WO2016103350A1 - 感圧素子および圧力センサ - Google Patents
感圧素子および圧力センサ Download PDFInfo
- Publication number
- WO2016103350A1 WO2016103350A1 PCT/JP2014/084084 JP2014084084W WO2016103350A1 WO 2016103350 A1 WO2016103350 A1 WO 2016103350A1 JP 2014084084 W JP2014084084 W JP 2014084084W WO 2016103350 A1 WO2016103350 A1 WO 2016103350A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure
- sensitive
- film
- sensitive film
- sensor
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/20—Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
- G01L1/22—Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
- G01L1/2287—Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/20—Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
- G01L1/205—Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using distributed sensing elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/1036—Measuring load distribution, e.g. podologic studies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
- A61B5/1116—Determining posture transitions
- A61B5/1117—Fall detection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/20—Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
- G01L1/22—Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
- G01L1/2206—Special supports with preselected places to mount the resistance strain gauges; Mounting of supports
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/02—Details of sensors specially adapted for in-vivo measurements
- A61B2562/0247—Pressure sensors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/12—Manufacturing methods specially adapted for producing sensors for in-vivo measurements
- A61B2562/125—Manufacturing methods specially adapted for producing sensors for in-vivo measurements characterised by the manufacture of electrodes
Definitions
- the present invention relates to a pressure sensitive element and a pressure sensor.
- a pressure-sensitive element is mainly built in a seat. This is for urging the user to wear a seat belt when the passenger gets into the vehicle and sits on the seat. Specifically, when a passenger sits on the vehicle seat, a load (weight) of a certain level or more is applied to the pressure sensitive element. Thereby, a pressure sensor provided with the pressure sensitive element functions to detect the presence of the occupant and prompt the occupant to wear the seat belt.
- a pressure sensor is also expected in the medical or nursing field. More specifically, for example, it is expected that a pressure sensitive element is included in the mattress of the bed, and the weight of the patient or elderly person (hereinafter also referred to as a patient) lying on the bed is monitored. Is done. By the above monitoring, it is possible to grasp that the patient or the like is lying in the same posture for a long time. By the above monitoring, in order to prevent the occurrence of bed slip, a third party can grasp the timing for appropriately changing the posture of a patient or the like lying on the bed. Further, the pressure sensor can be used for a walking support tool such as a patient.
- the pressure sensor detects an imbalance in the weight of the elderly person as a change in pressure distribution. Is possible. This is expected to prevent the elderly from falling or to grasp the falling.
- Patent Documents 1 to 4 include a pressure sensitive resistor formed by printing a conductive material on a resin film.
- the pressure-sensitive resistor printed and formed is also referred to as a pressure-sensitive resistor I.
- Patent Document 1 discloses a film-like feeling formed by printing and drying an on-ink composition obtained by dissolving and dispersing conductive particles, elastic particles, and a binder in a solvent, and then drying on a film such as polyethylene terephthalate.
- a pressure sensitive sensor including a piezoresistive body is disclosed.
- Patent Document 2 a pressure-sensitive resistor having a pressure-sensitive resistor formed by printing a pressure-sensitive resistor paste containing a base polymer, a conductive material such as carbon black, and a filler on a film of polyethylene terephthalate or polyetherimide is disclosed.
- a pressure sensor is disclosed.
- Patent Document 3 discloses a surface pressure distribution sensor including a counter electrode film in which a pressure sensitive resistor (conductive film) made of metal such as gold (Au) is deposited on the back surface of polyethylene terephthalate or polyethylene naphthalate.
- Patent Document 4 discloses a pressure sensor sheet including a pressure-sensitive resistor formed by screen-printing a material obtained by dispersing carbon in a thermosetting resin on a base film.
- Patent Document 5 discloses a pressure sensor including a pressure-sensitive portion in which a pressure-sensitive resistor (a thin film for pressure sensing) containing copper oxide or the like is formed on a cover film made of a polyimide film.
- a pressure-sensitive resistor a thin film for pressure sensing
- a method of forming the pressure sensitive resistor a method of sputtering or vapor-depositing copper oxide or the like on a polyimide film, or a copper foil bonded on the polyimide film is oxidized to make the surface copper oxide. How to do is described.
- the pressure-sensitive resistor formed by sputtering or vapor deposition is also referred to as a pressure-sensitive resistor II.
- JP 2002-158103 A JP 2001-1559569 A JP 2003-344195 A JP 2004-028883 A JP2012-247372
- the pressure-sensitive resistor I has sufficient durability against deformation caused by repeated bending, bending at a small bending diameter, or a large load such as the weight of a human body. It is not demonstrated. This is a problem peculiar to printed members. That is, the pressure-sensitive resistor I is likely to crack due to repeated use or excessive bending. The pressure-sensitive resistor I in which a crack has occurred may be broken in the worst case and cannot produce a sensor output. Therefore, it is difficult for the pressure sensitive resistor I to exhibit stable electrical reliability for a long time. In the pressure sensitive resistor I, the conductive particles may fall off while the contact with the sensor electrode is repeated. The dropped conductive particles may become a conductive foreign matter with respect to the sensor electrode, causing a short circuit and causing a false detection of the pressure sensor.
- the pressure sensitive resistor II shown in Patent Document 5 has a very thin film thickness compared to the pressure sensitive resistor I due to the special manufacturing method, and pinholes are inevitably generated during film formation. Therefore, the pressure sensitive resistor II may be inferior in electrical reliability. Further, since the pressure sensitive resistor II is a thin film, it may be worn or cracked due to repeated contact with the sensor electrode.
- the present invention has been made in view of the above problems. That is, the present invention provides a pressure-sensitive element that exhibits stable electrical reliability for a long period of time while having flexibility, and a pressure sensor including the pressure-sensitive element.
- the pressure-sensitive element of the present invention includes a conductive pressure-sensitive film, a sensor electrode provided at a position facing the pressure-sensitive film, and a predetermined distance for separating the pressure-sensitive film and the sensor electrode from each other.
- An insulating layer to be secured, and the pressure-sensitive film is a resin film containing carbon particles.
- the pressure sensor of the present invention includes the pressure-sensitive element of the present invention and a detection unit that is electrically connected to the pressure-sensitive element and detects a contact resistance between the pressure-sensitive film and the sensor electrode. .
- the pressure-sensitive element of the present invention has a pressure-sensitive film formed by using a resin film in which carbon particles are discretely blended, so that flexibility is exhibited and stable electrical reliability is exhibited for a long period of time. .
- the pressure sensor of the present invention includes a pressure-sensitive element having good flexibility, it can be suitably used in a technical field requiring bending, and reflects the excellent electrical reliability of the pressure-sensitive element. It can demonstrate good tactile sensing for a long time.
- (A) is a top view of the pressure sensor concerning 1st embodiment of this invention
- (b) is the II sectional view taken on the line of (a).
- (A) is the II-II sectional view taken on the line of Fig.1 (a)
- (b) is the modification of the II-II sectional view of Fig.1 (a).
- (A) to (c) is a plan view showing a modification of the sensor electrode. It is explanatory drawing explaining the initial stage detection sensitivity and dynamic range of the pressure-sensitive element concerning 1st embodiment. It is a top view of the pressure sensitive element concerning a second embodiment of the present invention.
- (A) is the elements on larger scale of the A section of FIG. 5
- (b) is the elements on larger scale of the B section of FIG.
- (A) And (b) is the elements on larger scale of the A section of FIG. 5 in which the pressure-sensitive film
- (A) is a top view seen from the side which opposes the sensor electrode of a pressure-sensitive film
- (b) is VIII-VIII sectional drawing of (a). It is a perspective view of a pressure sensor provided with a pressure sensitive element arranged on the surface of a cylinder of diameter X. It is a manufacturing-process flow of the pressure sensitive element concerning 1st embodiment of this invention.
- the same components are denoted by the same reference numerals, and redundant description will be appropriately omitted.
- the various components of the present invention do not have to be individually independent, a plurality of components are formed as one member, one component is formed of a plurality of members, It is allowed that a certain component is a part of another component, a part of a certain component overlaps a part of another component, and the like.
- the initial state refers to a state in which the pressure-sensitive film does not receive a pressing force from the outside.
- the dynamic range refers to the change width of the contact resistance between the sensor electrode and the pressure sensitive film.
- the initial detection sensitivity refers to sensitivity for detecting a pressure-sensitive initial load.
- the pressure-sensitive initial load refers to the minimum pressing force at which sensor electrode conduction is detected when the pressure-sensitive film is pressed from the outside and the pressure-sensitive film comes into contact with the sensor electrode.
- the detection of continuity means either that a current or voltage that is equal to or greater than a predetermined threshold is detected, or that the current or voltage is substantially detected beyond zero.
- the initial detection sensitivity is preferably in a predetermined range. This is because if the initial detection sensitivity is too low, sufficient detection cannot be performed, and if the initial detection sensitivity is too high, even a small load that is not scheduled for detection is detected, which may cause false detection.
- FIG. Fig.1 (a) is a top view of the pressure sensor 200 concerning 1st embodiment of this invention
- FIG.1 (b) is the II sectional view taken on the line of Fig.1 (a).
- 2A is a sectional view taken along the line II-II in FIG. 1A
- FIG. 2B is a modification of the sectional view taken along the line II-II in FIG.
- FIG. 3A to FIG. 3C are plan views showing modifications of the sensor electrode 12.
- FIG. 4 is an explanatory diagram for explaining the initial detection sensitivity and the dynamic range of the pressure-sensitive element 100 (see FIG. 1) according to the first embodiment.
- a curve 110 shown in FIG. 4 shows a tendency of the dynamic range of the pressure-sensitive element 100, and does not limit the present invention.
- FIG. 10 is a manufacturing process flow of the pressure-sensitive element 100 according to the first embodiment.
- the pressure-sensitive element 100 according to the present embodiment is a one-channel type including one pressure sensor unit 15 in which one sensor electrode 12 and a pressure-sensitive film 14 are opposed to each other. First, an outline of the pressure-sensitive element 100 and the pressure sensor 200 of the present embodiment will be described.
- the pressure sensitive element 100 includes a conductive pressure sensitive film 14, a sensor electrode 12 provided at a position facing the pressure sensitive film 14, and the pressure sensitive film 14 and the sensor electrode 12 are separated from each other. And an insulating layer 13 that secures a predetermined distance A.
- the pressure sensitive film 14 is a resin film containing carbon particles 140.
- the pressure sensor 200 includes a pressure-sensitive element 100 and a detection unit 210.
- the detection unit 210 is electrically connected to the pressure-sensitive element 100 and detects the contact resistance between the pressure-sensitive film 14 and the sensor electrode 12.
- the pressure-sensitive element 100 is a device whose physical quantity that can be measured varies depending on a load of an external pressing force.
- the contact resistance between the pressure-sensitive film 14 and the sensor electrode 12 varies depending on the pressing force.
- the fluctuation amount of the contact resistance in the pressure-sensitive element 100 correlates with the pressing force, and the pressure sensor 200 can quantify the pressing force by quantitatively detecting the contact resistance.
- quantitatively detecting the pressing force includes detecting the pressing force stepwise with a predetermined load in addition to detecting the pressing force continuously.
- the pressure-sensitive film 14 is a film that can conduct to the sensor electrode 12 by being pressed from the outside.
- the pressure sensitive film 14 being conductive means that the pressure sensitive film 14 has electrical conductivity to the extent that the sensor electrode 12 can be energized through the pressure sensitive film 14 by pressing the pressure sensitive film 14 from the outside. Means.
- the pressure-sensitive element 100 is appropriately provided with a voltage application unit that applies a voltage to the sensor electrode 12.
- the pressure sensor 200 of the present embodiment is a resistance change type sensor that utilizes a contact resistance change in principle, and is a distributed sensor that can continuously detect pressure.
- the pressure-sensitive film 14 is a resin film, and is configured to be conductive by including a large number of carbon particles 140 therein. Therefore, the pressure-sensitive film 14 is flexible and excellent in repeated use and flexibility as compared with a conventional pressure-sensitive resistor formed on a film by a technique such as printing, sputtering, or vapor deposition. Further, the pressure-sensitive film 14 does not have the conductive particles falling off like the printed pressure-sensitive resistor, or does not have a pinhole generated when the film is formed by a vapor deposition technique or the like. As described above, the pressure-sensitive element 100 including the excellent pressure-sensitive film 14 is excellent in electrical reliability and durability.
- the pressure sensitive film 14 includes carbon particles having high resistance as a conductive member and is made of a resin film. Therefore, the pressure-sensitive film 14 is superior in flexibility to the conventional pressure-sensitive resistors I and II, has high film strength, and is less likely to crack even if it is bent or repeatedly touched. Moreover, since the pressure sensitive film
- the pressure sensor 200 includes the excellent pressure-sensitive element 100 described above, and can exhibit excellent durability and electrical reliability that can enjoy the effects of the pressure-sensitive element 100.
- the detection unit 210 provided in the pressure sensor 200 calculates a pressing force applied to the sensor electrode 12 via the pressure-sensitive film 14 and a power supply unit (not illustrated) that applies a voltage to the voltage application unit (not illustrated). And a processing unit (not shown).
