[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019069983A1 - 制御装置および制御方法 - Google Patents

制御装置および制御方法 Download PDF

Info

Publication number
WO2019069983A1
WO2019069983A1 PCT/JP2018/037056 JP2018037056W WO2019069983A1 WO 2019069983 A1 WO2019069983 A1 WO 2019069983A1 JP 2018037056 W JP2018037056 W JP 2018037056W WO 2019069983 A1 WO2019069983 A1 WO 2019069983A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
vehicle
transport vehicle
signal
restricted area
Prior art date
Application number
PCT/JP2018/037056
Other languages
English (en)
French (fr)
Inventor
真範 皆川
康博 大山
▲キ▼ 丁
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to AU2018345469A priority Critical patent/AU2018345469B2/en
Priority to CN201880032370.XA priority patent/CN110651087B/zh
Priority to CA3064369A priority patent/CA3064369C/en
Priority to US16/614,854 priority patent/US11634889B2/en
Publication of WO2019069983A1 publication Critical patent/WO2019069983A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/205Remotely operated machines, e.g. unmanned vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2033Limiting the movement of frames or implements, e.g. to avoid collision between implements and the cabin
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2045Guiding machines along a predetermined path
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2054Fleet management
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0038Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement by providing the operator with simple or augmented images from one or more cameras located onboard the vehicle, e.g. tele-operation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas

Definitions

  • the present invention relates to a control device and control method for controlling a work vehicle or a transport vehicle at a work site where the work vehicle and the transport vehicle are provided.
  • Patent Document 1 discloses a technique for detecting an intruding object which has entered into a work area of a work vehicle, and restricting a turning operation of a working machine based on the detected position of the intruding object.
  • the aspect of this invention aims at providing the control apparatus and control method which control a working machine or a conveyance vehicle so that a working machine and a conveyance vehicle do not contact.
  • the control device is a control device that controls a work vehicle provided with a work machine, and the route acquisition unit obtains a travel route of the transport vehicle; An area setting unit for setting a restricted area for restricting entry of a working machine; and a signal output unit for outputting a signal for controlling the work vehicle or the transport vehicle based on a relationship between the restricted area and the working machine Prepare.
  • control device can control the work machine or the transport vehicle so that the work machine does not contact the transport vehicle.
  • FIG. 1 is a schematic view showing the configuration of a work system according to the first embodiment.
  • the work system 1 includes a work vehicle 100 that operates by remote control, one or more transport vehicles 200, a management device 300, and a remote operation room 500 that remotely controls the work vehicle 100.
  • the transport vehicle 200 runs unmanned based on course data (eg, speed information, coordinates at which the unmanned transport vehicle should travel) received from the management device 300.
  • the transport vehicle 200 and the management device 300 are connected by communication via the access point 360.
  • the management device 300 acquires the position and orientation of the vehicle from the transport vehicle 200, and generates course data used to drive the transport vehicle 200 based on these.
  • the management device 300 transmits the course data to the transport vehicle 200.
  • the transporter vehicle 200 runs unmanned based on the received course data. That is, the work system 1 includes an unmanned transfer system including the transport vehicle 200 and the management device 300.
  • the work system 1 which concerns on 1st Embodiment is provided with an unmanned conveyance system
  • a part or all transport vehicle may be manned operation.
  • the management device 300 does not need to transmit course data and instructions regarding loading, but acquires the position and orientation of the transport vehicle.
  • Work vehicle 100 is remotely operated in accordance with an operation signal transmitted from remote operator's cab 500.
  • the work vehicle 100 and the remote driver's cab 500 are connected by communication via the access point 360.
  • Control device 540 of remote driver's cab 500 receives an operation of work vehicle 100 from the operator, and transmits an operation signal to work vehicle 100.
  • Work vehicle 100 operates in accordance with an operation signal received from remote operator's cab 500. That is, the work system 1 includes a remote operation system including the work vehicle 100 and the remote cab 500.
  • the work vehicle 100 and the transport vehicle 200 are provided at a work site (for example, a mine, a quarry).
  • Remote operator's cab 500 is provided at a point (for example, a city, in a work site) remote from work vehicle 100 and transport vehicle 200.
  • the transport vehicle 200 according to the first embodiment is an offload dump truck provided with a vessel.
  • the transport vehicle 200 according to another embodiment may be a transport vehicle other than a dump truck.
  • the transporter vehicle 200 includes a position / orientation calculator 210 and a controller 220.
  • the position / orientation calculator 210 calculates the position and orientation of the transport vehicle 200.
  • the position / orientation calculator 210 includes two receivers that receive positioning signals from satellites that constitute a Global Navigation Satellite System (GNSS).
  • GNSS Global Navigation Satellite System
  • An example of the GNSS is GPS (Global Positioning System).
  • the two receivers are respectively installed at different positions of the carrier vehicle 200.
  • the position / orientation calculator 210 detects the position of the transport vehicle 200 in the on-site coordinate system based on the positioning signal received by the receiver.
  • the position / orientation calculator 210 calculates the direction in which the transport vehicle 200 faces, as the relationship between the installation position of one receiver and the installation position of the other receiver, using the positioning signals received by the two receivers.
  • the conveyance vehicle 200 may be provided with an inertial measurement device (IMU: Inertial Measurement Unit), and may calculate direction based on the measurement result of an inertial measurement device. In this case, the drift of the complete measurement device may be corrected based on the traveling trajectory of the transport vehicle 200.
  • IMU Inertial Measurement Unit
  • the transport vehicle 200 may be provided with a calculation device.
  • the controller 220 transmits the position and the azimuth detected by the position and azimuth calculator 210 to the management device 300.
  • the control device 220 receives, from the management device 300, the course data and the discharge instruction, the approach instruction to the loading point P3, and the start instruction from the loading point P3.
  • the control device 220 causes the transport vehicle 200 to travel according to the received course data, or moves the vessel of the transport vehicle 200 up and down according to the soil removal instruction.
  • FIG. 2 is an external view of the work vehicle according to the first embodiment.
  • the work vehicle 100 according to the first embodiment is a hydraulic shovel.
  • Work vehicle 100 concerning other embodiments may be work vehicles other than a hydraulic shovel.
  • the work vehicle 100 includes a work machine 110 operated by hydraulic pressure, a swing body 120 supporting the work machine 110, and a traveling body 130 supporting the swing body 120.
  • the work implement 110 includes a boom 111, an arm 112, a bucket 113, a boom cylinder 114, an arm cylinder 115, a bucket cylinder 116, a boom angle sensor 117, an arm angle sensor 118, and a bucket angle sensor 119.
  • the proximal end of the boom 111 is attached to the front of the rotating body 120 via a pin.
  • the arm 112 couples the boom 111 and the bucket 113.
  • the proximal end of the arm 112 is attached to the distal end of the boom 111 via a pin.
  • the bucket 113 includes a blade for excavating earth and sand and a container for transporting the excavated earth and sand.
  • the proximal end of the bucket 113 is attached to the distal end of the arm 112 via a pin.
  • the boom cylinder 114 is a hydraulic cylinder for operating the boom 111.
  • the proximal end of the boom cylinder 114 is attached to the rotating body 120.
  • the tip of the boom cylinder 114 is attached to the boom 111.
  • Arm cylinder 115 is a hydraulic cylinder for operating arm 112.
  • the proximal end of the arm cylinder 115 is attached to the boom 111.
  • the tip of the arm cylinder 115 is attached to the arm 112.
  • Bucket cylinder 116 is a hydraulic cylinder for operating bucket 113.
  • the proximal end of the bucket cylinder 116 is attached to the boom 111.
  • the tip of the bucket cylinder 116 is attached to the bucket 113.
  • the boom angle sensor 117 is attached to the boom 111 and detects the tilt angle of the boom 111.
  • the arm angle sensor 118 is attached to the arm 112 and detects an inclination angle of the arm 112.
  • the bucket angle sensor 119 is attached to the bucket 113 and detects an inclination angle of the bucket 113.
  • the boom angle sensor 117, the arm angle sensor 118, and the bucket angle sensor 119 according to the first embodiment detect an inclination angle with respect to the ground plane.
  • the angle sensor which concerns on other embodiment is not restricted to this, You may detect the inclination angle with respect to another reference plane.
  • the angle sensor may detect a relative angle with respect to the mounting portion, or the stroke angle of each cylinder is measured to convert the stroke of the cylinder into an angle, thereby the inclination angle May be detected.
  • the revolving structure 120 is provided with a cab 121.
  • An imaging device 122 is provided in the upper part of the cab 121.
  • the imaging device 122 is installed forward and upward in the cab 121.
  • the imaging device 122 captures an image of the front of the cab 121 through the windshield on the front of the cab 121.
  • Examples of the imaging device 122 include, for example, an imaging device using a charge coupled device (CCD) sensor and a complementary metal oxide semiconductor (CMOS) sensor.
  • the imaging device 122 may not necessarily be provided in the driver's cab 121, and the imaging device 122 may be provided at a position at which at least the work object and the work implement 110 can be imaged. Just do it.
  • the work vehicle 100 includes an imaging device 122, a position / orientation calculator 123, an inclination measuring device 124, and a control device 125.
  • the position / orientation calculator 123 calculates the position of the rotating body 120 and the direction in which the rotating body 120 faces.
  • the position / orientation calculator 123 includes two receivers 1231 that receive positioning signals from artificial satellites that make up the GNSS.
  • the two receivers 1231 are respectively installed at different positions of the revolving unit 120.
  • the position / orientation calculator 123 detects the position of the representative point of the revolving unit 120 (the revolving center of the revolving unit 120) in the on-site coordinate system based on the positioning signal received by the receiver 1231.
  • the position / orientation calculator 123 uses the positioning signals received by the two receivers 1231 to set the direction in which the revolving unit 120 faces as the relation of the installation position of the other receiver 1231 to the installation position of one receiver 1231. Calculate
  • the inclination measuring device 124 measures the acceleration and angular velocity of the rotating body 120, and detects the posture (for example, roll angle, pitch angle, yaw angle) of the rotating body 120 based on the measurement result.
  • the inclination measuring instrument 124 is installed, for example, on the lower surface of the revolving unit 120.
  • an inertial measurement unit (IMU) may be used as the tilt measurement device 124.
  • the control device 125 sets the image captured by the imaging device 122, the swing speed, position and orientation of the swing body 120, the inclination angles of the boom 111, the arm 112 and the bucket 113, the traveling speed of the traveling body 130, and the attitude of the swing body 120. , To the remote control room 500.
  • the image, the turning speed, position and orientation of the turning body 120, the inclination angles of the boom 111, the arm 112 and the bucket 113, the traveling speed of the traveling body 130, and the posture of the turning body 120 are also referred to as vehicle information.
  • the vehicle information which concerns on other embodiment is not restricted to this.
  • the vehicle information may not include any of the turning speed, the position, the heading, the inclination angle, the traveling speed and the attitude, and may include values detected by other sensors. , And may include a value calculated from the detected value.
  • the controller 125 receives an operation signal from the remote driver's cab 500.
  • Control device 540 operates work implement 110, revolving unit 120, or traveling unit 130 in accordance with the received operation signal.
  • FIG. 3 is a schematic block diagram showing the configuration of the management device according to the first embodiment.
  • the management device 300 manages the traveling of the transport vehicle 200.
  • the management device 300 is a computer including a processor 3100, a main memory 3200, a storage 3300, and an interface 3400.
  • the storage 3300 stores the program p3.
  • the processor 3100 reads the program p3 from the storage 3300, develops it in the main memory 3200, and executes processing according to the program p3.
  • the management device 300 is connected to the network via an interface 3400.
  • the storage 3300 includes storage areas as a travel route storage unit 3301 and a position information storage unit 3302.
  • Examples of the storage 3300 include a hard disk drive (HDD), a solid state drive (SSD), a magnetic disk, an optical magnetic disk, a compact disc read only memory (CD-ROM), and a digital versatile disc read only memory (DVD-ROM). , Semiconductor memory and the like.
  • the storage 3300 may be internal media directly connected to the common communication line of the management apparatus 300, or may be external media connected to the management apparatus 300 via the interface 3400.
  • the storage 3300 is a non-temporary tangible storage medium.
  • FIG. 4 is a diagram illustrating an example of a travel route.
  • the travel route storage unit 3301 stores the travel route R for each transport vehicle 200.
  • the traveling route R is a predetermined connection route R1 connecting two areas A (for example, the loading site A1 and the unloading site A2), an approach route R2 which is a route in the area A, an approach route R3 and an exit route It has R4.
  • the entry route R2 is a route connecting the waiting point P1 which is one end of the connection route R1 in the area A and a predetermined switching point P2.
  • the approach route R3 is a route connecting the turning point P2 in the area A and the loading point P3 or the unloading point P4.
  • the exit route R4 is a route connecting the loading point P3 or the unloading point P4 in the area A and the exit point P5 which is the other end of the connection route R1.
  • the loading point P3 is a point set by the operation of the operator of the work vehicle 100.
