[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015087430A1 - 車両走行システム及び車両走行制御方法 - Google Patents

車両走行システム及び車両走行制御方法 Download PDF

Info

Publication number
WO2015087430A1
WO2015087430A1 PCT/JP2013/083358 JP2013083358W WO2015087430A1 WO 2015087430 A1 WO2015087430 A1 WO 2015087430A1 JP 2013083358 W JP2013083358 W JP 2013083358W WO 2015087430 A1 WO2015087430 A1 WO 2015087430A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
image
transport vehicle
loading position
dump
Prior art date
Application number
PCT/JP2013/083358
Other languages
English (en)
French (fr)
Inventor
朋之 濱田
菅原 一宏
田中 克明
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to CN201380079461.6A priority Critical patent/CN105518556B/zh
Priority to CA2923683A priority patent/CA2923683C/en
Priority to AU2013407690A priority patent/AU2013407690B2/en
Priority to US14/917,411 priority patent/US10048692B2/en
Priority to PCT/JP2013/083358 priority patent/WO2015087430A1/ja
Priority to JP2015552258A priority patent/JP6243926B2/ja
Publication of WO2015087430A1 publication Critical patent/WO2015087430A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/205Remotely operated machines, e.g. unmanned vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2004Control mechanisms, e.g. control levers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2054Fleet management
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0027Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement involving a plurality of vehicles, e.g. fleet or convoy travelling
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0044Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement by providing the operator with a computer generated representation of the environment of the vehicle, e.g. virtual reality, maps