- the sensor electrode 12 of the present embodiment is a combination of a pair of a first electrode 12a and a second electrode 12b. When a pressing force is applied to the sensor electrode 12 via the pressure sensitive film 14, the first electrode 12a and the second electrode 12b. The two electrodes 12b are brought into conduction, and a current flows through the lead-out wiring 12c.
- the principle of the pressure sensor 200 is as follows.
- the first electrode 12a and the second electrode 12b shown in FIG. 1A are connected to a current source (not shown).
- a current source not shown
- the pressure-sensitive film 14 and the sensor electrode 12 are separated from each other and are not conductive as shown in FIG.
- the pressure sensitive film 14 bends and deforms toward the sensor electrode 12 side to the first electrode 12a and the second electrode 12b. Contact and conduct.
- One of the excellent features of the pressure-sensitive element 100 according to the present embodiment is that the change range (also referred to as dynamic range) of the contact resistance between the sensor electrode 12 and the pressure-sensitive film 14 is large and the initial detection sensitivity is high. It is done.
- a curve 110 shows a trend of the dynamic range and initial detection sensitivity of the pressure-sensitive element 100 (see FIG. 1), and a curve 510 and a curve 520 show a trend of an undesirable dynamic range or initial detection sensitivity.
- the vertical axis represents the contact resistance [ ⁇ ] between the pressure sensitive film 14 and the sensor electrode 12, and the horizontal axis represents the pressing force [MPa]. The vertical axis is logarithmic.
- the pressure-sensitive element 100 can be designed to have a sufficiently large dynamic range as well as showing an initial detection of a pressing force in a high sensitivity region as indicated by a curve 110. Therefore, the load (pressing force) touched to the pressure-sensitive film 14 from the outside can be detected well and can be detected quantitatively.
- a curve 510 shown as a comparison has a high initial detection sensitivity but a small dynamic range.
- a curve 520 shown as a comparison has a large dynamic range but a poor initial detection sensitivity.
- the reason why the curve 110 is realized in the present embodiment is that the pressure-sensitive film 14 is made of a resin film, and that the carbon particles 140 are selected as a material for imparting conductivity to the pressure-sensitive film 14. by. That is, since the pressure sensitive film 14 contains an appropriate amount of high-resistance carbon particles 140 as a conductive material, it is easy to design the surface resistivity of the pressure sensitive film 14 within a desired range. Further, since the pressure sensitive film 14 is made of a resin film, the pressure sensitive film 14 is excellent in flexibility and can detect an initial pressing force sensitively. Therefore, the curve 110 has good initial detection sensitivity.
- the amount of deflection of the pressure sensitive film 14 increases with an increase in the amount of pressure applied to the pressure sensitive film 14 from the outside, and as a result, the amount of contact between the sensor electrode 12 and the pressure sensitive film 14 increases continuously. To do. Thereby, the pressure-sensitive film 14 can realize a large dynamic range.
- a processing unit (not shown) provided in the detection unit 210 quantitatively calculates the pressing force applied to the sensor electrode 12 based on the current value.
- the pressure sensitive element 100 of this embodiment can be used as the pressure sensor 200.
- the pressure sensor 200 in the present embodiment can be a device that quantitatively detects and outputs a pressing force loaded from the outside.
- the information on the detection result output by the pressure sensor 200 is not particularly limited, and may be a distribution of the pressing force or the surface pressure, or another physical quantity that can be converted from these.
- the surface pressure detected by the pressure sensor 200 may be converted into an air flow or a water flow velocity that collides with the pressure sensor 200 and output.
- the pressure-sensitive element 100 includes a support substrate 11 that supports the sensor electrode 12. On one surface of the support substrate 11, a sensor electrode 12 is formed, and an insulating layer 13 having an opening 13 a and a pressure-sensitive film 14 are laminated. The sensor electrode 12 is disposed inside the opening 13a. The insulating layer 13 and the sensor electrode 12 are provided on the upper surface of the support substrate 11. The maximum thickness of the insulating layer 13 is larger than the maximum thickness of the sensor electrode 12.
- the sensor electrode 12 and the insulating layer 13 are provided on the same plane, and the thickness of the insulating layer 13 is larger than the thickness of the sensor electrode 12.
- the pressure sensitive film 14 is laminated on the support substrate 11 via the insulating layer 13, and the pressure sensitive film 14 and the sensor electrode 12 are separated by a difference between the thickness of the insulating layer 13 and the thickness of the sensor electrode 12. ing. That is, the insulating layer 13 forms a spacer for separating the sensor electrode 12 and the pressure sensitive film 14 by a predetermined distance A (see FIG. 1B). In an initial state in which no pressing force is applied from the outside, the sensor electrode 12 and the pressure sensitive film 14 are separated from each other, and the sensor electrode 12 is not conductive.
- the sensor electrode 12 and the pressure sensitive film 14 facing the sensor electrode 12 constitute a pressure sensor unit 15.
- the pressure-sensitive element 100 has a hollow portion surrounded by a support substrate 11, an insulating layer 13, and a pressure-sensitive film 14. S is formed.
- the insulating layer 13 may be appropriately provided with a vent 112 (see FIGS. 1A and 1B) that communicates the hollow portion S with the outside of the pressure-sensitive element 100.
- the pressure-sensitive element 100 can eliminate the pressure difference between the internal pressure of the hollow portion S and the external pressure.
- the width dimension of the ventilation hole 112 is not specifically limited, For example, it can fully exhibit a pressure adjustment function by setting it as the width dimension of the range of 50 micrometers or more and 500 micrometers or less.
- the height of the air hole 112 is not particularly limited, but by making it equal to the thickness of the insulating layer 13, it can be formed simultaneously with the opening 13a, which is advantageous in terms of manufacturing efficiency. Further, the insulating layer 13 is made of an insulating material having a high air permeability, so that the pressure adjusting function can be exhibited without having the air holes 112.
- seat, and a film are synonymous and are not distinguished from each other, and also include what is called a plate shape and plate shape.
- the pressure-sensitive film 14 is a member that conducts the pair of the first electrode 12 a and the second electrode 12 b that constitute the sensor electrode 12 by making contact with the sensor electrode 12. Specifically, the first electrode 12a and the second electrode 12b are electrically connected when the pressure-sensitive film 14 loaded with a pressing force from the outside contacts the first electrode 12a and the second electrode 12b.
- the pressure sensitive film 14 is composed of a resin film containing carbon particles 140. Since the pressure-sensitive film 14 which is a resin film has conductivity and is a pressing region, it is difficult to give a foreign object to the user who touches the pressure-sensitive film 14 from the outside. The conduction of the sensor electrode 12 is realized by elastic deformation of the pressure sensitive film 14 loaded with a pressing force from the outside. Since the pressure-sensitive film 14 is made of a flexible resin film, generation of cracks due to repeated use (touch) is prevented.
- the predetermined distance A measured in the initial state and the pressure-sensitive film is substantially flat is preferably 5 ⁇ m or more and 25 ⁇ m or less.
- the distance A is 5 ⁇ m or more, even when the pressure-sensitive element 100 is bent or curved, it is possible to sufficiently prevent the pressure-sensitive film 14 and the sensor electrode 12 from contacting each other and causing a short circuit in the initial state. Can do.
- the distance A is 25 ⁇ m or less, the initial detection sensitivity of the pressure-sensitive element 100 is not impaired.
- the initial state refers to a state in which the pressure-sensitive film 14 does not receive a pressing force from the outside.
- the pressure-sensitive film 14 in the present embodiment is a one-piece film-like body facing the pair of first electrode 12a and second electrode 12b.
- the pressure-sensitive film 14 and the sensor electrode 12 are separated in a non-contact manner by the insulating layer 13 in an initial state where the pressure-sensitive element 100 is not pressed. For this reason, when the pressing force is applied and the pressure-sensitive film 14 and the sensor electrode 12 come into contact with each other, the contact area between the two can be significantly changed from zero to the entire area of the sensor electrode 12. Thereby, the contact resistance between the pressure sensitive film 14 and the sensor electrode 12 is greatly reduced.
- the amount of increase in the contact area between the pressure sensitive film 14 and the sensor electrode 12 and the amount of decrease in the contact resistance have a positive correlation. Since the pressure sensitive film 14 is a resin film containing carbon particles 140, when the pressing force is further increased, the contact state of the already in contact portion is improved and the contact resistance is further reduced.
- the contacted portion refers to the contact portion between the carbon particles 140 existing on the surface side of the pressure-sensitive film 14 and the sensor electrode 12 and the contact between a plurality of adjacent carbon particles 140 included in the pressure-sensitive film 14. Including parts. That is, in the pressure-sensitive element 100 according to the present embodiment, the contact resistance is reduced synergistically by combining the macro factor of increasing the contact area and the micro factor of improving the contact state. In this way, it is possible to detect the pressing force with high accuracy by using a large resistance change caused by the magnitude of the pressing force. That is, the pressure sensitive element 100 has a large dynamic range as shown in FIG.
- the resin film constituting the pressure-sensitive film 14 can be appropriately formed using a known resin without departing from the spirit of the present invention.
- specific resins include polyesters such as polyethylene terephthalate, polyethylene naphthalate, and cyclic polyolefin; polycarbonates; polyimides; polyamideimides; One or a plurality of resin materials may be mixed to form the pressure sensitive film 14.
- the pressure sensitive film 14 is preferably configured to have a heat resistance of 260 ° C. or higher.
- the pressure sensor 200 including the pressure sensitive element 100 can be adapted to the reflow process. Thereby, the corresponding range of parts implementation etc. to the pressure sensor 200 is expanded, and the range of applications and specifications of the pressure sensor 200 can be expanded.
- the resin constituting the pressure-sensitive film 14 is mainly made of polyimide or polyamideimide.
- Polyimide or polyamide is excellent in heat resistance as compared with general-purpose resins such as polyethylene terephthalate.
- a resin film mainly composed of polyimide or polyamideimide can exhibit heat resistance of 260 ° C. or higher.
- the main material means a resin that occupies 50% by mass or more, further 70% by mass or more, particularly 90% by mass or more in 100% by mass of the resin constituting the pressure-sensitive film 14.
- the resin contained in the pressure-sensitive film 14 may be substantially 100% by mass of either polyimide or polyamideimide, or a combination thereof.
- the carbon particles 140 contained in the pressure sensitive film 14 are members for imparting conductivity to the pressure-sensitive film 14.
- the carbon particle 140 is a particulate carbon material, for example, carbon black such as acetylene black, furnace black (Ketjen black), channel black, or thermal black, or one or a combination of two or more of graphite. However, it is not limited to this.
- the content of the carbon particles 140 in the pressure-sensitive film 14 and the shape and particle size of the carbon particles 140 are not particularly limited as long as they do not depart from the spirit of the present invention. These can be appropriately determined within a range in which the sensor electrode 12 conducts due to the contact resistance between the pressure-sensitive film 14 and the sensor electrode 12.
- the conventional pressure-sensitive element has a configuration in which a pressure-sensitive region including a resin film and a pressure-sensitive resistor printed on the resin film is opposed to the sensor electrode.
- the pressure-sensitive element 100 has high accuracy in film thickness and surface roughness on the sensor electrode 12 side because the resin film itself containing carbon particles forms the pressure-sensitive film 14.
- the film thickness and surface roughness contribute to the uniformity of the contact resistance of the pressure sensitive film 14 to the sensor electrode 12. Therefore, the pressure sensitive element 100 has a stable sensor output and high electrical reliability.
- the pressure-sensitive element 100 can be comprised only by the resin film about the site
- the thickness of the pressure sensitive film 14 is preferably 6.5 ⁇ m or more and 40 ⁇ m or less.
- the thickness is 6.5 ⁇ m or more, the durability of the pressure-sensitive film 14 is ensured.
- the thickness is 40 ⁇ m or less, the initial detection sensitivity when the pressure-sensitive film 14 is pressed is good, and a large dynamic range can be secured.
- the thickness of the pressure sensitive film 14 can be measured using a general thickness measuring means such as a height gauge or an upright gauge.
- the surface resistivity of the pressure sensitive film 14 is preferably 7 k ⁇ / sq or more and 30 k ⁇ / sq or less.
- the pressure-sensitive film 14 has a small variation in sensor resistance when a heavy load is applied, and can exhibit high electrical reliability.
- the large load 1.
- a standard is about 1 MPa (for example, a pressure of 450 gf is applied to the pressure sensor 15 of 4 mm 2 ).
- the surface resistivity is within the above range, it is possible to realize a high initial detection sensitivity and a large dynamic range as shown by a curve 110 in FIG.
- the pressure-sensitive element 100 can be designed in a high sensitivity range such that the initial detection sensitivity is 0.25 MPa or less, and further 0.17 MPa or less, and the maximum load is determined from the initial detection load of pressing.
- the change in sensor output up to can be shown slowly.
- the surface resistivity of the pressure sensitive film 14 in a desired range can be adjusted by the blending amount of the carbon particles 140 contained in the pressure sensitive film 14.
- the blending amount of the carbon particles 140 contained in the pressure sensitive film 14 may be determined by using as a visual target that the surface resistivity of the pressure sensitive film 14 falls within the above range.