  • the turning point P2 is a point set by the management device 300 according to the position of the loading point P3.
  • the management device 300 receives a loading point instruction signal specifying the coordinates of the loading point P3 from the operator, and sets the loading point P3 according to the loading point instruction signal.
  • the management device 300 calculates an entry route R2, an approach route R3 and an exit route R4 each time the loading point P3 is set.
  • the position information storage unit 3302 stores position information and direction information of each transport vehicle 200.
  • the processor 3100 includes a position information collecting unit 3101, a traveling course generating unit 3102, and a transferring unit 3103 by executing the program p3.
  • Position information collecting unit 3101 receives position information and orientation information from transport vehicle 200 via access point 360.
  • the position information collection unit 3101 stores the received position information and orientation information in the position information storage unit 3302.
  • the traveling course generation unit 3102 is a course data indicating an area for permitting the movement of the transport vehicle 200 based on the traveling route stored by the traveling route storage unit 3301 and the position information and the orientation information stored by the position information storage unit 3302. And transmit the course data to the transport vehicle 200.
  • the course data is, for example, information representing a region in which the transport vehicle 200 can travel at a predetermined speed within a predetermined time and does not overlap the travel route of another transport vehicle 200.
  • the transfer unit 3103 receives an operation signal to the transport vehicle 200 from the remote operation room 500, and transmits the operation signal to the transport vehicle 200 via the access point 360.
  • the operation signal to the transport vehicle 200 includes an entry instruction signal, a loading completion signal, and a traveling restart signal.
  • the entry instruction signal is a signal for instructing the transport vehicle 200 to approach the loading point P3.
  • the loading completion signal is a signal that instructs the transport vehicle 200 to exit from the loading point P3 when loading is completed.
  • the travel resumption signal is a signal for releasing the stop of the transport vehicle 200.
  • the remote driver's cab 500 includes a driver's seat 510, a display 520, a first operating device 530, a second operating device 531, and a controller 540.
  • the display device 520 is disposed in front of the driver's seat 510.
  • the display device 520 is located in front of the operator when the operator sits in the driver's seat 510.
  • the display device 520 may be configured by a plurality of displays arranged side by side as shown in FIG. 1 or may be configured by one large display.
  • the display device 520 may project an image on a curved surface or a spherical surface by a projector or the like.
  • the first operating device 530 is an operating device for a remote operation system.
  • the first operation device 530 is an operation signal of the boom cylinder 114, an operation signal of the arm cylinder 115, an operation signal of the bucket cylinder 116, a turning operation signal to the left and right of the turning body 120, and a traveling operation for forward and backward movement of the traveling body 130. Accept signal input.
  • the first operating device 530 is configured of, for example, an electric lever and an electric pedal.
  • the second operating device 531 is an operating device for an unmanned transfer system.
  • the second controller 531 receives an input of a loading point instruction signal to the transport vehicle 200, an entry instruction signal, a loading completion signal, and a traveling restart signal.
  • the second operating device 531 is configured of, for example, a touch panel.
  • the second controller device 531 transmits the input operation signal to the management device 300.
  • the first operating device 530 and the second operating device 531 are disposed in the vicinity of the driver's seat 510.
  • the first operating device 530 and the second operating device 531 are located within the operable range of the operator when the operator sits on the driver's seat 510.
  • Control device 540 causes display device 520 to display an image (for example, a moving image) received from work vehicle 100, and transmits an operation signal representing an operation of first operation device 530 to work vehicle 100.
  • image for example, a moving image
  • FIG. 5 is a schematic block diagram showing the configuration of the control device for the remote driver's cab according to the first embodiment.
  • the control device 540 is a computer including a processor 5100, a main memory 5200, a storage 5300, and an interface 5400.
  • the storage 5300 stores the program p5.
  • the processor 5100 reads the program p5 from the storage 5300, develops it in the main memory 5200, and executes processing according to the program p5.
  • Control device 540 is connected to the network via interface 5400.
  • Examples of the storage 5300 include an HDD, an SSD, a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, and the like.
  • the storage 5300 may be internal media directly connected to the common communication line of the control device 540, or may be external media connected to the control device 540 via the interface 5400.
  • the storage 5300 is a non-temporary, tangible storage medium.
  • the processor 5100 executes the program p5 to obtain a vehicle information acquisition unit 5101, a display control unit 5102, a position information acquisition unit 5103, a route acquisition unit 5104, an area setting unit 5105, a work machine position specification unit 5106, a restriction determination unit 5107, and an operation.
  • a signal input unit 5108, an operation signal restriction unit 5109, an operation signal output unit 5110, and a stop signal output unit 5111 are provided.
  • Vehicle information acquisition unit 5101 acquires vehicle information from work vehicle 100 via access point 360.
  • Display control unit 5102 generates a display signal for displaying an image included in the vehicle information received by vehicle information acquisition unit 5101, and outputs the display signal to display device 520.
  • the position information acquisition unit 5103 acquires the position of each transport vehicle 200 from the management device 300.
  • the route acquisition unit 5104 acquires the travel route of each transport vehicle 200 from the management device 300.
  • the area setting unit 5105 sets a restricted area L for restricting the approach of the work vehicle 100 based on the travel route acquired by the route acquisition unit 5104.
  • FIG. 6 is a diagram showing an example of the restricted area.
  • FIG. 7 is a diagram showing an example of a cross section of the restricted area.
  • the restricted area L is a space extending along the travel route R (the entry route R2, the approach route R3, and the exit route R4) in the loading space A1, and includes the height H_v of the transport vehicle 200 and the height H of the transport vehicle 200. It is a space having a cross section determined from a width obtained by adding a predetermined width (error in automatic operation) W_err to the width W_v.
  • the restricted area L is a space related to the shovel coordinate system.
  • the area setting unit 5105 converts the travel route R acquired by the route acquisition unit 5104 based on the vehicle information acquired by the vehicle information acquisition unit 5101 from the site coordinate system to the shovel coordinate system, and converts the travel route R into the converted travel route R.
  • Set the restricted area L based on.
  • the predetermined width may not be an error of the automatic operation.
  • the shovel coordinate system may be converted to a site coordinate system, or the shovel coordinate system may be converted to a track coordinate system.
  • the work machine position specifying unit 5106 specifies the position of the lowest point of the bucket 113 based on the vehicle information received by the vehicle information acquisition unit 5101.
  • the position of the lowest point of the bucket 113 is a position according to the shovel coordinate system of the work vehicle 100. Specifically, the work machine position specifying unit 5106 obtains the vertical component and the horizontal component of the length of the boom 111 based on the tilt angle of the boom 111 and the known length of the boom 111. Similarly, the work machine position specifying unit 5106 obtains the vertical component and the horizontal component of the length of the arm 112.
  • Work machine position specifying unit 5106 is a sum of vertical components of lengths of boom 111 and arm 112 and a sum of horizontal components in the direction specified from the position and direction of work vehicle 100 from the position of work vehicle 100.
  • the remote position is specified as the position of the tip of the arm 112.
  • the work machine position specifying unit 5106 specifies the lowest point of the bucket 113 in the vertical direction based on the position of the tip of the arm 112, the inclination angle of the bucket 113, and the known shape of the bucket.
  • the restriction determination unit 5107 determines whether the position of the lowest point of the bucket 113 is located within or immediately above the restriction area, and whether the height of the lowest point of the bucket 113 is greater than or equal to the height of the restriction area. Determine
  • Operation signal input unit 5108 receives an input of an operation signal from first operation device 530.
  • the operation signals include an operation signal of the boom cylinder 114, an operation signal of the arm cylinder 115, an operation signal of the bucket cylinder 116, a turning operation signal to the left and right of the rotating body 120, and a traveling operation signal for forward and backward movement of the traveling body 130. included.
  • the operation signal restriction unit 5109 restricts the operation signal input to the operation signal input unit 5108 based on the determination result of the restriction determination unit 5107. Specifically, when it is determined by the restriction determination unit 5107 that the position of the lowest point of the bucket 113 is positioned within or immediately above the restriction area, the operation signal restriction unit 5109 lowers the boom 111, the arm 112, and the bucket 113. The operation signal operating in the direction is canceled, and the position of the lowest point of the bucket 113 is maintained. At this time, the operation signal limiting unit 5109 generates an operation signal for operating the boom cylinder 114, the arm cylinder 115, and the bucket cylinder 116 so that the position of the lowest point of the bucket 113 does not fall due to the own weight of the work implement 110. .
  • the operation signal limiting unit 5109 may retract only the boom cylinder 114, may retract only the arm cylinder 115, or may control both the boom cylinder 114 and the arm cylinder 115.
  • the restriction determination unit 5107 determines that the height of the lowermost point of the bucket 113 is less than the height of the restriction area
  • the operation signal restriction unit 5109 turns the swing body 120 in the inward direction of the restriction area. Cancel the operation signal.
  • Operation signal output unit 5110 outputs the operation signal input to operation signal input unit 5108 or the operation signal restricted by operation signal restriction unit 5109 to work vehicle 100.
  • the stop signal output unit 5111 outputs a stop signal for stopping the transport vehicle 200 to the management device 300 when the restriction determination unit 5107 determines that the lowermost position of the bucket 113 is located within the restriction area.
  • FIG. 8 is a flowchart showing a method of setting a restricted area by the control device of the remote driver's cab according to the first embodiment.
  • Control device 540 executes setting processing of the limited area shown in FIG. 8 at fixed time intervals.
  • the position information acquisition unit 5103 acquires position information of the work vehicle 100 and the plurality of transport vehicles 200 from the management device 300 (step S1). Further, the route acquisition unit 5104 acquires the travel route R of each transport vehicle 200 from the management device 300 (step S2).
  • the area setting unit 5105 determines whether or not there is a plurality of transport vehicles 200 traveling in the loading area A1 (step S3).
  • the area setting unit 5105 moves the transport vehicle 200 traveling in the loading area A1 among the travel route R acquired in step S2.
  • the restricted area L is set based on the association (step S4).
  • the area setting unit 5105 does not set the restricted area L for the transport vehicle 200 (for example, one stopped at the loading point P3) located in the loading area A1 but not traveling.
  • the area setting unit 5105 determines the height and the width of the restricted area L based on the height of the transportation vehicle 200 and the width of the transportation vehicle 200 added with the error of automatic driving.
  • the area setting unit 5105 determines, as a restricted area L, an area including a locus obtained by moving a rectangle having the determined height and width along the traveling route R in the loading space A1.
  • the cross section of the restricted area L is not limited to the rectangle.
  • the cross section of the restricted area L according to another embodiment may have another shape such as a trapezoid or a semicircle. Thereby, control device 540 can set restriction area L in loading space A1.
  • the vehicle information acquisition unit 5101 acquires the access point 360.
  • the vehicle information is acquired from the work vehicle 100 via (step S5).
  • the work machine position specifying unit 5106 specifies the position of the lowest point of the bucket 113 based on the acquired vehicle information (step S6).
  • the restriction determination unit 5107 determines whether or not the position of the lowest point of the bucket 113 is located within the restriction area L (step S7).