Definitions

  • the present invention relates to a vehicle travel system and a vehicle travel control method, and more particularly to a technique for setting the direction of a transport vehicle at a loading position.
  • the loader operator tells the transport vehicle where to load and reaches the transport vehicle to that location. I need to come.
  • the transport vehicle is a manned vehicle
  • the transport vehicle can be moved to an appropriate position and orientation by determining the position of the loader by lifting the bucket of the loader or the like. If the transport vehicle is a so-called unmanned transport vehicle, it cannot be left to the operator of the transport vehicle, so the loader operator sets the position and orientation of the transport vehicle appropriately. There is a problem that it is necessary to convey to the automatic guided vehicle.
  • Patent Document 1 As a technique for solving the above-described problems, for example, a technique described in Patent Document 1 is known.
  • an operator of a loader sets a loading position, and a control device that controls the traveling of the automatic guided vehicle is based on information such as the position of the loading machine, the loading position, and the boundary of the face.
  • a configuration for calculating a route to the loading position and transmitting the route to the automatic guided vehicle is disclosed. According to this configuration, the automatic guided vehicle can travel along the route obtained from the control device and can stop at the loading position.
  • a route is generated based on information that the control device can grasp, such as the position of the loader, the load position, and the boundary of the face.
  • the control device can grasp information that the control device can grasp.
  • earth and sand are scattered around the face during excavation. The earth and sand scattering state changes with the progress of excavation work, but it is not reflected in the map information, so the control device cannot grasp it. Therefore, when the automated guided vehicle travels on a route generated only from information that can be grasped by the control device, such as the position of the loader, the loading position, and the boundary of the face, the unmanned transport vehicle interferes with obstacles such as scattered earth and sand. The problem that there is a possibility of doing is left.
  • the present invention has been made in view of such problems, and its purpose is to place the automatic guided vehicle at the loading position without interfering with obstacles such as earth and sand scattered around the loader and the traveling route.
  • the object is to provide a vehicle traveling system and a vehicle traveling control method for guiding.
  • the present invention guides the transport vehicle to a load loading position of the load from a loader that loads the load to a transport vehicle that transports the load in an unmanned operation.
  • a vehicle travel system wherein an operator of the loader inputs a direction of a vehicle body of the transport vehicle at the load position, and the input of the transport vehicle to the load position.
  • a travel route calculation unit that calculates a travel route for stopping the vehicle in a given direction; and a vehicle control unit that performs vehicle control for traveling and stopping the transport vehicle according to the travel route.
  • the operator of the loader inputs the direction of the vehicle body of the transport vehicle at the loading position so as to avoid the interference with the obstacle grasped by the operator, and the vehicle body input at the loading position
  • the travel route is calculated so that the vehicle can be stopped in the direction of.
  • the vehicle control is executed so that the transport vehicle travels and stops according to the travel route, so that the transport vehicle can be guided to the loading position without interfering with the obstacle.
  • the scattered earth and sand 550 interferes with the dump truck.
  • the direction of the dump truck body is rotated as indicated by reference numeral 540b around the loading position (corresponding to the bucket position 520)
  • the interference with the earth and sand 550 is eliminated.
  • the dump can be guided without interfering with surrounding obstacles by changing the direction of the body of the dump. Therefore, by changing the direction of the body of the dump truck without resetting the set loading position, the dump truck can be stopped while avoiding interference.
  • a display device that displays a setting screen including a transport vehicle image indicating a direction of a vehicle body of the transport vehicle at the loading position, and a screen display control unit that performs display control of the setting screen
  • the direction input device accepts an input of a rotational movement amount for changing the direction of the transport vehicle image
  • the screen display control unit displays a two-dimensional product indicating the loading position on the setting screen.
  • the conveyance vehicle image is rotated and moved according to the rotational movement amount around the insertion position.
  • the direction of the vehicle body of the transport vehicle can be easily grasped visually by rotating the transport vehicle image on the setting screen.
  • the operability at the time can be improved.
  • the present invention is characterized in that the screen display control unit displays the travel route in a superimposed manner on the setting screen.
  • the operator can perform an input operation of the direction of the transport vehicle at the loading position while considering the travel route.
  • the transport vehicle travels along the travel route superimposed on the setting screen with reference to the loading position and position information of obstacles located around the travel route. Then, when the vehicle is expected to interfere with the obstacle, and when the carriage stops at the loading position along the direction of the carriage image superimposed on the setting screen, the obstacle interferes with the obstacle. And a warning unit that issues a warning when it is expected to occur.
  • a warning is issued when the obstacle interferes with the direction of the transport vehicle so as to avoid the interference. Can be prompted to enter again.
  • the present invention further includes a monitoring image generation unit that generates a monitoring image by converting a viewpoint of a camera image obtained by photographing the periphery of the loader into an upper viewpoint in the configuration described above, and the screen display control
  • the unit generates a wide area image including the standby position of the transport vehicle and the loading position, and of the wide area image, a composite image in which the monitoring image is superimposed on a partial area corresponding to the imaging range of the monitoring image And the travel route is superimposed on the composite image.
  • the operator since the surrounding situation of the loader is photographed in the monitoring image, the operator confirms the position of the obstacle around the loading machine photographed in the monitoring image, and The input operation can be performed.
  • the setting screen displays the standby position that is outside the shooting range of the monitoring image and the travel route from there to the loading position, so the operator can change the travel route that changes as the vehicle body changes direction.
  • the input operation of the direction of the transport vehicle can be performed while confirming the interference with the obstacle.
  • the present invention is the above configuration, wherein the loader includes a front work machine for performing the loading work, and an operation lever for operating the front work machine, and the direction input device is provided in the operation lever. And a dial portion having a rotation center in the axial direction of the operation lever.
  • the dial is rotated with the thumb or the like while the operation lever is held.
  • Car direction input operation can be performed. Therefore, since the input operation of the direction of the conveyance vehicle can be performed while continuing the loading operation, the improvement of the productivity of the loading operation can be expected.
  • the present invention provides a vehicle travel control method for guiding the transport vehicle to a load position of the load with respect to a transport vehicle that transports the load in an unmanned operation from a loader that performs a load loading operation.
  • the operator of the loader inputs the direction of the transport vehicle at the loading position so as to avoid interference with the obstacle that he / she knows, and the direction of the vehicle body input at the loading position
  • the travel route is calculated so that the vehicle can be stopped at.
  • the vehicle control is executed so that the transport vehicle travels and stops according to the travel route, so that the transport vehicle can be guided to the loading position without interfering with the obstacle.
  • the present invention it is possible to provide a vehicle traveling system and a vehicle traveling control method for guiding an automatic guided vehicle to a loading position without interfering with obstacles such as earth and sand scattered around a loader and a traveling route. it can.
  • FIG. 1 is a diagram illustrating a schematic configuration of a vehicle travel system 1 according to the present embodiment. It is a figure which shows schematic structure inside the driver's seat of the shovel 10 shown in FIG. It is a figure which shows the driving
  • FIG. 2 is a block diagram showing an internal configuration of a dump 20-1 shown in FIG. It is explanatory drawing which shows an example of the loading pattern image memorize
  • FIG. 3 is an explanatory diagram illustrating a display example of a setting screen 120 illustrated in FIG. 2.
  • FIG. 1 is a diagram illustrating a schematic configuration of a vehicle travel system 1 according to the present embodiment.
  • a vehicle traveling system 1 shown in FIG. 1 includes an excavator 10 serving as a loading machine that loads earth and sand and ore in a quarry such as a mine, and one or more unmanned conveyances that convey earth and sand and ore in an unmanned operation. , 20-n and a control unit 31 installed in the vicinity of the quarry or in a remote control center 30.
  • the excavator 10, the dumps 20-1, 20-2,..., 20-n and the control unit 31 are connected to each other via a wireless communication line so as to be communicable with each other.
  • reference numeral 41 denotes a wireless communication relay station.
  • the loader may be a wheel loader in addition to an excavator.
  • the excavator 10 and the dumps 20-1, 20-2,..., 20-n are at least three navigation satellites 50-1, 50-2, 50- of the Global Navigation Satellite System (GNSS).
  • 3 includes a host vehicle position detection unit (not shown in FIG. 1) for receiving a positioning radio wave from 3 and detecting the position (three-dimensional real coordinates) of the host vehicle.
  • GNSS Global Navigation Satellite System
  • GPS Global Positioning System
  • GLONASS Global Navigation Satellite System
  • GALILEO Global Navigation Satellite System
  • the excavator 10 is an ultra-large hydraulic excavator, and includes a traveling body 11, a revolving body 12 provided on the traveling body 11 so as to be able to turn, a cab 13, and a front provided at the center of the front of the revolving body 12. And a work machine 14.
  • the front working machine 14 is attached to a boom 15 provided so as to be rotatable in the vertical direction with respect to the revolving structure 12, an arm 16 provided rotatably at the tip of the boom 15, and a tip of the arm 16.
  • the arm 16 includes an angle sensor 16 s for detecting the joint angle of the arm 16.
  • An antenna 18 for connecting to a radio communication line is installed in a place with good visibility in the excavator 10, for example, on the upper part of the operator's cab 13, and the navigation satellites 50-1, 50-2, 50-3 are arranged at the rear of the revolving unit 12. Are provided with two antennas 19 (two are provided, but only one is shown in FIG. 1).
  • the left and right side surfaces, the rear surface, and the front surface of the swivel body 12 are provided with four cameras for photographing the surroundings of the excavator 10.
  • FIG. 1 only the left camera 60L provided on the left side and the rear camera 60B provided on the rear are shown, but cameras are also provided on the right side and the front.
  • the stop posture setting device 100 includes a control unit including a calculation / control unit such as an MPU (Micro-Processing Unit) and a CPU (Central Processing Unit), a storage unit such as a ROM (Read Only Memory) and a RAM (Random Access Memory), and the like.
  • Hardware including a loading position setting button 101 as an input device, a direction input device 102, a foot switch 103, and a display device 110 (see FIG. 2), software for realizing the functions of the stop posture setting device 100, It is comprised including.
  • position setting apparatus 100 is implement
  • the dump truck 20-1 can be turned up and down around a frame 21 forming the vehicle body, front wheels 22 and rear wheels 23, and a hinge pin (not shown) provided at a rear portion of the frame 21 as a rotation center.
  • a loading platform 24 and a pair of left and right hoist cylinders (not shown) that rotate the loading platform 24 in the vertical direction are included.
  • the dump 20-1 is provided from a place with a good view, for example, an antenna 25 for connecting to a wireless communication line and a navigation satellite 50-1, 50-2, 50-3 in front of the upper surface of the dump 20-1.
  • Two antennas 26 for receiving positioning radio waves are provided.
  • the other dumps 20-2,..., 20-n have the same configuration as the dump 20-1, and will not be described.
  • the control unit 31 includes a calculation / control device such as a CPU, a storage device such as a ROM and a RAM, hardware including an input / output device (not shown), and software executed on the hardware. Is done. And the function of the control part 31 is implement
  • the control unit 31 is connected to an antenna 32 for connecting to a wireless communication line. Then, the control unit 31 communicates with each of the excavator 10 and the dumpers 20-1, 20-2,... 20-n.
  • FIG. 2 is a diagram illustrating a schematic configuration inside the driver's seat of the excavator 10 illustrated in FIG. 1.
  • a seat 71 on which an operator is seated is provided in the driver seat 13 of the excavator 10.
  • the seat 71 includes a left armrest 72L and a right armrest 72R.
  • Each of the left armrest 72L and the right armrest 72R is provided with a left operation lever 73L that is held and operated by the operator with the left hand and a right operation lever 73R that is held and operated with the right hand.
  • the left and right operation levers 73L and 73R are described as being mounted in the cab 13 of the excavator 10, but these are installed outside the excavator 10 so that the operator can remotely control without riding on the excavator 10. It may be configured.
  • the detection data of the angle sensor 16s, the left camera 60L, the rear camera 60B, the right camera, the camera images of the front camera (not shown), and the information on the own vehicle position obtained by the own vehicle position detection unit are wireless communication. It is transmitted to the stop posture setting apparatus 100 provided at a remote place through the line.
  • a horn button 74 for sounding a horn (horn) of the excavator 10 is provided at the uppermost end of the right operation lever 73R.
  • a loading position setting button 101 for setting the position of the bucket 17 is provided next to the horn button 74.
  • a dial-shaped direction input device 102 for setting the direction of the vehicle of the dump truck 20-1 is provided on the side surface of the right operation lever 73R, in the vicinity of the loading position setting button 101.
  • the direction input device 102 includes a dial portion 102d that can rotate around the major axis direction of the right operation lever 73R.
  • the right front surface of the seat 71 includes a display device 110 that displays a relative position with respect to the excavator 10 and the dump 20-1, and displays a setting screen 120 for setting the direction of the vehicle of the dump 20-1.
  • a display device 110 that displays a relative position with respect to the excavator 10 and the dump 20-1, and displays a setting screen 120 for setting the direction of the vehicle of the dump 20-1.
  • a foot switch 103 for determining the dumping stop posture is provided on the front floor surface of the seat 71.
  • FIG. 3 is a diagram illustrating a dump traveling route according to the present embodiment.
  • a traveling route 410 is set in advance in the loading area 400.
  • Three waiting positions, QP1, QP2, and QP3, are set as a waiting position for dumping (Queueing position: hereinafter referred to as “QP”).
  • QP1 Waiting position
  • QP3 Three standby positions QP1, QP2, and QP3 are provided, but the number of standby positions is not limited to this.
  • the travel route from QP1 to LP which is the standby position closest to LP among the three standby positions, is set as an approach path (hereinafter referred to as “APP”).
  • the travel route 410 includes a left approach path (hereinafter referred to as “APP-L”) toward LP-L and a right approach path (hereinafter referred to as “APP-R”) toward LP-R in QP1. Branch.
  • APP-L left approach path
  • APP-R right approach path
  • switchback points 431L and 431R for changing the traveling direction of each dump 20-1, 20-2,..., 20-n are set. In some cases, no action is required.
  • Each dump 20-1, 20-2,..., 20-n enters the loading area 400 from the entrance 411, proceeds to a standby position closer to LP among the available standby positions, and stops. Then, the vehicle travels to a standby position closest to the LP (hereinafter referred to as “previous standby position”), stops there, and waits for the next instruction.
  • the immediately preceding standby position may be QP1 or switchback points 431L and 431R, but is selected and determined in advance.
  • FIG. 4 is a block diagram showing an internal configuration of the excavator 10 shown in FIG.
  • FIG. 5 is a block diagram showing an internal configuration of the control unit 31 shown in FIG.
  • FIG. 6 is a block diagram showing an internal configuration of the dump 20-1 shown in FIG.
  • the control device 150 of the stop posture setting apparatus 100 includes a host vehicle position detection unit 1501, a bucket position calculation unit 1502, a pattern storage unit 1503, a monitoring image generation unit 1504, a map information storage unit 1505, a screen display.
  • a control unit 1506, a travel route calculation unit 1507, a warning unit 1508, a stop posture setting unit 1509, a communication control unit 1510, and a communication interface (hereinafter referred to as “communication I / F”) 1511 are provided.
  • the own vehicle position detection unit 1501 detects the three-dimensional real coordinates of the own vehicle (the main body of the excavator 10) based on the positioning radio waves received from the navigation satellites 50-1, 50-2, and 50-3 via the antenna 19. To do.
  • the vehicle travel system according to the present embodiment, if there are x-axis coordinates and y-axis coordinates indicating coordinates on the horizontal plane among orthogonal three-dimensional real coordinates defined from the x direction, the y direction, and the z direction, the vehicle stops. Since each process such as setting the posture and calculating the travel route can be performed, detection of the z-axis coordinates is not essential.
  • the bucket position calculation unit 1502 calculates the rotation angle of the arm based on the detection signal of the angle sensor 16s, and the three-dimensional real coordinates of the host vehicle detected by the host vehicle position detection unit 1501 and the turning angle of the turning body 12. Based on this, the three-dimensional real coordinates of the bucket 17 are calculated. The three-dimensional real coordinates of the bucket 17 become the loading position.
  • the pattern storage unit 1503 stores a plurality of loading pattern images indicating the relative positional relationship between the excavator 10 and the dump 20-1 during the loading operation. Details of the loading pattern image will be described later with reference to FIG.
  • the monitoring image generation unit 1504 generates a monitoring image obtained by converting the viewpoint of an image (either a moving image or a still image) taken by each camera attached to the left and right side surfaces and the front and rear surfaces of the excavator 10 into an upper viewpoint. To do.
  • the camera image obtained from each camera is subjected to projective transformation such that the upper part of the image is enlarged and the lower part of the image is reduced to convert the image into an image (overhead image) as seen from directly above the ground.
  • a left overhead view image obtained by projective transformation of the camera image taken by the left camera 60L is arranged on the left side of the figure indicating the excavator 10, and the right camera, the rear camera 60B, and the front camera are arranged on the right side, the rear side, and the front side, respectively.
  • a shooting object of a known shape is shot with each camera, and the shape of the area where the shooting target object is shot in each camera image is as seen from the upper viewpoint.
  • a conversion amount of each coordinate included in each camera image is calculated so as to have a shape, and this is stored as calibration data.
  • an overhead image is generated by performing coordinate conversion (projection conversion) of each coordinate using the stored calibration data for each camera image, and the monitoring image is synthesized by combining these images.
  • the map information storage unit 1505 stores map information including position information (three-dimensional real coordinates) of surrounding obstacles such as the face of the excavator 10 and the traveling route, and terrain information of the traveling range of the dump 20-1. Store.
  • the screen display control unit 1506 displays the position of the excavator 10 main body (three-dimensional actual coordinates) obtained by the own vehicle position detection unit 1501 and the bucket 17 obtained from the bucket position calculation unit 1502. Is stored in the pattern storage unit 1503 in advance based on the position (three-dimensional actual coordinates) and the position (three-dimensional actual coordinates) of a surrounding obstacle such as a face plane included in the map information stored in the map information storage unit 1505.
  • One loading pattern image closest to the actual positional relationship between the shovel 10 and the bucket 17 is selected from the plurality of stored loading patterns.
  • a loading pattern image different from that selected above is selected.
  • the excavator image 510 indicating the excavator body
  • the bucket image 520 the boundary line 530 of the face plane
  • the dump image 540 are displayed. Is generated and is displayed on the display device 110.
  • the screen displaying the orientation setting image corresponds to the setting screen 120 (see FIG. 2).