- the resistance of the film-like body is defined in units of sheet resistance per unit area not considering the thickness dimension, and specifically described as ⁇ / ⁇ or ⁇ / sq.
- the pressure sensitive element 100 may be adjusted such that the surface roughness Rz of the surface of the pressure sensitive film 14 facing the sensor electrode 12 is 0.10 ⁇ m or more and 0.50 ⁇ m or less. Thereby, the film forming property of the pressure sensitive film 14 is good, and the detection sensitivity of the contact resistance is stabilized.
- the surface roughness Rz of the pressure-sensitive film 14 is measured by measurement using a general surface roughness meter or surface roughness analysis using a laser microscope.
- a general surface roughness meter for example, a four-probe measuring device can be exemplified, and as a specific device, a resistivity meter manufactured by Mitsubishi Chemical Analytech Inc. can be exemplified, but not limited thereto. .
- the Young's modulus of the pressure-sensitive film 14 is preferably 5 GPa or less.
- the pressure-sensitive film 14 has a thickness in the range of 6.5 ⁇ m to 40 ⁇ m, a Young's modulus of 5 GPa or less, and a predetermined distance A for separating the pressure-sensitive film 14 and the sensor electrode 12 is 5 ⁇ m.
- the thickness is preferably 25 ⁇ m or less.
- the pressure-sensitive element 100 including the pressure-sensitive film 14 of this mode is arranged along a curved surface having a small radius of curvature, the sensor electrode 12 in the initial state is prevented from being short-circuited, and the initial detection sensitivity is good. And may exhibit a large dynamic range. That is, the pressure-sensitive element 100 is excellent for use with a curved surface.
- the curved surface having a small radius of curvature is not particularly limited, but is, for example, a range of ⁇ 30 mm or less.
- the Young's modulus of the pressure-sensitive film 14 described above is, for example, smaller than the Young's modulus of a film made of a resin constituting the pressure-sensitive film 14 and having the same thickness as the pressure-sensitive film 14.
- polyimide or polyamideimide may be selected as the resin constituting the pressure sensitive film 14.
- the Young's modulus of the pressure-sensitive film 14 formed by including carbon particles 140 in polyimide resin or the like tends to be smaller than the Young's modulus of a film made of polyimide resin or the like. This tendency means that the pressure-sensitive film 14 is remarkably excellent in flexibility as compared with a conventional pressure-sensitive part in which a pressure-sensitive resistor is formed on a resin film. Thereby, the pressure-sensitive element 100 can exhibit excellent initial detection sensitivity and a large dynamic range.
- the method for producing the pressure-sensitive film 14 in this embodiment is not particularly limited.
- the carbon particles 140 are mixed with one or more kinds of resins as raw materials, kneaded appropriately, and formed into a film. Can be produced.
- the sensor electrode 12 is a pair of electrodes that are arranged in parallel at a predetermined distance in the plane direction.
- the sensor electrode 12 is formed on the support substrate 11 in a desired pattern shape.
- the sensor electrode 12 in the present embodiment includes a rectangular first electrode 12a and a second electrode 12b having substantially the same shape as the first electrode 12a in parallel with a predetermined distance therebetween. Adjacently arranged.
- the pattern of the sensor electrode 12 is not limited to this.
- the first electrode 12a and the second electrode 12b are comb teeth or spirals. It may be a shape.
- FIG. 3A and 3B are comb teeth or spirals. It may be a shape.
- the first electrode 12a and the second electrode 12b may be arranged concentrically with each other.
- one of the first electrode 12a and the second electrode 12b may have a circular shape, and the other may have a ring shape surrounding the circular shape with a predetermined distance.
- the circular shape includes a perfect circle, an ellipse, and an ellipse.
- the distance between the first electrode 12a and the second electrode 12b facing each other is not particularly limited.
- the facing distance is designed in the range of 50 ⁇ m or more and 500 ⁇ m or less to obtain desired pressure-sensitive characteristics. And manufacturing stability can be achieved.
- the sensor electrode 12 is composed of a conductive member.
- the sensor electrode 12 is made of a low-resistance metal material.
- the surface resistivity of the sensor electrode 12 is smaller than the surface resistivity of the pressure sensitive film 14.
- the sensor electrode 12 is preferably formed from copper, silver, a metal material containing copper or silver, aluminum, or the like, but is not limited thereto. The form of the material can be appropriately determined by a combination with the manufacturing method of the sensor electrode 12 such as a foil or a paste.
- the method for producing the sensor electrode 12 is not particularly limited.
- the sensor electrode 12 is manufactured by patterning the first electrode 12a and the second electrode 12b by photolithography / etching using CCL (Copper Clad Laminate). At the time of the patterning, a later-described lead wiring 12c or external terminal electrode 12d may be formed at the same time.
- the CCL is a laminate obtained by bonding a copper foil having a desired thickness to the support substrate 11 with an adhesive or an adhesive, or a laminate obtained by casting and coating an insulating resin varnish on the copper foil. Or the laminated body etc. which form the copper foil in the support substrate 11 by wet plating are illustrated.
- the thickness of the copper foil used above is not particularly limited, but the finish of the sensor electrode 12 is good by selecting from the range of 9 ⁇ m or more and 35 ⁇ m or less, which is normally used in the technical field of flexible printed circuit (FPC). Become.
- the sensor electrode 12 formed using the above-described copper foil is preferable from the viewpoint of the thickness and width dimension accuracy of the sensor electrode 12, sensor output characteristics, and the like.
- the material of the sensor electrode 12 is not limited to Cu foil.
- aluminum foil, silver paste, or the like may be used as the material. Good.
- the sensor electrode 12 manufactured as described above is preferably further plated in a predetermined region. Specifically, the surface of the sensor electrode 12 facing the pressure sensitive film 14 is plated. Thereby, the oxidation and deterioration of the sensor electrode 12 are prevented, and the wear resistance due to the pressure-sensitive film 14 being repeatedly pressed is improved.
- the plating process can be performed at the time of film formation of the sensor electrode 12 or in a post process after the film formation. Specific examples of the plating treatment include, but are not limited to, nickel plating with a thickness of 2 ⁇ m or more and 10 ⁇ m or less, or gold plating with a thickness of 0.02 ⁇ m or more and 0.20 ⁇ m or less.
- Lead wires 12c are connected to the first electrode 12a and the second electrode 12b, respectively.
- the lead wiring 12c is formed integrally with the first electrode 12a and the second electrode 12b, and is led to the external terminal electrode 12d.
- the external terminal electrode 12d is connected to the detection unit 210 via the flexible wiring 202.
- the lead wiring 12c is formed on the same surface as the surface of the support substrate 11 on which the sensor electrode 12 is formed.
- any or all of the lead-out wiring 12c has through holes on the surface opposite to the surface of the support substrate 11 on which the sensor electrode 12 is formed. It may be withdrawn via (TH).
- the lead-out wiring 12c drawn to the opposite surface is drawn to the surface on which the sensor electrode 12 is formed again through the through hole (TH) before the external terminal electrode 12d.
- the double-sided board in which 12c is arranged on both sides of the support substrate 11 can effectively use the space of the support substrate 11 and reduce the size of the pressure sensor 200.
- the double-sided substrate can cope with the complexity of the lead wiring 12c.
- a cover 17 is provided to cover and protect the lead-out wiring 12c drawn out on the opposite surface. Examples of the cover 17 include, but are not limited to, a resin cover film used as a protective film.
- An insulating layer 13 is laminated on the upper surface of the support substrate 11.
- the insulating layer 13 has an opening 13 a that accommodates the sensor electrode 12.
- the insulating layer 13 covers substantially the entire surface of the support substrate 11 and the lead-out wiring 12c (see FIG. 2) except for the sensor electrode 12 formation region and its periphery. To improve environmental resistance.
- the insulating layer 13 forms a spacer that separates the sensor electrode 12 and the pressure-sensitive film 14 in an initial state in which the pressure-sensitive film 14 is not loaded with an external pressing force.
- the insulating layer 13 is made of an insulating material such as a photosensitive sheet or coating material. After the insulating material is coated so as to cover the support substrate 11, the sensor electrode 12, and the lead wiring 12c, an opening 13a is formed through exposure and development processes. By using a photosensitive material as the insulating material, the insulating layer 13 having excellent dimensions and positional accuracy of the opening 13a is formed.
- an adhesive sheet or an adhesive sheet provided with openings 13 a in advance may be bonded to the upper surface of the support substrate 11.
- the photosensitive material examples include an epoxy resin to which flexibility is appropriately added by a known means such as urethane modification.
- the epoxy resin By using the epoxy resin, it is possible to form the insulating layer 13 having moderate flexibility and heat resistance that can be input into the reflow process.
- the height of the insulating layer 13 is designed to be in the range of 15 ⁇ m to 70 ⁇ m, more preferably 15 ⁇ m to 40 ⁇ m from the surface of the support substrate 11.
- the photosensitive material is 70 ⁇ m or less, irradiation light can reach the deep part of the photosensitive material during exposure in forming the opening 13a, and the opening 13a can be formed with high accuracy.
- the photosensitive material is adjusted to a translucent state with a total light transmittance of 30% or more.
- a pressure-sensitive film 14 is provided in contact with the upper surface of the insulating layer 13 (the surface opposite to the support substrate 11).
- the height of the insulating layer 13 may be in the above range, and the height of the sensor electrode 12 manufactured on the same surface may be in the range of 15 ⁇ m to 45 ⁇ m.
- the predetermined distance A (refer FIG.1 (b)) which spaces apart the sensor electrode 12 and the pressure sensitive film
- the predetermined distance A is a distance from the upper surface of the sensor electrode 12 to the lower surface of the pressure sensitive film 14.
- the upper and lower directions refer to the upper and lower directions when the support substrate 11 is relatively downward and the pressure sensitive film 14 is upward.
- the predetermined distance A in the range of 5 ⁇ m or more and 25 ⁇ m or less, even when the pressure sensitive element 100 is bent or curved, the sensor electrode 12 can be prevented from being short-circuited in the initial state.
- the opening 13a in the present embodiment has a rectangular shape as shown in FIG.
- the shape of the opening 13a can be appropriately changed to a circular shape, a polygonal shape, or an indefinite shape depending on the shape of the sensor electrode 12 accommodated therein.
- a pressure sensitive film 14 is formed on the upper surface of the insulating layer 13.
- the insulating layer 13 and the pressure sensitive film 14 are bonded to each other via the adhesive layer 30.
- Any adhesive layer 30 may be used as long as it can join the insulating layer 13 and the pressure-sensitive film 14 such as an adhesive, an adhesive, an adhesive sheet, or an adhesive sheet.
- the adhesive layer 30 is preferably opened in a shape substantially the same as the opening 13a so as not to disturb the contact resistance between the sensor electrode 12 and the pressure sensitive film 14.
- the adhesive layer 30 may be provided on one side of the insulating layer 13 or the pressure-sensitive film 14, and then bonded together while aligning the other to the one side.
- the support substrate 11 is not particularly limited as long as it can support the sensor electrode 12 in the present embodiment.
- the film-like support substrate 11 is used in the present embodiment, any surface having a shape other than the film shape may be used as the support substrate.
- the pressure-sensitive element 100 of the present embodiment has a flexible substrate (support substrate 11), the sensor electrode 12 is formed on at least one surface of the substrate (support substrate 11), and the pressure-sensitive element 100 itself. Is configured to be flexible. This makes it easy to use the pressure sensitive element 100 on a curved surface or a peripheral surface.
- the support substrate 11 is insulative.
- the support substrate 11 in this embodiment is a flexible and insulating film.
- the material for the insulating film include polyethylene, polyethylene terephthalate, polyethylene naphthalate, cycloolefin polymer, polycarbonate, aramid resin, polyimide, polyimide varnish, polyamideimide, polyamideimide varnish, or flexible sheet glass. Yes, but not limited to this.
- the material of the support substrate 11 is polycarbonate, aramid film, polyimide, polyimide varnish, polyamideimide, polyamideimide varnish, flexible sheet glass, or the like having high heat resistance. Is more preferable.
- the material of the support substrate 11 is more preferably a polyimide film, a polyimide varnish film, a polyamideimide film, or a polyamideimide varnish film.
- the thickness of the support substrate 11 is not specifically limited, For example, it can be set as the range of 12.5 micrometers or more and 50 micrometers or less. When the thickness of the support substrate 11 exceeds 12.5 ⁇ m, good durability is exhibited during the manufacturing process or use of the pressure sensor 200, and when the thickness is less than 50 ⁇ m, good flexibility is exhibited, and pressure sensitivity
- the element 100 can be used favorably by being placed on a curved surface or bent.
- the support substrate 11 may be formed into a film shape in advance, or by casting and applying a polyimide-based insulating varnish to the Cu foil or the like that is the material of the sensor electrode 12. It may be formed.
- the thickness of the support substrate 11 may be designed to be larger than the thickness of the pressure-sensitive film 14.
- the pressure sensor 200 including the pressure sensitive element 100 described above is excellent in flexibility, high sensitivity characteristics, and electrical reliability, and can be used for various applications.