  • the stop signal output unit 5111 is a stop signal that causes the management apparatus 300 to stop the transport vehicle 200 associated with the restricted area. Is sent (step S8).
  • the management device 300 receives the stop signal, the management device 300 outputs the stop signal to the transport vehicle 200 to be stopped. Thereby, the transport vehicle 200 is stopped.
  • the management device 300 outputs an operation signal for causing the transport vehicle 200 to stop while receiving the stop signal.
  • the traveling restart signal is input to the second operation device 531 by the operation of the operator and the management device 300 transmits the traveling restart signal to the transport vehicle 200, the transport vehicle 200 resumes traveling according to the course data.
  • a deceleration signal may be received from the management device 300, whereby the transport vehicle 200 may be decelerated on the course.
  • the operation signal input unit 5108 receives the operation signal from the first operation device 530.
  • the input is accepted (step S9).
  • the restriction determination unit 5107 determines whether or not the position of the lowest point of the bucket 113 is positioned within the restriction area or immediately above the restriction area (step S10). That is, the restriction determination unit 5107 determines whether the lowest point exists in the restriction area in a plan view as viewed from above.
  • the operation signal restriction unit 5109 operates the operation signal to extend or contract the cylinder of the work implement 110 among the input operation signals. Is limited as the lower limit value of the signal for maintaining the height of the work implement 110 (step S11).
  • the signal for maintaining the height of the work implement 110 is an operation signal for canceling the downward movement of the work implement 110 due to its own weight.
  • the value of the operation signal for moving the work implement 110 in the downward direction is a negative number
  • the value of the operation signal for moving in the upward direction (dumping direction) is a positive number.
  • the value of the signal for maintaining the height of the work implement 110 is a negative number close to zero.
  • the value of the operation signal for extending the boom cylinder 114 is a positive number
  • the value of the operation signal for retracting the boom cylinder 114 is a negative number. That is, the operation signal of the boom cylinder 114 for maintaining the height of the work implement 110 is a signal to extend the boom cylinder 114 minutely. Therefore, when the input operation signal is a signal for moving the work machine 110 upward, the operation signal restriction unit 5109 passes the operation signal.
  • the operation signal limiting unit 5109 limits the value of the operation signal to the value of the signal for maintaining the height of the work implement 110.
  • the restriction determination unit 5107 determines that the height of the lowest point of the bucket 113 is high. It is determined whether or not the height is less than the height of the restricted area (step S12). If the height of the lowest point is less than the height of the restricted area (step S12: YES), the restriction determination unit 5107 determines whether the position of the lowest point of the bucket 113 is located within the restricted area L (Step S13).
  • the operation signal restriction unit 5109 selects, among the input operation signals, a turning operation signal for turning the turning body 120, It cancels (step S14). That is, the operation signal restriction unit 5109 prohibits the turning operation of the work vehicle 100 by restricting the turning operation signal to zero. In another embodiment, the operation signal restriction unit 5109 may decelerate the turning operation of the work vehicle 100 by restricting the turning operation signal.
  • the restriction judging unit 5107 instructs the input of the turning operation signal to turn inward of the restricted area L, ie It is determined whether or not it is a signal indicating a turning operation in a direction approaching the restricted area L (step S15).
  • the operation signal limiting unit 5109 cancels the turning operation signal for turning the swing body 120 among the input operation signals (step S14). ).
  • step S12 when the height of the lowest point is not less than the height of the restricted area (step S12: NO), the operation signal restriction unit 5109 does not position the lowest point in the restricted area L and the restricted area When it is a signal indicating the turning operation in the outward direction of L (step S15: NO), the turning operation signal is passed.
  • the operation signal output unit 5110 is not limited to the operation signal limited by the operation signal limiting unit 5109 (step S11 and step S13). Outputs the inputted operation signal to the work vehicle 100 via the management device 300 (step S16).
  • FIG. 9 is a diagram showing the relationship between the bucket position and the restriction according to the first embodiment.
  • the operation of the work vehicle 100 and the transport vehicle 200 is restricted as follows by the setting process of the restricted area described above.
  • the lowest point of the bucket 113 is within the restricted area L, that is, the lowest point is located within the restricted area L in plan view as viewed from above, and the height of the lowest point is the height of the restricted area L If it is less than this, the transport vehicle 200 is stopped in step S8, the descent of the work implement 110 is prohibited in step S11, and the turning is prohibited in step S14.
  • the lowest point of the bucket 113 is not in the restricted area L, the descent of the work implement 110 is prohibited in step S11 when the lowest point is located in the restricted area L when viewed from above.
  • step S14 When the lowest point of the bucket 113 is not in the restricted area L, if the height of the lowest point is less than the height of the restricted area L, the turning of the restricted area L in the inward direction is prohibited in step S14. Ru. When the lowest point is located outside the restricted area L and the height of the lowest point is greater than or equal to the height of the restricted area L in plan view from above, the operations of the work vehicle 100 and the transport vehicle 200 are not restricted. .
  • control device 540 sets the restricted area L along the traveling route R of the transport vehicle 200, and based on the relationship between the restricted area L and the work machine 110, the work vehicle 100 or the work vehicle 100. A signal for controlling the transport vehicle 200 is output.
  • control device 540 can control work vehicle 100 such that work implement 110 is not located on travel route R of transport vehicle 200.
  • the control device 540 can stop the travel of the transport vehicle 200. Therefore, control device 540 can control work vehicle 100 or transport vehicle 200 such that work machine 110 and transport vehicle 200 do not contact.
  • control apparatus 540 when control device 540 locates the lowest point of work implement 110 within restricted area L or immediately above restricted area L, control apparatus 540 moves operation implement 110 downward. Restrict.
  • the control device 540 limits the turning operation of the work implement 110. That is, the control device 540 according to the first embodiment restricts the movement of the work implement 110 toward the inside of the restricted area L as shown in FIG. Thus, the operator can be prompted to move the work implement 110 out of the restricted area L.
  • control device 540 when the lowest point of the work implement 110 is located within the restricted area L, the control device 540 outputs a stop signal for stopping the transport vehicle 200.
  • control device 540 can prevent transport vehicle 200 from traveling toward work implement 110 when work implement 110 is located on travel route R.
  • control device 540 outputs a signal based on the relationship between restricted area L and work machine 110 when transport vehicle 200 is located in loading space A1 where work vehicle 100 is present. Output Thereby, control device 540 can prevent unnecessary restriction from being applied when work vehicle 100 and transport vehicle 200 are sufficiently separated and the possibility of contact is low.
  • the control device 540 according to the first embodiment causes the operator to move the work machine 110 toward the outside of the restricted area L by restricting the movement of the work machine 110 toward the inside of the restricted area L. Prompt.
  • the control device 540 according to the second embodiment automatically moves the work machine 110 toward the outside of the restricted area L. .
  • FIG. 10 is a schematic block diagram showing the configuration of the control device for the remote driver's cab according to the second embodiment.
  • the control device 540 according to the second embodiment includes an operation signal overwrite unit 5112 instead of the operation signal restriction unit 5109.
  • the operation signal overwriter 5112 directs the work machine 110 out of the restricted area L to the operation signal input to the operation signal input unit 5108.
  • Overwrite the operation signal to be moved That is, when the lowest point of the work implement 110 is located within the restricted area L, the operation signal overwrite unit 5112 automatically generates an operation signal for moving the work implement 110 upward.
  • the control device 540 according to the second embodiment can quickly retract the work implement 110 from the traveling route R of the transport vehicle 200 so that the work implement 110 and the transport vehicle 200 do not contact.
  • the control device 540 of the remote driver's cab 500 controls the work vehicle 100 or the transport vehicle 200 based on the relationship between the restricted area L and the work machine 110. It is not limited to.
  • the management device 300 may control the work vehicle 100 or the transport vehicle 200 based on the relationship between the restricted area L and the work machine 110.
  • the control device 125 of the work vehicle 100 may control the work vehicle 100 based on the relationship between the restricted area L and the work machine 110.
  • the restricted area L which concerns on embodiment mentioned above is a three-dimensional area which has a width
  • the restricted area L according to another embodiment may be a planar area having no height.
  • the controller 540 compares the position of the bucket 113 in a plan view as viewed from above with the restricted area L.
  • the communication between the work vehicle 100 and the transport vehicle 200 and the communication between the management device 300 and the remote driver's cab 500 are connected via one access point 360. It is not limited to.
  • an access point used for communication between work vehicle 100 and transport vehicle 200 and an access point used for communication between management device 300 and remote driver's cab 500 are independently provided. It may be provided.
  • control device 540 of remote operation room 500 limits an operation signal
  • the control device 125 of the work vehicle 100 limits the operation signal received from the remote operation room 500 based on the position information of the transport vehicle 200 stored by the management device 300. You may In this case, the program p5 is stored in the storage of the controller 125.
  • restriction based on restricted area L is performed by whether conveyance vehicle 200 is located in loading space A1
  • the distance between the transport vehicle 200 and the work vehicle 100 is within a predetermined distance when the transport vehicle 200 has not arrived at the loading site A1, the distance is remote based on the restricted area L.
  • the operator may be alerted by the driver's cab 500 generating a warning sound or the like.
  • work system 1 concerning an embodiment mentioned above performs restriction based on restricted area L based on position information on conveyance vehicle 200 which management device 300 collected, it is not restricted to this.
  • the work system 1 may perform restriction based on the restricted area L based on a sensor provided in the work vehicle 100 and a distance measurement result by image recognition of the imaging device 122.
  • the restriction based on the restricted area L is performed, but the present invention is not limited thereto.
  • the transport vehicle 200 in order to reduce the impact on the vessel of the transport vehicle 200 from the time the transport vehicle 200 stops at the loading point P3 to the start of the transport vehicle 200, the transport vehicle 200 The restriction of the restriction area L may be released.
  • the second operating device 531 of the remote driving room 500 may be provided with a restriction release button or the like, and the restriction of the restriction area L may be released on condition that the restriction release button is pressed.
  • control device 540 In the control device 540 according to the embodiment described above, the case where the program p5 is stored in the storage 5300 has been described, but the present invention is not limited to this.
  • the program p5 may be distributed to the control device 540 by a communication line.
  • the control device 540 that has received the distribution develops the program p5 in the main memory 5200, and executes the above processing.
  • the program p5 may be for realizing a part of the functions described above.
  • the program p5 may realize the above-described function in combination with another program p5 already stored in the storage 5300 or in combination with another program p5 implemented in another device. .
  • control device 125, the management device 300, and the control device 540 may include a PLD (Programmable Logic Device).
  • PLDs include Programmable Array Logic (PAL), Generic Array Logic (GAL), Complex Programmable Logic Device (CPLD), and Field Programmable Gate Array (FPGA).
  • PAL Programmable Array Logic
  • GAL Generic Array Logic
  • CPLD Complex Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • control device can control the work machine or the transport vehicle so that the work machine does not contact the transport vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Operation Control Of Excavators (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Navigation (AREA)