  • the shovel image 510, the bucket image 520, and the dump image 540 use graphics that schematically show the shapes of the shovel, the bucket, and the dump for the purpose of improving visibility.
  • the shovel image 510, the bucket image 520, and the dump image 540 are referred to as an excavator graphic 510, a bucket graphic 520, and a dump graphic 540, respectively.
  • an image of the excavator 10, the bucket 17, the facet, and the dump 20-1 viewed from above may be used.
  • the operator While the setting screen 120 is displayed on the display device 110, the operator operates the dial unit 102 d of the direction input device 102 as necessary to rotate the dump image 540 on the setting screen 120, and at the loading position. Fine-tune the direction of the dump.
  • the travel route calculation unit 1507 refers to the map information stored in the map information storage unit 1505, calculates a travel route for stopping the dump in the set stop posture, and outputs the travel route to the screen display control unit 1506.
  • the screen display control unit 1506 may superimpose and display the travel route on the orientation setting image.
  • the warning unit 1508 refers to the position information of the obstacle included in the map information stored in the map information storage unit 1505, and interferes with the obstacle when the transport vehicle travels along the travel route displayed on the setting screen. If it is predicted, and if the transport vehicle stops at the loading position along the direction of the transport vehicle image displayed on the setting screen, a warning is issued. For example, a graphic or character information indicating a warning may be displayed on the setting screen 120, or a warning sound may be generated.
  • the stop posture setting unit 1509 determines the dump loading position and the vehicle body direction shown on the setting screen 120 when the operator steps on the foot switch 103 as the stop posture.
  • the communication control unit 1510 stops the travel route information indicating the travel route corresponding to the stop posture determined above via the communication I / F 1511 including the wireless communication device at the immediately preceding standby position via the control unit 31. Wirelessly send to dump.
  • the control unit 31 receives dump information including the position of the host vehicle of the dumped vehicle at the immediately preceding standby position.
  • the control unit 31 determines the position and traveling state of each dump (during traveling) based on the positional information and traveling information acquired from each dump 20-1, 20-2,.
  • Map information storage for storing traffic control unit 311 for generating control data indicating (stopped), topographic information including the position and shape of the face of the mine, and map information including latitude and longitude at each position in the mine Unit 312, a communication control unit 313 that performs communication control with the excavator 10 and each dump 20-1, 20-2,... 20 -n, and a communication I / F 314 for connection to a wireless communication line.
  • the traffic control unit 311 includes the own vehicle position information indicating the current position from each of the dump trucks 20-1, 20-2,..., 20-n, and the running condition information indicating the running condition (running / stopped) of the dump truck. To generate control data. Specifically, the traffic control unit 311 is set in the map information on the current position of each dump 20-1, 20-2,..., 20-n, the predetermined travel route of the dump, and the travel route. Control data is generated by superimposing the standby position of the dump truck and the loading position of the excavator 10, and the running state of the dump truck is monitored.
  • each dump 20- is controlled based on the amount of change per unit time of the vehicle position information acquired by the control unit 31 from each dump 20-1, 20-2,..., 20-n.
  • the traveling state of 1, 20-2,..., 20-n may be calculated. In this case, transmission / reception of traveling state information is not necessary.
  • the map information storage unit 312 stores the same map information stored in the map information storage unit 1505 of the excavator 10.
  • the communication control unit 313 receives the vehicle position information and the traveling state information from the dump via the communication I / F 314 and outputs them to the traffic control unit 311, and is stopped at the immediately preceding standby position in response to the inquiry from the excavator 10. Send dump information. Further, the travel route information received from the excavator 10 is transmitted to the dump truck that is stopped at the immediately preceding standby position.
  • the dump 20-1 receives the positioning radio waves from the navigation satellites 50-1, 50-2, 50-3 (see FIG. 1) and acquires the current position of the own vehicle.
  • the communication control unit 202 that performs communication control with the detection unit 201, the excavator 10 and the control unit 31, the communication I / F 203, the map information storage unit 204 that stores map information, and A vehicle control unit 205 that controls the vehicle and a vehicle driving device 206 including a dump traveling device and a braking device.
  • the communication control unit 202 generates the vehicle position information indicating the current dump position calculated by the vehicle position detection unit 201, and the vehicle control unit 205 detects the driving state of the vehicle driving device 206 (for example, the number of rotations of the tire).
  • the traveling state information thus transmitted is transmitted to the control unit 31 via the communication I / F 203.
  • the travel route information is received from the excavator 10 via the control unit 31.
  • the map information storage unit 204 stores the map information including the position (three-dimensional real coordinates) of surrounding obstacles such as the face face located in the vicinity of the excavator 10 and the terrain information of the traveling range of the dump 20-1. This map information is the same as the map information stored in the excavator 10 and the control unit 31.
  • the vehicle control unit 205 performs acceleration / deceleration control and steering angle control on the vehicle drive device 206 so as to travel along the received travel route information. At that time, the vehicle control unit 205 refers to the map information stored in the map information storage unit 204, and obtains the current position of the dump 20-1 and the position information of each point (node) indicated in the map information. The amount of displacement is calculated by collation, and the traveling direction of the dump 20-1 is corrected.
  • the information transmitted and received by each dump 20-1, 20-2, 20-n includes identification information that can uniquely identify each dump. Thereby, for example, it is possible to determine which dump 20-1 from among the dumps having a plurality of control units 31 is the received information. Moreover, it can be discriminate
  • MAC address Media Access Control address
  • the information transmitted and received by the excavator 10 and the control unit 31 includes identification information that can uniquely identify them.
  • FIG. 7 is an explanatory diagram showing an example of a loading pattern image stored in the pattern storage unit 1503 of FIG.
  • Each loading pattern image 501 to 506 shown in FIG. 7 is stored in the pattern storage unit 1503.
  • Each loading pattern image 501 to 506 includes an excavator graphic 510 indicating the excavator body, a bucket graphic 520 indicating the position of the bucket, a boundary line 530 indicating the face face, and a dump graphic 540 indicating the dump position.
  • the six loading pattern images 501 to 506 are classified into three types of left loading, right loading, and bench loading based on the relative positions of the excavator graphic 510 and the dump graphic 540. There are two patterns, candidate 1 and candidate 2, depending on the orientation of the graphic 540.
  • the loading pattern image 501 is a left-loading pattern in which the position of the bucket graphic 520 is displayed on the left side of the shovel graphic 510 so as to face the boundary surface 530 of the face, and the long axis of the arm 510a of the shovel graphic 510
  • the loading pattern image in which the direction and the front-rear direction of the dump graphic 540 are in a perpendicular relationship (candidate 1) is shown.
  • the loading pattern image 502 is a left loading pattern, and shows a loading pattern image in which the major axis direction of the shovel arm 510a and the front-rear direction of the dump figure 540 are parallel (candidate 2).
  • the loading pattern image 503 is a right-loading pattern in which the position of the bucket graphic 520 is displayed on the right side of the shovel graphic 510 so as to face the boundary line 530 of the face, and the long axis of the arm 510a of the shovel graphic 510
  • the loading pattern image in which the direction and the front-rear direction of the dump graphic 540 are in a perpendicular relationship (candidate 1) is shown.
  • the loading pattern image 504 is a right-loading pattern, and is a loading pattern image in which the major axis direction of the arm 510a of the shovel graphic 510 and the front-rear direction of the dump graphic 540 are parallel (candidate 2). Show.
  • the loading pattern image 505 is a bench loading in which the shovel graphic 510 is outside the boundary 530 of the face and the bucket graphic 520 is inside the boundary 530.
  • the loading pattern image 506 is a bench loading pattern, and is a loading pattern image in which the major axis direction of the arm 510a of the shovel figure 510 and the front-rear direction of the dump figure 540 are parallel (candidate 2). Show.
  • the image display control unit 1506 displays the dump figure with the finely adjusted direction so as not to interfere. You may do it.
  • FIG. 8 is an explanatory diagram showing a display example of the setting screen 120 shown in FIG.
  • FIG. 9 is an explanatory diagram showing a state in which an interference warning is displayed on the setting screen 120a of FIG.
  • FIG. 10 is an explanatory diagram showing a setting screen on which a travel route is superimposed and displayed.
  • FIG. 11 is an explanatory diagram illustrating a setting screen obtained by combining the monitoring image and the wide area image.
  • FIG. 8 shows a state in which an orientation setting image in which the excavator graphic 510, the bucket graphic 520, the boundary surface 530 of the face plane, and the dump graphic 540a or 540b are superimposed on the monitoring image is displayed.
  • the setting screen 120a for example, when the earth and sand collapsed from the face is scattered at a position indicated by reference numeral 550 in FIG. 8, when the dump 20-1 enters in the direction indicated by the dump graphic 540a, the scattered earth and sand are scattered. There is a risk of interference. Therefore, the operator operates the direction input device 102 and uses the dump graphic 540b from the direction indicated by the dump graphic 540a around the position (two-dimensional loading position) corresponding to the loading position in the direction setting image (setting screen).
  • the directions of the dump graphics 540a and 540b are rotated and displayed in conjunction with the dial rotation operation amount of the direction input device 102, and the dump 20-1 that is actually going to enter at the dial portion 102d is displayed. It can be operated as if it were rotating. Thereby, the operator can finely adjust the direction of the transport vehicle by an intuitive and easy-to-understand method.
  • the interference warning graphic 561 and the character information 562 may be superimposed on the setting screen 120a to inform the operator that interference has occurred. This can prevent the operator from inadvertently setting an inappropriate direction.
  • the predicted travel routes 570a and 570b of the dump 20-1 may be displayed in a superimposed manner.
  • the travel route 570a is a travel route corresponding to the direction of the dump graphic 540a.
  • the travel route 570a is updated and displayed on the travel route 570b.
  • the operator can grasp the entire travel route by displaying the dump graphic 545 indicating the dump position at the immediately preceding standby position. As a result, the operator can set an appropriate loading position and orientation while also considering the dump travel route.
  • a dump graphic 548 indicating a dumping vehicle stopped at the immediately preceding standby position (QP1), and a dump graphic 540a or 540b indicating a dumping vehicle stopped at the set loading position May be displayed on one screen.
  • the peripheral area of the excavator 10 is captured in the monitoring image 121, and the area up to the immediately preceding standby position (QP1) may not be included in the capturing range of the four cameras.
  • the screen display control unit 1506 generates a wide area image (graphical image) 122 including the excavator, the facet, and the immediately preceding standby position (QP1), and corresponds to the imaging range of the monitoring image 121 in the wide area image 122.
  • a composite image in which the monitoring image 121 is superimposed on the partial area to be generated is generated.
  • a direction setting image is generated by superimposing the travel route on the composite image and displayed on the display device 110.
  • the screen display control unit 1506 matches the scales of the monitoring image 121 and the wide area image 122.
  • the actual distance D on the three-dimensional real coordinates of the excavator 10 and the dump truck 20 is calculated based on the three-dimensional real coordinates of the excavator 10 and the three-dimensional real coordinates of the dump truck 20-1 stopped at the immediately preceding standby position.
  • the number of pixels Pn when the distance D [m] is displayed on the setting screen 120c is determined, and the actual distance per pixel is obtained by the following equation (1).
  • d D / Pn (1)
  • the scales of the monitoring image 121 and the wide-area image 122 coincide with each other. It becomes easy to grasp the distance, the travel route, and the direction of the vehicle body.
  • the direction of the dump vehicle body at the loading position can be set in consideration of the travel route from the immediately preceding standby position (QP1) to the loading position.
  • the dump figure 590b interferes with the boundary line 530 of the face at the switchback point in the traveling route 570b. I understand that. Therefore, the dump graphic 540a at the loading position is rotated to the dump graphic 540b to change the travel route 570a to the route indicated by the travel route 570b. As a result, the dump graphic 590b does not interfere with the boundary line 530 of the face surface even at the switchback point.
  • FIG. 12 is a sequence diagram showing a process flow of the vehicle travel system 1 according to the present embodiment.
  • the own vehicle position detection unit 201 of the dump 20-1 calculates the current position and generates own vehicle position information, and the vehicle control unit 205 displays the running state information. calculate.
  • These own vehicle position information and traveling state information are transmitted to the control unit 31 (S101).
  • the traffic control unit 311 generates control data including the position and running state of each dump based on them (S102).
  • S101 and S102 illustrate processing for one time. However, when one or more dump trucks are operating, the traffic control unit 311 continues to generate control data.
  • the operator of the shovel 10 operates the left and right operation levers 73L and 73R to move the bucket 17 of the shovel 10 to the loading position, and operates the loading position setting button 101 in this state, or the shovel 10 operators step on the foot switch 103 (S103).
  • the stopping posture setting process for setting the stopping posture and direction of the dump truck 20-1 in the control device 150 is started (S104).
  • the control device 150 makes an inquiry to the traffic control unit 311 for control data, and obtains dump information indicating that the vehicle is stopped at the immediately preceding standby position.
  • the operator may re-operate the loading position setting button 101 and operate the direction input device 102, details of which will be described later.
  • the travel route information corresponding to the stop posture determined by the stop posture setting process is transmitted to the dump 20-1 via the control unit 31 (S105).
  • the dump 20-1 performs vehicle control so as to travel and stop along the travel route, and starts moving to the loading position (S106).
  • FIG. 13 is a flowchart showing the flow of the stop posture setting process.
  • the image display control unit 1506 switches to the traffic control unit 311. Inquiry is made to acquire the position information (dump information) of the dump truck that is parked at the immediately preceding standby position (S201-1).
  • the position and orientation of the main body of the excavator 10 are calculated by the own vehicle position detection unit 1501 (S202). Further, the bucket position calculation unit 1502 calculates the angle of the arm from the position and orientation of the main body of the excavator 10 and the angle sensor 16s, and calculates the bucket position (three-dimensional real coordinates) (S203).
  • the image display control unit 1506 includes a pattern storage unit based on the position and orientation of the main body of the excavator 10, the bucket position, and the position of a surrounding obstacle such as a face included in the map information stored in the map information storage unit 1505.
  • a loading pattern image closest to the current state is selected from a plurality of loading pattern images stored in advance in 1503 (S204). That is, one of left loading, right loading, and bench loading is selected from the position of the excavator 10 main body, the position of the bucket 17, and the position of surrounding obstacles, and the direction of the dump is perpendicular to the arm.
  • the selection of the loading pattern is performed by first selecting the loading pattern of candidate 1 and pressing the loading position setting button 101 again in this state. Then, candidate 2 is selected, and the loading position setting button 101 is pressed again. Then, the loading pattern of candidate 1 may be selected.
  • the travel route calculation unit 1507 calculates the predicted travel route and return position of the dump 20-1 based on the current position and orientation of the dump and the selected loading position and orientation (S205).
  • the monitoring image generation unit 1504 generates a monitoring image based on the four camera images, and the image display control unit 1506 includes the excavator graphic 510, the bucket image 520, the face boundary 530, and the dump graphic 540 as the monitoring image.
  • the information is superimposed and displayed on the display device 110 (S206). Furthermore, the traveling routes 570a and 570b, the dump graphics 545 and 580 at the immediately preceding standby position, and the dump graphics 590a and 590b at the switchback point may be overlapped.
  • the warning unit 1508 refers to the map information stored in the map information storage unit 1505 to determine whether or not the switchback point or the dump figure on the travel route interferes with surrounding obstacles such as a face. S207 / Yes), an interference warning display is performed using a graphic 561 indicating a warning, character information 562 (see FIG. 9), and the like (S208).
  • the image display control unit 1506 displays the currently selected loading pattern.
  • the next candidate is selected instead of the image (S212), and the process returns to step S205 to recalculate the travel route. If the previous selection candidate is the last candidate in the loading pattern image, the first candidate is selected.
  • step S105 the travel route information is wirelessly transmitted to the dump 20-1 via the control unit 31 (S105).
  • the dump information of the immediately previous standby position is acquired. (S201-2). Then, the previously set stop posture (this is temporarily stored in the RAM or the like of the control device 150) is read, this stop posture is determined as the current stop posture, and the travel route for this is calculated to calculate the travel route. Information is generated (S215). Thereafter, the travel route information is wirelessly transmitted to the dump 20-1 via the control unit 31 (S105).
  • Step S103-1 If there is no operation of the loading position setting button 101 and the foot switch 103 (S103-1 / No, S103-2 / No), the process returns to Step S103-1, and the input operation of the loading position setting button and the foot switch is performed again. It will be in a standby state.
  • the operator can set the dump loading position and orientation after confirming the surrounding situation of the excavator, so that the dump can be avoided while avoiding interference with obstacles not reflected in the map information.
  • the vehicle can be driven and stopped toward the loading position.
  • the dumping direction can be set in consideration of the positional relationship of obstacles such as earth and sand scattered in a place where the operator becomes a blind spot.
  • the dump direction can be set in consideration of interference on the travel route.
  • the excavator operator can set and operate the loading position and the dumping direction without releasing the operation lever. be able to.
  • the operation device for determining the loading position and dumping direction is configured separately using a foot switch.
  • the foot switch When operating the foot switch, malfunctions due to the effects of vibrations are less likely to occur than when operating the buttons and switches by hand, so it is possible to prevent problems such as unintended loading position and dump direction confirmation operations. .
  • the warning unit issues a warning, so that the operator can be prompted to re-input the direction of the vehicle body so as to eliminate the interference with the obstacle.
  • a loading position setting button is provided next to the loading position setting button or one of the left and right operation levers, and the other lever is used to confirm the loading position and the direction of dumping. May be provided. Further, the loading position setting button and the direction input device are not necessarily on the same lever.
  • the configuration described in the above embodiment can provide a user interface that is easier for the operator to understand.
  • the warning part is not essential. You may comprise so that an operator may determine the presence or absence of interference with a driving
  • the automatic guided vehicle has been described as an example.
  • the present invention may be applied to a manual guided vehicle.
  • a display device that displays a travel route is provided in place of the vehicle control unit, and an operator operates the travel vehicle to travel and stop along the travel route.
  • interference with an obstacle can be avoided.
  • Vehicle traveling system 10 Excavators 20-1, 20-2, 20-n: Dump 30: Control unit 100: Stop posture setting device 101: Loading position setting button 102: Direction input device 110: Display device