- the pressure-sensitive element 100 can be attached to an arbitrary object surface and used for simple measurement for detecting the pressure acting on the surface.
- the pressure-sensitive element 100 can be mounted on a curved surface such as a curved surface or a spherical surface for a touch operation, and various functions can be switched and executed depending on the strength of the pressing force.
- it can be used as a user interface capable of three-dimensional input by being applied to an electronic blackboard or electronic paper.
- the pressure sensor 200 can be used with the pressure-sensitive element 100 curved to a curvature radius of 15 mm or less.
- the pressure sensor 200 can be applied to the surface of an object having a small curvature radius.
- the pressure-sensitive element 100 in the pressure sensor 200 can be used so that the whole has a curvature radius of 15 mm or less, or can be used so that the curvature radius is partially 15 mm or less. Therefore, the pressure sensor 200 can be applied to a complicated curved surface such as a surface where irregularities are regularly repeated or a surface having irregular irregularities.
- Steps 1 to 15 described below may be changed as appropriate, some processes may be omitted, or some processes may be changed.
- Step 1 Preparation of CCL Prepare CCL.
- a guide hole may be appropriately formed in the CCL in preparation for the case where alignment is required in the subsequent steps.
- the CCL has a copper foil on the support substrate 11.
- Step 2 Dry film laminating step After pickling the CCL prepared above, the dry film is roll laminated on the CCL.
- Exposure Step The CCL obtained in Step 2 above is put into an exposure machine, and pattern exposure is performed in accordance with predetermined shapes of the sensor electrode 12, the lead wiring 12c, and the external terminal electrode 12d.
- Step 4 Development process
- the exposed CCL is subjected to pattern development using a developing device.
- the developer is generally a weak alkaline solution.
- the dry film pattern on the CCL obtained after development plays a role as an etching resist in an etching process described later.
- a water washing treatment is performed in order to remove the developer attached to the CCL and the etching resist.
- Step 5 Etching Process An etching process is performed on the CCL on which the etching resist is formed by the dry film pattern.
- a copper chloride-based solution is generally used, but is not limited thereto, and a chemical solution capable of etching the Cu foil may be appropriately selected.
- the sensor electrode 12, the lead wiring 12c, and the external terminal electrode 12d are patterned in a predetermined shape pattern in the CCL. After the completion of this step, the dry film remains on the surface of each pattern.
- the sensor electrode 12 includes a first electrode 12a and a second electrode 12b.
- Dry film peeling step After the etching step, the dry film remaining on the surface of each pattern is peeled and removed.
- the above-described peeling and removal is performed by a technique in which a dry film is swollen and peeled with a peeling solution adjusted to a weak alkali. After the dry film is peeled off, the CCL is washed with water and subjected to a rust prevention treatment for rust prevention of the exposed Cu pattern. Thus, the sensor electrode 12 and the lead wiring 12c are formed in the CCL.
- the insulating layer 13 is formed on the CCL obtained in Step 6. Specifically, the photosensitive coating material is coated with a predetermined thickness so as to cover the support substrate 11, the sensor electrode 12, and the lead wiring 12 c in the CCL, and dried to form the insulating layer 13.
- Step 8 Exposure process to photosensitive coating material In the insulating layer 13 formed as described above, exposure is performed on a region excluding the portion where the opening 13a is formed. At this time, by performing light irradiation in accordance with the exposure sensitivity of the photosensitive coating material, only the portion irradiated with light is photopolymerized.
- Step 9 Development Step of Photosensitive Coating Material In Step 8, development is performed with a weak alkaline solution in order to remove only portions that are not exposed (that is, portions where the openings 13a are formed). Thereby, the opening 13a is formed in the insulating layer 13, and the sensor electrode 12 is exposed inside the opening 13a.
- the height around the opening 13 a of the insulating layer 13 is higher than the height of the sensor electrode 12 accommodated in the opening 13 a.
- an additional heat treatment may be performed at a predetermined temperature and a predetermined time in order to improve the film strength of the insulating layer 13 depending on the property of the photosensitive coating material.
- Step 10 Surface Treatment Step Of the sensor electrode 12, the lead-out wiring 12c, and the external terminal electrode 12d provided on the support substrate 11, the exposed region that is not covered by the insulating layer 13 is a surface treatment by Ni / Au plating. Is given. For these plating treatments, electrolytic plating or electroless plating may be properly used.
- the adhesive layer 30 is formed in accordance with the shape of the insulating layer 13.
- the adhesive layer 30 can be formed by preparing an adhesive sheet obtained by punching a portion corresponding to the opening 13a and bonding the adhesive sheet 30 to the surface of the insulating layer 13 while aligning the opening 13a.
- the adhesive layer 30 may be formed by aligning the insulating layer 13 having the opening 13a and applying an adhesive onto the insulating layer 13 by printing means such as screen printing.
- an adhesive sheet obtained by punching a portion corresponding to the opening 13a may be attached to the pressure-sensitive film 14 to form the adhesive layer 30, and may be attached to the insulating layer 13 via the adhesive layer 30 as described later.
- the adhesive layer 30 is not formed in the region corresponding to the opening 13a.
- Pressure-sensitive film bonding step The pressure-sensitive film 14 is bonded to the surface of the insulating layer 13. For example, when the insulating layer 13 and the pressure sensitive film 14 are heated and pressure-bonded through the adhesive layer 30 in a vacuum state using a vacuum press generally used in flexible printed circuit (FPC) manufacturing, air is mixed between the layers. It can be satisfactorily bonded together. As described above, the pressure-sensitive film 14 is bonded to the insulating layer 13 excluding the region corresponding to the opening 13a.
- FPC flexible printed circuit
- Step 13 Reinforcing plate forming step for external terminal electrode
- ACF anisotropic conductive film
- the reinforcing plate is manufactured by using a metal plate such as stainless steel or aluminum having a desired thickness, or a film such as polyimide or polyethylene terephthalate, and laminating the external terminal electrode 12d with an adhesive or an adhesive.
- the [Step 14] High-accuracy punching process of external terminal electrode Generally, the external terminal electrode 12d of the pressure-sensitive element 100 applies a means for connector insertion / extraction or ACF bonding when connecting to an external substrate or equipment. There are many cases. Therefore, high dimensional accuracy may be required in the outer shape punching process of the part contributing to the connection. Specifically, the punching process is performed using a mold manufactured with high accuracy, and the dimensional accuracy required for the external terminal electrode 12d is ensured.
- Pressure-sensing device outer shape punching step After the high-accuracy punching step of the external terminal electrode 12d, an outer shape punching step is performed for the overall outer shape processing of the pressure-sensitive element 100.
- the pressure-sensitive element 100 is manufactured through steps 1 to 15. Thereafter, the manufactured pressure-sensitive element 100 is inspected for the dimensions of each part, the conduction performance of the sensor electrode 12 and the lead-out wiring 12c, the pressure resistance characteristics, and the like, and those satisfying certain standards are shipped as acceptable products.
- the pressure sensor 200 may be manufactured by electrically connecting the pressure-sensitive element 100 obtained as described above and the detection unit 210.
- the pressure sensitive element 100 manufactured as described above has an aspect in which the sensor electrode 12 and the lead-out wiring 12c are provided only on one side as shown in FIG. 2A, the support substrate 11 is attached in steps 1 to 15. The CCL provided may be flown through each step in a roll state.
- FIG. 5 is a plan view of a pressure-sensitive element 300 according to the second embodiment of the present invention.
- 6A is a partially enlarged view of part A in FIG. 5
- FIG. 6B is a partially enlarged view of part B in FIG. In FIG. 6A, the pressure sensitive film 14 is not shown.
- FIG. 7A and 7B are partial enlarged views of a portion A in FIG. 5 in which the pressure-sensitive film 14 is omitted, and the adhesive layer 30 is indicated by hatching for easy visual recognition.
- 8A is a plan view of the pressure-sensitive film 14 as viewed from the side facing the sensor electrode 12, and FIG. 8B is a cross-sectional view taken along the line VIII-VIII in FIG. 8A.
- FIG. 9 is a perspective view of a pressure sensor 400 including a pressure-sensitive element 300 disposed on the surface of a cylinder 160 having a diameter X. In FIG. 9, the detection unit 210 is not shown.
- the pressure sensitive element 300 is a multi-channel type in which a plurality of pressure sensor units 15 are provided on a single support substrate 11.
- One pressure sensor unit 15 includes a sensor electrode 12 (not shown) and a pressure sensitive film 14 facing the sensor electrode 12.
- the pressure sensitive element 100 in the first embodiment is appropriately referred to.
- a lead wire 12c drawn from each sensor electrode 12 is connected to the external terminal electrode 12d.
- the configuration of the pressure-sensitive element 300 is the same as that of the pressure-sensitive element 100, except that there are a plurality of pressure sensor sections 15 and that the lead-out wiring 12c and the external terminal electrodes 12d corresponding to the plurality of pressure sensor sections 15 are provided. It is configured.
- the pressure-sensitive element 300 is provided with a plurality of pressure sensor portions 15 in which the pressure-sensitive film 14 and the sensor electrode 12 face each other.
- the single pressure sensitive film 14 faces the plurality of sensor electrodes 12.
- the pressure sensitive film 14 is disposed over a wide area including the plurality of sensor electrodes 12. In other words, the plurality of sensor electrodes 12 share one pressure sensitive film 14.
- the pressure-sensitive film 14 in this embodiment covers a plurality of sensor electrodes 12 by one sheet. For example, as shown in FIG. 5, the single pressure-sensitive film 14 covers all the sensor electrodes 12.
- the pressure sensor unit 15 by making one pressure sensitive film 14 face the plurality of sensor electrodes 12, the patterning or positioning process of the pressure sensitive film 14 can be reduced.
- the configuration of the pressure sensitive element 300 can be simplified.
- film materials are often manufactured according to wide standards such as 500 mm width and 1000 mm width. Therefore, when manufacturing the array-type pressure-sensitive element 300, the pressure-sensitive film 14 is arranged in an island shape by disposing one large-sized pressure-sensitive film 14 so as to face the plurality of sensor electrodes 12. Compared with the embodiment, the manufacturing efficiency can be dramatically improved.
- the array type means a type including a sensor group in which a plurality of sensor electrodes 12 are regularly arranged.
- the pressure-sensitive element 300 can provide an array-type pressure sensor 400 (see FIG. 9).
- a plurality of pressure sensor portions 15 are formed by a single pressure sensitive film 14 facing a plurality of sensor electrodes 12.
- the modified example of the present embodiment includes an aspect in which a plurality of pressure sensor units 15 are configured by making each individual pressure sensitive film 14 face each sensor electrode 12. That is, the pressure sensitive film 14 may be arranged in an island shape with respect to each sensor electrode 12.
- the pressure sensitive element 300 is provided with a plurality of sensor electrodes 12 including a pair of first electrodes 12a and second electrodes 12b.
- a lead wire 12c is connected to each of the first electrode 12a and the second electrode 12b, and a voltage is applied through a voltage application unit (not shown).
- a pressing force is applied to the pressure-sensitive film 14 from the outside, the pressure-sensitive film 14 contacts the sensor electrode 12 across the first electrode 12a and the second electrode 12b, whereby the first electrode 12a and the second electrode 12b becomes conductive, and a current flows through the lead-out wiring 12c.
- the interval between adjacent sensor electrodes 12 can be appropriately set depending on the application of the pressure-sensitive element 300. As an example, it may be 1 mm or more and 10 mm or less.
- FIG. 5 illustrates a mode in which the plurality of sensor electrodes 12 are arranged in the support substrate 11 in the vertical and horizontal directions, this embodiment is not limited thereto.
- the plurality of sensor electrodes 12 may be arranged in a grid pattern or a zigzag pattern, or may be randomly arranged.
- the pressure-sensitive element 300 has an adhesive layer 30 (see FIG. 7) that joins the pressure-sensitive film 14 and the insulating layer 13.
- the insulating layer 13 has a first opening (opening 13a) for making the pressure sensitive film 14 and the sensor electrode 12 face each other through the hollow portion S.
- the adhesive layer 30 has a second opening (opening 30a).
- the second opening includes the first opening (opening 13a) in plan view. That is, in the present embodiment, the second opening (opening 30a) is larger than the first opening (opening 13a) and includes the first opening (opening 13a) in plan view. Thereby, it is possible to avoid the adhesive constituting the adhesive layer 30 from entering the hollow portion S from the second opening (opening 30a).
- FIG. 7 (a) shows a mode in which a first opening (opening 13a) and a second opening (opening 30a) surrounding each sensor electrode 12 are provided.
- FIG. 7B has a second opening (opening 30 a) surrounding a plurality (for example, all) of sensor electrodes 12. Inside one second opening (opening 30a), the sensor electrodes 12 are respectively arranged inside the first opening (opening 13a).
- the pressure-sensitive film 14 facing one side of the plurality of sensor electrodes 12 reaches the surface facing the sensor electrode 12 from the outer surface to the middle portion in the thickness direction.
- Slits 150 and 152 are provided.
- the slits 150 and 152 are formed so as to be positioned between the plurality of sensor electrodes 12 in plan view.