Abstract

作業機を備える作業車両を制御する制御装置は、運搬車両の走行経路を取得する経路取得部と、走行経路に沿って作業機の侵入を制限する制限エリアを設定するエリア設定部と、制限エリアと作業機との関係に基づいて、作業車両または運搬車両を制御する信号を出力する信号出力部とを備える。

Description

制御装置および制御方法
 本発明は、作業車両および運搬車両が配備された作業現場において作業車両または運搬車両を制御する制御装置および制御方法に関する。
 本願は、2017年10月4日に日本に出願された特願2017-194689号について優先権を主張し、その内容をここに援用する。
 特許文献1には、作業車両の作業領域内へ進入した進入物を検出し、検出された進入物の位置に基づいて作業機の旋回動作を制限する技術が開示されている。
特開2012-21290号公報
 一方で、特許文献1に記載の制御のみでは、作業機が運搬車両の停止位置付近に位置しているときに、旋回動作の制限がなされないため、作業車両のオペレータは運搬車両を意識しながら作業車両を操作することとなり、生産性が低下する可能性がある。したがって、運搬車両が作業車両の作業半径内に入る前に、作業機または運搬車両を制御することが望まれている。
 本発明の態様は、作業機と運搬車両とが接触しないように、作業機または運搬車両を制御する制御装置および制御方法を提供することを目的とする。
 本発明の第1の態様によれば、制御装置は、作業機を備える作業車両を制御する制御装置であって、運搬車両の走行経路を取得する経路取得部と、前記走行経路に沿って前記作業機の侵入を制限する制限エリアを設定するエリア設定部と、前記制限エリアと前記作業機との関係に基づいて、前記作業車両または前記運搬車両を制御する信号を出力する信号出力部とを備える。
 上記態様によれば、制御装置は、作業機と運搬車両とが接触しないように、作業機または運搬車両を制御することができる。
第1の実施形態に係る遠隔操作システムの構成を示す概略図である。 第1の実施形態に係る遠隔作業車両の外観図である。 第1の実施形態に係る管理装置の構成を示す概略ブロック図である。 走行経路の例を表す図である。 第1の実施形態に係る遠隔運転室の制御装置の構成を示す概略ブロック図である。 制限エリアの例を示す図である。 制限エリアの断面の例を示す図である。 第1の実施形態に係る遠隔運転室の制御装置による制限エリアの設定方法を示すフローチャートである。 第1の実施形態に係るバケット位置と制限との関係を示す図である。 第2の実施形態に係る遠隔運転室の制御装置の構成を示す概略ブロック図である。
〈第1の実施形態〉
《遠隔操作システム》
 図1は、第1の実施形態に係る作業システムの構成を示す概略図である。
 作業システム1は、遠隔操作によって動作する作業車両100と、1または複数の運搬車両200と、管理装置300と、作業車両100を遠隔操作する遠隔運転室500とを備える。
 運搬車両200は、管理装置300から受信するコースデータ(例えば速度情報、無人運搬車が進むべき座標)に基づいて無人走行する。運搬車両200と管理装置300とは、アクセスポイント360を介した通信により接続される。管理装置300は、運搬車両200から車両の位置および方位を取得し、これらに基づいて運搬車両200の走行に用いるコースデータを生成する。管理装置300は、コースデータを運搬車両200に送信する。運搬車両200は、受信したコースデータに基づいて無人走行する。つまり、作業システム1は、運搬車両200と管理装置300とから構成される無人搬送システムを備える。なお、第1の実施形態に係る作業システム1は、無人搬送システムを備えるが、他の実施形態においては、一部または全部の運搬車が有人運転されてもよい。この場合、管理装置300は、コースデータおよび積込に関する指示の送信を行う必要がないが、運搬車の位置および方位を取得する。
 作業車両100は、遠隔運転室500から送信される操作信号に従って遠隔操作される。作業車両100と遠隔運転室500とは、アクセスポイント360を介した通信により接続される。遠隔運転室500の制御装置540は、オペレータから作業車両100の操作を受け付け、操作信号を作業車両100に送信する。作業車両100は、遠隔運転室500から受信した操作信号に従って動作する。つまり、作業システム1は、作業車両100と遠隔運転室500とから構成される遠隔運転システムを備える。
 作業車両100および運搬車両200は、作業現場(例えば、鉱山、採石場)に設けられる。遠隔運転室500は、作業車両100および運搬車両200から離れた地点(例えば、市街、作業現場内)に設けられる。
《運搬車両》
 第1の実施形態に係る運搬車両200は、ベッセルを備えるオフロードダンプトラックである。なお、他の実施形態に係る運搬車両200は、ダンプトラック以外の運搬車であってもよい。
 運搬車両200は、位置方位演算器210および制御装置220を備える。位置方位演算器210は、運搬車両200の位置および方位を演算する。位置方位演算器210は、GNSS(Global Navigation Satellite System)を構成する人工衛星から測位信号を受信する2つの受信器を備える。GNSSの例としては、GPS(Global Positioning System)が挙げられる。2つの受信器は、それぞれ運搬車両200の異なる位置に設置される。位置方位演算器210は、受信器が受信した測位信号に基づいて、現場座標系における運搬車両200の位置を検出する。位置方位演算器210は、2つの受信器が受信した各測位信号を用いて、一方の受信器の設置位置に対する他方の受信器の設置位置の関係として、運搬車両200の向く方位を演算する。なお、他の実施形態においてはこれに限られず、例えば運搬車両200が慣性計測装置(IMU:Inertial Measurement Unit)を備え、慣性計測装置の計測結果に基づいて方位を演算してもよい。この場合、運搬車両200の走行軌跡に基づいて完成計測装置のドリフトを補正してもよい。慣性計測装置を用いて方位を演算する場合、運搬車両200は演算装置を備えていればよい。
 制御装置220は、位置方位演算器210が検出した位置および方位を管理装置300に送信する。制御装置220は、管理装置300からコースデータおよび排土指示、積込点P3へのアプローチ指示、および積込点P3からの発進指示を受信する。制御装置220は、受信したコースデータに従って運搬車両200を走行させ、または排土指示に従って運搬車両200のベッセルを上下させる。
《作業車両》
 図2は、第1の実施形態に係る作業車両の外観図である。
 第1の実施形態に係る作業車両100は、油圧ショベルである。なお、他の実施形態に係る作業車両100は、油圧ショベル以外の作業車両であってもよい。
 作業車両100は、油圧により作動する作業機110と、作業機110を支持する旋回体120と、旋回体120を支持する走行体130とを備える。
 作業機110は、ブーム111と、アーム112と、バケット113と、ブームシリンダ114と、アームシリンダ115と、バケットシリンダ116と、ブーム角度センサ117と、アーム角度センサ118と、バケット角度センサ119とを備える。
 ブーム111の基端部は、旋回体120の前部にピンを介して取り付けられる。
 アーム112は、ブーム111とバケット113とを連結する。アーム112の基端部は、ブーム111の先端部にピンを介して取り付けられる。
 バケット113は、土砂などを掘削するための刃と掘削した土砂を搬送するための容器とを備える。バケット113の基端部は、アーム112の先端部にピンを介して取り付けられる。
 ブームシリンダ114は、ブーム111を作動させるための油圧シリンダである。ブームシリンダ114の基端部は、旋回体120に取り付けられる。ブームシリンダ114の先端部は、ブーム111に取り付けられる。
 アームシリンダ115は、アーム112を作動するための油圧シリンダである。アームシリンダ115の基端部は、ブーム111に取り付けられる。アームシリンダ115の先端部は、アーム112に取り付けられる。
 バケットシリンダ116は、バケット113を作動するための油圧シリンダである。バケットシリンダ116の基端部は、ブーム111に取り付けられる。バケットシリンダ116の先端部は、バケット113に取り付けられる。
 ブーム角度センサ117は、ブーム111に取り付けられ、ブーム111の傾斜角を検出する。
 アーム角度センサ118は、アーム112に取り付けられ、アーム112の傾斜角を検出する。
 バケット角度センサ119は、バケット113に取り付けられ、バケット113の傾斜角を検出する。
 第1の実施形態に係るブーム角度センサ117、アーム角度センサ118、およびバケット角度センサ119は、地平面に対する傾斜角を検出する。なお、他の実施形態に係る角度センサはこれに限られず、他の基準面に対する傾斜角を検出してもよい。例えば、他の実施形態においては、角度センサが取付部を基準とした相対角を検出するものであってもよいし、各シリンダのストロークを計測しシリンダのストロークを角度に変換することで傾斜角を検出するものであってもよい。
 旋回体120には、運転室121が備えられる。運転室121の上部には、撮像装置122が設けられる。撮像装置122は、運転室121内の前方かつ上方に設置される。撮像装置122は、運転室121前面のフロントガラスを通して、運転室121の前方を撮像する。撮像装置122の例としては、例えばCCD(Charge Coupled Device)センサ、およびCMOS(Complementary Metal Oxide Semiconductor)センサを用いた撮像装置が挙げられる。なお、他の実施形態においては、撮像装置122は、必ずしも運転室121に設けられなくてもよく、撮像装置122は、少なくとも作業対象物と作業機110とを撮像可能な位置に設けられていればよい。
 作業車両100は、撮像装置122、位置方位演算器123、傾斜計測器124、制御装置125を備える。
 位置方位演算器123は、旋回体120の位置および旋回体120が向く方位を演算する。位置方位演算器123は、GNSSを構成する人工衛星から測位信号を受信する2つの受信器1231を備える。2つの受信器1231は、それぞれ旋回体120の異なる位置に設置される。位置方位演算器123は、受信器1231が受信した測位信号に基づいて、現場座標系における旋回体120の代表点(旋回体120の旋回中心)の位置を検出する。
 位置方位演算器123は、2つの受信器1231が受信した各測位信号を用いて、一方の受信器1231の設置位置に対する他方の受信器1231の設置位置の関係として、旋回体120の向く方位を演算する。
 傾斜計測器124は、旋回体120の加速度および角速度を計測し、計測結果に基づいて旋回体120の姿勢(例えば、ロール角、ピッチ角、ヨー角)を検出する。傾斜計測器124は、例えば旋回体120の下面に設置される。傾斜計測器124は、例えば、慣性計測装置(IMU:Inertial Measurement Unit)を用いることができる。
 制御装置125は、撮像装置122が撮像した画像、旋回体120の旋回速度、位置および方位、ブーム111、アーム112およびバケット113の傾斜角、走行体130の走行速度、ならびに旋回体120の姿勢を、遠隔運転室500に送信する。以下、画像、旋回体120の旋回速度、位置および方位、ブーム111、アーム112およびバケット113の傾斜角、走行体130の走行速度、ならびに旋回体120の姿勢を、車両情報ともよぶ。なお、他の実施形態に係る車両情報は、これに限られない。例えば、他の実施形態に係る車両情報は、旋回速度、位置、方位、傾斜角、走行速度、姿勢のいずれかを含まなくてもよいし、その他のセンサによって検出された値を含んでもよいし、検出された値から演算された値を含んでもよい。
 制御装置125は、遠隔運転室500から操作信号を受信する。制御装置540は、受信した操作信号に従って、作業機110、旋回体120、または走行体130を動作させる。
《管理装置》
 図3は、第1の実施形態に係る管理装置の構成を示す概略ブロック図である。
 管理装置300は、運搬車両200の走行を管理する。
 管理装置300は、プロセッサ3100、メインメモリ3200、ストレージ3300、インタフェース3400を備えるコンピュータである。ストレージ3300は、プログラムp3を記憶する。プロセッサ3100は、プログラムp3をストレージ3300から読み出してメインメモリ3200に展開し、プログラムp3に従った処理を実行する。管理装置300は、インタフェース3400を介してネットワークに接続される。
 ストレージ3300は、走行経路記憶部3301、位置情報記憶部3302としての記憶領域を有する。ストレージ3300の例としては、HDD(Hard Disk Drive)、SSD(Solid State Drive)、磁気ディスク、光磁気ディスク、CD-ROM(Compact Disc Read Only Memory)、DVD-ROM(Digital Versatile Disc Read Only Memory)、半導体メモリ等が挙げられる。ストレージ3300は、管理装置300の共通通信線に直接接続された内部メディアであってもよいし、インタフェース3400を介して管理装置300に接続される外部メディアであってもよい。ストレージ3300は、一時的でない有形の記憶媒体である。
 図4は、走行経路の例を表す図である。