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)

Abstract

 障害物と干渉することなく、搬送車を積込位置に誘導する車両走行システム及び車両走行制御方法を提供する。 積込機(10)のオペレータが、積込位置(LP-L,LP-R)における搬送車(20-1)の車体の向きを入力する向き入力装置(102)と、搬送車(20-1)を、積込位置(LP-L,LP-R)に入力された向きで停車させるための走行経路を算出する走行経路算出部(1507)と、走行経路に従って、搬送車(20-1)を走行及び停止させるための車両制御を行う車両制御部(205)と、を備える。

Description

車両走行システム及び車両走行制御方法
 本発明は、車両走行システム及び車両走行制御方法に係り、特に積込位置における搬送車の向きの設定技術に関する。
 露天掘り鉱山などにおいて、ダンプトラックなどの搬送車にショベルなどの積込機が掘削した土砂や鉱石を積込む場合、積込機のオペレータは搬送車に積込む場所を伝えて搬送車にその場所まで来てもらう必要がある。搬送車が有人車両である場合は積込機のバケットを掲げるなどして位置を示すことで、搬送車のオペレータの判断により適切な位置と向きに搬送車を移動することができる。搬送車が無人運転されている、所謂無人搬送車である場合は、搬送車のオペレータに判断に委ねることができないので、積込機のオペレータが搬送車の来るべき位置と向きを適切に設定して無人搬送車に伝える必要があるという問題点がある。
 上述した問題点を解決するための技術として、例えば特許文献1に記載の技術が公知である。特許文献1には、積込機のオペレータが積込位置を設定し、無人搬送車の走行を管制する管制装置が、積込機の位置、積込位置、切羽の境界などの情報を基に、積込位置に至る経路を算出し、無人搬送車に送信する構成が開示されている。この構成によれば、無人搬送車は、管制装置から得た経路に沿って走行し、積込位置に停車することができる。
特開2012-22611号公報
 特許文献1に記載の技術では、積込機の位置、積込位置、切羽の境界など管制装置が把握できる情報を基に経路を生成する。一方、切羽周辺では掘削の際に土砂が散乱する。土砂の散乱状況は、掘削作業の進行によって変化するが、地図情報に反映されないので管制装置が把握することができない。従って、積込機の位置、積込位置、切羽の境界など管制装置が把握できる情報だけから生成した経路で無人搬送車が走行した場合、散乱する土砂などの障害物と無人搬送車とが干渉する虞があるという課題が残されている。
 本発明は、このような課題に鑑みてなされたものであり、その目的は、積込機や走行経路周辺に散乱する土砂などの障害物と干渉することなく、無人搬送車を積込位置に誘導する車両走行システム及び車両走行制御方法を提供することにある。
 上記の目的を達成するために、本発明は、積荷の積込作業を行う積込機から、無人運転で前記積荷を搬送する搬送車に対し、前記積荷の積込位置に前記搬送車を誘導するための車両走行システムであって、前記積込機のオペレータが、前記積込位置における前記搬送車の車体の向きを入力する向き入力装置と、前記搬送車を、前記積込位置に前記入力された向きで停車させるための走行経路を算出する走行経路算出部と、前記走行経路に従って、前記搬送車を走行及び停止させるための車両制御を行う車両制御部と、を備えることを特徴とする。
 本発明によれば、積込機のオペレータが、自身が把握している障害物との干渉を避けるように積込位置における搬送車の車体の向きを入力し、積込位置において入力された車体の向きで停車できるように走行経路が算出される。そして、この走行経路に従って搬送車を走行・停止させるように車両制御が実行されることで、障害物と干渉することなく、搬送車を積込位置に誘導することができる。
 より具体的には、例えば図8に示すように、符号540aで示すダンプの車体の向きでは、散乱する土砂550とダンプとが干渉する。これに対し、ダンプの車体の向きを、積込位置(バケット位置520に相当する)を中心に符号540bで示すように回転させると、土砂550との干渉が解消する。このように、積込位置が同じであってもダンプの車体の向きを変えることで、周辺の障害物と干渉することなく、ダンプを誘導することができる。従って、設定した積込位置の再設定を行うことなく、ダンプの車体の向きを変更することで、干渉を避けてダンプを停車させることができる。
 また本発明は、上記構成において、前記積込位置における前記搬送車の車体の向きを示す搬送車画像を含む設定画面を表示する表示装置と、前記設定画面の表示制御を行う画面表示制御部と、を更に備え、前記向き入力装置は、前記搬送車画像の向きを変更するための回転移動量の入力を受け付け、前記画面表示制御部は、前記設定画面において前記積込位置を示す2次元積込位置を中心に、前記搬送車画像を前記回転移動量に従って回転移動させることを特徴とする。
 本発明によれば、オペレータが向き入力装置から入力した回転移動量に従って、設定画面上で搬送車画像を回転させることで、搬送車の車体の向きが視覚的に把握しやすくなり、向き入力操作時の操作性を向上させることができる。
 また本発明は、上記構成において、前記画面表示制御部は、前記設定画面に前記走行経路を重畳表示することを特徴とする。
 本発明によれば、オペレータが走行経路も考慮しながら、積込位置における搬送車の向きの入力操作を行うことができる。
 また本発明は、上記構成において、前記積込位置及び前記走行経路の周辺に位置する障害物の位置情報を参照し、前記設定画面に重畳表示された前記走行経路に沿って前記搬送車が走行すると、前記障害物と干渉することが予想される場合、及び前記設定画面で重畳表示された前記搬送車画像の向きに沿って前記積込位置において前記搬送車が停車すると、前記障害物と干渉することが予想される場合に、警告を発する警告部を更に備えることを特徴とする。
 本発明によれば、走行経路に沿って走行中、及び積込位置に停車したときに障害物と干渉する場合に警告を発することで、オペレータに対し、干渉を回避するように搬送車の向きを再度入力するように促すことができる。
 また本発明は、上記構成において、前記積込機の周辺を撮影して得られたカメラ画像の視点を上方視点に変換して監視画像を生成する監視画像生成部を更に備え、前記画面表示制御部は、前記搬送車の待機位置及び前記積込位置を含む広域画像を生成し、当該広域画像のうちの、前記監視画像の撮影範囲に対応する部分領域に、前記監視画像を重畳した合成画像を生成し、当該合成画像に前記走行経路を重畳することを特徴とする。
 本発明によれば、監視画像には積込機の周辺状況が撮影されているので、オペレータは監視画像に撮影されている積込機周辺の障害物の位置を確認しつつ、搬送車の向きの入力操作を行うことができる。さらに、設定画面には、監視画像の撮影範囲外にある待機位置と、そこから積込位置までの走行経路が表示されるので、オペレータは、車体の向きが変わることによって変化する走行経路について、障害物との干渉を確認しながら、搬送車の向きの入力操作を行うことができる。
 また本発明は、上記構成において、前記積込機は、前記積込作業を行うためのフロント作業機と、これを操作する操作レバーと、を含み、前記向き入力装置は、前記操作レバーに備えられ、前記操作レバーの軸方向を回転中心とするダイヤル部を含んで構成される、ことを特徴とする。
 積込作業を継続中は、オペレータは操作レバーから手を放すことがほとんどないが、本発明によれば、操作レバーを把持した状態を維持しつつ、ダイヤル部を親指などで回転させることで搬送車の向きの入力操作を行うことができる。これにより、積込作業を継続しつつ、搬送車の向きの入力操作が行えるので、積込作業の生産性の向上が期待できる。
 また、本発明は、積荷の積込作業を行う積込機から、無人運転で前記積荷を搬送する搬送車に対し、前記積荷の積込位置に前記搬送車を誘導するための車両走行制御方法であって、前記積込機のオペレータから、前記積込位置における前記搬送車の車体の向きの入力操作を受け付けるステップと、前記搬送車を、前記積込位置に前記入力された向きで停車させるための走行経路を算出するステップと、前記走行経路に従って、前記搬送車を走行及び停止させるための車両制御を行うステップと、を含むことを特徴する。
 本発明によれば、積込機のオペレータが、自身が把握している障害物との干渉を避けるように積込位置における搬送車の向きを入力し、積込位置において入力された車体の向きで停車できるように走行経路が算出される。そして、この走行経路に従って搬送車を走行・停止させるように車両制御が実行されることで、障害物と干渉することなく、搬送車を積込位置に誘導することができる。
 本発明によれば、積込機や走行経路周辺に散乱する土砂などの障害物と干渉することなく、無人搬送車を積込位置に誘導する車両走行システム及び車両走行制御方法を提供することができる。
本実施形態に係る車両走行システム1の概略構成を示す図である。 図1に示すショベル10の運転席内部の概略構成を示す図である。 本実施形態に係るダンプの走行経路を示す図である。 図1に示すショベル10の内部構成を示すブロック図である。 図1に示す管制部31の内部構成を示すブロック図である。 図1に示すダンプ20-1の内部構成を示すブロック図である。 図4のパターン記憶部1503に記憶された積込パターン画像の一例を示す説明図である。 図2に示す設定画面120の表示例を示す説明図である。 図8の設定画面120aにおいて干渉警告表示を行った状態を示す説明図である。 走行経路を重畳表示した設定画面を示す説明図である。 監視画像と広域画像とを合成した設定画面を示す説明図である。 本実施形態に係る車両走行システム1の処理の流れを示すシーケンス図である。 停車姿勢設定処理の流れを示すフローチャートである。
 以下、本発明の実施形態について、図面を参照しながら説明する。全図を通じて、同一の構成には同一の符号を付し、重複説明を省略する。
 まず、図1に基づいて本実施形態に係る車両走行システムの概略構成について説明する。図1は、本実施形態に係る車両走行システム1の概略構成を示す図である。
 図1に示す車両走行システム1は、鉱山などの採石場で、土砂や鉱石の積込作業を行う積込機としてのショベル10と、土砂や鉱石を無人運転で搬送する1乃至複数の無人搬送車(以下「ダンプ」という)20-1、20-2、・・・、20-nと、採石場の近傍若しくは遠隔の管制センタ30に設置された管制部31と、を含む。ショベル10、各ダンプ20-1、20-2、・・・、20-n、及び管制部31は、無線通信回線を介して互いに通信可能に接続される。なお、図1中、符号41は、無線通信の中継局を示す。積込機は、ショベルの他、ホイールローダでもよい。
 ショベル10及び各ダンプ20-1、20-2、・・・、20-nは、全地球航法衛星システム(GNSS:Global Navigation System)の少なくとも3つの航法衛星50-1、50-2、50-3から測位電波を受信して自車両の位置(3次元実座標)を検出するための自車両位置検出部(図1では図示を省略する)を備える。GNSSとして、例えばGPS(Global Positioning System)、GLONASS(Global Navigation Satellite System)、GALILEOを用いてもよい。
 ショベル10は、超大型の油圧ショベルであって、走行体11と、この走行体11上に旋回可能に設けた旋回体12と、運転室13と、旋回体12の前部中央に設けたフロント作業機14と、を備えて構成される。フロント作業機14は、旋回体12に対し上下方向に回動可能に設けられたブーム15と、このブーム15の先端に回動可能に設けられたアーム16と、そのアーム16の先端に取り付けられたバケット17とを含む。アーム16には、アーム16の関節角度を検出するための角度センサ16sを備える。
 ショベル10における見通しの良い場所、例えば運転室13の上部に、無線通信回線に接続するためのアンテナ18が設置され、旋回体12の後部には航法衛星50-1、50-2、50-3から測位電波を受信するためのアンテナ19(二つ備えるが、図1では一つのみ図示)を備える。
 旋回体12の左右の側面、後面、及び前面には、ショベル10の周辺状況を撮影するための4つのカメラが備えられる。図1では左側面に備えられた左カメラ60L及び後面に備えられた後面カメラ60Bのみを図示しているが、右側面及び前面にもカメラが備えられる。
 運転室13の内部には、ショベル10のオペレータが、積込位置及び積込位置で停車中のダンプの車体の向き(以下、積込位置及び積込位置で停車中のダンプの車体の向きを総称して「停車姿勢」という)を設定するための停車姿勢設定装置100が備えられる。停車姿勢設定装置100は、MPU(Micro-Processing Unit)やCPU(Central Processing Unit)といった演算・制御部、ROM(Read Only Memory)やRAM(Random Access Memory)等の記憶部を含む制御装置、出入力装置としての積込位置設定ボタン101、向き入力装置102、フットスイッチ103、及び表示装置110(図2参照)を含むハードウェアと、停止姿勢設定装置100の機能を実現するためのソフトウェアと、を含んで構成される。そして、制御装置で上記ソフトウェアが実行されることで、停車姿勢設定装置100の機能が実現される。
 ダンプ20-1は、車両本体を形成するフレーム21と、前輪22及び後輪23と、フレーム21の後方部分に設けられたヒンジピン(図示せず)を回動中心として上下方向に回動可能な荷台24と、この荷台24を上下方向に回動させる左右一対のホイストシリンダ(図示せず)と、を含む。また、ダンプ20-1は、見通しの良い場所、例えば、ダンプ20-1の上面前方に、無線通信回線に接続するためのアンテナ25と、航法衛星50-1、50-2、50-3から測位電波を受信するための二つのアンテナ26を備える。その他のダンプ20-2、・・・20-nは、ダンプ20-1と同一の構成であるので、説明を省略する。
 管制部31は、CPU等の演算・制御装置、ROMやRAM等の記憶装置、及び出入力装置を含むハードウェア(図示を省略)と、このハードウェア上で実行されるソフトウェアとを含んで構成される。そして、これらのハードウェアがソフトウェアを実行することにより、管制部31の機能が実現される。また、管制部31は、無線通信回線に接続するためのアンテナ32に接続される。そして、管制部31は、ショベル10、及びダンプ20-1、20-2、・・・20-nの其々と通信する。
 次に、図2に基づいてショベル10の運転席内の概略構成を説明する。図2は、図1に示すショベル10の運転席内部の概略構成を示す図である。
 図2に示すように、ショベル10の運転席13内には、オペレータが着座する座席71が備えられる。座席71は、左アームレスト72L及び右アームレスト72Rを備える。左アームレスト72L及び右アームレスト72Rの各々には、オペレータが左手で把持して操作する左操作レバー73L及び右手で把持して操作する右操作レバー73Rが設けられる。
 左操作レバー73L及び右操作レバー73Rは、各操作レバー73L、73Rの前後、左右への動きが、アーム16の各関節の回転、及び旋回体12の回転に反映される。オペレータが、左操作レバー73L及び右操作レバー73Rのそれぞれを前後又は左右に動かすと、アーム16が回転、又は旋回体12が旋回することにより、バケット17が意図した位置及び姿勢に動く。このため、オペレータは、バケット17の操作中において左右の手を左操作レバー73L及び右操作レバー73Rから離すことはない。