- slits 150 extending in the column direction and slits 152 extending in the row direction are provided so as to intersect with each other, corresponding to the plurality of sensor electrodes 12 arranged in an orderly manner.
- the slits 150 and 152 are provided so that one sensor electrode 12 is positioned inside the lattice surrounded by the slit 150 and the slit 152 in plan view.
- the slit 150 reaches the middle part in the thickness direction from the outer surface of one side of the pressure-sensitive film 14 and terminates. For example, the slit 150 reaches approximately one half of the thickness of the pressure sensitive film 14 and terminates.
- the slit 150 in this embodiment is a cut cut in the thickness direction from the outer surface, and the cut surfaces that constitute the cut and face each other substantially contact each other.
- the slit 150 may be a concave groove that is recessed from the outer surface in the thickness direction. The concave groove is formed by engraving a predetermined line with a V-shaped cutter or a dicing saw. Note that the description regarding the slit 150 in this paragraph also applies to the slit 152 as appropriate.
- a plurality of pressure sensor units 15 can be configured with a single pressure-sensitive film 14 opposed to a plurality of sensor electrodes 12.
- the pressure sensitive film 14 when pressure is applied to any two pressure sensor units 15 at the same timing, the pressure sensitive film 14 is common, so that conduction is established between the two points via the pressure sensitive film 14. It may be confirmed. In such a case, noise may be included in the original detection signal.
- the slits 150 and 152 in the pressure-sensitive film 14 the noise can be suitably prevented. This is probably because the slits 150 and 152 in one sheet of the pressure sensitive film 14 become an electric resistance against current conduction between one pressure sensor unit 15 and another pressure sensor unit 15.
- the pressure-sensitive element 300 described above is excellent in flexibility like the pressure-sensitive element 100, and can exhibit high electrical reliability even in a bent state. Therefore, the pressure sensor 400 including the pressure-sensitive element 300 can be used by being disposed on a curved object surface as shown in FIG.
- the pressure sensitive element 300 is curved with a curvature radius of 15 mm or less.
- the predetermined distance A which is the distance between the sensor electrode 12 and the pressure sensitive film 14, is 5 ⁇ m or more and 25 ⁇ m or less
- the pressure sensitive film 14 The thickness is preferably 6.5 ⁇ m or more and 40 ⁇ m or less.
- the pressure-sensitive element 300 can be used while being bent to a very small radius of curvature such as a radius of curvature of 10 mm or less, or even 7 mm or less.
- FIG. 9 shows an example in which the pressure sensor 400 is used on the surface of a simple thin cylinder, the pressure sensor 400 can be applied to the surface of an object having a complicated curved surface unevenness.
- the pressure sensor 400 can be arranged along part or all of the shape of a human hand to realize a hand-shaped or glove-shaped pressure sensor.
- the pressure sensor 200 including the pressure-sensitive element 100 including one sensor electrode 12 can also be used by being disposed on a complicated uneven surface, similarly to the pressure sensor 400.
- the pressure sensor 400 is placed in the surface direction of a bed mat (not shown), for example, it is possible to sense the weight of the person lying on the bed. Further, the pressure sensor 400 is mounted under a display such as a tablet terminal, a PC, or an electronic paper, so that it can detect a load when the display is pressed (typing) or a portion that is simultaneously pressed by a plurality.
- a display such as a tablet terminal, a PC, or an electronic paper
- the present invention is not limited to the above-described embodiment, and various modifications, improvements, etc. as long as the object of the present invention is achieved.
- This embodiment is also included.
- the present invention includes an embodiment in which the sensor electrode 12 and the pressure sensitive film 14 are provided on both surfaces of the support substrate 11. Further, the present invention is not limited to the film-like support substrate 11 as the substrate on which the sensor electrode 12 is formed.
- the pressure-sensitive element 100 can be implemented on various substrates that support the sensor electrode 12 and on which the insulating layer 13 and the pressure-sensitive film 14 can be laminated.
- the basic configuration of each example, comparative example, and reference example was fabricated following the pressure sensor 200 of the first embodiment. Specifically, on the polyimide film (thickness 25 ⁇ m) as the support substrate 11, a sensor electrode 12, a lead wire 12c, and an external terminal electrode 12d including a pair of first electrode 12a and second electrode 12b were formed.
- the detection part 210 was connected to the pressure sensitive element 100 obtained by the above, and the pressure sensor 200 provided with a basic composition was obtained.
- the first electrode 12a and the second electrode 12b had a height of 20 ⁇ m, a line width of 1000 ⁇ m, and a separation distance of 100 ⁇ m.
- the lead wiring 12c has a height of 13 ⁇ m and a line width of 100 ⁇ m.
- the insulating layer 13 provided with the openings 13a was formed.
- an adhesive layer 30 is formed on the surface of the insulating layer 13, and a pressure sensor film 15, which is a polyimide film containing carbon particles, is laminated via the adhesive layer 30 to form a pressure sensor unit 15. did.
- the area of the pressure sensor unit 15 was 4 mm 2 .
- the external terminal electrode 12d and the detection part 210 were electrically connected by the flexible wiring 202, and the pressure sensor 200 was produced.
- Table 1 shows the distance A from the insulating layer 13 to the pressure-sensitive film 14, the thickness of the pressure-sensitive film 14, the surface resistivity Rs, and the surface roughness Rz with respect to the pressure-sensitive element 100 in each example, comparative example, or reference example. It changed as shown in. In each example, comparative example, or reference example, the content of the carbon particles contained in the pressure-sensitive film 14 was adjusted so as to be the surface resistivity Rs and the surface roughness Rz shown in Table 1, respectively.
- Each example, comparative example, and reference example were prepared with the basic configuration as described above, and the contents shown in Table 1, and pressure-sensitive characteristics were evaluated as follows.
- the evaluation was performed by preparing five samples for each example, comparative example, and reference example.
- Table 1 shows the minimum value and the maximum value among the five samples for initial detection sensitivity evaluation and heavy load detection sensitivity evaluation described later.
- About the short circuit test mentioned later when a short circuit was not confirmed in all the five samples, it was evaluated that there was no short circuit, and when any one of the short circuits was confirmed, it was evaluated that there was a short circuit.
- the evaluation results are shown in Table 1.
- Example 16 and 17 in which the distance A between the pressure-sensitive film and the sensor electrode, the thickness of the pressure-sensitive film, the surface resistivity, and the surface roughness are all designed in a suitable range are the initial detection sensitivity and dynamic range. All the ranges were particularly good. It was found that Example 1 in which the distance A is less than 5 ⁇ m may be short-circuited when bent under severe conditions. Further, in Example 6 in which the distance A exceeded 25 ⁇ m, the initial detection sensitivity exceeded 1000 N, which tended to be higher than the other examples.
- Example 10 in which the thickness of the pressure-sensitive film exceeded 40 ⁇ m, the initial detection sensitivity exceeded 1000 N, and there was a tendency to be higher than in other Examples.