 走行経路記憶部3301は、運搬車両200ごとに走行経路Rを記憶する。走行経路Rは、2つのエリアA(例えば、積込場A1と排土場A2)を結ぶあらかじめ定められた接続経路R1、ならびにエリアA内の経路である進入経路R2、アプローチ経路R3および退出経路R4を有する。進入経路R2は、エリアA内において接続経路R1の一端である待機点P1と所定の切り返し点P2とを接続する経路である。アプローチ経路R3は、エリアA内の切り返し点P2と積込点P3または排土点P4とを接続する経路である。退出経路R4は、エリアA内の積込点P3または排土点P4と接続経路R1の他端である出口点P5とを接続する経路である。積込点P3は、作業車両100のオペレータの操作によって設定される点である。切り返し点P2は、積込点P3の位置に応じて管理装置300によって設定される点である。管理装置300は、オペレータから積込点P3の座標の指定する積込点指示信号を受け付け、積込点指示信号に従って積込点P3を設定する。管理装置300は、積込点P3を設定するたびに、進入経路R2、アプローチ経路R3および退出経路R4を計算する。
 位置情報記憶部3302は、各運搬車両200の位置情報および方位情報を記憶する。
 プロセッサ3100は、プログラムp3の実行により、位置情報収集部3101、走行コース生成部3102、転送部3103を備える。
 位置情報収集部3101は、アクセスポイント360を介して運搬車両200から位置情報および方位情報を受信する。位置情報収集部3101は、受信した位置情報および方位情報を位置情報記憶部3302に記憶させる。
 走行コース生成部3102は、走行経路記憶部3301が記憶する走行経路と、位置情報記憶部3302が記憶する位置情報および方位情報とに基づいて、運搬車両200の移動を許可する領域を示すコースデータを生成し、コースデータを運搬車両200に送信する。コースデータは、例えば、運搬車両200が所定の速度で一定時間以内に走行可能かつ他の運搬車両200の走行経路と重複しない領域を表す情報である。走行コース生成部3102は、遠隔運転室500から運搬車両200の停止信号を受信した場合、当該停止信号を運搬車両200に送信する。
 転送部3103は、位置情報収集部3101が収集した運搬車両200の位置情報を遠隔運転室500に送信する。転送部3103は、遠隔運転室500から運搬車両200への操作信号を受信し、当該操作信号をアクセスポイント360を介して運搬車両200に送信する。運搬車両200への操作信号は、進入指示信号、積込完了信号、走行再開信号を含む。進入指示信号は、運搬車両200に積込点P3まで進入することを指示する信号である。積込完了信号は、運搬車両200に積込の完了により積込点P3からの退出を指示する信号である。走行再開信号は、運搬車両200の停止を解除する信号である。
《遠隔運転室》
 遠隔運転室500は、運転席510、表示装置520、第1操作装置530、第2操作装置531、制御装置540を備える。
 表示装置520は、運転席510の前方に配置される。表示装置520は、オペレータが運転席510に座ったときにオペレータの眼前に位置する。表示装置520は、図1に示すように、並べられた複数のディスプレイによって構成されてもよいし、1つの大きなディスプレイによって構成されてもよい。また、表示装置520は、プロジェクタ等によって曲面や球面に画像を投影するものであってもよい。
 第1操作装置530は、遠隔運転システム用の操作装置である。第1操作装置530は、ブームシリンダ114の操作信号、アームシリンダ115の操作信号、バケットシリンダ116の操作信号、旋回体120の左右への旋回操作信号、走行体130の前後進のための走行操作信号の入力を受け付ける。第1操作装置530は、例えば電気式レバーおよび電気式ペダルにより構成される。
 第2操作装置531は、無人搬送システム用の操作装置である。第2操作装置531は、運搬車両200への積込点指示信号、進入指示信号、積込完了信号、走行再開信号の入力を受け付ける。第2操作装置531は、例えばタッチパネル等により構成される。第2操作装置531は、入力された操作信号を管理装置300に送信する。
 第1操作装置530および第2操作装置531は、運転席510の近傍に配置される。第1操作装置530および第2操作装置531は、オペレータが運転席510に座ったときにオペレータの操作可能な範囲内に位置する。
 制御装置540は、作業車両100から受信した画像(例えば、動画像)を表示装置520に表示させ、第1操作装置530の操作を表す操作信号を作業車両100に送信する。
 図5は、第1の実施形態に係る遠隔運転室の制御装置の構成を示す概略ブロック図である。
 制御装置540は、プロセッサ5100、メインメモリ5200、ストレージ5300、インタフェース5400を備えるコンピュータである。ストレージ5300は、プログラムp5を記憶する。プロセッサ5100は、プログラムp5をストレージ5300から読み出してメインメモリ5200に展開し、プログラムp5に従った処理を実行する。制御装置540は、インタフェース5400を介してネットワークに接続される。
 ストレージ5300の例としては、HDD、SSD、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等が挙げられる。ストレージ5300は、制御装置540の共通通信線に直接接続された内部メディアであってもよいし、インタフェース5400を介して制御装置540に接続される外部メディアであってもよい。ストレージ5300は、一時的でない有形の記憶媒体である。
 プロセッサ5100は、プログラムp5の実行により、車両情報取得部5101、表示制御部5102、位置情報取得部5103、経路取得部5104、エリア設定部5105、作業機位置特定部5106、制限判定部5107、操作信号入力部5108、操作信号制限部5109、操作信号出力部5110、停止信号出力部5111を備える。
 車両情報取得部5101は、アクセスポイント360を介して作業車両100から車両情報を取得する。
 表示制御部5102は、車両情報取得部5101が受信した車両情報に含まれる画像を表示するための表示信号を生成し、表示装置520に出力する。
 位置情報取得部5103は、管理装置300から各運搬車両200の位置を取得する。
 経路取得部5104は、管理装置300から各運搬車両200の走行経路を取得する。
 エリア設定部5105は、経路取得部5104が取得した走行経路に基づいて、作業車両100の進入を制限する制限エリアLを設定する。図6は、制限エリアの例を示す図である。図7は、制限エリアの断面の例を示す図である。制限エリアLは、積込場A1内の走行経路R(進入経路R2、アプローチ経路R3、および退出経路R4)に沿って伸びる空間であって、運搬車両200の高さH_vと、運搬車両200の幅W_vに所定の幅(自動運転の誤差)W_errを加算した幅とから決定される断面を有する空間である。制限エリアLは、ショベル座標系に係る空間である。すなわち、エリア設定部5105は、車両情報取得部5101が取得した車両情報に基づいて経路取得部5104が取得した走行経路Rを現場座標系からショベル座標系に変換し、変換された走行経路Rに基づいて制限エリアLを設定する。なお、他の実施形態においては、所定の幅は自動運転の誤差でなくてもよい。また、他の実施形態においては、ショベル座標系を現場座標系に変換してもよいし、ショベル座標系をトラック座標系に変換してもよい。
 作業機位置特定部5106は、車両情報取得部5101が受信した車両情報に基づいて、バケット113の最下点の位置を特定する。バケット113の最下点の位置は、作業車両100のショベル座標系に係る位置である。具体的には、作業機位置特定部5106は、ブーム111の傾斜角と既知のブーム111の長さとに基づいて、ブーム111の長さの垂直方向成分および水平方向成分を求める。同様に、作業機位置特定部5106は、アーム112の長さの垂直方向成分および水平方向成分を求める。作業機位置特定部5106は、作業車両100の位置から、作業車両100の方位および姿勢から特定される方向に、ブーム111およびアーム112の長さの垂直方向成分の和および水平方向成分の和だけ離れた位置を、アーム112の先端の位置として特定する。作業機位置特定部5106は、アーム112の先端の位置とバケット113の傾斜角と既知のバケットの形状とに基づいて、バケット113の鉛直方向の最下点を特定する。
 制限判定部5107は、バケット113の最下点の位置が制限エリア内または制限エリアの直上に位置するか否か、およびバケット113の最下点の高さが制限エリアの高さ以上か否かを判定する。
 操作信号入力部5108は、第1操作装置530から操作信号の入力を受け付ける。操作信号には、ブームシリンダ114の操作信号、アームシリンダ115の操作信号、バケットシリンダ116の操作信号、旋回体120の左右への旋回操作信号、走行体130の前後進のための走行操作信号が含まれる。
 操作信号制限部5109は、制限判定部5107の判定結果に基づいて操作信号入力部5108に入力された操作信号を制限する。具体的には、操作信号制限部5109は、制限判定部5107によってバケット113の最下点の位置が制限エリア内または直上に位置すると判定された場合、ブーム111、アーム112、およびバケット113を下方向に操作する操作信号をキャンセルし、バケット113の最下点の位置を保つ。このとき、操作信号制限部5109は、作業機110の自重でバケット113の最下点の位置が下がらないように、ブームシリンダ114、アームシリンダ115、およびバケットシリンダ116を操作する操作信号を生成する。なお、操作信号制限部5109は、ブームシリンダ114のみを縮めてもよいし、アームシリンダ115のみを縮めてもよいし、ブームシリンダ114およびアームシリンダ115の両方を制御してもよい。また、操作信号制限部5109は、制限判定部5107によってバケット113の最下点の高さが制限エリアの高さ未満であると判定された場合、旋回体120を制限エリアの内側方向へ旋回する操作信号をキャンセルする。
 操作信号出力部5110は、操作信号入力部5108に入力された操作信号または操作信号制限部5109によって制限された操作信号を作業車両100に出力する。
 停止信号出力部5111は、制限判定部5107によってバケット113の最下点の位置が制限エリア内に位置すると判定された場合、運搬車両200を停止させる停止信号を、管理装置300に出力する。
《方法》
 図8は、第1の実施形態に係る遠隔運転室の制御装置による制限エリアの設定方法を示すフローチャートである。
 制御装置540は、一定時間ごとに、図8に示す制限エリアの設定処理を実行する。
 位置情報取得部5103は、管理装置300から、作業車両100および複数の運搬車両200の位置情報を取得する(ステップS1)。また経路取得部5104は、管理装置300から各運搬車両200の走行経路Rを取得する(ステップS2)。エリア設定部5105は、複数の運搬車両200のうち、積込場A1内を走行するものが存在するか否かを判定する(ステップS3)。
 積込場A1内を走行する運搬車両200が存在する場合(ステップS3:YES)、エリア設定部5105は、ステップS2で取得した走行経路Rのうち積込場A1内を走行する運搬車両200に関連付けられたものに基づいて、制限エリアLを設定する(ステップS4)。このとき、積込場A1内を複数の運搬車両200が走行している場合、各運搬車両200について、制限エリアLを設定する。このとき、エリア設定部5105は、積込場A1内に位置するが走行していない運搬車両200(例えば積込点P3に停止しているもの)については、制限エリアLを設定しない。
例えば、エリア設定部5105は、運搬車両200の高さと、運搬車両200の幅に自動運転の誤差を加算した幅とに基づいて、制限エリアLの高さおよび幅を決定する。そしてエリア設定部5105は、決定した高さおよび幅を有する矩形を、積込場A1内の走行経路Rに沿って移動させた軌跡からなる領域を、制限エリアLに決定する。なお、他の実施形態においては、制限エリアLの断面は矩形に限られない。例えば、他の実施形態に係る制限エリアLの断面は台形や半円など、他の形状であってもよい。
 これにより、制御装置540は、積込場A1内に制限エリアLを設定することができる。
 エリア設定部5105が制限エリアLを設定した場合(ステップS4)、または積込場A1内を走行する運搬車両200が存在しない場合(ステップS3:NO)、車両情報取得部5101は、アクセスポイント360を介して作業車両100から車両情報を取得する(ステップS5)。作業機位置特定部5106は、取得した車両情報に基づいて、バケット113の最下点の位置を特定する(ステップS6)。
 制限判定部5107は、バケット113の最下点の位置が制限エリアL内に位置するか否かを判定する(ステップS7)。バケット113の最下点の位置が制限エリアL内に位置する場合(ステップS7:YES)、停止信号出力部5111は、管理装置300に当該制限エリアに関連付けられた運搬車両200を停止させる停止信号を送信する(ステップS8)。管理装置300は、停止信号を受信すると、当該停止信号を停止対象の運搬車両200に出力する。これにより、運搬車両200は停止する。管理装置300は、停止信号を受信している間、当該運搬車両200に停止させる操作信号を出力する。その後、オペレータの操作により、走行再開信号が第2操作装置531に入力され、管理装置300が走行再開信号を運搬車両200に送信すると、運搬車両200は、コースデータに従った走行を再開する。なお、他の実施形態においては、管理装置300から減速信号を受信し、これにより運搬車両200をコース上で減速させてもよい。
 最下点の位置が制限エリアL内にない場合(ステップS7:NO)、または停止信号出力部5111が停止信号を出力した場合、操作信号入力部5108は、第1操作装置530から操作信号の入力を受け付ける(ステップS9)。
 制限判定部5107は、バケット113の最下点の位置が制限エリア内または制限エリアの直上に位置するか否かを判定する(ステップS10)。つまり、制限判定部5107は、上方から見た平面視で制限エリア内に最下点が存在するか否かを判定する。