 上記では、ショベル10の運転室13内に、左右の操作レバー73L、73Rを搭載すると説明したが、これらをショベル10の外部に設置し、オペレータがショベル10に搭乗することなく遠隔操縦できるように構成してもよい。この場合、角度センサ16sの検出データ、左カメラ60L、後面カメラ60B、右カメラ、前面カメラ(図示を省略)のカメラ画像、及び自車両位置検出部で得られる自車両位置の情報は、無線通信回線を通じて遠隔地に備えられた停車姿勢設定装置100に送信される。
 また、本実施形態では、右操作レバー73Rの最上端には、ショベル10のホーン(警笛)を鳴らすためのホーンボタン74が設けられる。本実施形態では、ホーンボタン74の隣に、バケット17の位置を設定するための積込位置設定ボタン101を備える。また、右操作レバー73Rの側面のうち、積込位置設定ボタン101の近傍には、ダンプ20-1の車両の向きを設定するためのダイヤル状の向き入力装置102を備える。向き入力装置102は、右操作レバー73Rの長軸方向を軸として回転できるダイヤル部102dを含んで構成される。
 座席71の右前面には、ショベル10及びダンプ20-1との相対位置を表示し、ダンプ20-1の車両の向きを設定する設定画面120を表示する表示装置110を備える。オペレータが左右の操作レバー73L、73Rを操作して、バケット17を所望の位置に移動させた後、積込位置設定ボタン101を押し下げると、上記の所望の位置がバケット17の位置として設定される。また、右操作レバー73Rを握った手の親指などで向き入力装置102のダイヤル部102dを回転すると、その回転移動量を停車姿勢設定装置100の制御装置150(図4参照)が読み取り、設定画面120に表示されたダンプ画像540が連動して回転する。
 座席71の前方床面には、ダンプの停車姿勢を確定するためのフットスイッチ103が備えられる。
 次に、図3に基づいて、積込エリア内におけるダンプの走行経路について説明する。図3は、本実施形態に係るダンプの走行経路を示す図である。
 図3に示すように、積込エリア400内には、走行経路410が予め設定されている。走行経路410上には、入口411、出口412、ショベル10の左側積込位置LP-L、右側積込位置LP-R(Loading Point:以下「LP」と記載する。)、及び入口411からLPに向かうまでの走行経路上に、ダンプの待機位置(Queuing position:以下「QP」と記載する)として、3つの待機位置、QP1、QP2、QP3が設定されている。本実施形態では待機位置をQP1、QP2、QP3の3台分設けることとしたが、待機位置の数はこれに限定されない。
 3つの待機位置のうちLPに最も近い待機位置であるQP1からLPまでの走行経路は、アプローチパス(Approach pass:以下「APP」と記載する)として設定される。
 走行経路410は、QP1において、LP-Lに向かう左側アプローチパス(以下「APP―L」と記載する)と、LP-Rに向かう右側アプローチパス(以下「APP―R」と記載する)とに分岐する。APP―L、及びAPP―Rのそれぞれは、各ダンプ20-1、20-2、・・・、20-nが進行方向を変えるためのスイッチバックポイント431L、431Rが設定されるが、スイッチバック動作が不要な場合もある。
 各ダンプ20-1,20-2、・・・20-nは、入口411から積込エリア400に入り、空いている待機位置うち、LPにより近い待機位置まで進み、停車する。そして、LPに最も近い待機位置(以下「直前待機位置」という)まで走行し、そこで停車して次の指示を待つ。直前待機位置は、QP1でもよいし、スイッチバックポイント431L、431Rでもよいが、予め選択して決めておく。
 そして、直前待機位置に停車中のダンプが、管制部31から停車姿勢に応じた走行経路情報を取得すると、これに従って車両制御が実行される。
 次に、図4乃至図6に基づいて、図1に示す車両走行システムの内部構成について説明する。図4は、図1に示すショベル10の内部構成を示すブロック図である。図5は、図1に示す管制部31の内部構成を示すブロック図である。図6は、図1に示すダンプ20-1の内部構成を示すブロック図である。
 図4に示すように、停車姿勢設定装置100の制御装置150は、自車両位置検出部1501、バケット位置算出部1502、パターン記憶部1503、監視画像生成部1504、地図情報記憶部1505、画面表示制御部1506、走行経路算出部1507、警告部1508、停車姿勢設定部1509、通信制御部1510、及び通信インターフェース(以下「通信I/F」と記載する)1511を備える。
 自車両位置検出部1501は、航法衛星50-1、50-2、50-3からアンテナ19を介して受信した測位電波を基に、自車両(ショベル10の本体)の3次元実座標を検出する。なお、本実施形態に係る車両走行システムにおいて、x方向、y方向、z方向から定義される直交3次元実座標のうち、水平面上の座標を示すx軸座標及びy軸座標があれば、停車姿勢の設定や走行経路の算出等の各処理が行えるので、z軸座標の検出は必須ではない。
 バケット位置算出部1502は、角度センサ16sの検出信号を基にアームの回転角度を算出し、これと、自車両位置検出部1501が検出した自車両の3次元実座標及び旋回体12の旋回角度を基にバケット17の3次元実座標を算出する。このバケット17の3次元実座標が積込位置となる。
 パターン記憶部1503は、積込作業中におけるショベル10とダンプ20-1との相対的な位置関係を示す積込パターン画像を複数記憶する。積込パターン画像の詳細は図7を参照して後述する。
 監視画像生成部1504は、ショベル10の左右の側面、及び前後面に取り付けられた各カメラが撮影した画像(動画像及び静止画像のどちらでもよい)の視点を上方視点に変換した監視画像を生成する。
 具体的には、例えば斜め上方から撮影されたカメラ画像では、画像の上部、すなわちカメラから遠い場所が小さく、画像の下部、すなわちカメラから近い場所が大きく写っている。そこで各カメラから得られたカメラ画像に対し、画像上部を拡大、画像下部を縮小するような射影変換を行って、地面を真上から見たような画像(俯瞰画像)に変換する。そして、ショベル10を示す図形の左側には、左カメラ60Lが撮影したカメラ画像を射影変換した左俯瞰画像を配置し、右側、後、前のそれぞれには、右カメラ、後面カメラ60B、前面カメラが撮影したカメラ画像を射影変換した右俯瞰画像、後面俯瞰画像、前面俯瞰画像を配置して合成した監視画像を生成する。
 射影変換のための事前準備として、既知の形状の撮影対象物を各カメラで撮影し、各カメラ画像における撮影対象物が撮影された領域の形状が、撮影対象物を上方視点で見たときの形状となるように、各カメラ画像に含まれる各座標の変換量を算出し、これをキャリブレーションデータとして保存しておく。そして、監視画像の生成時に、各カメラ画像に対し、保存されたキャリブレーションデータを用いて各座標の座標変換(射影変換)を行うことで俯瞰画像を生成し、これを合成して監視画像を生成する。
 地図情報記憶部1505は、ショベル10及び走行経路の周辺に位置する切羽面等の周囲障害物の位置情報(3次元実座標)や、ダンプ20-1の走行範囲の地形情報を含む地図情報を格納する。
 画面表示制御部1506は、積込位置設定ボタン101が押されると、自車両位置検出部1501により得たショベル10本体の位置(3次元実座標)と、バケット位置算出部1502から得たバケット17の位置(3次元実座標)と、地図情報記憶部1505に格納された地図情報に含まれる切羽面などの周囲障害物の位置(3次元実座標)とを基に、パターン記憶部1503に予め記憶されている複数の積込パターンの中から、ショベル10とバケット17との実際の位置関係に最も近い積込パターン画像を一つ選定する。再度積込位置設定ボタン101が押されると、上記で選定されたものとは異なる積込パターン画像を選定する。
 そして、監視画像生成部1504が生成した監視画像に、上記で選定された積込パターン画像に沿って、ショベル本体を示すショベル画像510、バケット画像520、切羽面の境界線530、及びダンプ画像540を重畳した向き設定画像(図9で後述する)を生成し、表示装置110に表示する。この向き設定画像を表示した画面が設定画面120(図2参照)に相当する。なお、本実施形態では、ショベル画像510、バケット画像520、及びダンプ画像540は、視認性を向上される目的でショベル、バケット、及びダンプの形状を模式的に示す図形を用いる。よって、以後、ショベル画像510、バケット画像520、及びダンプ画像540をそれぞれショベル図形510、バケット図形520、及びダンプ図形540と記載する。これらの図形に代えて、例えば、ショベル10、バケット17、切羽面、及びダンプ20-1を上方視点から見た画像を用いてもよい。
 表示装置110に設定画面120が表示されている状態で、オペレータは必要に応じて向き入力装置102のダイヤル部102dを操作して、設定画面120上でダンプ画像540を回転させ、積込位置におけるダンプの向きを微調整する。
 走行経路算出部1507は、地図情報記憶部1505に記憶された地図情報を参照し、ダンプを設定された停車姿勢で停車させるための走行経路を算出し、画面表示制御部1506に出力する。画面表示制御部1506は、走行経路を向き設定画像に重畳表示してもよい。
 警告部1508は、地図情報記憶部1505に記憶された地図情報に含まれる障害物の位置情報を参照し、設定画面に表示された走行経路に沿って搬送車が走行すると、障害物と干渉することが予想される場合、及び設定画面で表示された搬送車画像の向きに沿って積込位置において搬送車が停車すると、障害物と干渉することが予想される場合に、警告を発する。例えば設定画面120上に、警告を示す図形や文字情報を表示してもよいし、警告音を発するように構成してもよい。
 停車姿勢設定部1509は、オペレータがフットスイッチ103を踏んだときの設定画面120上で示されたダンプの積込位置及び車体の向きを停車姿勢として確定する。
 通信制御部1510は、無線通信機器からなる通信I/F1511を介して、上記で確定された停車姿勢に対応する走行経路を示す走行経路情報を、管制部31を介して直前待機位置に停車中のダンプに無線送信する。また、管制部31から直前待機位置に停車中のダンプの自車両位置を含むダンプ情報を受信する。
 図5に示すように、管制部31は、各ダンプ20-1、20-2、・・・、20-nから取得した位置情報及び走行情報を基に各ダンプの位置及び走行状態(走行中/停車中)を示す管制データを生成する交通管制部311と、鉱山の切羽面の位置や形状を含む地形情報、及び鉱山内の各位置における緯度・経度を含む地図情報を格納する地図情報記憶部312と、ショベル10及び各ダンプ20-1、20-2、・・・20-nとの通信制御を行う通信制御部313と、無線通信回線に接続するための通信I/F314と、を備える。
 交通管制部311は、各ダンプ20-1、20-2、・・・、20-nから現在位置を示す自車両位置情報、及びダンプの走行状態(走行中/停車中)を示す走行状態情報を取得して、管制データを生成する。具体的には、交通管制部311は、地図情報に各ダンプ20-1、20-2、・・・、20-nの現在位置、予め定められたダンプの走行経路、走行経路上に設定されたダンプの待機位置、ショベル10の積込位置を重畳して管制データを生成し、ダンプの走行状態を監視する。上記の構成に代えて、管制部31が各ダンプ20-1、20-2、・・・、20-nから取得した自車両位置情報の単位時間当たりの変化量を基に、各ダンプ20-1、20-2、・・・、20-nの走行状態を算出してもよい。この場合、走行状態情報の送受信は不要である。
 地図情報記憶部312は、ショベル10の地図情報記憶部1505に格納された地図情報と同じものを記憶する。
 通信制御部313は、通信I/F314を介して、ダンプから自車両位置情報及び走行状態情報を受信して交通管制部311に出力し、ショベル10からの照会に対して直前待機位置に停車中のダンプ情報を送信する。また、ショベル10から受信した走行経路情報を、直前待機位置に停車中のダンプに送信する。
 図6に示すように、ダンプ20-1は、航法衛星50-1、50-2、50-3(図1参照)からの測位電波を受信して自車両の現在位置を取得する自車両位置検出部201と、ショベル10及び管制部31との通信制御を行う通信制御部202と、通信I/F203と、地図情報を記憶する地図情報記憶部204と、走行経路情報に従ってダンプを動作させるための車両制御を行う車両制御部205と、ダンプの走行装置及び制動装置を含む車両駆動装置206と、を含む。
 通信制御部202は、自車両位置検出部201が算出したダンプの現在位置を示す自車両位置情報、車両制御部205が車両駆動装置206の駆動状態(例えばタイヤの回転数)を検知して生成した走行状態情報を通信I/F203を介して管制部31に送信する。また、管制部31を介してショベル10から走行経路情報を受信する。
 地図情報記憶部204は、ショベル10に周辺に位置する切羽面などの周囲障害物の位置(3次元実座標)や、ダンプ20-1の走行範囲の地形情報を含む地図情報を格納する。この地図情報は、ショベル10及び管制部31で記憶される地図情報と同一ものである。
 車両制御部205は、受信した走行経路情報に沿って走行するように、車両駆動装置206に対し、加減速の制御及びステアリング角度の制御を行う。その際、車両制御部205は、地図情報記憶部204に記憶された地図情報を参照して、ダンプ20-1の現在位置と、地図情報に示された各地点(ノード)の位置情報とを照合して位置ずれ量を算出し、ダンプ20-1の進行方向を修正する。
 各ダンプ20-1、20-2、20-nが送受信する情報には、各ダンプを固有に識別可能な識別情報を含む。これにより、例えば、管制部31が複数あるダンプのうち、どのダンプ20-1から受信した情報であるかを判別できる。また、ショベル10及び管制部31から受信した情報が、自車両に対するものかそうでないかを判別できる。識別情報として、例えば、通信I/F203に一意に割り当てられたMACアドレス(Media Access Control address)を用いてもよい。これにより、相手方を特定せずに各情報を無線送信した場合、無線を受信した各ダンプ20-1、20-2、・・・20-nは、自車両が受信すべき情報であるか否かを判断することができる。そして、自車両に対して送信された情報であれば受信し、他車両に対して送信された情報であれば廃棄する。同様に、ショベル10及び管制部31が送受信する情報にも、これらを固有に識別可能な識別情報を含む。
 次に図7を参照して、パターン記憶部に記憶される積込パターン画像について説明する。図7は、図4のパターン記憶部1503に記憶された積込パターン画像の一例を示す説明図である。
 本実施形態では、図7に示す6つの積込パターン画像501~506がパターン記憶部1503に記憶される。各積込パターン画像501~506は、ショベル本体を示すショベル図形510、バケットの位置を示すバケット図形520、切羽面を示す境界線530、及びダンプの位置を示すダンプ図形540を含む。
 6つの積込パターン画像501~506は、ショベル図形510とダンプ図形540と相対位置を基に、左ローディング、右ローディング、ベンチローディングの三種類に分類され、さらに各分類において、ショベル図形510に対するダンプ図形540の向きに応じて候補1、候補2の二つのパターンがある。
 積込パターン画像501は、バケット図形520の位置が、切羽面の境界線530に対向してショベル図形510の左側に表示された左ローディングのパターンであって、ショベル図形510のアーム510aの長軸方向と、ダンプ図形540の前後方向とが直角の関係(候補1)にある積込パターン画像を示す。
 積込パターン画像502は、左ローディングのパターンであって、ショベルのアーム510aの長軸方向とダンプ図形540の前後方向とが平行の関係(候補2)にある積込パターン画像を示す。