- Example 13 in which the surface resistivity of the pressure sensitive film exceeded 30000 ⁇ , the difference between the maximum value and the minimum value was large in the large load detection sensitivity, and the values of the five samples varied greatly. This suggested that the dispersibility was insufficient because the amount of carbon particles added to the pressure-sensitive film was reduced as compared with other examples.
- Reference Example 1 in which the surface resistivity of the pressure sensitive film was less than 7000 ⁇ , the carbon particle content of the pressure sensitive film was remarkably increased as compared with the Example in order to lower the resistivity. The film formability which deserves was not obtained.
- Reference Example 2 the surface roughness of the pressure-sensitive film was designed to be remarkably large, but the film formability worthy of measurement was not obtained.
- Comparative Example 1 the distance A between the pressure-sensitive film and the sensor electrode was zero, and a short circuit was confirmed in a flat state.
- the above embodiment includes the following technical idea.
- the pressure-sensitive element according to (1), wherein the predetermined distance measured in an initial state and the pressure-sensitive film is substantially flat is 5 ⁇ m or more and 25 ⁇ m or less.
- a plurality of pressure sensor portions are provided so that the pressure sensitive film and the sensor electrode face each other.
- the surface of the single pressure-sensitive film facing the sensor electrode has a slit that reaches from the outer surface to an intermediate portion in the thickness direction,
- the pressure-sensitive element according to (10), wherein the slit is positioned between the plurality of sensor electrodes in plan view.
- a pressure sensor comprising: a detection unit that is electrically connected to the pressure-sensitive element and detects a contact resistance between the pressure-sensitive film and the sensor electrode.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Dentistry (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Physiology (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
Abstract
Description
より具体的には、たとえば、ベッドのマットレスに感圧素子を内在させ、当該マットレスに対する、ベッドに横たわった患者や高齢者(以下、患者等ともいう)の体重の掛かり具合をモニタリングすることが期待される。上記モニタリングにより、患者等が長時間同じ姿勢で横たわっていることを把握することが可能である。上記モニタリングにより、床ずれの発生を防止するため、ベッドに横たわる患者等の姿勢を適度に変更させるタイミングを第三者が把握可能である。
また、圧力センサを、患者等の歩行支持具に利用することも可能である。具体的には、感圧素子を内在する支持具を用いて歩行等を行っている高齢者がバランスを崩した場合、圧力センサは、当該高齢者の体重の不均衡を圧力分布の変化として検知可能である。これにより高齢者の転倒防止、または転倒の把握が期待される。
特許文献2には、ベースポリマー、カーボンブラックなどの導電材料、および充填剤を含む感圧抵抗ペーストが、ポリエチレンテレフタレートまたはポリエーテルイミド等のフィルム上に印刷されてなる感圧抵抗体を備えた感圧センサが開示されている。
特許文献3には、ポリエチレンテレフタレートまたはポリエチレンナフタレートの裏面に金(Au)などの金属の感圧抵抗体(導電膜)が蒸着形成された対向電極フィルムを備える面圧分布センサが開示されている。
特許文献4には、熱硬化樹脂にカーボンを分散させた材料を、ベースフィルム上にスクリーン印刷してなる感圧抵抗体を備える圧力センサシートが開示されている。
本発明の各種の構成要素は、個々に独立した存在である必要はなく、複数の構成要素が一個の部材として形成されていること、1つの構成要素が複数の部材で形成されていること、ある構成要素が他の構成要素の一部であること、ある構成要素の一部と他の構成要素の一部とが重複していること、等を許容する。
本明細書において、初期状態とは、感圧膜が外部から押圧力を受けていない状態をいう。ダイナミックレンジとは、センサ電極と感圧膜との接触抵抗の変更幅をいう。初期検知感度とは、感圧初期荷重を検知する感度をいう。感圧初期荷重とは、感圧膜が外部から押圧されて感圧膜とセンサ電極とが接触することによるセンサ電極の導通が検知される最小の押圧力をいう。ここで導通が検知されるとは、所定の閾値以上の電流もしくは電圧が検知されること、または電流または電圧が零を超えて実質的に検知されることのいずれかをいう。感圧初期荷重が小さいほど、初期検知感度は高く、感圧初期荷重が大きいほど、初期検知感度は低い。一般的に、初期検知感度は、所定の範囲であることが好ましい。初期検知感度が低すぎると、充分な検知ができず、また初期検知感度が高すぎると、検知を予定しない小さい荷重でも検知してしまい、誤検知の原因となり得るからである。
以下に、第一実施形態にかかる感圧素子および圧力センサについて図1から図4、および図10を用いて説明する。図1(a)は、本発明の第一実施形態にかかる圧力センサ200の平面図であり、図1(b)は、図1(a)のI-I線断面図である。図2(a)は、図1(a)のII-II線断面図であり、図2(b)は、図1(a)のII-II線断面図の変形例である。図3(a)から図3(c)は、センサ電極12の変形例を示す平面図である。図4は、第一実施形態にかかる感圧素子100(図1参照)の初期検知感度とダイナミックレンジを説明する説明図である。図4に示すカーブ110は、感圧素子100のダイナミックレンジの傾向を示すものであって、本発明を何ら限定するものではない。図10は、第一実施形態にかかる感圧素子100の製造工程フローである。
本実施形態にかかる感圧素子100は、一つのセンサ電極12と感圧膜14とが対向してなる圧力センサ部15を1つ備える1チャンネルタイプである。
はじめに、本実施形態の感圧素子100および圧力センサ200の概要について説明する。
図1(a)、(b)に示すように、本実施形態の感圧素子100は、センサ電極12を支持する支持基板11を有している。支持基板11の一方の面には、センサ電極12が形成されるとともに、開口13aが形成された絶縁層13と、感圧膜14と、が積層されている。センサ電極12は、開口13aの内側に配置されている。絶縁層13およびセンサ電極12は、支持基板11の上面に設けられている。絶縁層13の最大厚みは、センサ電極12の最大厚みよりも大きい。より具体的には本実施形態では、センサ電極12および絶縁層13は、同一平面に設けられており、かつ絶縁層13の厚みがセンサ電極12の厚みよりも大きい。感圧膜14は、絶縁層13を介して支持基板11に積層されており、感圧膜14とセンサ電極12とは、絶縁層13の厚みとセンサ電極12の厚みとの差分だけ、離間している。即ち、絶縁層13は、センサ電極12と感圧膜14とを所定の距離A(図1(b)参照)で離間させるためのスペーサをなす。外部から押圧力を受けない初期状態において、センサ電極12と感圧膜14とは、離間しており、センサ電極12は導通していない。センサ電極12とこれに対向する感圧膜14とにより圧力センサ部15が構成されている。
センサ電極12の導通は、外部から押圧力が負荷された感圧膜14の弾性変形により実現される。感圧膜14が可撓性の樹脂フィルムから構成されるため、繰り返しの使用(タッチ)によるクラックの発生が防止される。
ここで初期状態とは、感圧膜14が外部から押圧力を受けていない状態をいう。
本実施形態の感圧素子100は、押圧されていない初期状態で、絶縁層13により感圧膜14とセンサ電極12とが非接触に離間している。このため、押圧力が負荷されて感圧膜14とセンサ電極12とが接触することで、両者の接触面積を零からセンサ電極12の全面積まで大幅に変化させることができる。これにより、感圧膜14とセンサ電極12との接触抵抗が大きく低下する。感圧膜14とセンサ電極12との接触面積の増大量と接触抵抗の低下量とは正の相関をもつ。感圧膜14がカーボン粒子140を含有する樹脂フィルムであるため、さらに押圧力が増大すると、既に接触している部分の接触状態が改善して接触抵抗がより減少していく。ここで接触している部分とは、感圧膜14の表面側に存在するカーボン粒子140とセンサ電極12との接触部分、および感圧膜14に含まれる隣接する複数のカーボン粒子140との接触部分を含む。すなわち、本実施形態の感圧素子100は、接触面積の増大というマクロ要因と、接触状態の改善というミクロ要因とが相俟って相乗的に接触抵抗が低下する。このようにして、押圧力の大小に起因して発生する大きな抵抗変化を利用することで、押圧力を精度よく検知することができる。即ち、感圧素子100は、図4に示すとおり、ダイナミックレンジが大きい。
感圧膜14におけるカーボン粒子140の含有量、カーボン粒子140の形状および粒径は、本発明の趣旨に逸脱しない範囲において特に限定されない。これらは、感圧膜14とセンサ電極12との接触抵抗によりセンサ電極12が導通する範囲において適宜決定することができる。
なお、感圧膜14の厚みは、ハイトゲージまたはアップライトゲージなどの一般的な厚み測定手段を用いて測定することができる。
また、表面抵抗率が上記範囲であることにより、図4に示すカーブ110のように、初期検知感度が良好であり、かつ大きいダイナミックレンジを実現することが可能である。即ちより具体的には、感圧素子100は、初期検知感度を0.25MPa以下、さらには0.17MPa以下といった高感度域に設計することが可能であるとともに、押圧の初期検知荷重から最大荷重までのセンサ出力の変化を緩やかに示し得る。
特に、感圧膜14は、厚みが6.5μm以上40μm以下の範囲であり、ヤング率が、5GPa以下であり、かつ感圧膜14およびセンサ電極12を離間させるための所定の距離Aが5μm以上25μm以下であることが好ましい。かかる態様の感圧膜14を備える感圧素子100は、曲率半径の小さい曲面に沿って配置された場合であっても、初期状態におけるセンサ電極12の短絡を防止し、初期検知感度が良好で、かつ大きいダイナミックレンジを示し得る。即ち、かかる感圧素子100は、曲面搭載の使用に優れる。曲率半径の小さい曲面とは、特に限定されないが、たとえばφ30mm以下の範囲である。
かかる態様を実現するには、たとえば、感圧膜14を構成する樹脂としてポリイミドまたはポリアミドイミドを選択するとよい。ポリイミド樹脂等にカーボン粒子140を含有させて形成された感圧膜14のヤング率は、ポリイミド樹脂等からなる膜のヤング率よりも小さくなる傾向にある。かかる傾向は、樹脂フィルムに、感圧抵抗体が形成されてなる従来の感圧部と比較して、顕著に感圧膜14が可撓性に優れることを意味する。これにより、感圧素子100は、優れた初期検知感度および大きいダイナミックレンジを示し得る。
本実施形態において、センサ電極12は、面方向に所定の距離を空けて並列する一対の電極対である。センサ電極12は、支持基板11の上に所望のパターン形状で形成されている。図1(a)に示すとおり、本実施形態におけるセンサ電極12は、矩形状の第一電極12aと、第一電極12aと略同形状の第二電極12bとが所定の距離を空けて平行に隣接配置されて構成されている。ただし、センサ電極12のパターンはこれに限定されず、たとえば、図3(a)および図3(b)に示すとおり、第一電極12aと第二電極12bとが互いが組み合う櫛歯形状またはスパイラル形状であってもよい。または、図3(c)に示すとおり、第一電極12aおよび第二電極12bは、互いに同心円上に配列されていてもよい。具体的には、第一電極12aまたは第二電極12bの一方が円形であり、他方が当該円形を所定の距離を空けて取り囲むリング形状であってもよい。上記円形とは、真円、楕円、および長円を含む。
引出配線12cは、図2(a)に示すとおり、センサ電極12が形成された支持基板11の面と同じ面に形成されている。引出配線12cの他の態様としては、図2(b)に示すとおり、引出配線12cのいずれかまたは全部が、センサ電極12が形成された支持基板11の面とは反対側の面にスルーホール(TH)を介して引き出されてもよい。反対側の面に引き出された引出配線12cは、外部端子電極12dの手前で、再度スルーホール(TH)を介して、センサ電極12が形成された面に引き出されている。このように12cが支持基板11の両面に配置される両面基板は、支持基板11のスペースを有効に使用し圧力センサ200の小型化を図ることができる。また、1枚の支持基板11に複数のセンサ電極12が設けられた所謂アレイ型の圧力センサを構成する場合に、上記両面基板は、引出配線12cの複雑化に対応することができる。図2(b)に示す両面基板では、上記反対側の面に引き出された引出配線12cを覆って保護するカバー17が設けられている。カバー17は、たとえば保護フィルムとして用いられる樹脂製のカバーフィルムなどを挙げることができるがこれに限定されない。
また、絶縁層13の高さは、支持基板11の表面から15μm以上70μm以下の範囲、より好ましくは、15μm以上40μm以下に設計すると良い。感光性材料が70μm以下とすることで、開口13aの形成における露光時に、照射光を感光性材料の深部にまで到達されることができ、開口13aを精度よく成形することができる。また絶縁層13の作製時の露光感度をより良好なものとするために、感光性材料は、全光線透過率を30%以上の半透明状に調整されることが好ましい。尚、開口13aを形成する際に、併せて通気孔112を形成してもよい。
圧力センサ200の使用環境上の高温耐久性を考慮するならば、支持基板11の材料は、耐熱性の高いポリカーボネート、アラミドフィルム、ポリイミド、ポリイミドワニス、ポリアミドイミド、ポリアミドイミドワニス、またはフレキシブルシートガラス等がより好ましい。圧力センサ200の製造上、はんだ付け等のプロセスを提供する場合には、支持基板11の材料は、ポリイミドフィルム、ポリイミドワニスフィルム、ポリアミドイミドフィルムまたはポリアミドイミドワニスフィルムであることがさらに好ましい。支持基板11の厚みは特に限定されないが、たとえば12.5μm以上50μm以下の範囲とすることができる。支持基板11の厚みが、12.5μmを上回る場合、圧力センサ200の製造工程または使用の際に良好な耐久性を発揮し、また50μmを下回る場合、良好な可撓性が発揮され、感圧素子100を曲面へ配置し、または屈曲させて良好に使用することができる。支持基板11は、上述したように、予めフィルム状に成形されたものでもよいし、またはセンサ電極12の素材であるCu箔等に対しポリイミド系等の絶縁用ワニスをキャスト・塗工することで形成されたものであってもよい。たとえば、感圧素子100の耐久性および高感度特性のいずれも良好にするという観点からは、支持基板11の厚みは、感圧膜14の厚みよりも大きく設計するとよい。
圧力センサ200における感圧素子100は、その全体が曲率半径15mm以下となるよう用いられることもできるし、部分的に曲率半径15mm以下となるよう用いられることもできる。したがって、圧力センサ200は、規則的に凹凸が繰り返される面、または不規則な凹凸を備える面など、複雑な曲面にも適用可能である。
CCLを準備する。以降のステップにおいて位置合わせが必要となる場合に備え、CCLに対し適宜ガイド穴を形成してよい。CCLは、支持基板11上に銅箔を有する。
[ステップ2]ドライフィルムラミネート工程
上述で準備したCCLを酸洗いした後、CCLに対しドライフィルムをロールラミネートする。
[ステップ3]露光工程
上記ステップ2で得られたCCLを露光機に投入し、センサ電極12、引出配線12c、外部端子電極12dの所定形状に従ってパターン露光を行う。このとき、一回で処理ができる露光面積対して、一つの感圧素子100の面積が十分に小さい場合には、一度の露光で複数の感圧素子100を多面取りし、任意のステップにおいて裁断してもよい。
[ステップ4]現像工程
露光済のCCLを、現像装置に供してパターン現像する。現像液は一般的には弱アルカリ溶液である。現像後に得られたCCL上のドライフィルムパターンは、後述するエッチング工程におけるエッチングレジストとしての役割を担う。現像後、適宜、エッチングレジストのパターンニングが完了した後は、CCLやエッチングレジストに付着した現像液を除去するため、水洗処理を実施する。