 最下点の位置が制限エリア内または制限エリアの直上に位置する場合(ステップS10:YES)、操作信号制限部5109は、入力された操作信号のうち、作業機110のシリンダを伸縮させる操作信号を、作業機110の高さを保つ信号を下限値として制限する(ステップS11)。作業機110の高さを保つ信号とは、作業機110の自重による下方への移動を相殺するための操作信号である。ここで、作業機110を下方向(掘削方向)に移動させる操作信号の値を負数とし、上方向(ダンプ方向)に移動させる操作信号の値を正数とする。この場合、作業機110の高さを保つ信号の値は0に近い負数となる。例えば、ブームシリンダ114は伸長することでブーム111を上昇させるため、ブームシリンダ114を伸長させる操作信号の値は正数であり、ブームシリンダ114を縮退させる操作信号の値は負数である。すなわち、作業機110の高さを保つブームシリンダ114の操作信号は、ブームシリンダ114を微小に伸長させる信号となる。
 したがって、入力された操作信号が作業機110を上方向に移動させる信号である場合、操作信号制限部5109は、操作信号を通過させる。入力された操作信号が無方向または作業機110を下方向に移動させる信号である場合、操作信号制限部5109は、操作信号の値を作業機110の高さを保つ信号の値に制限する。
 操作信号制限部5109が操作信号を制限した場合、または最下点が制限エリア内および制限エリアの直上にない場合(ステップS10:NO)、制限判定部5107は、バケット113の最下点の高さが制限エリアの高さ未満であるか否かを判定する(ステップS12)。最下点の高さが制限エリアの高さ未満である場合(ステップS12:YES)、制限判定部5107は、バケット113の最下点の位置が制限エリアL内に位置するか否かを判定する(ステップS13)。バケット113の最下点の位置が制限エリアL内に位置する場合(ステップS13:YES)、操作信号制限部5109は、入力された操作信号のうち、旋回体120を旋回させる旋回操作信号を、キャンセルする(ステップS14)。すなわち、操作信号制限部5109は、旋回操作信号をゼロに制限することで、作業車両100の旋回操作を禁止する。なお、他の実施形態においては、操作信号制限部5109は旋回操作信号を制限することで、作業車両100の旋回操作を減速させてもよい。
 バケット113の最下点の位置が制限エリアL内に位置しない場合(ステップS13:NO)、制限判定部5107は、入力された旋回操作信号が、制限エリアLの内側方向への旋回操作、すなわち制限エリアLに近づく方向への旋回操作を示す信号であるか否かを判定する(ステップS15)。旋回操作信号が、制限エリアLの内側方向への旋回操作である場合、操作信号制限部5109は、入力された操作信号のうち、旋回体120を旋回させる旋回操作信号を、キャンセルする(ステップS14)。
 他方、操作信号制限部5109は、最下点の高さが制限エリアの高さ以上である場合(ステップS12:NO)、または最下点の位置が制限エリアL内に位置せずかつ制限エリアLの外側方向への旋回操作を示す信号である場合(ステップS15:NO)、旋回操作信号を通過させる。
 操作信号制限部5109が旋回操作信号のキャンセルの要否を決定すると、操作信号出力部5110は、操作信号制限部5109によって制限された操作信号(ステップS11およびステップS13で制限がなされていない場合には入力された操作信号)を、管理装置300を介して作業車両100に出力する(ステップS16)。
 図9は、第1の実施形態に係るバケット位置と制限との関係を示す図である。
 上述した制限エリアの設定処理により、作業車両100および運搬車両200は、以下のように動作が制限される。
 バケット113の最下点が制限エリアL内にある場合、すなわち、上方から見た平面視で最下点が制限エリアL内に位置し、かつ最下点の高さが制限エリアLの高さ未満である場合、ステップS8において運搬車両200が停止され、ステップS11において作業機110の下降が禁止され、ステップS14において旋回が禁止される。
 またバケット113の最下点が制限エリアL内にない場合において、上方から見た平面視で最下点が制限エリアL内に位置する場合、ステップS11において作業機110の下降が禁止される。
 またバケット113の最下点が制限エリアL内にない場合において、最下点の高さが制限エリアLの高さ未満である場合、ステップS14において制限エリアLの内側方向への旋回が禁止される。
 上方から見た平面視で最下点が制限エリアL外に位置し、かつ最下点の高さが制限エリアLの高さ以上である場合、作業車両100および運搬車両200の動作は制限されない。
《作用・効果》
 第1の実施形態によれば、制御装置540は、運搬車両200の走行経路Rに沿って制限エリアLを設定し、当該制限エリアLと作業機110との関係に基づいて、作業車両100または運搬車両200を制御する信号を出力する。これにより、制御装置540は、作業機110が運搬車両200の走行経路R上に位置しないように、作業車両100を制御することができる。また、制御装置540は、作業機110が運搬車両200の走行経路R上に位置する場合に、運搬車両200の走行を停止させることができる。したがって、制御装置540は、作業機110と運搬車両200とが接触しないように、作業車両100または運搬車両200を制御することができる。
 また第1の実施形態によれば、制御装置540は、作業機110の最下点が制限エリアL内または制限エリアLの直上に位置する場合に、作業機110を下方向へ移動させる動作を制限する。また、制御装置540は、作業機110の最下点の高さが制限エリアLの高さ未満である場合に、作業機110の旋回動作を制限する。すなわち、第1の実施形態に係る制御装置540は、図9に示すように、作業機110を制限エリアLの内へ向けて移動する動作を制限する。これにより、オペレータに作業機110を制限エリアLの外へ向けて移動させることを促すことができる。
 また第1の実施形態によれば、制御装置540は、作業機110の最下点が制限エリアL内に位置する場合に、運搬車両200を停止させる停止信号を出力する。これにより、制御装置540は、作業機110が走行経路R上に位置するときに運搬車両200が作業機110に向かって走行することを防ぐことができる。
 また第1の実施形態によれば、制御装置540は、作業車両100が存在する積込場A1内に運搬車両200が位置する場合に、制限エリアLと作業機110との関係に基づいて信号を出力する。これにより、制御装置540は、作業車両100と運搬車両200とが十分に離れており接触する可能性が低い場合に、無用な制限をかけることを防ぐことができる。
〈第2の実施形態〉
 第1の実施形態に係る制御装置540は、作業機110を制限エリアLの内へ向けて移動する動作を制限することで、オペレータに作業機110を制限エリアLの外へ向けて移動させることを促す。これに対し、第2の実施形態に係る制御装置540は、作業機110の一部が制限エリアL内に位置する場合に、自動的に作業機110を制限エリアLの外へ向けて移動させる。
 図10は、第2の実施形態に係る遠隔運転室の制御装置の構成を示す概略ブロック図である。
 第2の実施形態に係る制御装置540は、操作信号制限部5109に代えて操作信号上書部5112を備える。
 操作信号上書部5112は、作業機110の最下点が制限エリアL内に位置する場合に、操作信号入力部5108に入力された操作信号を、作業機110を制限エリアLの外へ向けて移動させる操作信号に上書きする。すなわち、操作信号上書部5112は、作業機110の最下点が制限エリアL内に位置する場合に、作業機110を上方向に移動させるための操作信号を自動的に生成する。
 これにより、第2の実施形態に係る制御装置540は、作業機110と運搬車両200とが接触しないように、作業機110を運搬車両200の走行経路Rから速やかに退避させることができる。
〈他の実施形態〉
 以上、図面を参照して一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、様々な設計変更等をすることが可能である。
 例えば、上述した実施形態に係る作業システム1は、遠隔運転室500の制御装置540が、制限エリアLと作業機110との関係に基づいて、作業車両100または運搬車両200を制御するが、これに限られない。例えば、他の実施形態においては、管理装置300が、制限エリアLと作業機110との関係に基づいて、作業車両100または運搬車両200を制御してもよい。また他の実施形態においては、作業車両100の制御装置125が、制限エリアLと作業機110との関係に基づいて作業車両100を制御してもよい。
 また、上述した実施形態に係る制限エリアLは、幅および高さを有する立体的なエリアであるが、これに限られない。例えば、他の実施形態に係る制限エリアLは、高さを有しない平面的なエリアであってもよい。この場合、制御装置540は、上方から見た平面視におけるバケット113の位置と制限エリアLとを比較する。
 上述した実施形態においては、作業車両100と運搬車両200との間の通信と、管理装置300と遠隔運転室500との間の通信とが、1つのアクセスポイント360を介して接続されるがこれに限られない。例えば、他の実施形態においては、作業車両100と運搬車両200との間の通信に用いるアクセスポイントと、管理装置300と遠隔運転室500との間の通信に用いるアクセスポイントとが、独立して設けられてもよい。
 上述した実施形態に係る作業システム1においては、遠隔運転室500の制御装置540が操作信号の制限を行うが、これに限られない。例えば、他の実施形態に係る作業システム1においては、作業車両100の制御装置125が、管理装置300が記憶する運搬車両200の位置情報に基づいて、遠隔運転室500から受信した操作信号を制限してもよい。この場合、プログラムp5は制御装置125のストレージに記憶される。
 上述した実施形態に係る作業システム1においては、積込場A1内に運搬車両200が位置するか否かによって制限エリアLに基づく制限を行うか否かを決定するが、これに限られない。例えば、他の実施形態に係る作業システム1においては、運搬車両200と作業車両100との距離が所定距離以内にあるか否かに基づいて制限エリアLに基づく制限を行うか否かを決定してもよい。すなわち、他の実施形態に係る作業システム1においては、作業車両100の位置を中心とし、所定距離の半径を有するエリアに基づいて制限エリアLに基づく制限を行うか否かを決定してもよい。また他の実施形態においては、運搬車両200が積込場A1に到着していない場合において、運搬車両200と作業車両100との距離が所定距離以内にある場合に、制限エリアLに基づいて遠隔運転室500が警告音を発生させること等により、オペレータに注意を促してもよい。
 上述した実施形態に係る作業システム1は、管理装置300が収集した運搬車両200の位置情報に基づいて制限エリアLに基づく制限を行うが、これに限られない。例えば、他の実施形態に係る作業システム1は、作業車両100が備えるセンサや撮像装置122の画像認識による距離計測結果に基づいて、制限エリアLに基づく制限を行ってもよい。
 上述した実施形態に係る作業システム1においては、運搬車両200が積込場A1内を走行する間、制限エリアLに基づく制限を行うが、これに限られない。例えば他の実施形態に係る作業システム1においては、運搬車両200が積込点P3に停止してから発進するまでの間、運搬車両200のベッセルへの衝撃を緩和するために、当該運搬車両200に係る制限エリアLの制限を解除してもよい。また他の実施形態においては、遠隔運転室500の第2操作装置531に制限解除ボタン等を設け、当該制限解除ボタンの押下を条件に制限エリアLの制限を解除してもよい。
 上述した実施形態に係る制御装置540においては、プログラムp5がストレージ5300に格納される場合について説明したが、これに限られない。例えば、他の実施形態においては、プログラムp5が通信回線によって制御装置540に配信されるものであってもよい。この場合、配信を受けた制御装置540が当該プログラムp5をメインメモリ5200に展開し、上記処理を実行する。
 また、プログラムp5は、上述した機能の一部を実現するためのものであってもよい。例えば、プログラムp5は、上述した機能をストレージ5300に既に記憶されている他のプログラムp5との組み合わせ、または他の装置に実装された他のプログラムp5との組み合わせで実現するものであってもよい。
 また、制御装置125、管理装置300、および制御装置540は、上記構成に加えて、または上記構成に代えてPLD(Programmable Logic Device)を備えてもよい。PLDの例としては、PAL(Programmable Array Logic)、GAL(Generic Array Logic)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array)が挙げられる。この場合、プロセッサによって実現される機能の一部が当該PLDによって実現されてよい。
 上記態様によれば、制御装置は、作業機と運搬車両とが接触しないように、作業機または運搬車両を制御することができる。
1…遠隔操作システム 100…作業車両 200…運搬車両 300…管理装置 3101…位置情報収集部 3102…操作信号生成部 3103…転送部 3301…走行経路記憶部 3302…位置情報記憶部 500…遠隔運転室 510…運転席 520…表示装置 530…第1操作装置 540…制御装置 5101…車両情報取得部 5102…表示制御部 5103…位置情報取得部 5104…経路取得部 5105…エリア設定部 5106…作業機位置特定部 5107…制限判定部 5108…操作信号入力部 5109…操作信号制限部 5110…操作信号出力部 5111…停止信号出力部 5112…操作信号上書部