 積込パターン画像503は、バケット図形520の位置が、切羽面の境界線530に対向してショベル図形510の右側に表示された右ローディングのパターンであって、ショベル図形510のアーム510aの長軸方向と、ダンプ図形540の前後方向とが直角の関係(候補1)にある積込パターン画像を示す。また、積込パターン画像504は、右ローディングのパターンであって、ショベル図形510のアーム510aの長軸方向とダンプ図形540の前後方向とが平行の関係(候補2)にある積込パターン画像を示す。
 積込パターン画像505は、ショベル図形510が切羽面の境界線530の外側にあり、バケット図形520が境界線530の内側にあるベンチローディング(積込機が切羽の崖上にいて、崖下の搬送車に積み込む方式)のパターンであって、ショベル図形510のアーム510aの長軸方向と、ダンプ図形540の前後方向とが直角の関係(候補1)にある積込パターン画像を示す。また、積込パターン画像506は、ベンチローディングのパターンであって、ショベル図形510のアーム510aの長軸方向とダンプ図形540の前後方向とが平行の関係(候補2)にある積込パターン画像を示す。
 予め記憶されている積込パターン画像では、ダンプ図形と切羽面の境界線とが干渉する場合には、画像表示制御部1506が、干渉しないようにダンプ図形の向きを微調整した形で表示するようにしてもよい。
 次に図8乃至図12に基づいて、本実施形態に係る設定画面の表示例について説明する。図8は、図2に示す設定画面120の表示例を示す説明図である。図9は、図8の設定画面120aにおいて干渉警告表示を行った状態を示す説明図である。図10は、走行経路を重畳表示した設定画面を示す説明図である。図11は、監視画像と広域画像とを合成した設定画面を示す説明図である。
 図8に示す設定画面120aは、監視画像にショベル図形510、バケット図形520、切羽面の境界線530、及びダンプ図形540a又は540bを重畳表示した向き設定画像を表示した状態を示す。設定画面120aに示すように、例えば切羽から崩れた土砂が図8の符号550として示すような位置に散乱していた場合、ダンプ図形540aで示す向きにダンプ20-1が進入すると、散乱する土砂と干渉する虞がある。そこで、オペレータは向き入力装置102を操作して、向き設定画像(設定画面)における積込位置に対応する位置(2次元積込位置)を中心に、ダンプ図形540aで示す向きからダンプ図形540bで示す向きに回転させる。ここで、ダンプ図形540a、540bの向きは、向き入力装置102のダイヤル回転操作量に連動して回転して表示するようにしておき、あたかもダイヤル部102dで実際に進入する予定のダンプ20-1を回転させているような感覚で操作できるようにしておく。これにより、オペレータは直感的で分かりやすい方法で搬送車の向きを微調整することができる。
 また、このような微調整の操作において、ダンプ図形540a、540bと切羽などの地図情報記憶部1505に記憶されている周囲障害物とが干渉する場合は、図9に示すように、警告部1508が設定画面120aに干渉警告図形561や文字情報562を重畳表示して、干渉が生じていることをオペレータに伝えてもよい。これにより、オペレータが不注意で不適切な向きを設定することを防ぐことができる。
 更に図10に示す設定画面120bのように、ダンプ20-1の予想される走行経路570a、570bを重畳表示してもよい。走行経路570aは、ダンプ図形540aの向きに対応した走行経路である。ダンプ図形540aが回転してダンプ図形540bの向きに代わると、走行経路570aは走行経路570bに更新表示される。
 また、設定画面120bでは、直前待機位置のダンプの位置を示すダンプ図形545を表示することで、走行経路全体をオペレータが把握することができる。これにより、オペレータはダンプの走行経路も考慮しながら適切な積込位置と向きを設定することができる。
 また、図11に示す設定画面120cのように、直前待機位置(QP1)に停車中のダンプを示すダンプ図形548と、設定された積込位置に停車中のダンプを示すダンプ図形540a又は540bとを一画面で表示してもよい。この場合、監視画像121にはショベル10の周辺領域が撮影されており、直前待機位置(QP1)までは4つのカメラの撮影範囲に含まれないことがある。そこで、画面表示制御部1506は、ショベル、切羽面、及び直前待機位置(QP1)を含む広域画像(グラフィカル画像)122を生成し、当該広域画像122のうちの、監視画像121の撮影範囲に対応する部分領域に、監視画像121を重畳した合成画像を生成する。そして合成画像に走行経路を重畳して向き設定画像を生成し、表示装置110に表示する。
 このとき、画面表示制御部1506は、監視画像121と広域画像122との縮尺が一致させる。例えば、ショベル10の3次元実座標と直前待機位置に停車中のダンプ20-1の3次元実座標とを基に、ショベル10及びダンプ20の3次元実座標上の実際の距離Dを算出する。そして、この距離D[m]を設定画面120c上で表示する際のピクセル数Pnを定め、下式(1)により、1ピクセルあたりの実際の距離を求める。
d=D/Pn・・・(1)
但し、d:[m/pixel]
 式(1)を満たすように、監視画像121及び広域画像122を拡大・縮小することで両者の縮尺が一致し、オペレータが設定画面120cを視認した時に、直前待機位置(QP1)から積込位置までの距離、走行経路、及び車体の向きを把握しやすくなる。そして、直前待機位置(QP1)から積込位置までの走行経路も考慮して、積込位置におけるダンプの車体の向きを設定することができる。
 図11の設定画面120cによれば、監視画像121の撮影範囲外の走行経路570a、570bも表示できるので、走行経路570bではスイッチバックポイントにおいてダンプ図形590bが切羽面の境界線530と干渉していることがわかる。そこで、積込位置のダンプ図形540aをダンプ図形540bに回転して走行経路570aを走行経路570bに示す経路に変更する。これにより、スイッチバックポイントにおいてもダンプ図形590bが切羽面の境界線530に干渉しなくなる。
 次に図12を参照して、本実施形態に係る車両走行システムの処理の流れを説明する。図12は、本実施形態に係る車両走行システム1の処理の流れを示すシーケンス図である。
 図12に示すように、ダンプ20-1の稼働中、ダンプ20-1の自車両位置検出部201は現在位置を算出して自車両位置情報を生成し、車両制御部205は走行状態情報を算出する。これらの自車両位置情報及び走行状態情報は、管制部31に送信される(S101)。交通管制部311は、それらを基に各ダンプの位置及び走行状態を含む管制データを生成する(S102)。図12では説明の便宜上、S101及びS102は1回分の処理を図示しているが、1台以上のダンプが稼動中は、交通管制部311は管制データの生成を継続して行う。
 この状態で、ショベル10のオペレータは、左右の操作レバー73L、73Rを操作して、ショベル10のバケット17を積込位置に移動し、その状態で積込位置設定ボタン101を操作する、又はショベル10のオペレータがフットスイッチ103を踏む(S103)。この積込位置設定ボタン101の操作又はフットスイッチ103の操作をトリガーとして、制御装置150におけるダンプ20―1の停車姿勢及び向きを設定するための停車姿勢設定処理が開始する(S104)。
 停車姿勢設定処理の実行中、制御装置150から交通管制部311に対し、管制データの照会を行い、直前待機位置に停車中のダンプ情報を取得する。またオペレータは、積込位置設定ボタン101の再操作及び向き入力装置102の操作を行う場合があるが、その詳細については後述する。
 停車姿勢設定処理により確定された停車姿勢に対応した走行経路情報が、制御部31を介してダンプ20-1に送信される(S105)。
 ダンプ20-1は、その走行経路に沿って走行・停車するように車両制御を行い、積込位置への移動を開始する(S106)。
 次に図13に基づいて、停車姿勢設定処理について説明する。図13は、停車姿勢設定処理の流れを示すフローチャートである。
 オペレータによる積込位置設定ボタン101の操作を待機している状態で、積込位置設定ボタン101のボタン操作があった場合(S103-1/Yes)、画像表示制御部1506から交通管制部311に照会して、直前待機位置に停車中のダンプの自車両位置情報(ダンプ情報)を取得する(S201-1)。
 次いで、自車両位置検出部1501によりショベル10の本体の位置及び向き(旋回体12の旋回角度)を算出する(S202)。更に、バケット位置算出部1502は、これらショベル10の本体の位置及び向き及び角度センサ16sからアームの角度を算出し、バケット位置(3次元実座標)を算出する(S203)。
 画像表示制御部1506は、ショベル10の本体の位置及び向き、バケット位置、及び地図情報記憶部1505に記憶されている地図情報に含まれる切羽などの周囲障害物の位置を基に、パターン記憶部1503に予め記憶されている複数の積込パターン画像の中から、現状に最も近い積込パターン画像を選定する(S204)。すなわち、ショベル10本体の位置、バケット17の位置、及び周囲障害物の位置から、左ローディング、右ローディング、又はベンチローディングのいずれかを選択し、このうちのダンプの向きがアームに対して直角な方向となる候補1を最初に選定する。積込パターンの選択は、最初に候補1の積込パターンを選択し、この状態で再度積込位置設定ボタン101が押されると候補2が選択され、更に再度積込位置設定ボタン101が押されると、候補1の積込パターンが選択されるように構成してもよい。
 走行経路算出部1507は、ダンプの現在位置と向き、選定されている積込位置と向きとを基に、予想されるダンプ20-1の走行経路や切り返し位置を算出する(S205)。
 監視画像生成部1504は、4つのカメラ画像を基に監視画像を生成し、画像表示制御部1506が監視画像に、ショベル図形510、バケット画像520、切羽面の境界線530、及びダンプ図形540を重畳して表示装置110に表示する(S206)。更に走行経路570a、570bや、直前待機位置におけるダンプ図形545、580、またスイッチバックポイントにおけるダンプ図形590a、590bを重ね合わせてもよい。
 警告部1508は、地図情報記憶部1505の地図情報を参照し、スイッチバックポイントや走行経路上のダンプ図形が、切羽などの周囲障害物と干渉するか否かを判定し、干渉する場合は(S207/Yes)、警告を示す図形561や文字情報562(図9参照)等を用いて、干渉警告表示を行う(S208)。
 干渉がない場合(S207/No)、及び干渉警告表示(S208)の後、オペレータによる向き入力装置102の操作があった場合は(S209/Yes)、向き入力装置102の操作量に応じて設定画面上のダンプ図形540の向きを変更し(S210)、ステップS205へ戻って走行経路を再算出する。
 向き入力装置102の操作がなく(S209/No)、オペレータによる積込位置設定ボタン101の操作があった場合は(S211/Yes)、画像表示制御部1506は、現在選択されている積込パターン画像に代えて次の候補を選定し(S212)、ステップS205へ戻って走行経路を再算出する。前の選択候補が積込パターン画像における最後の候補である場合は、最初の候補を選択する。
 オペレータによる積込位置設定ボタン101の操作がなく(S211/No)、オペレータによるフットスイッチ103の操作があった場合は(S213/Yes)、表示装置110に表示中のダンプの積込位置及び車体の向きを停車姿勢として確定し、その停車姿勢に対応した走行経路を示す走行経路情報を生成する(S214)。その後、ステップS105において、走行経路情報を、管制部31を介してダンプ20-1に無線送信する(S105)。オペレータによるフットスイッチ103の操作がない場合は(S213/No)、ステップS205へ戻って走行経路を再算出する。
 オペレータによる積込位置設定ボタン101の操作を待機している状態において、フットスイッチ103の操作があった場合は(S103-1/No、S103-2/Yes)、直前待機位置のダンプ情報を取得する(S201-2)。そして、前回設定した停車姿勢(これは制御装置150のRAM等に一時的に保存されている)を読み出し、この停車姿勢を今回の停車姿勢として確定し、これに対する走行経路を算出して走行経路情報を生成する(S215)。その後、管制部31を介して走行経路情報をダンプ20-1に無線送信する(S105)。積込位置設定ボタン101及びフットスイッチ103の操作がなければ(S103-1/No、S103-2/No)、再度、ステップS103-1へ戻り、積込位置設定ボタン及びフットスイッチの入力操作の待機状態となる。
 本実施形態によれば、オペレータがショベルの周辺状況を確認したうえで、ダンプの積込位置及び向きを設定することができるので、地図情報には反映されない障害物との干渉を避けてダンプを積込位置に向けて走行及び停車させることができる。特に、監視映像を重畳表示する場合には、オペレータから死角になる場所に散乱した土砂などの障害物の位置関係も考慮してダンプの向きを設定することができる。また走行経路を重畳表示する場合には、走行経路上での干渉も考慮してダンプの向きを設定することができる。
 更に、バケット位置設定ボタン、積込位置設定ボタン、及び向き入力装置を操作レバーに設けることにより、ショベルのオペレータは操作レバーから手を離すことなく積込位置及びダンプの向きの設定・操作を行うことができる。
 また、積込位置及びダンプの向きの確定するための操作装置は、フットスイッチを用いて別途構成する。フットスイッチの操作時は、ボタンやスイッチを手で操作するときよりも振動の影響による誤動作が生じにくいので、意図しない積込位置及びダンプの向きの確定操作が行われるといった不具合を防ぐことができる。
 更に、ダンプが障害物と干渉する際に警告部が警告を発することで、オペレータに対し、障害物との干渉を解消するように車体の向きを再入力させるように促すことができる。
 上述した実施形態は、本発明の説明のための例示であり、本発明の範囲をそれらの実施形態にのみ限定する趣旨ではない。当業者は、本発明の要旨を逸脱することなしに、他の様々な態様で本発明を実施することができる。例えばフットスイッチの代わりに積込位置設定ボタンの隣、あるいは左右の操作レバーの一方に積込位置設定ボタンを設け、他方のレバーに積込位置及びダンプの向きの確定操作を行うための操作ボタンを設けてもよい。また、積込位置設定ボタン、及び向き入力装置は、必ずしも同一のレバー上になくても良い。但し、同じようなボタンが左右のレバー上に並ぶことを回避できること、積込位置設定ボタン、及び向き入力装置が1箇所に集約できること、最終的な決定は足で行うという関連付けで覚えられることなどから、上記実施形態で説明した構成とした方がオペレータにとってより分かりやすいユーザインタフェースとすることができる。
 また、上記実施形態において、警告部は必須ではない。オペレータが走行経路やダンプ図形と障害物との干渉の有無を自ら判断するように構成してもよい。
 また、上記では、無人搬送車を例に挙げて説明したが、有人搬送車に本発明を適用してもよい。これにより、搬送車のオペレータからは死角となる位置に障害物がある場合に、それとの干渉を避けることができる。有人搬送車に本発を適用する場合は、車両制御部に代えて走行経路を表示する表示装置を備え、オペレータがその走行経路に沿って搬送車を走行・停車させるように運転する。これにより、有人搬送車においても、障害物との干渉を避けることができる。
1:車両走行システム
10:ショベル
20-1,20-2、20-n:ダンプ
30:管制部
100:停車姿勢設定装置
101:積込位置設定ボタン
102:向き入力装置
110:表示装置

Claims (7)

  1.  積荷の積込作業を行う積込機(10)から、無人運転で前記積荷を搬送する搬送車(20-1)に対し、前記積荷の積込位置(LP-L,LP-R)に前記搬送車(20-1)を誘導するための車両走行システムであって、
     前記積込機(10)のオペレータが、前記積込位置(LP-L,LP-R)における前記搬送車(20-1)の車体の向きを入力する向き入力装置(102)と、
     前記搬送車(20-1)を、前記積込位置(LP-L,LP-R)に前記入力された向きで停車させるための走行経路を算出する走行経路算出部(1507)と、
     前記走行経路に従って、前記搬送車(20-1)を走行及び停止させるための車両制御を行う車両制御部(205)と、
     を備えることを特徴とする車両走行システム。
  2.  請求項1に記載の車両走行システムにおいて、
     前記積込位置(LP-L,LP-R)における前記搬送車(20-1)の車体の向きを示す搬送車画像を含む設定画面(120)を表示する表示装置(110)と、
     前記設定画面(120)の表示制御を行う画面表示制御部(1506)と、
     を更に備え、
     前記向き入力装置(102)は、前記搬送車画像(540)の向きを変更するための回転移動量の入力を受け付け、
     前記画面表示制御部(1506)は、前記設定画面(120)において前記積込位置(LP-L,LP-R)を示す2次元積込位置を中心に、前記搬送車画像(540)を前記回転移動量に従って回転移動させる、
     ことを特徴とする車両走行システム。
  3.  請求項2に記載の車両走行システムにおいて、
     前記画面表示制御部(1506)は、前記設定画面(120)に前記走行経路(570a,570b)を重畳表示する、
     ことを特徴とする車両走行システム。
  4.  請求項3に記載の車両走行システムにおいて、
     前記積込位置(LP-L,LP-R)及び前記走行経路(570a,570b)の周辺に位置する障害物の位置情報を参照し、前記設定画面(120)に重畳表示された前記走行経路(570a,570b)に沿って前記搬送車(20-1)が走行すると、前記障害物と干渉することが予想される場合、及び前記設定画面(120)で重畳表示された前記搬送車画像(540)の向きに沿って前記積込位置(LP-L,LP-R)において前記搬送車(20-1)が停車すると、前記障害物と干渉することが予想される場合に、警告を発する警告部(1508)を更に備える、
     ことを特徴とする車両走行システム。
  5.  請求項3に記載の車両走行システムにおいて、
     前記積込機(10)の周辺を撮影して得られたカメラ画像の視点を上方視点に変換して監視画像を生成する監視画像生成部(1504)を更に備え、
     前記画面表示制御部(1506)は、前記搬送車(20-1)の待機位置(QP1,431L,431R)及び前記積込位置(LP-L,LP-R)を含む広域画像(122)を生成し、当該広域画像(122)のうちの、前記監視画像(121)の撮影範囲に対応する部分領域に、前記監視画像(121)を重畳した合成画像を生成し、当該合成画像に前記走行経路(570a,570b)を重畳表示する、
     ことを特徴とする車両走行システム。
  6.  請求項1に記載の車両走行システムにおいて、
     前記積込機(10)は、前記積込作業を行うためのフロント作業機(14)と、これを操作する操作レバー(73L,73R)と、を含み、前記向き入力装置(102)は、前記操作レバー(73L,73R)に備えられ、前記操作レバー(73L,73R)の軸方向を回転中心とするダイヤル部(102d)を含んで構成される、
     ことを特徴とする車両走行システム。
  7.  積荷の積込作業を行う積込機(10)から、無人運転で前記積荷を搬送する搬送車(20-1)に対し、前記積荷の積込位置(LP-L,LP-R)に前記搬送車(20-1)を誘導するための車両走行制御方法であって、
     前記積込機(10)のオペレータから、前記搬送車(20-1)の、前記積込位置(LP-L,LP-R)における前記搬送車(20-1)の車体の向きの入力操作を受け付けるステップ(S209)と、
     前記搬送車(20-1)を、前記積込位置(LP-L,LP-R)に前記入力された向きで停車させるための走行経路(570a,570b)を算出するステップ(S206)と、
     前記走行経路(570a,570b)に従って、前記搬送車(20-1)を走行及び停止させるための車両制御を行うステップ(S106)と、
     を含むことを特徴する車両走行制御方法。
PCT/JP2013/083358 2013-12-12 2013-12-12 車両走行システム及び車両走行制御方法 WO2015087430A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201380079461.6A CN105518556B (zh) 2013-12-12 2013-12-12 车辆行驶系统以及车辆行驶控制方法
CA2923683A CA2923683C (en) 2013-12-12 2013-12-12 Vehicle travel system and vehicle travel control method
AU2013407690A AU2013407690B2 (en) 2013-12-12 2013-12-12 Vehicle travel system and vehicle travel control method
US14/917,411 US10048692B2 (en) 2013-12-12 2013-12-12 Vehicle travel system
PCT/JP2013/083358 WO2015087430A1 (ja) 2013-12-12 2013-12-12 車両走行システム及び車両走行制御方法
JP2015552258A JP6243926B2 (ja) 2013-12-12 2013-12-12 車両走行システム、搬送車の停車姿勢設定装置が実行する方法、及び搬送車の停車姿勢設定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/083358 WO2015087430A1 (ja) 2013-12-12 2013-12-12 車両走行システム及び車両走行制御方法

Publications (1)

Publication Number Publication Date
WO2015087430A1 true WO2015087430A1 (ja) 2015-06-18

Family

ID=53370771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083358 WO2015087430A1 (ja) 2013-12-12 2013-12-12 車両走行システム及び車両走行制御方法

Country Status (6)

Country Link
US (1) US10048692B2 (ja)
JP (1) JP6243926B2 (ja)
CN (1) CN105518556B (ja)
AU (1) AU2013407690B2 (ja)
CA (1) CA2923683C (ja)
WO (1) WO2015087430A1 (ja)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016167374A1 (ja) * 2016-04-28 2016-10-20 株式会社小松製作所 作業機械の管理装置
WO2016167375A1 (ja) * 2016-04-28 2016-10-20 株式会社小松製作所 作業機械の管理装置
JP2017016477A (ja) * 2015-07-02 2017-01-19 日立建機株式会社 作業機械の走行支援システム及び運搬車両
JP2017199395A (ja) * 2017-06-08 2017-11-02 株式会社小松製作所 作業機械の管理方法
CN107851883A (zh) * 2016-03-16 2018-03-27 株式会社小松制作所 天线的安装结构以及自卸卡车
JP2019032682A (ja) * 2017-08-08 2019-02-28 ヤンマー株式会社 自動走行システム
WO2019069975A1 (ja) * 2017-10-04 2019-04-11 株式会社小松製作所 作業機械制御装置および制御方法
WO2019069947A1 (ja) * 2017-10-04 2019-04-11 株式会社小松製作所 積込機械制御装置および制御方法
WO2019187938A1 (ja) * 2018-03-28 2019-10-03 ヤンマー株式会社 作業車両の走行制御システム
JP2019175254A (ja) * 2018-03-29 2019-10-10 ヤンマー株式会社 運転支援システム
JP2020057410A (ja) * 2019-12-09 2020-04-09 株式会社小松製作所 作業車両の管理システム及び作業車両の管理方法
JP2020095566A (ja) * 2018-12-14 2020-06-18 ヤンマーパワーテクノロジー株式会社 走行経路生成装置
JP2020135793A (ja) * 2019-02-26 2020-08-31 ヤンマーパワーテクノロジー株式会社 自動走行システム
CN111771031A (zh) * 2018-07-31 2020-10-13 株式会社小松制作所 用于控制作业机械的系统及方法
JP2021149177A (ja) * 2020-03-16 2021-09-27 三菱重工業株式会社 制御装置、移動体、移動制御システム、制御方法及びプログラム
JP2021156080A (ja) * 2020-03-30 2021-10-07 住友重機械工業株式会社 施工支援システム及び施工支援装置
WO2021210664A1 (ja) * 2020-04-17 2021-10-21 株式会社小松製作所 作業システムおよび制御方法
JP2022079773A (ja) * 2017-10-04 2022-05-26 株式会社小松製作所 作業システムおよび制御方法
US11454980B2 (en) 2016-09-23 2022-09-27 Komatsu Ltd. Management system for work vehicle and management method for work vehicle
JPWO2023047885A1 (ja) * 2021-09-24 2023-03-30
WO2023085005A1 (ja) * 2021-11-10 2023-05-19 コベルコ建機株式会社 管理システム
WO2023136326A1 (ja) * 2022-01-14 2023-07-20 日立建機株式会社 作業機械
JP7483935B2 (ja) 2020-11-27 2024-05-15 日立建機株式会社 作業機械の情報表示システム

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD793444S1 (en) * 2015-11-11 2017-08-01 Samsung Electronics Co., Ltd. Display screen or portion thereof with icon
US9703290B1 (en) * 2016-02-13 2017-07-11 Caterpillar Inc. Method for operating machines on worksites
CN106121654B (zh) * 2016-08-19 2018-03-09 郑晓辉 一种露天矿山的无人挖掘装载运输系统
WO2018084161A1 (ja) * 2016-11-01 2018-05-11 住友建機株式会社 作業機械用安全管理システム、管理装置、安全管理方法
US10668854B2 (en) 2017-02-09 2020-06-02 Komatsu Ltd. Work vehicle and display device
US10641862B2 (en) * 2017-03-29 2020-05-05 Caterpillar Inc. Ranging radio relative machine positioning system and method
US11109183B2 (en) * 2017-07-14 2021-08-31 Komatsu Ltd. Vehicle management device, vehicle management method, and program
JP6960802B2 (ja) * 2017-08-24 2021-11-05 日立建機株式会社 作業機械の周囲監視装置
JP6898816B2 (ja) 2017-09-15 2021-07-07 株式会社小松製作所 表示システム、表示方法、及び表示装置
US10571921B2 (en) * 2017-09-18 2020-02-25 Baidu Usa Llc Path optimization based on constrained smoothing spline for autonomous driving vehicles
JP6900897B2 (ja) * 2017-12-25 2021-07-07 コベルコ建機株式会社 建設機械の障害物検出装置
JP6950521B2 (ja) * 2017-12-26 2021-10-13 トヨタ自動車株式会社 集荷システム
JP7088691B2 (ja) * 2018-02-28 2022-06-21 株式会社小松製作所 積込機械の制御装置、制御方法および遠隔操作システム
JP6947101B2 (ja) * 2018-03-28 2021-10-13 コベルコ建機株式会社 遠隔操作システム及び主操作装置
JP7166108B2 (ja) * 2018-08-31 2022-11-07 株式会社小松製作所 画像処理システム、表示装置、画像処理方法、学習済みモデルの生成方法、および学習用データセット
US11656626B2 (en) * 2018-11-12 2023-05-23 Robotic Research Opco, Llc Autonomous truck loading for mining and construction applications
US11644843B2 (en) 2018-11-12 2023-05-09 Robotic Research Opco, Llc Learning mechanism for autonomous trucks for mining and construction applications
US11353865B2 (en) 2018-11-13 2022-06-07 Robotic Research Opco, Llc Coordination of mining and construction vehicles via scripting control
EP3900507B1 (en) * 2018-12-20 2024-10-16 Kubota Corporation Travel working machine
CN113439248B (zh) * 2019-02-25 2024-04-19 村田机械株式会社 行驶车及行驶车系统
CA3140630C (en) * 2019-05-17 2024-05-28 Arnold CHASE Direct vehicle engagement system
US20220374833A1 (en) * 2019-05-17 2022-11-24 Arnold Chase Direct truck assignment system
US11226627B2 (en) 2019-06-20 2022-01-18 Caterpillar Global Mining Llc System for modifying a spot location
JP7306191B2 (ja) * 2019-09-26 2023-07-11 コベルコ建機株式会社 輸送車位置判定装置
CN110793694B (zh) * 2019-11-14 2021-04-16 内蒙古第一机械集团有限公司 一种装载机铲装机构的载荷测量方法
US11174622B2 (en) 2019-11-20 2021-11-16 Autonomous Solutions, Inc. Autonomous loader controller
CN111572559B (zh) * 2020-04-15 2021-11-09 北京踏歌智行科技有限公司 一种无人驾驶矿卡在装载区智能循铲的交互方法
JP7398056B2 (ja) 2020-06-17 2023-12-14 株式会社オートネットワーク技術研究所 電線カバー及びコネクタ構造
WO2023091367A1 (en) * 2021-11-17 2023-05-25 Chase Arnold Direct truck assignment system
US20230244246A1 (en) * 2022-01-31 2023-08-03 Caterpillar Inc. Systems, methods, and computer-program products for collaborative path planning of mobile machines in unstructured area
CN115410399A (zh) * 2022-08-09 2022-11-29 北京科技大学 一种货车停车方法、装置及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01296318A (ja) * 1988-05-25 1989-11-29 Toyota Central Res & Dev Lab Inc 無人搬送車の走行制御装置
JPH05265554A (ja) * 1992-01-24 1993-10-15 Tsubakimoto Chain Co 移動体の無経路誘導方法
WO2013058247A1 (ja) * 2011-10-17 2013-04-25 日立建機株式会社 ダンプトラック停車位置方向指示システムおよび運搬システム
WO2013065312A1 (ja) * 2011-11-04 2013-05-10 パナソニック株式会社 遠隔制御システム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1179217A (zh) * 1995-03-24 1998-04-15 株式会社小松制作所 无人驾驶自卸卡车行驶路线数据制定方法及制定装置
JP3310839B2 (ja) 1995-10-12 2002-08-05 三菱重工業株式会社 操船指示装置
JP4183114B2 (ja) * 2002-09-04 2008-11-19 株式会社小松製作所 鉱山運搬管理システム及び方法
US7425889B2 (en) * 2005-05-06 2008-09-16 Delphi Technologies, Inc. Vehicle turning assist system and method
JP5054294B2 (ja) * 2005-08-05 2012-10-24 株式会社小松製作所 作業用車両に搭載される表示装置、及び同表示装置の表示方法
JP5303798B2 (ja) 2010-07-16 2013-10-02 株式会社小松製作所 無人車両の走行システムおよびその走行制御方法
JP5187369B2 (ja) * 2010-09-24 2013-04-24 株式会社デンソー 車両用の後退駐車支援装置および後退駐車支援装置用のプログラム
JP5140864B2 (ja) * 2010-11-22 2013-02-13 株式会社小松製作所 無人車両の走行システムおよび走行経路生成方法
JP5587499B2 (ja) * 2011-06-07 2014-09-10 株式会社小松製作所 作業車両の周辺監視装置
CA2807828C (en) * 2011-11-04 2014-09-02 Komatsu Ltd. Loading system and transporter
DE102012004639A1 (de) * 2012-03-07 2013-09-12 Audi Ag Kraftfahrzeug mit einem elektronischen Rückspiegel
JP5667594B2 (ja) * 2012-03-15 2015-02-12 株式会社小松製作所 障害物検出機構付きダンプトラックおよびその障害物検出方法
JP6032730B2 (ja) * 2012-06-21 2016-11-30 日立建機株式会社 運搬機械の停止位置判定装置およびこの装置を備えた積込機械

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01296318A (ja) * 1988-05-25 1989-11-29 Toyota Central Res & Dev Lab Inc 無人搬送車の走行制御装置
JPH05265554A (ja) * 1992-01-24 1993-10-15 Tsubakimoto Chain Co 移動体の無経路誘導方法
WO2013058247A1 (ja) * 2011-10-17 2013-04-25 日立建機株式会社 ダンプトラック停車位置方向指示システムおよび運搬システム
WO2013065312A1 (ja) * 2011-11-04 2013-05-10 パナソニック株式会社 遠隔制御システム

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017016477A (ja) * 2015-07-02 2017-01-19 日立建機株式会社 作業機械の走行支援システム及び運搬車両
CN107851883A (zh) * 2016-03-16 2018-03-27 株式会社小松制作所 天线的安装结构以及自卸卡车
AU2019280032B2 (en) * 2016-04-28 2021-05-27 Komatsu Ltd. Work machine management apparatus
WO2016167375A1 (ja) * 2016-04-28 2016-10-20 株式会社小松製作所 作業機械の管理装置
JPWO2016167375A1 (ja) * 2016-04-28 2017-04-27 株式会社小松製作所 作業機械の管理装置
JPWO2016167374A1 (ja) * 2016-04-28 2017-04-27 株式会社小松製作所 作業機械の管理装置
CN106662878A (zh) * 2016-04-28 2017-05-10 株式会社小松制作所 作业机械的管理装置
US10394250B2 (en) 2016-04-28 2019-08-27 Komatsu Ltd. Work machine management apparatus
US10108196B2 (en) 2016-04-28 2018-10-23 Komatsu Ltd. Work machine management apparatus
US10591917B2 (en) 2016-04-28 2020-03-17 Komatsu Ltd. Work machine management apparatus
WO2016167374A1 (ja) * 2016-04-28 2016-10-20 株式会社小松製作所 作業機械の管理装置
US11454980B2 (en) 2016-09-23 2022-09-27 Komatsu Ltd. Management system for work vehicle and management method for work vehicle
JP2017199395A (ja) * 2017-06-08 2017-11-02 株式会社小松製作所 作業機械の管理方法
JP2019032682A (ja) * 2017-08-08 2019-02-28 ヤンマー株式会社 自動走行システム
WO2019069947A1 (ja) * 2017-10-04 2019-04-11 株式会社小松製作所 積込機械制御装置および制御方法
US11661725B2 (en) 2017-10-04 2023-05-30 Komatsu Ltd. Loading machine control device and control method
JP7404414B2 (ja) 2017-10-04 2023-12-25 株式会社小松製作所 作業機械制御装置および制御方法
JP2019065661A (ja) * 2017-10-04 2019-04-25 株式会社小松製作所 積込機械制御装置および制御方法
JP7311667B2 (ja) 2017-10-04 2023-07-19 株式会社小松製作所 作業システムおよび制御方法
US11591772B2 (en) 2017-10-04 2023-02-28 Komatsu Ltd. Work machine control device and control method
WO2019069975A1 (ja) * 2017-10-04 2019-04-11 株式会社小松製作所 作業機械制御装置および制御方法
JP2022079773A (ja) * 2017-10-04 2022-05-26 株式会社小松製作所 作業システムおよび制御方法
JP2019065660A (ja) * 2017-10-04 2019-04-25 株式会社小松製作所 作業機械制御装置および制御方法
JP2022051849A (ja) * 2017-10-04 2022-04-01 株式会社小松製作所 作業機械制御装置および制御方法
WO2019187938A1 (ja) * 2018-03-28 2019-10-03 ヤンマー株式会社 作業車両の走行制御システム
JP2019175254A (ja) * 2018-03-29 2019-10-10 ヤンマー株式会社 運転支援システム
JP7016751B2 (ja) 2018-03-29 2022-02-07 ヤンマーパワーテクノロジー株式会社 運転支援システム
CN111771031A (zh) * 2018-07-31 2020-10-13 株式会社小松制作所 用于控制作业机械的系统及方法
US11795658B2 (en) 2018-07-31 2023-10-24 Komatsu Ltd. System and method for controlling work machine
JP7036707B2 (ja) 2018-12-14 2022-03-15 ヤンマーパワーテクノロジー株式会社 走行経路生成装置
JP2020095566A (ja) * 2018-12-14 2020-06-18 ヤンマーパワーテクノロジー株式会社 走行経路生成装置
JP2020135793A (ja) * 2019-02-26 2020-08-31 ヤンマーパワーテクノロジー株式会社 自動走行システム
JP7202214B2 (ja) 2019-02-26 2023-01-11 ヤンマーパワーテクノロジー株式会社 自動走行システム
JP2020057410A (ja) * 2019-12-09 2020-04-09 株式会社小松製作所 作業車両の管理システム及び作業車両の管理方法
JP6998930B2 (ja) 2019-12-09 2022-01-18 株式会社小松製作所 無人で走行するダンプトラックの管理システム及び無人で走行するダンプトラックの管理方法
JP2021149177A (ja) * 2020-03-16 2021-09-27 三菱重工業株式会社 制御装置、移動体、移動制御システム、制御方法及びプログラム
JP7300413B2 (ja) 2020-03-16 2023-06-29 三菱重工業株式会社 制御装置、移動体、移動制御システム、制御方法及びプログラム
JP2021156080A (ja) * 2020-03-30 2021-10-07 住友重機械工業株式会社 施工支援システム及び施工支援装置
CN115298393A (zh) * 2020-04-17 2022-11-04 株式会社小松制作所 作业系统及控制方法
JP7423399B2 (ja) 2020-04-17 2024-01-31 株式会社小松製作所 作業システムおよび制御方法
JP2021172973A (ja) * 2020-04-17 2021-11-01 株式会社小松製作所 作業システムおよび制御方法
WO2021210664A1 (ja) * 2020-04-17 2021-10-21 株式会社小松製作所 作業システムおよび制御方法
JP7483935B2 (ja) 2020-11-27 2024-05-15 日立建機株式会社 作業機械の情報表示システム
WO2023047885A1 (ja) * 2021-09-24 2023-03-30 日立建機株式会社 作業機械の制御システムおよび作業機械
JPWO2023047885A1 (ja) * 2021-09-24 2023-03-30
WO2023085005A1 (ja) * 2021-11-10 2023-05-19 コベルコ建機株式会社 管理システム
WO2023136326A1 (ja) * 2022-01-14 2023-07-20 日立建機株式会社 作業機械

Also Published As

Publication number Publication date
CN105518556A (zh) 2016-04-20
JP6243926B2 (ja) 2017-12-06
CN105518556B (zh) 2018-08-28
US20160224026A1 (en) 2016-08-04
CA2923683C (en) 2018-03-13
US10048692B2 (en) 2018-08-14
AU2013407690A1 (en) 2016-03-31
JPWO2015087430A1 (ja) 2017-03-16
AU2013407690B2 (en) 2017-10-19
CA2923683A1 (en) 2015-06-18

Similar Documents

Publication Publication Date Title
JP6243926B2 (ja) 車両走行システム、搬送車の停車姿勢設定装置が実行する方法、及び搬送車の停車姿勢設定装置
JP6777375B2 (ja) 作業機械の画像表示システム、作業機械の遠隔操作システム及び作業機械
JP6794193B2 (ja) 作業機械の画像表示システム
JP6247983B2 (ja) 車両走行システム及び管制サーバ
JP7404414B2 (ja) 作業機械制御装置および制御方法
JP6898816B2 (ja) 表示システム、表示方法、及び表示装置
JP6832548B2 (ja) 作業機械の画像表示システム、作業機械の遠隔操作システム、作業機械及び作業機械の画像表示方法
WO2016051526A1 (ja) 無人運搬車両の走行制御方法及びシステム
JP6001196B2 (ja) 行動指示システム及び方法
WO2019069983A1 (ja) 制御装置および制御方法
JP7338514B2 (ja) 作業支援サーバ、作業支援方法
JP7175680B2 (ja) 表示制御装置、表示制御システム、および表示制御方法
US20230050071A1 (en) Work machine and remote control system for work machine
JP2021165526A (ja) 作業機械の画像表示システム
JP6923144B2 (ja) 作業機械の画像表示システム
WO2022201735A1 (ja) 情報提示装置
WO2021181916A1 (ja) 作業支援サーバ、作業支援方法
JP2024057361A (ja) 作業支援装置および作業支援方法
JP2023143985A (ja) 作業機械の画像表示システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13899181

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015552258

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2923683

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14917411

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013407690

Country of ref document: AU

Date of ref document: 20131212

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13899181

Country of ref document: EP

Kind code of ref document: A1