変形例においても、前記実施形態と同様の効果を得ることができる。
本変形例においても、前記実施形態と同様の効果を得ることができる。
なお、本発明の技術的範囲は前記実施形態および変形例に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、前記実施形態では、複数の細孔31は、第1細孔31a、第2細孔31b、第3細孔31c、および第4細孔31dの4種類の細孔31を有しているが、少なくとも2種類の細孔を有していればよい。旋回径方向の内側に、2種類の細孔のうちの一方の細孔が設けられ、旋回径方向の外側に、前記2種類の細孔のうちの他方の細孔が設けられ、前記一方の細孔の流通抵抗が、前記他方の細孔の流通抵抗よりも低ければよい。
前記実施形態の複数の細孔31は、内径のみを異ならせており、前記変形例の複数の細孔38は、流路長さのみを異ならせているが、複数の細孔の、内径および流路長さをいずれも異ならせてもよい。
複数の細孔の流通抵抗を異ならせるために、複数の細孔31の内面の表面処理を異ならせたり、旋回径方向の外側に位置する細孔31の内面に凹凸等を設けたりしてもよい。
前記実施形態および変形例では、複数の細孔31、38はいずれも平面視略円形状に形成されているが、平面視非円形状、例えば、楕円状や多角形状に形成されていてもよい。
複数の細孔31、38が、軸方向に沿って渦室25b側から主液室14側に向かうに従い漸次縮径するテーパ状に形成されてもよい。この場合、細孔の内径とは、細孔の最も小さな内径をいう。
複数の細孔31、38が、例えば、平面視で前記渦軸と同軸の多重円環状に配置されてもよいし、前記渦軸から平面視で放射状に延びる複数の直線上に配置されてもよい。
複数の細孔31、38は一方向に延びて形成されているが、細孔が途中で屈曲していてもよい。この場合も、細孔の流路長さとは、細孔の中心軸線に沿って測った細孔の長さである。
前記実施形態の複数の細孔31は、内径のみを異ならせており、前記変形例の複数の細孔38は、流路長さのみを異ならせているが、複数の細孔の、内径および流路長さをいずれも異ならせてもよい。
複数の細孔の流通抵抗を異ならせるために、複数の細孔31の内面の表面処理を異ならせたり、旋回径方向の外側に位置する細孔31の内面に凹凸等を設けたりしてもよい。
前記実施形態および変形例では、複数の細孔31、38はいずれも平面視略円形状に形成されているが、平面視非円形状、例えば、楕円状や多角形状に形成されていてもよい。
複数の細孔31、38が、軸方向に沿って渦室25b側から主液室14側に向かうに従い漸次縮径するテーパ状に形成されてもよい。この場合、細孔の内径とは、細孔の最も小さな内径をいう。
複数の細孔31、38が、例えば、平面視で前記渦軸と同軸の多重円環状に配置されてもよいし、前記渦軸から平面視で放射状に延びる複数の直線上に配置されてもよい。
複数の細孔31、38は一方向に延びて形成されているが、細孔が途中で屈曲していてもよい。この場合も、細孔の流路長さとは、細孔の中心軸線に沿って測った細孔の長さである。
第2連通部27が、副液室15に開口する複数の開口部や細孔を備えていてもよい。
前記実施形態では、本体流路25において、第1連通部26との接続部分に渦室25bが配置されているが、第2連通部27との接続部分に渦室が配置される一方で、第1連通部26との接続部分に渦室が配置されず、第2連通部27が複数の細孔を備えていてもよい。この場合、本体流路25において、第2連通部27との接続部分に配置された渦室は、第1連通部26から流入する液体Lの流速に応じて液体Lの旋回流を形成し、この液体Lを、第2連通部27の複数の細孔を通して副液室15に流出させる。また、本体流路25において、第1連通部26および第2連通部27との両接続部分に各別に渦室が配置されていてもよい。
前記実施形態では、渦室25bの中心軸線O2が平面視で中心軸線O1と異なる位置に配設されているが、渦室25bが中心軸線O1と同軸に配置されていてもよい。
前記実施形態では、渦室25bの中心軸線O2が中心軸線O1と平行しているが、中心軸線O2が中心軸線O1と非平行になるように、渦室25bが配置されていてもよい。
仕切部材16は、主液室14と副液室15とを区画できるのであれば、どのような形状であってもよい。
前記実施形態では、本体流路25において、第1連通部26との接続部分に渦室25bが配置されているが、第2連通部27との接続部分に渦室が配置される一方で、第1連通部26との接続部分に渦室が配置されず、第2連通部27が複数の細孔を備えていてもよい。この場合、本体流路25において、第2連通部27との接続部分に配置された渦室は、第1連通部26から流入する液体Lの流速に応じて液体Lの旋回流を形成し、この液体Lを、第2連通部27の複数の細孔を通して副液室15に流出させる。また、本体流路25において、第1連通部26および第2連通部27との両接続部分に各別に渦室が配置されていてもよい。
前記実施形態では、渦室25bの中心軸線O2が平面視で中心軸線O1と異なる位置に配設されているが、渦室25bが中心軸線O1と同軸に配置されていてもよい。
前記実施形態では、渦室25bの中心軸線O2が中心軸線O1と平行しているが、中心軸線O2が中心軸線O1と非平行になるように、渦室25bが配置されていてもよい。
仕切部材16は、主液室14と副液室15とを区画できるのであれば、どのような形状であってもよい。
前記実施形態では、蓋部36は、障壁36a、連結部36b、およびフランジ36cを有しているが、蓋部36が、前記渦軸に直交する方向に延在する板状に形成されていてもよい。この場合、蓋部36に複数の細孔が形成され、蓋部36において、少なくともこれら複数の細孔が形成されている部分が、本発明の障壁に相当する。
仕切板35に、副液室15に向けて開口する凹部が形成され、この凹部の開口部を副液室15側から蓋部が閉塞することで、この蓋部と前記凹部との間に渦室が形成され、この渦室と主液室14とを連通する複数の孔部が、前記凹部の底面に開口するように仕切板35に形成されてもよい。この場合、仕切板35において前記複数の細孔が形成されている部分が、本発明の障壁に相当する。
また、前記実施形態では、仕切部材16を第1取付部材11の下端部に配置し、仕切部材16の外周部22を第1取付部材11の下端開口縁に当接させているが、例えば仕切部材16を第1取付部材11の下端開口縁より充分上方に配置し、この仕切部材16の下側、すなわち第1取付部材11の下端部にダイヤフラム20を配設することで、仕切部材16の下面からダイヤフラム20の底面にかけて副液室15を形成するようにしてもよい。
また、前記実施形態では、支持荷重が作用することで主液室14に正圧が作用する圧縮式の防振装置10について説明したが、主液室14が鉛直方向下側に位置し、かつ副液室15が鉛直方向上側に位置するように取り付けられ、支持荷重が作用することで主液室14に負圧が作用する吊り下げ式の防振装置にも本発明は適用可能である。
また、前記実施形態では、仕切部材16が、第1取付部材11内の液室19を、弾性体13を壁面の一部に有する主液室14、および副液室15に仕切るものとしたが、これに限られるものではない。例えば、ダイヤフラム20を設けるのに代えて弾性体13を設け、副液室15を設けるのに代えて、弾性体13を壁面の一部に有する受圧液室を設けてもよい。例えば、仕切部材16が、液体Lが封入される第1取付部材11内の液室19を、第1液室14および第2液室15に仕切り、第1液室14および第2液室15のうちの少なくとも1つが、弾性体13を壁面の一部に有する他の構成に適宜変更することが可能である。
また、本発明に係る防振装置10は、車両のエンジンマウントに限定されるものではなく、エンジンマウント以外に適用することも可能である。例えば、建設機械に搭載された発電機のマウントにも適用することも可能であり、或いは、工場等に設置される機械のマウントに適用することも可能である。
また、前記実施形態では、仕切部材16が、第1取付部材11内の液室19を、弾性体13を壁面の一部に有する主液室14、および副液室15に仕切るものとしたが、これに限られるものではない。例えば、ダイヤフラム20を設けるのに代えて弾性体13を設け、副液室15を設けるのに代えて、弾性体13を壁面の一部に有する受圧液室を設けてもよい。例えば、仕切部材16が、液体Lが封入される第1取付部材11内の液室19を、第1液室14および第2液室15に仕切り、第1液室14および第2液室15のうちの少なくとも1つが、弾性体13を壁面の一部に有する他の構成に適宜変更することが可能である。
また、本発明に係る防振装置10は、車両のエンジンマウントに限定されるものではなく、エンジンマウント以外に適用することも可能である。例えば、建設機械に搭載された発電機のマウントにも適用することも可能であり、或いは、工場等に設置される機械のマウントに適用することも可能である。
その他、本発明の趣旨に逸脱しない範囲で、前記実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、前記した変形例を適宜組み合わせてもよい。
本発明によれば、振動入力時に、両取付部材が、弾性体を弾性変形させながら相対的に変位して、第1液室および第2液室のうちの少なくとも一方の液圧が変動することで、液体が制限通路を通って第1液室と第2液室との間を流通しようとする。このとき液体は、第1連通部および第2連通部のうちの一方を通して制限通路に流入し、本体流路内を通過した後、第1連通部および第2連通部のうちの他方を通して制限通路から流出する。
ここで、液体は、複数の細孔を通して制限通路から第1液室または第2液室に流入する際に、これらの細孔が形成された障壁により圧力損失させられながら各細孔を流通するため、第1液室または第2液室に流入する液体の流速を抑えることができる。しかも、液体が、単一の細孔ではなく複数の細孔を流通するので、液体を複数に分岐させて流通させることが可能になり、個々の細孔を通過した液体の流速を低減させることができる。これにより、仮に防振装置に大きな荷重(振動)が入力されたとしても、細孔を通過して第1液室内または第2液室内に流入した液体と、第1液室内または第2液室内の液体と、の間で生じる流速差を小さく抑えることが可能になり、流速差に起因する渦の発生、およびこの渦に起因する気泡の発生を抑えることができる。また、仮に気泡が第1液室や第2液室ではなく制限通路で発生しても、液体を、複数の細孔を通過させることで、発生した気泡同士を、第1液室内または第2液室内で離間させることが可能になり、気泡が合流して成長するのを抑えて気泡を細かく分散させた状態に維持しやすくすることができる。
以上のように、気泡の発生そのものを抑えることができる上、たとえ気泡が発生したとしても、気泡を細かく分散させた状態に維持しやすくすることができるので、気泡が崩壊するキャビテーション崩壊が生じても、発生する異音を小さく抑えることができる。
ここで、液体は、複数の細孔を通して制限通路から第1液室または第2液室に流入する際に、これらの細孔が形成された障壁により圧力損失させられながら各細孔を流通するため、第1液室または第2液室に流入する液体の流速を抑えることができる。しかも、液体が、単一の細孔ではなく複数の細孔を流通するので、液体を複数に分岐させて流通させることが可能になり、個々の細孔を通過した液体の流速を低減させることができる。これにより、仮に防振装置に大きな荷重(振動)が入力されたとしても、細孔を通過して第1液室内または第2液室内に流入した液体と、第1液室内または第2液室内の液体と、の間で生じる流速差を小さく抑えることが可能になり、流速差に起因する渦の発生、およびこの渦に起因する気泡の発生を抑えることができる。また、仮に気泡が第1液室や第2液室ではなく制限通路で発生しても、液体を、複数の細孔を通過させることで、発生した気泡同士を、第1液室内または第2液室内で離間させることが可能になり、気泡が合流して成長するのを抑えて気泡を細かく分散させた状態に維持しやすくすることができる。
以上のように、気泡の発生そのものを抑えることができる上、たとえ気泡が発生したとしても、気泡を細かく分散させた状態に維持しやすくすることができるので、気泡が崩壊するキャビテーション崩壊が生じても、発生する異音を小さく抑えることができる。
また、振動の入力に起因して、本体流路において、第1連通部および第2連通部のうちの一方との接続部分に設けられた渦室に、第1連通部および第2連通部のうちの他方側から液体が流入すると、渦室に流入した液体は、渦室の中心軸線に沿う渦軸回りに旋回しつつ旋回径方向の外側から内側に向けて流動する。このとき、液体と渦室の内面との摩擦や液体の流体摩擦等によって、旋回流の流速は旋回径方向の外側から内側に向かうにつれて減少する。旋回径方向の外側における旋回流の流速が高いため、渦室から、複数の細孔のうち旋回径方向の外側の細孔に流入して、第1液室または第2液室に流出される液体の流速は、旋回径方向の内側の細孔に流入したときと比べて高くなる傾向がある。すなわち、複数の細孔を流通する液体の流速は、旋回径方向の内側よりも外側で高くなる傾向がある。
ここで本発明では、複数の細孔のうち、旋回径方向の内側に位置する細孔の流通抵抗が、旋回径方向の外側に位置する細孔の流通抵抗よりも低い。このため、複数の細孔のうち旋回径方向の内側の細孔に比べ、旋回径方向の外側の細孔を流通する液体をより大きく圧力損失させて、その流速を低減させることができる。よって、複数の細孔のうち旋回径方向の外側の細孔を通過して第1液室内または第2液室内に流入した液体と、第1液室内または第2液室内の液体と、の間で生じる流速差を小さく抑えることが可能になり、流速差に起因する渦の発生、およびこの渦に起因する気泡の発生を抑えることができる。
ここで本発明では、複数の細孔のうち、旋回径方向の内側に位置する細孔の流通抵抗が、旋回径方向の外側に位置する細孔の流通抵抗よりも低い。このため、複数の細孔のうち旋回径方向の内側の細孔に比べ、旋回径方向の外側の細孔を流通する液体をより大きく圧力損失させて、その流速を低減させることができる。よって、複数の細孔のうち旋回径方向の外側の細孔を通過して第1液室内または第2液室内に流入した液体と、第1液室内または第2液室内の液体と、の間で生じる流速差を小さく抑えることが可能になり、流速差に起因する渦の発生、およびこの渦に起因する気泡の発生を抑えることができる。
前記複数の細孔のうち、前記旋回径方向の内側に位置する前記細孔の内径が、前記旋回径方向の外側に位置する前記細孔の内径よりも大きくてもよい。
細孔の内径が大きくなると、その細孔の流通抵抗は低下する。このため、複数の細孔のうち、旋回径方向の内側に位置する細孔の内径を、旋回径方向の外側に位置する細孔の内径よりも大きくすることで、旋回径方向の内側に位置する細孔の流通抵抗を、旋回径方向の外側に位置する細孔の流通抵抗よりも低くすることができる。
前記複数の細孔のうち、前記旋回径方向の内側に位置する前記細孔の流路長さが、前記旋回径方向の外側に位置する前記細孔の流路長さよりも短くてもよい。
細孔の流路長さが短くなると、その細孔の流通抵抗は低下する。このため、複数の細孔のうち、旋回径方向の内側に位置する細孔の流路長さを、旋回径方向の外側に位置する細孔の流路長さよりも短くすることで、旋回径方向の内側に位置する細孔の流通抵抗を、旋回径方向の外側に位置する細孔の流通抵抗よりも低くすることができる。
前記複数の細孔の流通抵抗は、前記旋回径方向の外側に位置する前記細孔から内側に位置する前記細孔に向かうにつれて漸減していてもよい。
渦室内の旋回流の流速は、旋回径方向の外側から内側に向かうにつれて漸減する。このため、複数の細孔の流通抵抗を、旋回径方向の外側に位置する細孔から内側に位置する細孔に向かうにつれて漸減させることで、複数の細孔を通過した液体の流速減少量を旋回径方向の外側から内側に向かうにつれて漸減させることができ、よって旋回径方向の位置によらずに、複数の細孔を通過した液体の流速を均等にすることができる。
簡易な構造で防振特性を低下させることなく、キャビテーション崩壊に起因する異音の発生を抑える。
10 防振装置
11 第1取付部材
12 第2取付部材
13 弾性体
14 主液室(第1液室)
15 副液室(第2液室)
16 仕切部材
19 液室
24 制限通路
25 本体流路
25b 渦室
26 第1連通部
27 第2連通部
31 細孔
36a 障壁
L 液体
O2 中心軸線
11 第1取付部材
12 第2取付部材
13 弾性体
14 主液室(第1液室)
15 副液室(第2液室)
16 仕切部材
19 液室
24 制限通路
25 本体流路
25b 渦室
26 第1連通部
27 第2連通部
31 細孔
36a 障壁
L 液体
O2 中心軸線
Claims (4)
- 振動発生部および振動受部のうちのいずれか一方に連結される筒状の第1取付部材、および他方に連結される第2取付部材と、
これら両取付部材を弾性的に連結する弾性体と、
液体が封入された前記第1取付部材内の液室を第1液室と第2液室とに区画する仕切部材と、を備えるとともに、
前記仕切部材に、前記第1液室と前記第2液室とを連通する制限通路が形成された液体封入型の防振装置であって、
前記制限通路は、前記第1液室に開口する第1連通部、前記第2液室に開口する第2連通部、および前記第1連通部と前記第2連通部とを連通する本体流路を備え、
前記第1連通部および前記第2連通部のうちの少なくとも一方は、複数の細孔を備え、
前記本体流路において、前記第1連通部および前記第2連通部のうちの少なくとも一方との接続部分には、前記第1連通部および前記第2連通部のうちの他方側からの液体の流速に応じて液体の旋回流を形成し、この液体を、前記複数の細孔を通して流出させる渦室が配置され、
前記複数の細孔が形成された障壁は、前記渦室の中心軸線に沿う渦軸に交差する方向に延在し、
前記複数の細孔のうち、前記障壁の平面視において前記渦軸に交差する旋回径方向の内側に位置する細孔の流通抵抗が、前記旋回径方向の外側に位置する細孔の流通抵抗よりも低い防振装置。 - 前記複数の細孔のうち、前記旋回径方向の内側に位置する前記細孔の内径が、前記旋回径方向の外側に位置する前記細孔の内径よりも大きい請求項1に記載の防振装置。
- 前記複数の細孔のうち、前記旋回径方向の内側に位置する前記細孔の流路長さが、前記旋回径方向の外側に位置する前記細孔の流路長さよりも短い請求項1または2に記載の防振装置。
- 前記複数の細孔の流通抵抗は、前記旋回径方向の外側に位置する前記細孔から内側に位置する前記細孔に向かうにつれて漸減している請求項1から3のいずれか1項に記載の防振装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18802069.7A EP3626997B1 (en) | 2017-05-18 | 2018-02-08 | Vibration damping device |
CN201880019703.5A CN110446879A (zh) | 2017-05-18 | 2018-02-08 | 隔振装置 |
US16/490,746 US11143267B2 (en) | 2017-05-18 | 2018-02-08 | Vibration damping device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-098942 | 2017-05-18 | ||
JP2017098942A JP6824818B2 (ja) | 2017-05-18 | 2017-05-18 | 防振装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018211754A1 true WO2018211754A1 (ja) | 2018-11-22 |
Family
ID=64273775
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/004388 WO2018211754A1 (ja) | 2017-05-18 | 2018-02-08 | 防振装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11143267B2 (ja) |