Claims (7)

  1.  作業機を備える作業車両を制御する制御装置であって、
     運搬車両の走行経路を取得する経路取得部と、
     前記走行経路に沿って前記作業機の侵入を制限する制限エリアを設定するエリア設定部と、
     前記制限エリアと前記作業機との関係に基づいて、前記作業車両または前記運搬車両を制御する信号を出力する信号出力部と
     を備える制御装置。
  2.  前記信号出力部は、前記作業機が前記制限エリアの内へ向けて移動する動作を制限する操作信号を出力する
     請求項1に記載の制御装置。
  3.  前記信号出力部は、前記作業機の少なくとも一部が前記制限エリア内に存在する場合に、前記作業機を前記制限エリアの外へ向けて移動させる操作信号を出力する
     請求項1または請求項2に記載の制御装置。
  4.  前記信号出力部は、前記作業機の少なくとも一部が前記制限エリア内に存在する場合に、前記運搬車両を停止させる停止信号を出力する
     請求項1から請求項3のいずれか1項に記載の制御装置。
  5.  前記信号出力部は、前記作業機の高さが前記制限エリアの高さ未満である場合に、前記作業機の旋回を禁止する制御信号を出力する
     請求項1から請求項4のいずれか1項に記載の制御装置。
  6.  前記信号出力部は、前記作業車両が存在する所定のエリア内に前記運搬車両が位置する場合に、前記制限エリアと前記作業機との関係に基づいて、前記信号を出力する
     請求項1から請求項5のいずれか1項に記載の制御装置。
  7.  作業車両が備える作業機の位置を受信するステップと、
     運搬車両の走行経路に沿った制限エリアと前記作業機の位置との関係に基づいて、前記作業機または前記運搬車両を制御する信号を出力するステップと
     を備える制御方法。
PCT/JP2018/037056 2017-10-04 2018-10-03 制御装置および制御方法 WO2019069983A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2018345469A AU2018345469B2 (en) 2017-10-04 2018-10-03 Control device and control method
CN201880032370.XA CN110651087B (zh) 2017-10-04 2018-10-03 控制装置及控制方法
CA3064369A CA3064369C (en) 2017-10-04 2018-10-03 Control device and control method
US16/614,854 US11634889B2 (en) 2017-10-04 2018-10-03 Control device and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017194689A JP7058100B2 (ja) 2017-10-04 2017-10-04 制御装置および制御方法
JP2017-194689 2017-10-04

Publications (1)

Publication Number Publication Date
WO2019069983A1 true WO2019069983A1 (ja) 2019-04-11

Family

ID=65995090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037056 WO2019069983A1 (ja) 2017-10-04 2018-10-03 制御装置および制御方法

Country Status (6)

Country Link
US (1) US11634889B2 (ja)
JP (1) JP7058100B2 (ja)
CN (1) CN110651087B (ja)
AU (1) AU2018345469B2 (ja)
CA (1) CA3064369C (ja)
WO (1) WO2019069983A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020217977A1 (ja) * 2019-04-24 2020-10-29 株式会社小松製作所 作業機械を制御するためのシステムおよび方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7462457B2 (ja) * 2020-03-30 2024-04-05 株式会社熊谷組 運搬車両の自動運転方法
CN113687647A (zh) * 2020-05-15 2021-11-23 长沙智能驾驶研究院有限公司 矿车运输驾驶控制方法、装置、矿车和存储介质
JP7438851B2 (ja) * 2020-06-01 2024-02-27 本田技研工業株式会社 移動体制御装置、移動体、移動体管理システム、移動体制御方法、およびプログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07150594A (ja) * 1993-11-26 1995-06-13 Hitachi Constr Mach Co Ltd 建設機械の作業高さ制限装置
WO2016013687A1 (ja) * 2015-08-31 2016-01-28 株式会社小松製作所 鉱山の管理システム
JP2016089389A (ja) * 2014-10-30 2016-05-23 日立建機株式会社 作業機械の旋回支援装置
JP2018024997A (ja) * 2016-08-08 2018-02-15 日立建機株式会社 建設機械の作業機軌道修正システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090043462A1 (en) * 2007-06-29 2009-02-12 Kenneth Lee Stratton Worksite zone mapping and collision avoidance system
JP5570332B2 (ja) 2010-07-13 2014-08-13 住友重機械工業株式会社 旋回作業機械及び旋回作業機械の制御方法
US20120130582A1 (en) * 2010-11-22 2012-05-24 Ramadev Burigsay Hukkeri Machine control system implementing intention mapping
CN103857851B (zh) * 2011-10-19 2016-03-09 住友重机械工业株式会社 回转作业机械及回转作业机械的控制方法
JP5707313B2 (ja) * 2011-12-19 2015-04-30 日立建機株式会社 作業車両
JP6329904B2 (ja) * 2014-03-12 2018-05-23 株式会社小松製作所 運搬車両の運転解析装置および運転解析方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07150594A (ja) * 1993-11-26 1995-06-13 Hitachi Constr Mach Co Ltd 建設機械の作業高さ制限装置
JP2016089389A (ja) * 2014-10-30 2016-05-23 日立建機株式会社 作業機械の旋回支援装置
WO2016013687A1 (ja) * 2015-08-31 2016-01-28 株式会社小松製作所 鉱山の管理システム
JP2018024997A (ja) * 2016-08-08 2018-02-15 日立建機株式会社 建設機械の作業機軌道修正システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020217977A1 (ja) * 2019-04-24 2020-10-29 株式会社小松製作所 作業機械を制御するためのシステムおよび方法
JP2020180452A (ja) * 2019-04-24 2020-11-05 株式会社小松製作所 作業機械を制御するためのシステムおよび方法
AU2020263550B2 (en) * 2019-04-24 2023-01-12 Komatsu Ltd. System and method for controlling work machine
JP7257240B2 (ja) 2019-04-24 2023-04-13 株式会社小松製作所 作業機械を制御するためのシステムおよび方法
AU2022271387B2 (en) * 2019-04-24 2024-03-14 Komatsu Ltd. System and method for controlling work machine

Also Published As

Publication number Publication date
CA3064369C (en) 2022-08-30
JP7058100B2 (ja) 2022-04-21
US11634889B2 (en) 2023-04-25
CA3064369A1 (en) 2019-04-11
US20200208374A1 (en) 2020-07-02
JP2019065662A (ja) 2019-04-25
AU2018345469A1 (en) 2019-12-12
CN110651087B (zh) 2022-11-15
AU2018345469B2 (en) 2021-07-22
CN110651087A (zh) 2020-01-03

Similar Documents

Publication Publication Date Title
JP7404414B2 (ja) 作業機械制御装置および制御方法
AU2021200371B2 (en) Work system, work machine, and control method
AU2018345153B2 (en) Loading machine control device and control method
WO2019069983A1 (ja) 制御装置および制御方法
US11663748B2 (en) Display control device, display control system, and display control method
JP7311667B2 (ja) 作業システムおよび制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18865218

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3064369

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2018345469

Country of ref document: AU

Date of ref document: 20181003

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18865218

Country of ref document: EP

Kind code of ref document: A1