[ステップ5]エッチング工程
ドライフィルムパターンによってエッチングレジストが形成されたCCLに対しエッチング処理を行う。エッチング液は、一般的には塩化銅系の液が用いられるが、これに限定されず、Cu箔をエッチング可能な薬液を適宜選択してよい。上記エッチング処理により、CCLにおいて、センサ電極12、引出配線12c、および外部端子電極12dが所定形状のパターンでパターンニングされる。本工程終了後、各パターン表面には、ドライフィルムが残存した状態である。尚、センサ電極12は、第一電極12aおよび第二電極12bを含む。
[ステップ6]ドライフィルム剥離工程
エッチング工程後、各パターン表面に残存するドライフィルムを剥離除去する。一般的に、上記剥離除去は、弱アルカリに調整された剥離液でドライフィルムを膨潤させ剥離させる手法で実施する。ドライフィルムの剥離後、CCLを水洗し、露出状態にあるCuパターンの防錆のため防錆処理が施される。以上により、CCLに、センサ電極12、および引出配線12cが形成される。
[ステップ7]感光性塗材の塗工工程
次に、ステップ6で得られたCCLに絶縁層13を形成する。具体的には、CCLにおける支持基板11、センサ電極12、および引出配線12cを覆うように、感光性塗材を所定の厚みで被覆し、乾燥して絶縁層13を形成する。この被覆にあたっては、バーコートまたはスクリーン印刷などの一般的な塗工技術を適用することが可能である。
[ステップ8]感光性塗材への露光工程
上述のとおり形成された絶縁層13において、開口13aの形成箇所を除く領域に対して露光を行う。このとき、上記感光性塗材の露光感度に合わせた光の照射を行うことで、光が照射された箇所のみが光重合される。
[ステップ9]感光性塗材の現像工程
ステップ8において、露光がなされていない箇所(即ち、開口13aの形成箇所)のみを除去するため、弱アルカリ溶液によって現像を行う。これにより、絶縁層13に開口13aが形成され、開口13aの内側にセンサ電極12が露出する。支持基板11を基準として、絶縁層13の少なくとも開口13a周囲の高さは、開口13aに収容されたセンサ電極12の高さよりも高い。現像後、感光性塗材の性質によって、絶縁層13の膜強度を向上させるために、所定温度および所定時間で、追加の加熱処理を施してもよい。
[ステップ10]表面処理工程
支持基板11上に設けられたセンサ電極12、引出配線12c、および外部端子電極12dのうち、絶縁層13によって覆われず露出した領域は、Ni/Auめっきによる表面処理が施される。これらのめっき処理は、電解めっきまたは無電解めっきを適宜使い分けてもよい。
[ステップ11]接着層の形成工程
次に、絶縁層13の形状に合わせて接着層30を形成する。たとえば、接着層30は、開口13aに対応する箇所を抜き加工した接着剤シートを準備し、開口13aに対し位置合わせしながら絶縁層13の表面に貼り合せて形成することができる。または、開口13aを備える絶縁層13に対し位置合わせを行い、スクリーン印刷等の印刷手段で接着剤を絶縁層13上に塗工して接着層30を形成しても良い。または、開口13aに相当する箇所を抜き加工した接着剤シートを感圧膜14に貼り合せて接着層30を形成し、後述のとおり接着層30を介して絶縁層13に貼り付けてもよい。いずれの場合にも開口13aに対応する領域には接着層30が形成されない。
[ステップ12]感圧膜の貼合工程
絶縁層13の表面に対し、感圧膜14を貼り合せる。たとえばフレキシブルプリントサーキット(FPC)製造で一般的に使用される真空プレスを用いて、真空状態において絶縁層13と感圧膜14とを接着層30を介して加熱圧着すると、層間にエアを混入させることなく良好に貼り合わせることができる。以上により、感圧膜14は、開口13aに対応する領域の除いた絶縁層13に接合される。支持基板11を基準として開口13aの周囲の絶縁層13の高さより、センサ電極12の高さが低いため、センサ電極12と感圧膜14とは外的圧力が加わらない初期状態では離間する。
[ステップ13]外部端子電極に対する補強板形成工程
感圧素子100の外部端子電極12dが、コネクタへの挿抜や異方性導電性フィルム(ACF;Anisotropic Conductive Film)接合等に適用される場合には、以下の工程を適宜実施する。即ち、外部端子電極12dに適度な剛性を持たせるために外部端子電極12dに対し補強板(不図示)の形成を行う。一般的に補強板は、所望の厚みを有するステンレスもしくはアルミなどの金属板、またはポリイミドもしくはポリエチレンテレフタレートなどのフィルムを素材とし、粘着剤や接着剤によって外部端子電極12dに対しラミネートすることで製作される。
[ステップ14]外部端子電極の高精度打ち抜き工程
感圧素子100の外部端子電極12dは、一般的に、外部の基板や機器への接続の際に、コネクタ挿抜や、ACF接合の手段を適用する場合が多い。そのため、接続に寄与する部位の外形打ち抜き工程は、高い寸法精度を要求されることがある。具体的には、高精度で製作された金型を用いて上記打ち抜き工程を実施し、外部端子電極12dが要求される寸法精度を確保する。
[ステップ15]感圧素子の外形打ち抜き工程
外部端子電極12dの高精度打ち抜き工程の後、感圧素子100の全体的な外形加工のため外形打ち抜き工程を実施する。
次に、本発明の第二実施形態の感圧素子300および圧力センサ400について、図5から図9を用いて説明する。本実施形態の感圧素子300は、センサ電極12を複数備える点で第一実施形態の感圧素子100と相違している。圧力センサ400は、感圧素子100の替りに感圧素子300を備える点で、圧力センサ200と相違している。
図5は、本発明の第二実施形態にかかる感圧素子300の平面図である。図6(a)は、図5のA部の部分拡大図であり、図6(b)は、図5のB部の部分拡大図である。尚、図6(a)は、感圧膜14を図示省略している。図7(a)、(b)は、感圧膜14が図示省略された図5のA部の部分拡大図であり、接着層30を視認容易のために斜線で表している。図8(a)は、感圧膜14のセンサ電極12に対向する側からみた平面図であり、図8(b)は、図8(a)のVIII-VIII断面図である。図9は、直径Xの円筒160の表面に配置された感圧素子300を備える圧力センサ400の斜視図である。図9において、検知部210は図示省略する。
たとえば、上述する実施形態ではいずれも、支持基板11の片面にセンサ電極12が設けられた例を示したが、本発明はこれに限定されない。本発明は、支持基板11の両面にセンサ電極12および感圧膜14が設けられた態様を包含する。また、本発明は、センサ電極12が形成される基板としてフィルム状の支持基板11に限定されるものではない。本発明は、センサ電極12を支持し、絶縁層13、および感圧膜14が積層形成可能な種々の基板上において、感圧素子100を実施することができる。
各実施例、比較例、および参考例の基本構成は第一実施形態の圧力センサ200に倣って作製した。具体的には、支持基板11としてポリイミドフィルム(厚み25μm)上に、一対の第一電極12aおよび第二電極12bを備えるセンサ電極12、引出配線12c、ならびに外部端子電極12dを形成した。以上により得られた感圧素子100に検知部210を接続し、基本構成を備える圧力センサ200を得た。第一電極12aおよび第二電極12bは、高さ20μm、ライン幅はそれぞれ1000μm、および互いの離間距離を100μmとした。引出配線12cは、高さ13μm、ライン幅は100μmとした。次いで、開口13aが設けられた絶縁層13を形成した。次いで絶縁層13の表面に接着層30を形成し、接着層30を介してカーボン粒子を含有するポリイミドフィルムである感圧膜14を積層して圧力センサ部15を形成し、感圧素子100とした。圧力センサ部15の面積は、4mm2とした。外部端子電極12dと検知部210とをフレキシブル配線202で電気的に接続し圧力センサ200を作製した。
各実施例、比較例、または参考例における感圧素子100に関し、絶縁層13から感圧膜14までの距離A、感圧膜14の厚み、表面抵抗率Rsおよび表面粗さRzを、表1に示すとおり変更した。各実施例、比較例、または参考例において、感圧膜14に含まれるカーボン粒子の含有量は、表1に示す表面抵抗率Rsおよび表面粗さRzとなるよう、それぞれ調整した。
各実施例、比較例、および参考例を平坦面に設置し、感圧膜14の外側から圧力センサ部15を徐々に荷重を与えていき、導通が最初に検知された荷重を初期検知荷重(N)として測定した。
[大荷重検知感度評価]
各実施例、比較例、および参考例を平坦面に設置し、4mm2の面積の圧力センサ部15に対し1.1MPa(112.5gf/mm2)の荷重を与えたときの抵抗値(Ω)を測定した。
[短絡試験]
各実施例、比較例、および参考例をφ10mmのガラス棒に巻き付け、圧力センサ部15に対し外側から荷重を与えない状態(即ち、初期状態)において、短絡を確認した。
各実施例の評価結果をみると以下の傾向があることが分かった。即ち、感圧膜とセンサ電極との距離A、感圧膜の厚み、表面抵抗率、および表面粗さのいずれも、好適な範囲で設計された実施例16、17は、初期検知感度およびダイナミックレンジがいずれも特に良好であった。
距離Aが5μm未満である実施例1は、厳しい条件で屈曲させたときに短絡する虞があることがわかった。また距離Aが25μmを超えた実施例6は、初期検知感度が、1000Nを超えており、他の実施例よりも高い傾向にあった。
感圧膜の厚みが40μmを超えた実施例10は、初期検知感度が、1000Nを超えており、他の実施例よりも高い傾向にあった。
感圧膜の表面抵抗率が30000Ωを超えた実施例13は、大荷重検知感度において最大値と最小値との差異が大きく、5つのサンプルの値に大きなばらつきがあった。これは、他の実施例と比較して感圧膜に添加するカーボン粒子の量を少なくしたために分散性が不十分であったことが示唆された。なお、感圧膜の表面抵抗率が7000Ω未満であった参考例1は、抵抗率を下げるために実施例と比較して感圧膜のカーボン粒子の含有量を著しく増大させたために、測定に値するフィルム成形性が得られなかった。
尚、参考例2は、感圧膜の表面粗さを顕著に大きく設計したが、測定に値するフィルム成形性が得られなかった。
(1)導電性の感圧膜と、前記感圧膜に対向する位置に設けられたセンサ電極と、
前記感圧膜および前記センサ電極を互いに離間させるための所定の距離を確保する絶縁層と、を有し、前記感圧膜が、カーボン粒子を含有する樹脂フィルムであることを特徴とする感圧素子。
(2)初期状態かつ前記感圧膜が略平坦な状態において測定される前記所定の距離が、5μm以上25μm以下である上記(1)に記載の感圧素子。
(3)前記感圧膜の厚みが、6.5μm以上40μm以下である上記(1)または(2)に記載の感圧素子。
(4)前記感圧膜のヤング率が、5GPa以下である上記(1)から(3)のいずれか一項に記載の感圧素子。
(5)前記感圧膜の表面抵抗率が、7kΩ/sq以上30kΩ/sq以下である上記(1)から(4)のいずれか一項に記載の感圧素子。
(6)前記感圧膜の厚みの前記センサ電極に対向する面の表面粗さRzが、0.10μm以上0.50μm以下である上記(1)から(5)のいずれか一項に記載の感圧素子。
(7)前記感圧膜が、耐熱性260℃以上である上記(1)から(6)のいずれか一項に記載の感圧素子。
(8)前記感圧膜を構成する樹脂が、ポリイミドまたはポリアミドイミドを主材とする上記(1)から(7)のいずれか一項に記載の感圧素子。
(9)前記感圧膜のヤング率が、前記感圧膜を構成する樹脂からなり前記感圧膜と同厚さの膜のヤング率よりも小さい上記(8)に記載の感圧素子。
(10)前記感圧膜と、前記センサ電極と、が対向する圧力センサ部が複数設けられ、
一枚の前記感圧膜が、複数の前記センサ電極と対向している上記(1)から(9)のいずれか一項に記載の感圧素子。
(11)前記一枚の感圧膜の前記センサ電極に対向する面は、外面から肉厚方向の中間部まで到達するスリットを有し、
前記スリットが、平面視上、前記複数の前記センサ電極間に位置する上記(10)に記載の感圧素子。
(12)可撓性の基板を有し、
前記基板の少なくとも一方側の面に前記センサ電極が形成され、可撓性を有する上記(1)から(11)のいずれか一項に記載の感圧素子。
(13)前記感圧膜と、前記絶縁層と、を接合する接着層を有し、
前記絶縁層が、前記感圧膜と前記センサ電極とを中空部を介して対向させるための第一開口を有し、
前記接着層が、平面視上、前記第一開口を包含する第二開口を有する上記(1)から(12)のいずれか一項に記載の感圧素子。
(14)上記(1)から(13)のいずれか一項に記載の感圧素子と、
前記感圧素子と電気的に接続されて感圧膜とセンサ電極との接触抵抗を検知する検知部と、を備えることを特徴とする圧力センサ。
(15)前記感圧素子が、曲率半径15mm以下に湾曲している上記(14)に記載の圧力センサ。
Claims (15)
- 導電性の感圧膜と、
前記感圧膜に対向する位置に設けられたセンサ電極と、
前記感圧膜および前記センサ電極を互いに離間させるための所定の距離を確保する絶縁層と、を有し、
前記感圧膜が、カーボン粒子を含有する樹脂フィルムであることを特徴とする感圧素子。 - 初期状態かつ前記感圧膜が略平坦な状態において測定される前記所定の距離が、5μm以上25μm以下である請求項1に記載の感圧素子。
- 前記感圧膜の厚みが、6.5μm以上40μm以下である請求項1または2に記載の感圧素子。
- 前記感圧膜のヤング率が、5GPa以下である請求項1から3のいずれか一項に記載の感圧素子。
- 前記感圧膜の表面抵抗率が、7kΩ/sq以上30kΩ/sq以下である請求項1から4のいずれか一項に記載の感圧素子。
- 前記感圧膜の厚みの前記センサ電極に対向する面の表面粗さRzが、0.10μm以上0.50μm以下である請求項1から5のいずれか一項に記載の感圧素子。
- 前記感圧膜が、耐熱性260℃以上である請求項1から6のいずれか一項に記載の感圧素子。
- 前記感圧膜を構成する樹脂が、ポリイミドまたはポリアミドイミドを主材とする請求項1から7のいずれか一項に記載の感圧素子。
- 前記感圧膜のヤング率が、前記感圧膜を構成する樹脂からなり前記感圧膜と同厚さの膜のヤング率よりも小さい請求項8に記載の感圧素子。
- 前記感圧膜と、前記センサ電極と、が対向する圧力センサ部が複数設けられ、
一枚の前記感圧膜が、複数の前記センサ電極と対向している請求項1から9のいずれか一項に記載の感圧素子。 - 前記一枚の感圧膜の前記センサ電極に対向する面は、外面から肉厚方向の中間部まで到達するスリットを有し、
前記スリットが、平面視上、前記複数の前記センサ電極間に位置する請求項10に記載の感圧素子。 - 可撓性の基板を有し、
前記基板の少なくとも一方側の面に前記センサ電極が形成され、可撓性を有する請求項1から11のいずれか一項に記載の感圧素子。 - 前記感圧膜と、前記絶縁層と、を接合する接着層を有し、
前記絶縁層が、前記感圧膜と前記センサ電極とを中空部を介して対向させるための第一開口を有し、
前記接着層が、平面視上、前記第一開口を包含する第二開口を有する請求項1から12のいずれか一項に記載の感圧素子。 - 請求項1から13のいずれか一項に記載の感圧素子と、
前記感圧素子と電気的に接続されて感圧膜とセンサ電極との接触抵抗を検知する検知部と、を備えることを特徴とする圧力センサ。 - 前記感圧素子が、曲率半径15mm以下に湾曲している請求項14に記載の圧力センサ。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14890459.2A EP3244179B1 (en) | 2014-12-24 | 2014-12-24 | Pressure-sensitive element and pressure sensor |
PCT/JP2014/084084 WO2016103350A1 (ja) | 2014-12-24 | 2014-12-24 | 感圧素子および圧力センサ |
US14/904,782 US10048141B2 (en) | 2014-12-24 | 2014-12-24 | Pressure sensing element and pressure sensor |
CN201480037448.9A CN106030267A (zh) | 2014-12-24 | 2014-12-24 | 压敏元件和压力传感器 |
JP2015526083A JP6539204B2 (ja) | 2014-12-24 | 2014-12-24 | 感圧素子および圧力センサ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/084084 WO2016103350A1 (ja) | 2014-12-24 | 2014-12-24 | 感圧素子および圧力センサ |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016103350A1 true WO2016103350A1 (ja) | 2016-06-30 |
Family
ID=56149450
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/084084 WO2016103350A1 (ja) | 2014-12-24 | 2014-12-24 | 感圧素子および圧力センサ |
Country Status (5)
Country | Link |
---|---|
US (1) | US10048141B2 (ja) |
EP (1) | EP3244179B1 (ja) |
JP (1) | JP6539204B2 (ja) |
CN (1) | CN106030267A (ja) |
WO (1) | WO2016103350A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018189581A (ja) * | 2017-05-10 | 2018-11-29 | 大日本印刷株式会社 | 圧力センサ装置 |
JP2020510920A (ja) * | 2017-02-25 | 2020-04-09 | ペラテック ホールドコ リミテッド | 機械的相互作用の検出 |
JP2020514711A (ja) * | 2016-12-27 | 2020-05-21 | コーニング インコーポレイテッド | 無線圧力検出器、無線圧力測定システム、および、圧力測定方法 |
JPWO2020241718A1 (ja) * | 2019-05-30 | 2020-12-03 | ||