EP (1) | EP3626997B1 (ja) |
JP (1) | JP6824818B2 (ja) |
CN (1) | CN110446879A (ja) |
WO (1) | WO2018211754A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11428290B2 (en) | 2017-12-26 | 2022-08-30 | Prospira Corporation | Vibration isolating device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6577911B2 (ja) * | 2016-06-23 | 2019-09-18 | 株式会社ブリヂストン | 防振装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63308245A (ja) * | 1987-04-03 | 1988-12-15 | カウチュ マニュファクチュールエ プラスチーク | 一体油圧ダンパーを備えた弾性振動隔絶取付具及び流体を導通させるための調節可能な通路を備えた剛性隔壁 |
JP2012026510A (ja) * | 2010-07-23 | 2012-02-09 | Tokai Rubber Ind Ltd | 流体封入式防振装置 |
JP2012172832A (ja) | 2011-02-24 | 2012-09-10 | Toyo Tire & Rubber Co Ltd | 液封入式防振装置 |
WO2014196284A1 (ja) * | 2013-06-03 | 2014-12-11 | 株式会社ブリヂストン | 防振装置 |
WO2016027606A1 (ja) * | 2014-08-20 | 2016-02-25 | 株式会社ブリヂストン | 防振装置 |
JP2017098942A (ja) | 2001-05-29 | 2017-06-01 | 株式会社半導体エネルギー研究所 | 半導体装置 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6040843A (ja) * | 1983-08-15 | 1985-03-04 | Bridgestone Corp | 防振装置用オリフイス構造 |
FR2697604B1 (fr) * | 1992-11-02 | 1995-01-27 | Hutchinson | Perfectionnements aux supports antivibratoires hydrauliques. |
JP2006144806A (ja) * | 2003-04-04 | 2006-06-08 | Toyo Tire & Rubber Co Ltd | 液封入式防振装置 |
JP2007182930A (ja) * | 2006-01-06 | 2007-07-19 | Toyo Tire & Rubber Co Ltd | 液封入式防振装置 |
JP5095763B2 (ja) | 2010-01-21 | 2012-12-12 | 東洋ゴム工業株式会社 | 液封入式防振装置 |
WO2013140708A1 (ja) | 2012-03-23 | 2013-09-26 | 東海ゴム工業株式会社 | 流体封入式防振装置 |
JP6134629B2 (ja) | 2013-10-25 | 2017-05-24 | 株式会社ブリヂストン | 防振装置 |
JP6274927B2 (ja) | 2014-03-17 | 2018-02-07 | 株式会社ブリヂストン | 防振装置 |
JP6448926B2 (ja) | 2014-06-23 | 2019-01-09 | 住友理工株式会社 | 流体封入式防振装置 |
CN106574682B (zh) | 2014-08-20 | 2019-06-21 | 株式会社普利司通 | 隔振装置 |
JP6450619B2 (ja) | 2015-03-19 | 2019-01-09 | 株式会社ブリヂストン | 防振装置 |
US20190176605A1 (en) * | 2016-06-22 | 2019-06-13 | Bridgestone Corporation | Vibration-damping device |
JP6674334B2 (ja) * | 2016-06-23 | 2020-04-01 | 株式会社ブリヂストン | 防振装置 |
EP3617546A4 (en) * | 2017-04-27 | 2021-01-20 | Bridgestone Corporation | VIBRATION DAMPING DEVICE |
-
2017
- 2017-05-18 JP JP2017098942A patent/JP6824818B2/ja active Active
-
2018
- 2018-02-08 WO PCT/JP2018/004388 patent/WO2018211754A1/ja unknown
- 2018-02-08 US US16/490,746 patent/US11143267B2/en active Active
- 2018-02-08 CN CN201880019703.5A patent/CN110446879A/zh active Pending
- 2018-02-08 EP EP18802069.7A patent/EP3626997B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63308245A (ja) * | 1987-04-03 | 1988-12-15 | カウチュ マニュファクチュールエ プラスチーク | 一体油圧ダンパーを備えた弾性振動隔絶取付具及び流体を導通させるための調節可能な通路を備えた剛性隔壁 |
JP2017098942A (ja) | 2001-05-29 | 2017-06-01 | 株式会社半導体エネルギー研究所 | 半導体装置 |
JP2012026510A (ja) * | 2010-07-23 | 2012-02-09 | Tokai Rubber Ind Ltd | 流体封入式防振装置 |
JP2012172832A (ja) | 2011-02-24 | 2012-09-10 | Toyo Tire & Rubber Co Ltd | 液封入式防振装置 |
WO2014196284A1 (ja) * | 2013-06-03 | 2014-12-11 | 株式会社ブリヂストン | 防振装置 |
WO2016027606A1 (ja) * | 2014-08-20 | 2016-02-25 | 株式会社ブリヂストン | 防振装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3626997A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11428290B2 (en) | 2017-12-26 | 2022-08-30 | Prospira Corporation | Vibration isolating device |
Also Published As
Publication number | Publication date |
---|---|
EP3626997A4 (en) | 2020-09-02 |
US11143267B2 (en) | 2021-10-12 |
EP3626997A1 (en) | 2020-03-25 |
US20200080616A1 (en) | 2020-03-12 |
CN110446879A (zh) | 2019-11-12 |
EP3626997B1 (en) | 2021-07-07 |
JP6824818B2 (ja) | 2021-02-03 |
JP2018194102A (ja) | 2018-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6391186B2 (ja) | 防振装置、およびキャビテーション崩壊に起因する異音の発生を抑制する方法 | |
JP6450619B2 (ja) | 防振装置 | |
WO2018198444A1 (ja) | 防振装置 | |
WO2019131043A1 (ja) | 防振装置 | |
WO2017221823A1 (ja) | 防振装置 | |
WO2018198442A1 (ja) | 防振装置 | |
WO2018211754A1 (ja) | 防振装置 | |
JP6619702B2 (ja) | 防振装置 | |
JP7145165B2 (ja) | 防振装置 | |
JP6822860B2 (ja) | 防振装置 | |
JP6836458B2 (ja) | 防振装置 | |
JP6975628B2 (ja) | 防振装置 | |
WO2018193895A1 (ja) | 防振装置 | |
JP6577911B2 (ja) | 防振装置 | |
JP6853674B2 (ja) | 防振装置 | |
WO2019117062A1 (ja) | 防振装置 | |
JP7161842B2 (ja) | 防振装置 | |
JP2019203542A (ja) | 防振装置 | |
JP2018179190A (ja) | 防振装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18802069 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018802069 Country of ref document: EP Effective date: 20191218 |