JP2021524916A (ja) * | 2018-05-18 | 2021-09-16 | バルブ コーポレーション | ポリイミド基板を備えた力検知抵抗器(fsr)、システム、およびその方法 |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107110716B (zh) * | 2014-12-18 | 2020-07-28 | 霓达株式会社 | 传感器片 |
US10584983B2 (en) * | 2015-02-17 | 2020-03-10 | Nok Corporation | Cover structure of tactile sensor and tactile sensor |
US10275067B2 (en) * | 2015-04-10 | 2019-04-30 | Shenzhen New Degree Technology Co., Ltd. | Pressure sensor, display apparatus and electronic device |
US20180264219A1 (en) * | 2015-08-28 | 2018-09-20 | The Research Institute At Nationwide Children's Hospital | Interactive spacer for respiratory device |
US10416031B2 (en) * | 2015-09-25 | 2019-09-17 | MedicusTek, Inc. | Pressure sensing device |
KR101840114B1 (ko) * | 2016-05-30 | 2018-03-19 | 재단법인 멀티스케일 에너지시스템 연구단 | 크랙 함유 투명 전도성 박막을 구비하는 고감도 센서 및 그의 제조 방법 |
US10987573B2 (en) | 2016-10-11 | 2021-04-27 | Valve Corporation | Virtual reality hand gesture generation |
US11625898B2 (en) | 2016-10-11 | 2023-04-11 | Valve Corporation | Holding and releasing virtual objects |
US10888773B2 (en) | 2016-10-11 | 2021-01-12 | Valve Corporation | Force sensing resistor (FSR) with polyimide substrate, systems, and methods thereof |
US11185763B2 (en) | 2016-10-11 | 2021-11-30 | Valve Corporation | Holding and releasing virtual objects |
US10307669B2 (en) | 2016-10-11 | 2019-06-04 | Valve Corporation | Electronic controller with finger sensing and an adjustable hand retainer |
WO2018093275A1 (en) * | 2016-11-17 | 2018-05-24 | Stretchsense Limited | A stretch sensor with an improved flexible interconnect |
CN106768513B (zh) * | 2016-11-30 | 2019-11-01 | 北京大学 | 一种压力传感器及其制备方法 |
EP3595521A1 (de) * | 2017-03-13 | 2020-01-22 | Redtel, Heiko | Verfahren und vorrichtung zur zeitaufgelöste messung von kenngrössen der herzfunktion |
JP6795097B2 (ja) * | 2017-07-26 | 2020-12-02 | 株式会社村田製作所 | 押圧センサ及び電子機器 |
WO2019162743A1 (en) * | 2018-02-22 | 2019-08-29 | Muralidhar Somisetty | System and method to monitor an exercise posture of at least one user |
DE102018203255A1 (de) * | 2018-03-05 | 2019-09-05 | Hoffmann + Krippner Gmbh | Sensor |
KR102520722B1 (ko) * | 2018-04-05 | 2023-04-11 | 삼성디스플레이 주식회사 | 압력 센서 |
JP6839127B2 (ja) * | 2018-04-16 | 2021-03-03 | 日本メクトロン株式会社 | 圧力センサ、圧力センサの製造方法 |
DE102018209592A1 (de) * | 2018-06-14 | 2019-12-19 | Hoffmann + Krippner Gmbh | Vorrichtung zur Messung einer Kraft |
CN114173658B (zh) * | 2019-07-22 | 2024-06-25 | 株式会社村田制作所 | 口腔传感器 |
KR102389685B1 (ko) * | 2020-04-28 | 2022-04-25 | 한국전자기술연구원 | 압력센서모듈 및 그 제어방법 |
CN111735562B (zh) * | 2020-08-06 | 2021-01-15 | 钛深科技(深圳)有限公司 | 一种薄膜压力传感器及其制备方法 |
CN112357877B (zh) * | 2021-01-12 | 2021-04-09 | 东南大学 | 一种mems soi压力传感器及其制备方法 |
JP7542448B2 (ja) * | 2021-01-14 | 2024-08-30 | 株式会社ジャパンディスプレイ | 圧力センサ |
US11892363B2 (en) | 2022-01-10 | 2024-02-06 | Wellsense, Inc. | Anti-crinkling pressure sensing mat |
US11776375B2 (en) | 2022-01-10 | 2023-10-03 | Wellsense, Inc. | Pressure sensing mat with vent holes |
KR102689548B1 (ko) * | 2022-04-20 | 2024-07-30 | 한국전자기술연구원 | 압력센서모듈 및 그 제어방법 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6413677U (ja) * | 1987-07-16 | 1989-01-24 | ||
JP2001159569A (ja) | 1999-12-02 | 2001-06-12 | Denso Corp | 感圧センサ |
JP2002158103A (ja) | 2000-09-07 | 2002-05-31 | Fujikura Ltd | 膜状感圧抵抗体および感圧センサ |
JP2003344195A (ja) | 2002-05-31 | 2003-12-03 | Sanyo Electric Co Ltd | 面圧分布センサ及びその製造方法 |
JP2004028883A (ja) | 2002-06-27 | 2004-01-29 | Denso Corp | 感圧センサ |
JP2005351653A (ja) * | 2004-06-08 | 2005-12-22 | Sharp Corp | 感圧センサ |
JP2006184098A (ja) * | 2004-12-27 | 2006-07-13 | Sharp Corp | 感圧センサ |
JP2011144270A (ja) * | 2010-01-15 | 2011-07-28 | Toyo Ink Sc Holdings Co Ltd | 導電性樹脂組成物、及び導電性フィルムの製造方法 |
JP2012236886A (ja) * | 2011-05-10 | 2012-12-06 | Kaneka Corp | 導電性ポリイミドフィルムの製造方法 |
JP2012247372A (ja) | 2011-05-30 | 2012-12-13 | Nippon Mektron Ltd | 圧力センサ及びその製造方法並びに圧力検出モジュール |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5997996A (en) * | 1996-03-27 | 1999-12-07 | A-Plus Corporation | Sheet-like pressure-sensitive resistance member having electrodes, method of making the same, and sheet-like pressure-sensitive resistance member |
JP5407152B2 (ja) * | 2008-03-10 | 2014-02-05 | パナソニック株式会社 | 感圧導電シート及びこれを用いたパネルスイッチ |
US8161826B1 (en) * | 2009-03-05 | 2012-04-24 | Stryker Corporation | Elastically stretchable fabric force sensor arrays and methods of making |
WO2012057302A1 (ja) * | 2010-10-28 | 2012-05-03 | 株式会社カネカ | 導電性ポリイミドフィルムの製造方法 |
GB201105025D0 (en) * | 2011-03-25 | 2011-05-11 | Peratech Ltd | Electrically responsive composite material |
US8904876B2 (en) * | 2012-09-29 | 2014-12-09 | Stryker Corporation | Flexible piezocapacitive and piezoresistive force and pressure sensors |
-
2014
- 2014-12-24 WO PCT/JP2014/084084 patent/WO2016103350A1/ja active Application Filing
- 2014-12-24 EP EP14890459.2A patent/EP3244179B1/en active Active
- 2014-12-24 JP JP2015526083A patent/JP6539204B2/ja active Active
- 2014-12-24 CN CN201480037448.9A patent/CN106030267A/zh active Pending
- 2014-12-24 US US14/904,782 patent/US10048141B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6413677U (ja) * | 1987-07-16 | 1989-01-24 | ||
JP2001159569A (ja) | 1999-12-02 | 2001-06-12 | Denso Corp | 感圧センサ |
JP2002158103A (ja) | 2000-09-07 | 2002-05-31 | Fujikura Ltd | 膜状感圧抵抗体および感圧センサ |
JP2003344195A (ja) | 2002-05-31 | 2003-12-03 | Sanyo Electric Co Ltd | 面圧分布センサ及びその製造方法 |
JP2004028883A (ja) | 2002-06-27 | 2004-01-29 | Denso Corp | 感圧センサ |
JP2005351653A (ja) * | 2004-06-08 | 2005-12-22 | Sharp Corp | 感圧センサ |
JP2006184098A (ja) * | 2004-12-27 | 2006-07-13 | Sharp Corp | 感圧センサ |
JP2011144270A (ja) * | 2010-01-15 | 2011-07-28 | Toyo Ink Sc Holdings Co Ltd | 導電性樹脂組成物、及び導電性フィルムの製造方法 |
JP2012236886A (ja) * | 2011-05-10 | 2012-12-06 | Kaneka Corp | 導電性ポリイミドフィルムの製造方法 |
JP2012247372A (ja) | 2011-05-30 | 2012-12-13 | Nippon Mektron Ltd | 圧力センサ及びその製造方法並びに圧力検出モジュール |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020514711A (ja) * | 2016-12-27 | 2020-05-21 | コーニング インコーポレイテッド | 無線圧力検出器、無線圧力測定システム、および、圧力測定方法 |
JP2020510920A (ja) * | 2017-02-25 | 2020-04-09 | ペラテック ホールドコ リミテッド | 機械的相互作用の検出 |
JP7092782B2 (ja) | 2017-02-25 | 2022-06-28 | ペラテック ホールドコ リミテッド | 機械的相互作用の検出 |
JP2018189581A (ja) * | 2017-05-10 | 2018-11-29 | 大日本印刷株式会社 | 圧力センサ装置 |
JP2021524916A (ja) * | 2018-05-18 | 2021-09-16 | バルブ コーポレーション | ポリイミド基板を備えた力検知抵抗器(fsr)、システム、およびその方法 |
JPWO2020241718A1 (ja) * | 2019-05-30 | 2020-12-03 | ||
WO2020241718A1 (ja) * | 2019-05-30 | 2020-12-03 | 株式会社ニコン | フレキシブルセンサ |
Also Published As
Publication number | Publication date |
---|---|
US20160327441A1 (en) | 2016-11-10 |
EP3244179B1 (en) | 2020-09-23 |
JPWO2016103350A1 (ja) | 2017-09-28 |
EP3244179A1 (en) | 2017-11-15 |
JP6539204B2 (ja) | 2019-07-03 |
CN106030267A (zh) | 2016-10-12 |
US10048141B2 (en) | 2018-08-14 |
EP3244179A4 (en) | 2018-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016103350A1 (ja) | 感圧素子および圧力センサ | |
JP5782582B1 (ja) | 感圧素子、圧力センサ、および感圧素子製造方法 | |
JP6530687B2 (ja) | 感圧素子および圧力センサ | |
JP5519068B1 (ja) | 触覚センサ | |
JP5995362B2 (ja) | 分布量センサおよび分布量計測システム | |
JP2015197299A (ja) | 感圧素子およびその製造方法、並びに感圧素子を備えたタッチパネルおよびその製造方法 | |
EP2824546A1 (en) | Flexible touch panel | |
JP6839127B2 (ja) | 圧力センサ、圧力センサの製造方法 | |
JP2016075657A (ja) | 圧力アレイセンサモジュールおよびその製造方法 | |
US10690559B1 (en) | Pressure sensor array and the method of making | |
JP6257088B2 (ja) | 静電容量式3次元センサ及びその製造方法 | |
JP6175504B2 (ja) | スイッチ | |
KR101643047B1 (ko) | 터치 패널, 및 터치 패널의 제조 방법 | |
US20200154016A1 (en) | Flexible wiring circuit board and imaging device | |
JP7237921B2 (ja) | 乗員検知システム、検出マットおよび電気スイッチ | |
JP2018105775A (ja) | フレキシブルデバイス | |
KR20230117852A (ko) | 플렉서블 터치 센서 | |
JP6489710B2 (ja) | 静電容量式3次元センサ | |
TWI793834B (zh) | 壓力傳感裝置與其製造方法 | |
JP2016218560A (ja) | 静電容量式3次元センサ及びその製造方法 | |
JP6202750B2 (ja) | 静電容量式3次元センサ | |
JP2018107209A (ja) | 伸縮性配線基板及び伸縮性基板の製造方法 | |
WO2018199128A1 (ja) | フレキシブル配線回路基板および撮像装置 | |
JP2018112405A (ja) | 感圧センサ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015526083 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2014890459 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014890459 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14904782 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14890459 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |