[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013065312A1 - 遠隔制御システム - Google Patents

遠隔制御システム Download PDF

Info

Publication number
WO2013065312A1
WO2013065312A1 PCT/JP2012/007019 JP2012007019W WO2013065312A1 WO 2013065312 A1 WO2013065312 A1 WO 2013065312A1 JP 2012007019 W JP2012007019 W JP 2012007019W WO 2013065312 A1 WO2013065312 A1 WO 2013065312A1
Authority
WO
WIPO (PCT)
Prior art keywords
movement
unit
remote control
target position
moving
Prior art date
Application number
PCT/JP2012/007019
Other languages
English (en)
French (fr)
Inventor
酒井 龍雄
村井 亮介
弘幸 上松
愼太郎 木下
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP12846550.7A priority Critical patent/EP2775365A4/en
Priority to JP2013541634A priority patent/JP5828088B2/ja
Priority to US14/355,343 priority patent/US20140297066A1/en
Publication of WO2013065312A1 publication Critical patent/WO2013065312A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0038Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement by providing the operator with simple or augmented images from one or more cameras located onboard the vehicle, e.g. tele-operation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0044Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement by providing the operator with a computer generated representation of the environment of the vehicle, e.g. virtual reality, maps

Definitions

  • the present invention relates to a remote control system for remotely operating a mobile device.
  • a remote control system that can remotely operate a mobile device at a hospital or commercial facility or facility such as an exhibition hall or museum.
  • Such a remote control system can cause the mobile device to substitute for the role of the worker, and to improve the efficiency of the work performed at the facility.
  • the mobile device provided with an interface unit for assisting the dialogue can be arranged at each of a plurality of hospitals to assist the dialogue between the patient and a doctor located at a remote place away from the patient.
  • the security guard can operate the mobile device having the surveillance camera in the remote control room, so that the security guard can perform security without going to the facility.
  • a remote control system includes a remote control device for the operator to operate and a movement device that moves according to the operation instruction transmitted from the remote control device (see, for example, Patent Document 1). .
  • FIG. 15 is a diagram showing a monitor 1 of the remote control device in the remote control system of Patent Document 1.
  • the moving device (robot) of Patent Document 1 transmits an image captured by a camera of the moving device to a remote control device.
  • the remote control device displays the image received from the mobile device on the monitor 1 of the remote control device shown in FIG.
  • the floor plane grid 6 and the low tension tape 7 are superimposed on the image 5 displayed on the monitor 1.
  • the floor plane grid 6 represents the front plane of the mobile device with a grid of set dimensions in order to supply the user with the relative distance between the object and the mobile device within the camera view.
  • the tension tape 7 also indicates the angle of relative rotation of the moving device with respect to the camera.
  • the operator of the remote control system grasps the sense of distance with the floor plane grid 6 and the low tension tape 7, moves the cursor 3 with the mouse of the remote control device, and sets the movement target position 2 in the image 5. Do. Then, position information of the movement target position 2 is transmitted from the remote control device to the mobile device. Then, the mobile device moves toward the movement target position 2 received from the remote control device. According to Patent Document 1, by using such a remote control system, an operator can perform remote control on the mobile device.
  • the conventional remote control system it is difficult for the operator to intuitively grasp the movement target position 2 in the three-dimensional space displayed on the monitor 1, and it is difficult to set the movement target position on the monitor 1 There is a case. Specifically, in the conventional remote control system, in the three-dimensional space displayed on the monitor 1, the operator intuitively grasps the distance between the surrounding environment (such as a wall) and the position of the movement target position. In some cases, it is difficult to set a movement target position on the monitor 1. Further, in the conventional remote control system, it may be difficult for the operator to grasp the position of the moving device in the three-dimensional ambient environment on the image 5, and it may be difficult to set the optimum movement target position.
  • the present invention solves these problems, and an object of the present invention is to provide a remote control system capable of efficiently moving a moving device to a movement target position.
  • a remote control system is a system including a mobile device and a remote control device, and the remote control device includes an operation unit and the operation unit.
  • a communication unit that transmits the input movement target position to the mobile device; and a detection unit that detects an input value of the operation unit as a change amount, and the mobile device stores the map information.
  • a control unit autonomously moving to the movement target position along a movement path, and a control unit autonomously moving while changing the movement target position according to the amount of change.
  • FIG. 1 is a schematic view of a remote control system according to a first embodiment of the present invention
  • FIG. 2A is a schematic explanatory view of a monitor and an operation unit at the time of operation according to the first embodiment
  • FIG. 2B is a schematic explanatory view of the monitor and operation unit at the time of forward operation according to the first embodiment
  • FIG. 2C is a schematic explanatory view of a monitor and an operation unit at the time of the right turn operation according to the first embodiment
  • FIG. 2D is a schematic explanatory view of a monitor and an operation unit at the time of the right rotation operation according to the first embodiment
  • FIG. 1 is a schematic view of a remote control system according to a first embodiment of the present invention
  • FIG. 2A is a schematic explanatory view of a monitor and an operation unit at the time of operation according to the first embodiment
  • FIG. 2B is a schematic explanatory view of the monitor and operation unit at the time of forward operation according to the first embodiment
  • FIG. 2C is
  • FIG. 3 is a flowchart showing setting operation of a movement target position by the remote control device according to the first embodiment
  • FIG. 4A is a diagram showing a monitor of the remote control device in the first state according to the first embodiment
  • FIG. 4B is a diagram showing a monitor of the remote control device in the second state according to the first embodiment
  • FIG. 4C is a diagram showing a monitor of the remote control device in the third state according to the first embodiment
  • FIG. 4D is a diagram showing a monitor of the remote control device in the fourth state according to the first embodiment
  • FIG. 5 is a diagram showing nodes of map information according to the first embodiment
  • FIG. 6 is a diagram showing a second movement path of the remote control device according to the first embodiment
  • FIG. 7 is a diagram showing a second movement route of the remote control device in which the setting of the movement target position according to the first embodiment is changed
  • FIG. 8A is a flowchart showing the first half of a series of flows of remote control according to the first embodiment
  • FIG. 8B is a flowchart showing the second half of the remote control series of flows according to the first embodiment
  • FIG. 9 is a schematic view showing the mobile apparatus according to the first embodiment and the periphery thereof
  • FIG. 10 is a schematic view of a remote control device according to a second embodiment of the present invention
  • FIG. 11 is a diagram showing the relationship between the first icon and the wall image according to the second embodiment
  • 12A is a schematic view of a remote control system according to a third embodiment of the present invention
  • 12B is a view of an image of the monitor of the remote control device according to the third embodiment as viewed from above the mobile device
  • 12C is a diagram of an image obtained by superimposing an image obtained by the image forming unit of the surrounding imaging unit on the map information in the monitor of the remote control device according to the third embodiment
  • 12D is a diagram of a monitor of the remote control device according to a modification of the third embodiment
  • FIG. 13 is a diagram showing a monitor of the remote control unit according to the third embodiment
  • FIG. 14 is a view showing a monitor of the remote control device according to the fourth embodiment of the present invention
  • FIG. 15 is a diagram showing a monitor of a conventional remote control device.
  • FIG. 1 is a schematic view of a remote control system 11 according to a first embodiment of the present invention.
  • the remote control system 11 of the first embodiment is a system comprising at least a mobile device 12 and a remote control device 13.
  • the remote control system 11 of the first embodiment is a system in which the mobile device 12 moves autonomously based on the movement target position from the remote control device 13.
  • the movement route means a route generated by the first generation unit 53 in order for the mobile device 12 to move autonomously.
  • the movement device 12 generates a movement path by the first generation unit 53 while acquiring environmental information on the periphery up to the movement target position, and drives a driving unit such as the driving wheel 22a or a leg along the movement path. It moves autonomously and follows the movement target position.
  • the mobile device 12 and the remote control device 13 are connected by wireless communication, and transmit and receive various information.
  • the operator of the remote control system 11 operates the operation unit 32 of the remote control device 13 to set the movement target position of the moving device 12.
  • an operator at a remote place moves the position of the first icon 36 displayed on the first monitor 31 of the remote control device 13 using the operation unit 32 of the remote control device 13 to set the movement target position Do.
  • the first icon 36 is an icon indicating the movement target position on the first monitor 31.
  • the remote control device 13 wirelessly transmits the movement target position from the second communication unit 33 to the first communication unit 29 of the mobile device 12.
  • the mobile device 12 recognizes the current position in the map information stored in advance.
  • the current position includes information on the current posture of the moving device 12 in addition to the information on the current position of the moving device 12.
  • the movement target position includes information of the movement target attitude of the movement device 12 in addition to the information of the movement target position of the movement device 12. The mobile device 12 having finished recognizing the current position autonomously moves toward the movement target position set by the remote control device 13.
  • the first predetermined time is a time to set a second movement route using a node when the current position of the mobile device 12 does not change for this time or more.
  • the second predetermined time is a timing at which the mobile device 12 updates the travel route.
  • the third predetermined time is communication timing between the mobile device 12 and the remote control device 13.
  • the fourth predetermined time will be difficult to reach the movement target position. It is time to notify the 13 operators.
  • the first predetermined distance is a distance for setting a second movement path using a node when a distance ⁇ D (or ⁇ E) described later is greater than or equal to this distance.
  • the second predetermined distance is a distance for notifying the operator of the remote control device 13 that the distance ⁇ D (or ⁇ E) described later becomes too large.
  • the third predetermined distance is a distance set for determination of the arrival of the moving device 12 to the movement target position, which is set around the movement target position.
  • the fourth predetermined distance is a distance ⁇ D for returning from the second movement route using the node to the normal first movement route.
  • the fifth predetermined distance is a distance for recognizing an object moving more than this distance as a moving obstacle as a result of sensing by the first acquisition unit 27.
  • the sixth predetermined distance is a distance for notifying the operator of the remote control device 13 that it is difficult to reach the movement target position when the above-described fourth predetermined time or more elapses above this distance.
  • the seventh predetermined distance is a distance within a range in which the first acquisition unit 27 can perform sensing.
  • the first movement route is a movement route for normal movement of the moving device 12 and is a shortest route between the current position of the moving device 12 and the movement target position.
  • the second movement route is a movement route of the moving device 12 passing through a route connecting nodes, and is a movement route as a measure when it is not possible to move along the first movement route.
  • the moving device 12 includes a vehicle body 21, a drive unit 22, a first storage unit 24, a first acquisition unit 27, a battery 28, a first communication unit 29, an interface unit 30, and a second storage unit 70. , And a first control unit 41.
  • the first storage unit 24 is a movement information storage unit that stores movement information of the moving device 12.
  • the second storage unit 70 is a map information storage unit that stores map information.
  • the first acquisition unit 27 is an environmental information acquisition unit that acquires environmental information around the mobile device 12 using a sensor.
  • the first control unit 41 includes a first recognition unit 23, a second control unit 26, a first generation unit 53, a second generation unit 74, a temporary target position generation unit 71, and a first calculation unit 72. And a first evaluation unit 73.
  • the first recognition unit 23 is a self position recognition unit that recognizes the position of the moving device 12.
  • the second control unit 26 is a traveling control unit that controls the traveling of the moving device 12.
  • the first generation unit 53 is a route generation unit that generates a moving route on which the moving device 12 travels.
  • the second generation unit 74 is an obstacle avoidance point generation unit that generates an obstacle avoidance point.
  • the temporary target position generation unit 71 generates a temporary target position for traveling of the moving device 12 on the moving route based on the moving route, the current position, and the moving target position at a predetermined cycle. That is, in order for the moving device 12 to move along the moving route, the temporary target position generating unit 71 temporarily sets the target position on the moving route sequentially, and sequentially moves toward the moving destination. Is moving.
  • the first evaluation unit 73 is a movement amount evaluation unit that evaluates the movement amount of the movement device 12 by detecting the amount of change between the movement target position and the current position.
  • the first calculation unit 72 is a distance calculation unit that calculates the distance between the moving device 12 and the movement target position and the current position.
  • the processing and operation of the mobile apparatus 12 of the first embodiment are controlled by the first control unit 41 and the like. Specifically, the processing such as correction or comparison of the mobile device 12 according to the first embodiment and the mobile operation are performed by the first recognition unit 23, the first storage unit 24, the second control unit 26, and the first acquisition unit 27.
  • the first communication unit 29, the first generation unit 53, the second storage unit 70, the second generation unit 74, and the first evaluation unit 73 are appropriately combined and used.
  • the drive unit 22 has a pair of motors 22M rotated forward and reverse by the battery 28, and a pair of drive wheels 22a rotated forward and reverse independently by the pair of motors 22M.
  • Each of the pair of motors 22M is provided with an encoder 22E that measures the rotational speed and the rotational speed.
  • the second control unit 26 detects the moving distance and the moving direction of the moving device 12 based on the output of the pair of encoders 22E.
  • the number of motors 22M and encoders 22E is an example, and may be an arbitrary number.
  • the speed of the moving device 12 is not constant but can be changed as appropriate. Note that the maximum speed of the moving device 12 is preset.
  • the second storage unit 70 stores map information in advance.
  • the map information also includes environmental information of environmental objects.
  • the environmental information of the surrounding environment is the information of the structure of the building where the mobile device 12 travels, and is, for example, the information of the passage 80P of the building, the wall 42, or the stairs.
  • the area around the down stairs where the risk of an accident due to the falling of the moving device 12 exists is set in the map information as the movement prohibited region of the moving device 12 from the viewpoint of safety.
  • the map information includes nodes 45 (positional coordinates) disposed at appropriate intervals on the passage 80P where the mobile apparatus 12 can move, and information on the connection relationship of the nodes 45 as environment information. .
  • both ends of the movement prohibited line segment are absolute coordinates in order to display a line segment indicating the boundary of the environment and the movement prohibited area as the movement prohibited line segment.
  • the information indicated by (x 1 , y 1 ) and (x 2 , y 2 ) is included.
  • the surface of the wall 42 which is an example of the environmental information displayed on the first monitor 31 of the remote control device 13 is recorded in the map information as a movement prohibited line segment.
  • the environment or movement prohibited area having a certain area is configured by combining movement prohibited line segments so as to surround the area. Note that, for example, the method disclosed in Japanese Patent No. 3842247 can be used to generate the movement route of the movement device 12.
  • the movement target position set by the remote control device 13 is stored as absolute coordinates, and environment information acquired by the first acquisition unit 27 is stored.
  • the first acquisition unit 27 acquires, as environmental information, a wall 42 or an obstacle of the passage 80P in which the moving device 12 moves, using a sensor.
  • This sensor can be configured by a rider (Light Detection And Ranging) as an example.
  • the rider is provided at the lower center of the front of the vehicle body 21 to detect an environment around the moving device 12 and scans the front side in the traveling direction of the moving device 12. The rider shakes the laser beam in the scan plane to obtain the distance from the moving device 12 to the surrounding environment.
  • the first acquisition unit 27 scans intermittently in a fixed cycle, and sets the first set of distance data acquired for each scan once as environment information at each time point in time series. It is stored in the storage unit 24.
  • the first acquisition unit 27 is connected to the first storage unit 24.
  • the first communication unit 29 is a wireless communication device, and transmits and receives various information to and from the remote control device 13.
  • the first communication unit 29 is connected to the second storage unit 70, the first recognition unit 23, and the interface unit 30.
  • the interface unit 30 includes, for example, a touch panel, a camera, a microphone, and a speaker.
  • the interface unit 30 is a device that performs various settings of the mobile device 12 and is a device that supports communication between an operator who operates the remote control device 13 and a person near the mobile device 12.
  • Image information or sound information acquired by the camera or microphone of the interface unit 30 is sent to the remote control device 13 via the communication units 29 and 33. Further, the image information or the voice information sent from the remote control device 13 is output from the interface unit 30 through the communication units 33 and 29.
  • the first recognition unit 23 of the first control unit 41 first teaches the current position of the mobile device 12 as an initial value by an input from a person via the interface unit 30 or recognition by the first acquisition unit 27. And recognize the current position (self position) of the moving device 12. After that, the first recognition unit 23 detects the amount of change from the initial value of the moving device 12 first recognized by the first evaluation unit 73 based on the output of the encoder 22E of the drive unit 22, and moves in absolute coordinates The current position of the device 12 is recognized. Here, only by the recognition based on the output of the encoder 22E, an error between the actual position of the moving device 12 and the current position may occur due to, for example, the slip of the drive wheel 22a.
  • a shape such as a wall of a building is recognized from environmental information obtained by the first acquisition unit 27 and is recognized by the first recognition unit 23 and stored in the first storage unit 24.
  • the information of the wall 42 and the information of the wall of the building included in the map information of the second storage unit 70 are compared.
  • the first recognition unit 23 is connected to the interface unit 30, the first acquisition unit 27, the first storage unit 24, the second storage unit 70, the first evaluation unit 73, and the encoder 22E. .
  • the information on the current position recognized by the first recognition unit 23 is transmitted to the second communication unit 33 via the first communication unit 29 every third predetermined time (for example, every ms).
  • the first generation unit 53 of the first control unit 41 connects a plurality of nodes included in the map information of the second storage unit 70 to form a node connection path, and the movement path from the current position to the movement target position is Generate
  • the movement target position is set in the first storage unit 24 as absolute coordinates, and is input from the first storage unit 24 to the first generation unit 53.
  • the first generation unit 53 is connected to the first storage unit 24 and the second control unit 26 respectively.
  • the second control unit 26 controls the pair of motors 22M of the drive unit 22 based on the movement path generated by the first generation unit 53 and the output of the encoder 22E to direct the movement device 12 to the movement target position. Move autonomously.
  • the second control unit 26 is connected to the motor 22M and the encoder 22E, respectively.
  • the first calculation unit 72 of the first control unit 41 is connected to the first storage unit 24 and the first recognition unit 23, and calculates the distance ⁇ D between the movement target position and the current position.
  • the first evaluation unit 73 of the first control unit 41 detects the amount of change, which is the input value detected by the first detection unit 32 b of the operation unit 32, as the amount of change at the operation unit 32. And output to the first storage unit 24 or the like.
  • the first detection unit 32 b is an input detection unit that detects an input value based on the amount of operation of the operation unit 32.
  • the second generation unit 74 of the first control unit 41 generates an obstacle avoidance point outside the movement path, and generates an avoidance path of the movement device 12.
  • the avoidance route means a route on which the mobile device 12 traveling on the movement route travels temporarily away from the movement route in order to avoid an obstacle.
  • the moving device 12 is a movement set as an absolute coordinate in the first storage unit 24 while avoiding a collision with a surrounding environment or an obstacle based on the environmental information acquired by the first acquisition unit 27.
  • the vehicle travels along the passage 80P under the control of the second control unit 26 toward the target position. That is, the moving device 12 has a function of automatically avoiding an environment or an obstacle detected by the first acquisition unit 27 and moving to the movement target position.
  • the second generation unit 74 generates an obstacle avoidance point.
  • the moving device 12 travels toward the obstacle avoidance point generated by the second generation unit 74, the moving device 12 travels away from the moving path, and the obstacle is avoided. Then, after the avoidance, the moving device 12 returns to the movement route before the avoidance and moves toward the movement target position.
  • the remote control device 13 includes a first monitor 31, a second monitor 30a, a third storage unit 34, an operation unit 32, a second calculation unit 77, a second communication unit 33, and a notification unit 75.
  • the second monitor 30 a is a communication monitor for communicating with people near the mobile device 12.
  • the operation unit 32 has, for example, a joystick 32 c.
  • the second operation unit 77 performs an operation of changing the movement target position stored in the third storage unit 34 to a new movement target position by adding the input value of the operation detected by the first detection unit 32 b. It is an operation unit.
  • the first monitor 31 is, for example, a liquid crystal display device.
  • the first monitor 31 displays an image in which the image of the second icon 35 and the image of the first icon 36 are superimposed by the image forming unit 31 a of the first monitor 31 on the image of the map information around the moving device 12.
  • the second icon 35 is a mobile device icon indicating the current position of the mobile device 12.
  • the first icon 36 is a movement target position icon indicating the movement target position of the movement device 12.
  • the second monitor 30a is, for example, a liquid crystal display device.
  • the second monitor 30a displays an image acquired by the interface unit 30 of the mobile device 12 and transmitted through the communication units 29 and 33. By using the second monitor 30a, the operator of the remote control device 13 can communicate with people around the mobile device 12 using images or video while being at a remote place.
  • the third storage unit 34 shares information with the first storage unit 24 of the mobile device 12 by transmitting and receiving information by wireless communication via the communication units 29 and 33. That is, when the movement target position is stored in the third storage unit 34, the movement target position is also stored in the first storage unit 24 of the mobile apparatus 12 by transmission and reception via the communication units 33 and 29. When the current position of the mobile device 12 is stored in the first storage unit 24 of the mobile device 12, the current position is also stored in the third memory unit 34 by transmission and reception via the communication units 29 and 33.
  • the operation unit 32 is an example of the operation unit for changing the movement target position stored in the first storage unit 24 by communication via the communication units 33 and 29.
  • the operation unit 32 first detects an input value based on an operation applied to the joystick 32 c from the operator of the remote control device 13 as a change amount by the first detection unit 32 b of the operation unit 32. Then, the movement target position is changed by the second calculation unit 77 according to the detected amount of change, and the movement target position changed via the communication units 33 and 29 is transmitted, and the movement stored in the first storage unit 24 is performed. Change the target position.
  • the joystick 32c is provided with a button 32a.
  • the movement target position is reset via the communication units 33 and 29 so that the movement target position is set to the current position. In order to be able to instruct.
  • the notification unit 75 causes the remote control device 13 to display voice or image, for example, when the distance ⁇ D becomes less than a third predetermined distance described later.
  • the operation resistance of the operation unit 32 is increased (a resistance is applied to the joystick 32c by a motor or the like), a sound is emitted, a light is emitted, and a movement target position is set to the current position. Display to reset, etc.
  • the notification unit 75 notifies that the moving device 12 is moving on a second movement route, which will be described later.
  • the second communication unit 33 is a wireless communication device, and transmits and receives various types of information to and from the first communication unit 29 of the mobile device 12.
  • the second communication unit 33 is connected to the first monitor 31, the second monitor 30 a, the third storage unit 34, and the operation unit 32.
  • FIG. 2A is a schematic explanatory view showing the first monitor 31 and the operation unit 32 of the remote control device 13 at the start of operation of the moving device 12 according to the first embodiment.
  • FIG. 2B is a schematic explanatory view showing the first monitor 31 and the operation unit 32 of the remote control device 13 at the time of forward operation according to the first embodiment.
  • FIG. 2C is a schematic explanatory view showing the first monitor 31 and the operation unit 32 of the remote control device 13 at the time of the right turn operation according to the first embodiment.
  • FIG. 2D is a schematic explanatory view showing the first monitor 31 and the operation unit 32 of the remote control device 13 at the time of the right rotation operation according to the first embodiment.
  • the first control unit 41 of the mobile device 12 sets the current position (Xa, Ya, Aa) of the mobile device 12 to the mobile device 12. It substitutes in the movement target position (Xt, Yt, At) of to make an initial value.
  • the position (Xt, Yt) is the absolute coordinates of the x axis and y axis of the map information of the moving target position
  • the position (Xa, Ya) is the absolute coordinates of the x axis and y axis of the map information of the current position. It is.
  • the x-axis is the traveling direction of the moving device 12, and the y-axis is the direction orthogonal to the traveling direction of the moving device 12.
  • the attitude (At) is an angle (moving target attitude) formed between the x axis at the moving target position and the direction of the moving device 12, and is information included in the moving target position.
  • the posture (Aa) is an angle (current posture) formed between the x-axis at the current position and the orientation of the moving device 12, and is information included in the current position.
  • the moving device 12 is in a stopped state, and the second icon 35 and the first icon 36 are superimposed and displayed on the first monitor 31 by the image forming unit 31 a.
  • the input value of the operation unit 32 is (0, 0, 0). That is, in the case of FIG. 2A, the operation of the operation unit 32 is “stop”.
  • FIG. 2B the operation of the operation unit 32 is “advance”.
  • the first detection unit 32b of the remote control device 13 operates the operation unit 32.
  • the first icon 36 is separated from the second icon 35 by a distance corresponding to the input value (dX, 0, 0) based on the input value (dX, 0, 0) detected by the first detection unit 32 b. Is displayed on the first monitor 31 at the second position.
  • the second operation unit 77 of the remote control device 13 adds this input value to the movement target position stored in the third storage unit 34 to add a new movement target position (Xt ′, Yt ′, At ′).
  • the new movement target position (Xt ′, Yt ′, At ′) the movement target position (Xt, Yt, At) + the input value (dX, 0, 0) is calculated and changed.
  • the position of the first icon 36 is a position separated from the position of the second icon 35 by the distance dX in the traveling direction of the moving device 12 ( See Figure 2B).
  • the mobile device 12 When the mobile device 12 receives the new movement target position transmitted from the second communication unit 33 of the remote control device 13 by the first communication unit 29, the new movement based on the control of the first control unit 41 causes the new movement to be received.
  • the movement is started autonomously toward the target position.
  • the moving device 12 moves linearly in the forward direction of the moving device 12 in which the first icon 36 is set.
  • FIG. 2C the operation of the operation unit 32 is “turn right”.
  • the joystick 32c is slanted forward and obliquely right by the operator to perform a right-turn operation of the moving device 12 (plus direction of x axis (up direction of FIG. 2C) and minus direction of y axis (figure
  • the first detection unit 32b of the operation unit 32 of the remote control device 13 inputs the input values (dX, dX ⁇ cos ( ⁇ a), dA) of the operation unit 32).
  • the first icon 36 is displayed on the first monitor 31 at a position separated from the second icon 35.
  • ⁇ a is an angle between the x axis and the joystick 32c.
  • the first communication unit 29 of the mobile device 12 receives a new movement target position from the second communication unit 33 of the remote control device 13, and starts autonomous movement toward the movement target position. In the case shown in FIG. 2C, the mobile device 12 moves forward while curving to the right, and moves autonomously until the current position of the mobile device 12 becomes the same as the movement target position.
  • FIG. 2D remote control at the time of right rotation operation of the moving apparatus 12 in 1st Embodiment is demonstrated using FIG. 2D.
  • the operation of the operation unit 32 is “clockwise rotation”.
  • the second control of the operation unit 32 of the remote control device 13 is performed.
  • the 1 detection unit 32 b detects input values (0, 0, dA) of the operation unit 32.
  • the first icon 36 on the first monitor 31 of the remote control device 13 rotates clockwise (clockwise). Then, the first communication unit 29 of the mobile device 12 receives a new movement target position from the second communication unit 33 of the remote control device 13, and starts movement toward the movement target position.
  • FIG. 3 is a flowchart showing the setting operation of the movement target position by the remote control device 13 according to the first embodiment.
  • step S01 the second arithmetic unit 77 of the remote control device 13 acquires the current position of the mobile device 12 from the first recognition unit 23 of the mobile device 12 via the communication units 29 and 33. Specifically, the second communication unit 33 of the remote control device 13 transmits the current position (Xa, Ya, Aa) of the mobile device 12 from the first recognition unit 23 of the mobile device 12 via the first communication unit 29.
  • Step S01 is a mobile device information acquisition step of acquiring information of the mobile device 12.
  • Step S01A the current position (Xa, Ya, Aa) of the moving device 12 is substituted into the movement target position (Xt, Yt, At) of the moving device 12 by the first control unit 41, and Do.
  • Step S01A is an initial value setting step only when setting an initial value of the mobile device 12.
  • step S02 the input value of the operation unit 32 is detected by the first detection unit 32b.
  • the tilt of the joystick 32c is detected by the first detection unit 32b as an input value (dXt, dYt, dAt) when the operator operates the joystick 32c.
  • Step S02 is an operation detection step of detecting an input value by the operation of the operation unit 32.
  • Step S03 is a movement target position generation step of generating a new movement target position based on the operation of the operation unit 32.
  • step S04 the remote control device 13 forms an image of the position of the first icon 36 on the first monitor 31 in accordance with the new movement target position generated by the second calculation unit 77 in step S03. Update in section 31a. Further, the display of the second icon 35 on the first monitor 31 is updated by the image forming unit 31a in accordance with the current position of the moving device 12 acquired in step S01. Step S04 is a monitor display update step of updating the display of the first monitor 31 of the remote control device 13.
  • step S05 the movement target position generated by the second calculation unit 77 in step S03 is transmitted from the second communication unit 33 to the first communication unit 29 of the mobile apparatus 12, and is transmitted to the first storage unit 24.
  • Step S05 is a movement target position transmitting step for transmitting the movement target position from the remote control device 13 to the mobile device 12.
  • the movement target position is changed by the operation applied to the operation unit 32 of the remote control device 13 by repeating steps S01 to S05 in FIG. 3, and the movement target in the first storage unit 24 of the movement device 12 Perform position setting operation.
  • the mobile device 12 receives the movement target position transmitted from the second communication unit 33 of the remote control device 13 by the first communication unit 29, the movement target position received is used as the new movement target position in the first storage unit 24. Update and start autonomous movement toward this movement target position.
  • the distance (interval) ⁇ D between the current position of the mobile device 12 and the movement target position is greater than or equal to a first predetermined distance, or the current position does not change for more than a first predetermined time
  • the first generation unit 53 generates a second movement route including a route connecting the nodes using the node 45 included in the map information.
  • FIGS. 4A to 4D are diagrams showing the first monitor 31 of the remote control device 13 in each state according to the first embodiment.
  • FIG. 5 is a diagram showing the node 45 of the map information according to the first embodiment.
  • FIG. 6 is a diagram showing a second movement path of the remote control device 13 according to the first embodiment.
  • FIG. 7 is a diagram showing a second movement route of the remote control device 13 in which the setting of the movement target position according to the first embodiment is changed.
  • the second icon 35 is not moved but only the first icon 36 is moved. May. This is because, in the first embodiment, the second icon 35 on the first monitor 31 is not moved even if an autonomous avoidance operation or the like of an obstacle around the mobile device 12 is performed by the mobile device 12. It occurs because it is displayed. In this case, as shown in FIGS. 4A to 4C, by moving only the first icon 36 on the first monitor 31, as shown in FIG. 4D, between the first icon 36 and the second icon 35. , The wall 42 which is an example of an obstacle may be pinched.
  • the first movement generated by the first generation unit 53 is performed. Even if the mobile device 12 autonomously moves along the route, the mobile device 12 may not be able to arrive at the movement target position.
  • the first generation unit 53 of the first embodiment generates the first movement path (that is, the first movement path passing an obstacle such as the wall 42) having the shortest distance from the current position to the movement target position.
  • the first movement path is the shortest movement path generated by the first generation unit 53 so as to connect the current position of the movement device 12 and the movement target position. In this case, when the moving device 12 travels along the generated first moving path, the moving device 12 repeats the avoidance operation in front of the wall 42 and can not travel further along the first moving path. is there.
  • the first acquiring unit 27 is used to search for the opening 43 and pass through the opening 43 In some cases, it is possible to set a first movement route. However, when the distance (distance) between the opening 43 of the wall 42 and the moving device 12 is equal to or more than the seventh predetermined distance, it is difficult to search for the opening 43 using the first acquisition unit 27.
  • the seventh predetermined distance is a distance at which environmental information can be acquired by the first acquisition unit 27, and is determined in advance by the type of sensor of the first acquisition unit 27, experimental data, or the like.
  • the moving device 12 determines that the first recognition unit 23 determines that the distance ⁇ D between the current position and the movement target position is equal to or greater than the first predetermined distance.
  • the node 45 included in the map information when judging, or when judging by the timer incorporated in the first recognition unit 23 that only the first predetermined time (for example, 30 seconds) has elapsed without changing the current position.
  • the first generation unit 53 generates a second movement route including a route connecting nodes.
  • the nodes 45 are set at least at a corner and an intersection in the passage 80P stored in the second storage unit 70, and are set at appropriate intervals in the straight portion of the passage. Then, when the mobile device 12 according to the first embodiment generates the second movement route using the node 45, the movement device 12 moves from the current position toward the movement target position by using the second movement route generated by the first generation unit 53. Make an autonomous move along.
  • the moving device 12 when the distance ⁇ D between the current position and the movement target position is separated by the first predetermined distance or more, the moving device 12 according to the first embodiment has passed the first predetermined time or more without changing the current position.
  • the mobile device 12 autonomously moves to the movement target position more reliably by generating the second movement route by the first generation unit 53 using the node 45 included in the map information and the connection relationship thereof. It is possible to do that.
  • FIG. 5 is a diagram showing a node 45 of map information according to the first embodiment and a part of the connection relationship.
  • FIG. 6 is a view showing a second movement path 46 on the map of the first monitor 31 of the remote control device 13 according to the first embodiment.
  • each coordinate of the node 45 and the connection relationship between the nodes 45 are preset in the first storage unit 24 as map information.
  • the information on the connection relationship between the nodes 45 is, for example, information on whether the nodes 45 are one-way or two-way, or information on costs required to travel between the nodes 45.
  • the cost is an evaluation value of distance, time, energy, etc., and is an index that summarizes what is required for the mobile device 12 to move.
  • the first generation unit 53 selects the node 45 with the smallest cost from the current position as the “start point node” that is the node 45 to be reached first from the current position.
  • the first generation unit 53 selects the node 45 with the smallest cost to the movement target position as the “end point node” which is the final node 45 toward the movement target position. Then, based on the selected start point node and end point node, the first generation unit 53 searches for a second movement path connecting the midway node (node 45 halfway between the start point node and the end point node) at the minimum cost. .
  • the algorithm used by the first generation unit 53 for searching for the second movement path can use, for example, a route search algorithm A * . In the route search algorithm A * , the first generation unit 53 searches for the second movement route while calculating the cost f (N) of the node 45 set in the traveling region of the mobile device 12.
  • g (N) is the current minimum cost between the start node and the midway node.
  • h (N) is an estimate of the minimum cost between the en route node and the end node.
  • the route generation method such as a genetic algorithm may be used by the first generation unit 53 instead of the route search algorithm A * for searching for such an optimal second movement route.
  • the first generation unit 53 of the first embodiment performs the second process from the current position of the movement device 12 to the movement target position.
  • the movement path 46 is bent as shown in FIG. 6 to generate a plurality of straight lines passing through the node 45.
  • the movement path 46 in FIG. 6 selects nodes as the node 45 to be passed in the order of the start point node 45a, the midway node 45b, and the end point node 45c, and uses the bending line connecting these nodes 45a, 45b and 45c as the movement path 46. There is. That is, as shown in FIG. 5, the moving device 12 according to the first embodiment moves toward the movement target position along the second movement path 46 connecting the nodes 45.
  • the moving device 12 of the remote control system 11 according to the first embodiment can move from the current position to the movement target even when an environment such as the wall 42 exists between the current position of the movement device 12 and the movement target position. It can move to the position.
  • the remote control device 13 according to the first embodiment the operator can remotely control the mobile device 12 without being aware of the environment around the mobile device 12.
  • FIG. 7 is a view showing a second movement path 46 on the first monitor 31 of the remote control device 13 in which the setting of the movement target position according to the first embodiment is changed after the start of traveling.
  • the moving device 12 moves along the moving path 46, it takes a long time for the moving device 12 to reach the moving target position since the moving target position and the current position are apart. There is a case. Therefore, in the mobile device 12 according to the first embodiment, when the second movement path 46 connecting the nodes 45a, 45b, and 45c is set by the first generation unit 53, the second movement path 46 to the end point node 45c. Are set by the first generation unit 53 and fixed. That is, in the moving apparatus 12 of the first embodiment, even when the movement target position is moved as shown in FIG. 7, the second movement path 46 is used as the first generation unit until the movement apparatus 12 reaches the end point node 45 c.
  • the first movement unit 46 changes the second movement path 46 so as to move toward the latest movement target position after reaching the end point node 45 c without changing it in 53. By doing this, the first generation unit 53 does not generate the second movement route 46 which has already been generated by the first generation unit 53 each time the movement target position is set. The calculation load for generating the 2 movement path 46 can be reduced.
  • moving to the end point node 45c on the second movement path 46 causes the inefficient second movement path 46 to move in a direction opposite to the movement target position. May be generated.
  • a method of updating the moving path 46 by the first generation unit 53 every second predetermined time (for example, 10 seconds) or the second moving path 46 every time it reaches the node 45 on the moving path A method of updating by the first generation unit 53 is conceivable.
  • the first acquisition unit 27 detects that the situation between the movement target position and the current position has changed, for example, the arrangement state of the environment around the movement device 12 has changed by a fifth predetermined distance or more.
  • the movement path may be changed from the movement along the second movement path 46 to the second movement path directly toward the movement target position based on the detection information from the first acquisition unit 27.
  • FIGS. 8A and 8B a series of flows of remote control of the mobile device 12 using the remote control system 11 of the first embodiment will be described using FIGS. 8A and 8B.
  • step S11 of FIG. 8A the mobile device 12 determines whether the first communication unit 29 of the mobile device 12 receives the movement start signal or the destination information from the second communication unit 33 of the remote control device 13. This is judged by the first evaluation unit 73 of Twelve.
  • the moving device 12 receives the movement start signal or the information on the destination (in the case of YES in step S11), the moving device 12 is selected by the first recognition unit 23 and the first generation unit 53 in step S12 of FIG. While moving 12 is started, the first generation unit 53 sets the inter-node movement flag as false (not).
  • step S13 of FIG. 8A the mobile device 12 reads the movement target position received by the first communication unit 29 from the second communication unit 33 of the remote control device 13, and inputs the movement target position to the first arithmetic unit 72.
  • the movement target position transmitted from the second communication unit 33 of the remote control device 13 is generated as described with reference to FIGS. 2A to 2D and FIG.
  • the movement target position read out here is the movement target position immediately before stored in the temporary storage area of the first storage unit 24. However, when the movement target position is not stored in the temporary storage area and can not be read out, , The previous movement target position is used as it is.
  • step S11 when the movement start signal or the information on the destination is not received (in the case of NO in step S11), the steps in FIG. 8A are performed until the first communication unit 29 of the mobile device 12 receives the information on the movement start signal or the destination. Repeat S11.
  • step S14 of FIG. 8A the first calculation unit 72 of the moving apparatus 12 which has read the movement target position in step S13 calculates a distance ⁇ D between the movement target position and the current position.
  • the first generation unit 53 determines whether the moving device 12 has moved on the second movement path.
  • the second movement route is a movement route in the case of including the route connecting between the nodes 45 as described above. Specifically, the first generation unit 53 determines whether the inter-node movement flag is true or false.
  • the inter-node movement flag is stored in the internal storage unit of the first generation unit 53. The inter-node movement flag is true when the mobile device 12 is moving on the second movement path, and when the mobile device 12 is not moving on the second movement path (for example, the mobile device 12 does not move on the first movement path It becomes false) when moving.
  • step S15 since the inter-node movement flag is set to false in step S12, the case of step S15 is NO, and the process proceeds to step S16. If the inter-node movement flag is true, the result is YES in step S15, and the process proceeds to step S24.
  • step S16 of FIG. 8A the first calculation unit 72 of the moving device 12 compares the movement target position with the current position.
  • the first generation unit 53 determines whether the distance ⁇ D between the movement target position and the current position obtained by the first calculation unit 72 is equal to or greater than a first predetermined distance (for example, 5 m). To judge. If the first generation unit 53 determines that the distance ⁇ D is equal to or greater than the first predetermined distance (YES in step S16), the process proceeds to step S36. When the first generation unit 53 determines that the distance ⁇ D is less than the first predetermined distance (NO in step S16), the process proceeds to step S17.
  • a first predetermined distance for example, 5 m
  • step S17 the first generation unit 53 determines whether or not the moving device 12 can move directly from the current position to the movement target position along the first movement path.
  • the process proceeds to step S18.
  • the process proceeds to step S22.
  • step S18 the mobile device 12 autonomously moves along the first movement path from the current position toward the movement target position by the first generation unit 53, the second control unit 26, and the drive unit 22.
  • step S19 whether or not the distance ⁇ D between the movement target position and the current position is equal to or greater than a second predetermined distance (for example, 3 m), and the state where the distance ⁇ D is equal to or longer than a sixth predetermined distance is equal to or longer than a fourth predetermined time
  • the first recognition unit 23 determines whether or not to continue.
  • the first recognition unit 23 determines YES if the distance ⁇ D is equal to or greater than the second predetermined distance.
  • step S19 the first recognition unit 23 also determines YES if the state in which the distance ⁇ D is the sixth predetermined distance or more continues for the fourth predetermined time or more.
  • step S19 when the distance ⁇ D is less than the second predetermined distance and the state where the distance ⁇ D is equal to or longer than the sixth predetermined distance is less than the fourth predetermined time, the first recognition unit 23 determines NO.
  • the process proceeds to step S20.
  • the first recognition unit 23 determines YES in step S19, the process proceeds to step S37.
  • step S37 the notification unit 75 of the remote control device 13 gives a first notification to the operator.
  • the first notification is to notify the operator of the remote control device 13 that the distance between the movement target position of the moving device 12 and the current position is too far.
  • the operation resistance of the operation unit 32 is increased (a resistance is applied to the joystick 32c by a motor or the like), a sound is emitted, a light is emitted, of the first icon 36
  • the position is reset and displayed at the position of the second icon 35. Thereafter, the process proceeds to step S20.
  • step S20 the first control unit 41 determines whether the movement stop signal is received from the second communication unit 33 of the remote control device 13 by the first communication unit 29 of the movement device 12.
  • the process proceeds to step S21.
  • the process returns to step S13.
  • step S20 it is determined whether a movement stop signal such as an emergency stop by the operation of the operator is transmitted from the remote control device 13 to the movement device 12. Then, based on the movement stop signal, the first control unit 41 determines whether or not the movement device 12 is to be stopped.
  • step S21 the autonomous movement of the mobile device 12 is stopped. After that, the series of processing ends.
  • the second generation unit 74 is performed to avoid the obstacle. Avoid obstacles by creating obstacle avoidance points and moving to obstacle avoidance points.
  • the process proceeds to step S23. .
  • step S23 the moving device 12 is controlled by the first recognition unit 23, the first generation unit 53, the second control unit 26, the drive unit 22, and the second generation unit 74, and the second generation unit 74
  • the mobile device 12 travels along the generated obstacle avoidance point. Thereafter, the process proceeds to step S19.
  • steps S17 to S23 are a movement flow of the normal moving device 12 which moves the first route which is the shortest route from the current position to the movement target position.
  • step S15 when the inter-node movement flag is true (when step S15 is YES), the moving device 12 is moving on the second movement route. Further, in the case where the distance ⁇ D is equal to or more than the first predetermined distance (in the case of YES at step S16), it is a case where it is determined that the moving device 12 moves the second movement path. In this case, in step S36, for the destination, a second movement route connecting the nodes is generated, and the inter-node movement flag is set to true.
  • the movement target position may be set as the destination.
  • step S24 the temporary target position generation unit 71 generates a temporary on the second movement route.
  • the target position is set by the first evaluation unit 73. Thereafter, the process proceeds to step S25.
  • step S25 the first evaluation unit 73 determines whether the moving apparatus 12 can directly move to the temporary target position on the second moving route set in step S24.
  • step S25 When it is determined that the moving device 12 can directly move from the current position to the movement target position (in the case of YES at step S25), the process proceeds to step S26. If it is determined that the mobile device 12 can not move directly from the current position to the temporary target position because the obstacle is found by the first acquisition unit 27 (NO in step S25), the process proceeds to steps S33 and S34. After avoiding the obstacle in the same manner as in steps S22 and S23, the process proceeds to step S27.
  • step S26 the moving device 12 moves on the second movement path from the current position to the temporary target position by the first generation unit 53, the second control unit 26, and the drive unit 22.
  • step S27 as in step S19, the first recognition unit 23 is used when the distance (interval) ⁇ E between the temporary target position on the second movement route and the current position of the moving device 12 is equal to or greater than the second predetermined distance. And decide YES.
  • the first recognition unit 23 also determines YES if the state in which the distance ⁇ E is equal to or longer than the sixth predetermined distance continues for the fourth predetermined time or more. That is, in step S27, when the distance ⁇ E is less than the second predetermined distance and the state where the distance ⁇ E is equal to or more than the sixth predetermined distance is less than the fourth predetermined time, the first recognition unit 23 determines NO.
  • step S27 If the first recognition unit 23 determines NO in step S27, the process proceeds to step S28. If the first recognition unit 23 determines YES in step S27, the process proceeds to step S35.
  • step S35 as in step S37, the notification unit 75 of the remote control device 13 performs a first notification to the operator.
  • the first notification is to notify the operator of the remote control device 13 that the distance between the movement target position of the moving device 12 and the current position is too far. Thereafter, the process proceeds to step S28.
  • step S28 the first recognition unit 23 determines whether the moving device 12 has approached the temporary target position to the fourth predetermined distance. If the first recognition unit 23 determines that the moving device 12 has approached the temporary target position to the fourth predetermined distance (the distance ⁇ E is equal to or less than the fourth predetermined distance) (YES in step S28), the process proceeds to step S31. When the first recognition unit 23 determines that the moving device 12 has not approached the temporary target position to the fourth predetermined distance (in the case of NO at step S28), the process proceeds to step S29. When the distance ⁇ E is equal to or less than the fourth predetermined distance, as described with reference to FIG. 6, processing for switching the movement route from the second movement route using the node 45 to the normal first movement route is performed.
  • step S31 a second notification indicating return to the first movement route is performed, and the process proceeds to step S32.
  • the second notification is notified in the same manner as the first notification.
  • step S29 the first control unit 41 determines whether the first communication unit 29 of the mobile device 12 receives a movement stop signal from the second communication unit 33 of the remote control device 13. To judge. When it is determined that the movement stop signal is received by the first communication unit 29 of the mobile device 12 (in the case of YES at step S30), the process proceeds to step S21. When it is determined that the movement stop signal is not received by the first communication unit 29 of the mobile device 12 (in the case of NO at step S30), the process returns to step S13. In step S30, it is determined whether a movement stop signal such as an emergency stop by the operation of the operator is transmitted from the remote control device 13 to the movement device 12. Then, based on the movement stop signal, the first control unit 41 determines whether or not the movement device 12 is to be stopped.
  • a movement stop signal such as an emergency stop by the operation of the operator is transmitted from the remote control device 13 to the movement device 12.
  • step S32 the inter-node movement flag is set to false (no) to cancel the movement of the second movement route. Thereafter, the process proceeds to step S20.
  • Steps S36 and S24 to S30 described above are the movement flows for inter-node movement of the mobile device 12, which move the second movement route connecting the nodes.
  • step S13 the steps after step S13 are repeated until the movement device 12 reaches the movement target position .
  • the remote control device 13 can not obtain the movement target position remotely by the operator using the operation unit 32 instead of directly operating the movement device 12 remotely. It is possible to move around the environment without depending on (a moving obstacle (for example, a moving body such as a person among the environment around the moving device 12 which is not in the map information)). Therefore, by using the remote control system 11 according to the first embodiment, the operator can remotely control the mobile apparatus 12 without being aware of environmental objects not included in the map information.
  • a moving obstacle for example, a moving body such as a person among the environment around the moving device 12 which is not in the map information
  • FIG. 9 is a schematic view showing the mobile apparatus 12 according to the first embodiment and the periphery thereof.
  • the movement target position is set at a position away from the moving device 12
  • a moving obstacle in the environment including the moving body 37 is caught between the moving device 12 and the movement target position.
  • this environmental object is not included in the map information, and therefore, is not displayed on the first monitor 31. Therefore, the operator who operates the remote control device 13 can not recognize the moving body 37, and can not set the movement target position in consideration of the moving body 37.
  • the mobile device 12 performs autonomous movement toward the movement target position sent from the remote control device 13 by wireless communication, and the mobile object detected by the first acquisition unit 27 Avoid 37 automatically.
  • the second icon 35 is displayed on the first monitor 31 of the remote control device 13 in order to display the second icon 35 based on the recognition information of the self position of the mobile device 12 transmitted by wireless communication from the mobile device 12. Does not go straight to the first icon 36, but moves so as to bypass an empty area on the first monitor 31.
  • the first storage unit 24 determines the movement target position and movement target attitude at the time of cutting, Continue to set the movement target position. In this way, even when the communication is disconnected, the mobile device 12 can continuously move to the previously set movement target position without a sudden stop.
  • the movement target position includes the information on the movement target position and the movement target attitude, but even if the information on the movement target position is not included, the movement target position may be only the information on the movement target position. Good.
  • the remote control device 13 can be used to efficiently move the moving device 12 to the movement target position.
  • the conventional remote control system needs to set the movement target position with respect to the three-dimensional space displayed on the monitor, the distance between the surrounding environment (movement obstacles such as a wall) and the movement target position In some cases, it is difficult to intuitively determine the movement target position on the monitor.
  • the distance between the surrounding environment (a moving obstacle such as a wall) and the movement target position can be intuitively grasped, and the movement target position can be easily made using the first monitor 31. It can be set to
  • FIG. 10 is a view showing the first monitor 31 and the operation unit 32 of the remote control device 13 according to the second embodiment of the present invention.
  • FIG. 11 is a view showing the relationship between the first icon 36 and the wall 42 according to the second embodiment.
  • the map information of the remote control device according to the second embodiment is characterized by including a movement prohibited area which prohibits the movement of the moving device 12. Then, the second arithmetic unit 77 of the remote control device 13 prohibits the setting of the movement target position in the movement prohibited area (for example, a wall, stairs, etc.) by the operation unit 32.
  • the operator turns the joystick 32c forward (plus direction of the x axis) by the operator and the first icon Even if 36 is moved in the direction of the arrow, the first icon 36 does not move in the direction of the arrow in front of the wall 42. That is, the second arithmetic unit 77 can not set the position of the movement target position beyond the wall 42. At this time, the wall 42 is included in the map information as a movement prohibited line segment. Since the position of the movement target position can not be set on the wall 42 by the second arithmetic unit 77, the first icon 36 does not exceed the wall 42.
  • the movement target position may not be set around the movement prohibited line segment by the second calculation unit 77. By doing this, the moving device 12 will not move near the wall 42.
  • the second computing unit 77 allows the wall 42 which is also a movement inhibited line segment to be safe from the maximum radius from the rotation center of the moving device 12.
  • the movement target position is not set in a predetermined distance range W to which a predetermined distance (for example, about several hundreds of mm) is added.
  • the second calculation unit 77 of the remote control device 13 calculates the distance r between the center of the first icon 36 (the movement target position) and the movement prohibition line segment from the map information. Setting of movement target position is prohibited. By doing so, the moving device 12 does not approach the wall 42, and higher security can be ensured.
  • FIG. 12A is a schematic view of a remote control system 61 according to a third embodiment of the present invention.
  • the remote control system 61 includes at least a mobile device 62 and a remote control device 13.
  • FIG. 13 is a view showing a first monitor 31 of the remote control device 13 according to the third embodiment.
  • the moving apparatus 62 of 3rd Embodiment has the 1st imaging part 63 which image
  • the first imaging unit 63 has cameras 63C on all sides of the vehicle body of the moving device 62, and an image forming unit 63a built in the first imaging unit 63 combines and moves images taken by the four cameras 63C.
  • An image 64 viewed from above the device 62 is generated (see FIG. 12B).
  • the remote control device 13 superimposes the image 64 obtained by the image forming unit 63a of the first imaging unit 63 on the map information, and displays the map information on the first monitor 31 (see FIG. 12C).
  • the first icon 36 which is the movement target position is superimposed and displayed on the display range of the map.
  • an area which is blocked by a wall (or an obstacle) and not photographed by the camera 63c is displayed in a black area as a wall portion 64a (or an obstacle portion 64b) as shown in FIG. 12B.
  • the direction of the movement target position is displayed by an arrow icon (for example, “ ⁇ ”) or the like.
  • the arrow icon is displayed as information different from the wide area map information (the right side of FIG. 12C) (displayed on the upper left side in FIG. 12C).
  • the operator can set the movement target position by the operation unit 32 by acquiring the environment information around the moving device 62 not recorded in the map information by the first imaging unit 63. . That is, the operator can recognize an environmental object such as a person not recorded in the map information, and the operator can set the movement target position. Specifically, the operator can recognize the moving body 37 not recorded in the map information and set the movement target position so as to avoid the moving body 37.
  • the image obtained by the first imaging unit 63 is displayed within the predetermined distance from the moving device 62 and displayed on the first monitor 31, and the movement target position (first The change of the center of the icon 36 may be limited within a predetermined distance from the same moving device 62 as the image 64 displayed on the first monitor 31.
  • the operator is not recorded in the map information by performing control so that the movement target position (center of the first icon 36) can not be set outside the range of the image 64 displayed on the first monitor 31 illustrated in FIG.
  • An appropriate movement target position is set without setting the movement target position on the movement obstacle of the surrounding environment.
  • the change of the movement target position may be limited within a predetermined distance from the movement device 62 regardless of the image. By limiting the change position of the movement target position within a predetermined distance, the movement target position is not largely separated from the moving device 62. Specifically, as one example, it is desirable to set the width within 2 m, which is the same as the width of the passage 80P.
  • the coordinates of the destination to which the moving device 62 frequently travels may be stored in advance in the first storage unit 24 and the third storage unit 34, and the first list selection unit 76 may be provided in the remote control device 13. .
  • the first list selection unit 76 lists the destinations associated with the storage units 24 and 34 as a destination list on the operation screen of the first monitor 31 of the remote control device 13 as shown in FIG. 12D. indicate.
  • the first list selection unit 76 reads the coordinates of the selected destination from the storage units 24 and 34, and the movement route is The movement of the mobile device 12 can also be started by the generation unit 53.
  • FIG. 14 is a view showing a first monitor 31 of the remote control system 11 according to the fourth embodiment of the present invention.
  • the image forming unit 31 a of the remote control device 13 always displays the attitude of the first icon 36 in a fixed direction on the first monitor 31.
  • the traveling direction of the first icon 36 is always upward of the first monitor 31. Since the first icon 36 is always displayed above the first monitor 31 by the image forming unit 31 a, the operation direction of the joystick 32 c matches the direction of the first icon 36. As a result, the operator can easily grasp the moving target posture at the moving target position, and can easily set the moving target position.
  • the remote control system according to the present invention is easy to operate and is useful for a remote control system of a communication robot.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Manipulator (AREA)

Abstract

 遠隔制御装置(11)は、地図情報及び移動目標位置を記憶し、移動経路に沿って前記移動目標位置へ追従移動するように制御する制御部(41)を有する移動装置(12)と、操作部(32)により入力された移動目標位置を移動装置(12)へ送信する遠隔制御部(13)と、を備え、制御部(41)は、操作部(32)の入力値を変化量として検出し、この変化量に応じて前記移動目標位置を変更させながら移動装置(12)を自律追従移動させる構成である。

Description

遠隔制御システム
 本発明は、移動装置を遠隔地で操作するための遠隔制御システムに関する。
 病院又は商業施設又は展示会場又は美術館などの施設において、移動装置を遠隔から操作することのできる遠隔制御システムが望まれている。このような遠隔制御システムは、移動装置に作業者の役割を代替させ、施設で行なわれる作業の効率化を図ることができる。
 例えば、対話を補助するためのインターフェース部を備えた移動装置を、複数の病院それぞれに配置することで、患者と患者から離れた遠隔地にいる医者との対話を補助することができる。また、例えば、監視カメラを持つ移動装置を、遠隔制御室で警備員が操作することで、警備員が施設へ行かずに警備を行なうことができる。
 そこで、操作者が操作を行なうための遠隔制御装置と、遠隔制御装置から発信された操作指示に従って移動を行う移動装置とを備えた遠隔制御システムが提案されている(例えば、特許文献1参照)。
 図15は、特許文献1の遠隔制御システムにおける遠隔制御装置のモニタ1を示す図である。特許文献1の移動装置(ロボット)は、この移動装置のカメラで撮影された画像を遠隔制御装置へ送信する。そして、遠隔制御装置は、移動装置より受信した画像を図15に示す遠隔制御装置のモニタ1に表示する。図15に示すように、モニタ1に表示される画像5には、フロアー・プレーン・グリッド6と、ローテンションテープ7とが重畳されている。ここで、フロアー・プレーン・グリッド6は、カメラ視野内の対象物と移動装置との相対距離をユーザに供給するために、移動装置の前方平面を、設定された寸法のグリッドで示すものである。また、ローテンションテープ7は、カメラに対する移動装置の相対的な回転の角度を示すものである。
 この遠隔制御システムの操作者は、フロアー・プレーン・グリッド6及びローテンションテープ7で距離感を把握し、遠隔制御装置のマウス等でカーソル3を動かして、この画像5に移動目標位置2を設定する。すると、遠隔制御装置より移動装置へ、移動目標位置2の位置情報が送信される。そして、移動装置は、遠隔制御装置より受信した移動目標位置2へ向って移動する。特許文献1では、このような遠隔制御システムを用いることで、操作者は、移動装置に対して、遠隔操作を行なうことができるとしている。
特表2003-532218号公報
 しかしながら、従来の遠隔制御システムでは、モニタ1に表示された立体空間における移動目標位置2を、操作者が直感的に把握することが難しく、モニタ1上に移動目標位置を設定することが困難な場合がある。具体的には、従来の遠隔制御システムでは、モニタ1に表示された立体空間において、周囲の環境物(壁等)と移動目標位置の位置との間隔を、操作者が直感的に把握することが難しく、モニタ1上に移動目標位置を設定することが困難な場合がある。また、従来の遠隔制御システムでは、操作者は、画像5上の立体的な周囲環境における移動装置の位置を把握することが難しく、最適な移動目標位置を設定することが困難な場合がある。
 本発明は、これらの課題を解決するものであり、移動装置を移動目標位置へ効率良く移動させることが可能な遠隔制御システムを提供することを目的とする。
 上記課題を解決するために、本発明の1つの態様にかかる遠隔制御システムは、移動装置及び遠隔制御装置から構成されるシステムであって、前記遠隔制御装置は、操作部と、前記操作部により入力された移動目標位置を前記移動装置へ送信する通信部と、前記操作部の入力値を変化量として検出する検出部と、を有し、前記移動装置は、地図情報を記憶する記憶部と、移動経路に沿って前記移動目標位置へ自律移動する制御部と、前記変化量に応じて前記移動目標位置を変更させながら自律移動する制御部と、を有することを特徴とする。
 本発明によれば、移動装置を移動目標位置へ効率良く移動させることが可能な遠隔制御システムを提供することが可能となる。
 本発明のこれらと他の目的と特徴は、添付された図面についての実施形態に関連した次の記述から明らかになる。この図面においては、
図1は、本発明の第1実施形態にかかる遠隔制御システムの模式図であり、 図2Aは、第1実施形態にかかる作動時のモニタ及び操作部の概略説明図であり、 図2Bは、第1実施形態にかかる前進操作時のモニタ及び操作部の概略説明図であり、 図2Cは、第1実施形態にかかる右折操作時のモニタ及び操作部の概略説明図であり、 図2Dは、第1実施形態にかかる右回転操作時のモニタ及び操作部の概略説明図であり、 図3は、第1実施形態にかかる遠隔制御装置による移動目標位置の設定動作を示すフローチャートであり、 図4Aは、第1実施形態にかかる第1状態での遠隔制御装置のモニタを示す図であり、 図4Bは、第1実施形態にかかる第2状態での遠隔制御装置のモニタを示す図であり、 図4Cは、第1実施形態にかかる第3状態での遠隔制御装置のモニタを示す図であり、 図4Dは、第1実施形態にかかる第4状態での遠隔制御装置のモニタを示す図であり、 図5は、第1実施形態にかかる地図情報のノードを示す図であり、 図6は、第1実施形態にかかる遠隔制御装置の第2移動経路を示す図であり、 図7は、第1実施形態にかかる移動目標位置の設定を変えた遠隔制御装置の第2移動経路を示す図であり、 図8Aは、第1実施形態にかかる遠隔制御の一連のフローの前半部分を示すフローチャートであり、 図8Bは、第1実施形態にかかる遠隔制御の一連のフローの後半部分を示すフローチャートであり、 図9は、第1実施形態にかかる移動装置とその周辺を示す概略図であり、 図10は、本発明の第2実施形態にかかる遠隔制御装置の概略図であり、 図11は、第2実施形態にかかる第1アイコンと壁画像との関係を示す図であり、 図12Aは、本発明の第3実施形態にかかる遠隔制御システムの模式図であり、 図12Bは、第3実施形態にかかる遠隔制御装置のモニタにおいて移動装置の上方より見た画像の図であり、 図12Cは、第3実施形態にかかる遠隔制御装置のモニタにおいて周囲撮影部の画像形成部で得られる画像を地図情報に重ねた画像の図であり、 図12Dは、第3実施形態の変形例にかかる遠隔制御装置のモニタの図であり、 図13は、第3実施形態にかかる遠隔制御部のモニタを示す図であり、 図14は、本発明の第4実施形態にかかる遠隔制御装置のモニタを示す図であり、 図15は、従来の遠隔制御装置のモニタを示す図である。
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、同じ構成要素には同じ符号を付しており、説明を省略する場合もある。また、図面は理解し易くするために、それぞれの構成要素を主体に模式的に示している。
 (第1実施形態)
 図1は、本発明の第1実施形態にかかる遠隔制御システム11の模式図である。第1実施形態の遠隔制御システム11は、移動装置12及び遠隔制御装置13から少なくとも構成されるシステムである。第1実施形態の遠隔制御システム11は、遠隔制御装置13からの移動目標位置に基づいて、移動装置12が自律移動するシステムである。ここで、移動経路(第1移動経路、第2移動経路)とは、移動装置12が自律移動するために第1生成部53で生成された経路を意味する。移動装置12は、移動目標位置までの周囲の環境情報を取得しながら第1生成部53で移動経路を生成し、この移動経路に沿って、例えば駆動輪22a又は脚などの駆動部を駆動させて自律移動し、移動目標位置に対して追従移動する。
 図1に示すように、移動装置12と遠隔制御装置13とは、無線通信により繋がり、各種情報を送受信している。遠隔制御システム11の操作者は、遠隔制御装置13の操作部32を操作して、移動装置12の移動目標位置を設定する。例えば、遠隔地にいる操作者が、遠隔制御装置13の操作部32を用いて、遠隔制御装置13の第1モニタ31に表示される第1アイコン36の位置を動かして、移動目標位置を設定する。第1アイコン36は、第1モニタ31上で移動目標位置を示すアイコンである。そして、遠隔制御装置13は、第2通信部33から移動装置12の第1通信部29に、この移動目標位置を無線で送信する。移動装置12は、設定された移動目標位置を受信すると、予め記憶された地図情報における現在位置を認識する。本発明では、現在位置とは、移動装置12の現在位置の情報に加えて、移動装置12の現在姿勢の情報を含む。また、本発明では、移動目標位置とは、移動装置12の移動目標位置の情報に加えて、移動装置12の移動目標姿勢の情報を含む。現在位置の認識を終えた移動装置12は、遠隔制御装置13で設定された移動目標位置に向けて自律移動する。
 以下の説明において、第1所定時間は、移動装置12の現在位置がこの時間以上変わらない場合に、ノードを用いた第2移動経路を設定する時間である。また、第2所定時間は、移動装置12が移動経路を更新するタイミングである。また、第3所定時間は、移動装置12と遠隔制御装置13との通信タイミングである。また、第4所定時間は、移動装置12の移動目標位置と現在位置とが後述する第6所定距離以上離れた状態でこの時間以上経過すると、移動目標位置への到達が困難だとして遠隔制御装置13の操作者に報知する時間である。また、第1所定距離は、後述する距離ΔD(又はΔE)がこの距離以上離れることで、ノードを用いた第2移動経路を設定する距離である。また、第2所定距離は、後述する距離ΔD(又はΔE)が大きくなり過ぎたとして、遠隔制御装置13の操作者に報知する距離である。また、第3所定距離は、移動目標位置の周辺に設定された、移動目標位置への移動装置12の到達の判定用の距離である。また、第4所定距離は、ノードを用いた第2移動経路から、通常の第1移動経路に戻るための距離ΔDである。また、第5所定距離は、第1取得部27でセンシングした結果、この距離以上移動する物を移動障害物と認識する距離である。また、第6所定距離は、この距離以上で前述の第4所定時間以上経過すると、移動目標位置への到達が困難だとして遠隔制御装置13の操作者に報知する距離である。また、第7所定距離は、第1取得部27のセンシング可能な範囲の距離である。また、第1移動経路は、移動装置12の通常移動用の移動経路であり、移動装置12の現在位置と移動目標位置との最短の経路である。また、第2移動経路は、ノード間を結ぶ経路を通る移動装置12の移動経路であり、第1移動経路で移動できない場合の対策としての移動経路である。
 最初に、移動装置12の構成について説明する。
 移動装置12は、車体21と、駆動部22と、第1記憶部24と、第1取得部27と、電池28と、第1通信部29と、インターフェース部30と、第2記憶部70と、第1制御部41とを備える。第1記憶部24は、移動装置12の移動情報を記憶する移動情報記憶部である。第2記憶部70は、地図情報を記憶する地図情報記憶部である。第1取得部27は、移動装置12の周囲の環境情報を、センサを用いて取得する環境情報取得部である。
 第1制御部41は、第1認識部23と、第2制御部26と、第1生成部53と、第2生成部74と、一時目標位置生成部71と、第1演算部72と、第1評価部73とを含む。第1認識部23は、移動装置12の位置を認識する自己位置認識部である。第2制御部26は、移動装置12の走行を制御する走行制御部である。第1生成部53は、移動装置12が走行する移動経路を生成する経路生成部である。第2生成部74は、障害物の回避ポイントを生成する障害物回避ポイント生成部である。一時目標位置生成部71は、所定の周期で移動経路と現在位置と移動目標位置とを基に、移動経路上に、移動装置12の走行のための一時的な目標位置を生成する。すなわち、移動装置12が移動経路に沿って移動するために、移動経路上に、一時的に、順次、目標位置を一時目標位置生成部71で設定して、そこに順次向かうことで移動装置12が移動するようにしている。第1評価部73は、移動目標位置と現在位置との変化量などを検出して、移動装置12の移動量を評価する移動量評価部である。第1演算部72は、移動装置12と移動目標位置と現在位置との距離を演算する距離演算部である。
 第1実施形態の移動装置12の処理及び動作は、この第1制御部41などにより制御される。具体的には、第1実施形態1の移動装置12の補正又は比較などの処理と移動動作とは、第1認識部23、第1記憶部24、第2制御部26、第1取得部27、第1通信部29、第1生成部53、第2記憶部70、第2生成部74、及び第1評価部73を、適宜組み合わせて使用することで制御される。
 駆動部22は、電池28で正逆回転する一対のモータ22Mと、一対のモータ22Mによりそれぞれ独立して正逆回転する一対の駆動輪22aとを有する。一対のモータ22Mには、回転数及び回転速度を計測するエンコーダ22Eがそれぞれ設けられている。第2制御部26は、これらの一対のエンコーダ22Eの出力に基づいて、移動装置12の移動距離及び移動方向を検出する。なお、モータ22M及びエンコーダ22Eの個数については、一例であり、任意の数でもよい。移動装置12の速度は、一定ではなく、適宜、変更可能である。なお、移動装置12の最高速度は予め設定されている。
 第2記憶部70は、地図情報を予め記憶している。地図情報には、環境物の環境情報も含まれる。周囲の環境物の環境情報とは、移動装置12が走行する建物の構造の情報であり、例えば、建物の通路80P、壁42、又は階段の情報である。なお、移動装置12の落下による事故のリスクが存在する下り階段の周辺領域は、安全性の観点から、移動装置12の移動禁止領域として、地図情報に設定されている。また、地図情報には、移動装置12が移動可能な通路80P上に適当な間隔で配置されたノード45(位置座標)、及び、それらのノード45の接続関係の情報が、環境情報として含まれる。なお、第1実施形態における地図情報に含まれる環境情報には、環境物及び移動禁止領域の境界などを示す線分を移動禁止線分として表示するために、移動禁止線分の両端を絶対座標(x、y)、(x、y)で示した情報が含まれている。例えば、遠隔制御装置13の第1モニタ31に表示される環境情報の一例である壁42の表面は、地図情報に移動禁止線分として記録される。一定の領域を有する環境物又は移動禁止領域は、領域を囲むように移動禁止線分を組み合わせることで構成される。なお、移動装置12の移動経路の生成には、例えば、日本特許第3844247号に開示の方法などを用いることができる。また、第1記憶部24には、遠隔制御装置13で設定された移動目標位置が絶対座標として記憶されると共に、第1取得部27で取得する環境情報が記憶される。
 第1取得部27は、移動装置12が移動する通路80Pの壁42又は障害物などを、センサを用いて環境情報として取得する。このセンサは、一例として、ライダー(Light Detection And Ranging)で構成することができる。この場合、ライダーは、移動装置12の周囲の環境物を検出するために車体21の前面下部中央に設けられ、移動装置12の走行方向の前方側をスキャンする。ライダーは、そのスキャン面内でレーザビームを振って、移動装置12から周囲の環境物までの距離を取得する。第1実施形態では、第1取得部27は、一定の周期で間欠的にスキャンを行なって、1回のスキャン毎に取得する距離データの集合を各時点における環境情報として時系列的に第1記憶部24に記憶させている。なお、第1取得部27は、ライダー(別名、レーザレーダ)の別の例として、超音波センサなどを用いることができる。第1取得部27は、第1記憶部24と接続されている。なお、第1取得部27で障害物を検出した場合は、移動装置12の移動を停止することもできる。第1通信部29は、無線通信機であり、遠隔制御装置13との間で各種情報を送受信する。第1通信部29は、第2記憶部70と、第1認識部23と、インターフェース部30とに、それぞれ接続されている。
 インターフェース部30は、一例として、タッチパネル、カメラ、マイク及びスピーカーを有する。インターフェース部30は、移動装置12の各種設定を行う装置であると共に、遠隔制御装置13を操作する操作者と移動装置12の近くにいる人とのコミュニケーションを補助する装置である。インターフェース部30のカメラ又はマイクで取得する画像情報又は音声情報は、通信部29,33を介して、遠隔制御装置13へ送られる。また、遠隔制御装置13より送られる画像情報又は音声情報は、通信部33,29を介して、インターフェース部30より出力される。
 第1制御部41の第1認識部23は、最初に、移動装置12の現在位置が、初期値として、インターフェース部30を介した人からの入力又は第1取得部27での認識により教示され、移動装置12の現在位置(自己位置)を認識する。その後の第1認識部23は、駆動部22のエンコーダ22Eの出力に基づいて、最初に認識した移動装置12の初期値からの変化量を第1評価部73で検出して、絶対座標における移動装置12の現在位置を認識する。ここで、エンコーダ22Eの出力による認識のみでは、例えば駆動輪22aの滑りなどにより、移動装置12の実際の位置と現在位置との誤差が生じることがある。そこで、第1実施形態では、第1取得部27で得られる環境情報から建物の壁などの形状を認識して、第1認識部23で認識して第1記憶部24に記憶された建物の壁42の情報と、第2記憶部70の地図情報に含まれる建物の壁の情報とを、比較する。このように比較した結果に基づいて、エンコーダ22Eの出力による認識に加えて、絶対座標における現在位置を補正することで、自己の位置をさらに精度良く認識することができる。第1認識部23は、インターフェース部30と、第1取得部27と、第1記憶部24と、第2記憶部70と、第1評価部73と、エンコーダ22Eとに、それぞれ接続されている。第1認識部23で認識した現在位置の情報は、第1通信部29を介して第2通信部33に第3所定時間毎(例えば、ms毎)に発信される。
 第1制御部41の第1生成部53は、第2記憶部70の地図情報に含まれる複数のノードを接続してノード接続経路を形成して、現在位置から移動目標位置までの移動経路を生成する。移動目標位置は、第1記憶部24に絶対座標として設定されており、第1記憶部24から第1生成部53に入力される。第1生成部53は、第1記憶部24と、第2制御部26とに、それぞれ接続されている。
 第2制御部26は、第1生成部53で生成された移動経路とエンコーダ22Eの出力とを基に、駆動部22の一対のモータ22Mを制御して、移動装置12を移動目標位置に向けて自律移動させる。第2制御部26は、モータ22M及びエンコーダ22Eに、それぞれ接続されている。
 第1制御部41の第1演算部72は、第1記憶部24と第1認識部23とに接続されて、移動目標位置と現在位置との距離ΔDを演算する。第1制御部41の第1評価部73は、操作部32の第1検出部32bで検出された入力値である変化量を、操作部32での変化量として検出し、第1認識部23及び第1記憶部24などに出力する。第1検出部32bは、操作部32の操作量に基づく入力値を検出する入力検出部である。第1制御部41の第2生成部74は、移動経路外に、障害物回避ポイントを生成し、移動装置12の回避経路を生成する。回避経路とは、移動経路を走行している移動装置12が、障害物を回避するために移動経路から一時的に外れて走行する経路を意味する。
 移動装置12は、この構成により、第1取得部27で取得した環境情報に基づいて周囲の環境物又は障害物との衝突を回避しながら、第1記憶部24に絶対座標として設定された移動目標位置へ向けて、第2制御部26により制御されて通路80Pを走行する。つまり、移動装置12は、第1取得部27より検出される環境物又は障害物を自動的に回避して移動目標位置へ移動する機能を有する。移動装置12は、第1取得部27で取得された環境情報に基づき、移動装置12の走行方向に障害物を検出した場合に、第2生成部74で障害物回避ポイントを生成する。その後、第2生成部74で生成された障害物回避ポイントに向かって移動装置12が走行することにより、移動経路から移動装置12が離れて走行し、障害物を回避する。そして、回避した後、移動装置12は、回避前の移動経路に戻り、移動目標位置へ向って移動する。
 次に、遠隔制御装置13の構成について説明する。
 遠隔制御装置13は、第1モニタ31と、第2モニタ30aと、第3記憶部34と、操作部32と、第2演算部77と、第2通信部33と、報知部75とを備える。第2モニタ30aは、移動装置12の近くの人とのコミュニケーションをとるためのコミュニケーションモニタである。操作部32は、例えば、ジョイスティック32cを有する。
 第2演算部77は、第3記憶部34に記憶されている移動目標位置に、第1検出部32bで検出された操作の入力値を加えて、新たな移動目標位置に変更する演算を行う演算部である。
 第1モニタ31は、例えば、液晶表示装置である。第1モニタ31には、移動装置12の周辺の地図情報の画像に、第2アイコン35の画像及び第1アイコン36の画像を第1モニタ31の画像形成部31aで重ねた画像が、表示される。第2アイコン35は、移動装置12の現在位置を示す移動装置アイコンである。第1アイコン36は、移動装置12の移動目標位置を示す移動目標位置アイコンである。第2モニタ30aは、例えば、液晶表示装置である。第2モニタ30aには、移動装置12のインターフェース部30で取得されて通信部29,33を介して送信された画像が、表示される。第2モニタ30aを用いることで、遠隔制御装置13の操作者は、遠隔地に存在しながら、移動装置12の周辺の人と画像又は映像を用いたコミュニケーションを取ることができる。
 第3記憶部34は、通信部29,33を介した無線通信によって情報を送受信することで、移動装置12の第1記憶部24と情報が共有される。つまり、移動目標位置が第3記憶部34に記憶された場合、通信部33,29を介した送受信により、移動装置12の第1記憶部24にも移動目標位置が記憶される。また、移動装置12の第1記憶部24に移動装置12の現在位置が記憶された場合、通信部29,33を介した送受信により、第3記憶部34にも現在位置が記憶される。
 操作部32は、通信部33,29を介した通信により、第1記憶部24に記憶された移動目標位置を変更するための操作部の一例である。操作部32は、まず、遠隔制御装置13の操作者からジョイスティック32cに加えられた操作に基づく入力値を、変化量として操作部32の第1検出部32bで検出する。そして、検出した変化量に応じて第2演算部77で移動目標位置を変更し、通信部33,29を介して変更された移動目標位置を送信し、第1記憶部24に記憶された移動目標位置を変更させる。
 また、ジョイスティック32cには、ボタン32aが設けられている。第1実施形態では、操作者がボタン32aを押すことで、通信部33,29を介して移動目標位置をリセットして、移動目標位置が現在位置に設定されるように、第1記憶部24に指示することができるようにしている。
 報知部75は、例えば、距離ΔDが後述する第3所定距離未満となって、移動装置12が移動目標位置に予め設定した距離まで近づいたときに、例えば、音声又は画像表示で遠隔制御装置13の操作者に報知を行う。報知部75での報知の例としては、操作部32の動作抵抗を大きくする(モータなどにより抵抗力をジョイスティック32cに作用させる)、音を鳴らす、光を発光させる、移動目標位置を現在位置にリセットするように表示する、などがある。報知部75は、この報知以外に、後述する第2移動経路上を移動装置12が移動していることなどを報知する。
 第2通信部33は、無線通信機であり、移動装置12の第1通信部29との間で各種情報を送受信する。第2通信部33は、第1モニタ31と、第2モニタ30aと、第3記憶部34と、操作部32とに、それぞれ接続されている。
 次に、遠隔制御システム11を用いた移動装置12への遠隔操作の例について、図2A~図2Dを用いて説明する。
 図2Aは、第1実施形態にかかる移動装置12の作動開始時の遠隔制御装置13の第1モニタ31及び操作部32を示す概略説明図である。図2Bは、第1実施形態にかかる前進操作時の遠隔制御装置13の第1モニタ31及び操作部32を示す概略説明図である。図2Cは、第1実施形態にかかる右折操作時の遠隔制御装置13の第1モニタ31及び操作部32を示す概略説明図である。図2Dは、第1実施形態にかかる右回転操作時の遠隔制御装置13の第1モニタ31及び操作部32を示す概略説明図である。
 まず、遠隔制御装置13を用いた第1実施形態における移動装置12の作動時の遠隔操作について、図2Aを用いて説明する。
 図2Aに示すように、移動装置12に電源を入れて作動を開始させると、移動装置12の第1制御部41は、移動装置12の現在位置(Xa、Ya、Aa)を、移動装置12の移動目標位置(Xt、Yt、At)に代入して初期値とする。なお、位置(Xt、Yt)は、移動目標位置の地図情報のx軸及びy軸の絶対座標であり、位置(Xa、Ya)は、現在位置の地図情報のx軸及びy軸の絶対座標である。なお、x軸は移動装置12の進行方向であり、y軸は移動装置12の進行方向と直交する方向である。また、姿勢(At)は、移動目標位置におけるx軸と移動装置12の向きとの間で形成される角度(移動目標姿勢)であり、移動目標位置に含まれる情報である。また、姿勢(Aa)は、現在位置におけるx軸と移動装置12の向きとの間で形成される角度(現在姿勢)であり、現在位置に含まれる情報である。移動装置12の動作開始時において、現在位置と移動目標位置とは、同じである。また、動作開始時において、移動装置12は、停止した状態であり、第1モニタ31には、画像形成部31aにより第2アイコン35及び第1アイコン36が重ねて表示されている。また、図2Aの場合、操作者が操作部32を操作していない状態であるため、操作部32の入力値は(0,0,0)である。すなわち、図2Aの場合、操作部32の操作は「停止」である。
 続いて、第1実施形態における移動装置12の前進操作時の遠隔操作について、図2Bを用いて説明する。図2Bの場合、操作部32の操作は「前進」である。
 図2Bに示すように、移動装置12の前進操作を行なうために、操作者によりジョイスティック32cが前方(x軸方向)に傾けられると、遠隔制御装置13の第1検出部32bは、操作部32の入力値(dX、0、0)を検出する。すると、第1アイコン36は、第1検出部32bで検出された入力値(dX、0、0)に基づいて、入力値(dX、0、0)に対応する距離だけ第2アイコン35より離れた位置で、第1モニタ31に表示される。そして、遠隔制御装置13の第2演算部77は、第3記憶部34に記憶された移動目標位置に、この入力値を加えて、新たな移動目標位置(Xt´、Yt´、At´)に変更する。すなわち、新たな移動目標位置(Xt´、Yt´、At´)=移動目標位置(Xt、Yt、At)+入力値(dX、0、0)として演算されて変更される。
ここで、移動装置12の初期値が設定された後であれば、第1アイコン36の位置は、第2アイコン35の位置より、移動装置12の走行方向に距離dXだけ離れた位置である(図2B参照)。移動装置12は、遠隔制御装置13の第2通信部33から送信された新たな移動目標位置を第1通信部29で受信すると、第1制御部41での制御に基づいて、この新たな移動目標位置に向って自律的に移動を開始する。図2Bに示す場合は、移動装置12は、第1アイコン36が設定された移動装置12の前進方向に直進移動する。
 続いて、第1実施形態における移動装置12の右折操作時の遠隔操作について、図2Cを用いて説明する。図2Cの場合、操作部32の操作は「右折」である。
 図2Cに示すように、移動装置12の右折操作を行なうためにジョイスティック32cが操作者により前方右斜めに傾けられる(x軸のプラス方向(図2Cの上方向)とy軸のマイナス方向(図2Cの右方向)との間に傾けられる)と、遠隔制御装置13の操作部32の第1検出部32bは、操作部32の入力値(dX、dX・cos(-θa)、dA)を検出し、この入力値に基づいて第1アイコン36が第2アイコン35より離れた位置で第1モニタ31に表示される。ここで、θaは、x軸とジョイスティック32cとのなす角度である。そして、遠隔制御装置13の第2演算部77は、第3記憶部に記憶された移動目標位置にこの入力値を加えることで、新たな移動目標位置を算出する。すなわち、図2Cの場合は、新たな移動目標位置(Xt´、Yt´、At´)=移動目標位置(Xt、Yt、At)+入力値(dXt、dXt・cos(-θa)、dAt)である。移動装置12の第1通信部29は、遠隔制御装置13の第2通信部33から新たな移動目標位置を受信し、この移動目標位置に向って自律移動を開始する。図2Cに示す場合は、移動装置12は、右にカーブしながら前進して、移動装置12の現在位置が移動目標位置と同じになるまで自律移動する。
 続いて、第1実施形態における移動装置12の右回転操作時の遠隔操作について、図2Dを用いて説明する。図2Dの場合、操作部32の操作は「右回転」である。
 図2Dに示すように、移動装置12の右回転操作を行なうためにジョイスティック32cが操作者により右に傾けられる(y軸のマイナス方向に傾けられる)と、遠隔制御装置13の操作部32の第1検出部32bは、操作部32の入力値(0、0、dA)を検出する。遠隔制御装置13の第2演算部77は、移動目標位置にこの入力値を加えることで、新たな移動目標位置を算出する。すなわち、図2Dの場合は、新たな移動目標位置(Xt´、Yt´、At´)=移動目標位置(Xt、Yt、At)+入力値(0、0、dAt)である。図2Dに示す場合、遠隔制御装置13の第1モニタ31上の第1アイコン36は右方向きに回転(右回転)する。すると、移動装置12の第1通信部29は、遠隔制御装置13の第2通信部33から新たな移動目標位置を受信し、この移動目標位置に向って移動を開始する。
 次に、遠隔制御装置13による移動目標位置の設定動作のフローについて、図3を用いて説明する。
 図3は、第1実施形態にかかる遠隔制御装置13による移動目標位置の設定動作を示すフローチャートである。
 まず、ステップS01として、遠隔制御装置13の第2演算部77は、移動装置12の第1認識部23より、通信部29,33を介して、移動装置12の現在位置を取得する。具体的には、遠隔制御装置13の第2通信部33が、移動装置12の現在位置(Xa、Ya、Aa)を、移動装置12の第1認識部23から第1通信部29を介して受信する。ステップS01は、移動装置12の情報を取得する移動装置情報取得ステップである。
 続いて、ステップS01Aとして、移動装置12の現在位置(Xa、Ya、Aa)を、第1制御部41で、移動装置12の移動目標位置(Xt、Yt、At)に代入して初期値とする。ステップS01Aは、移動装置12の初期値を設定するときのみの初期値設定ステップである。
 続いて、ステップS02として、操作部32の入力値を第1検出部32bで検出する。具体的には、ジョイスティック32cの傾きを、ジョイスティック32cを操作者が操作したことによる入力値(dXt、dYt、dAt)として、第1検出部32bで検出する。ステップS02は、操作部32の操作により入力値を検出する操作検出ステップである。
 続いて、ステップS03として、第2演算部77により、ステップS02で第1検出部32bにより検出された入力値を移動目標位置に和算して、新たな移動目標位置を生成する。すなわち、新たな移動目標位置(Xt´、Yt´、At´)=移動目標位置(Xt、Yt、At)+入力値(dXt、dYt、dAt)である。ステップS03は、操作部32の操作に基づいて新たな移動目標位置を生成する移動目標位置生成ステップである。
 続いて、ステップS04として、遠隔制御装置13は、ステップS03で第2演算部77により生成された新たな移動目標位置に合わせて、第1モニタ31上の第1アイコン36の位置を、画像形成部31aで更新する。さらに、ステップS01で取得した移動装置12の現在位置に合わせて、第1モニタ31上の第2アイコン35の表示を、画像形成部31aで更新する。ステップS04は、遠隔制御装置13の第1モニタ31の表示を更新するモニタ表示更新ステップである。
 続いて、ステップS05として、ステップS03で第2演算部77により生成された移動目標位置を、第2通信部33から移動装置12の第1通信部29へ送信して、第1記憶部24に記憶する。ステップS05は、遠隔制御装置13から移動装置12へ移動目標位置を送信する移動目標位置送信ステップである。
 このように、図3のステップS01~ステップS05を繰り返すことで、遠隔制御装置13の操作部32に加えられた操作によって移動目標位置を変更し、移動装置12の第1記憶部24における移動目標位置の設定動作を行なう。移動装置12は、遠隔制御装置13の第2通信部33より送信された移動目標位置を第1通信部29で受信すると、受信した移動目標位置を新たな移動目標位置として第1記憶部24で更新し、この移動目標位置へ向けて自律移動を開始する。
 次に、第1実施形態のノードを用いた第2移動経路の生成について説明する。
 第1実施形態の遠隔制御システム11は、移動装置12の現在位置と移動目標位置との距離(間隔)ΔDが第1所定距離以上離れたこと、又は、現在位置が第1所定時間以上変わらないことを条件に、地図情報に含まれるノード45を用いて第1生成部53でノード間を結ぶ経路を含む第2移動経路を生成する。
 この第1生成部53でのノードを用いた第2移動経路の生成について、図4A~図4D、図5、図6、図7を用いて説明する。
 図4A~図4Dは、第1実施形態にかかる各状態での遠隔制御装置13の第1モニタ31を示す図である。図5は、第1実施形態にかかる地図情報のノード45を示す図である。図6は、第1実施形態にかかる遠隔制御装置13の第2移動経路を示す図である。図7は、第1実施形態にかかる移動目標位置の設定を変えた遠隔制御装置13の第2移動経路を示す図である。
 図4A~図4Dに一連の流れとして示すように、操作部32によって第1アイコン36を第1モニタ31上で移動させても、第2アイコン35は移動せずに第1アイコン36のみが移動する場合がある。これは、第1実施形態では、移動装置12の周辺の障害物の自律回避動作などが移動装置12で行なわれていても、第1モニタ31上の第2アイコン35は移動していないように表示しているために、発生する。この場合、図4A~図4Cに示すように、第1モニタ31上で第1アイコン36のみが移動することで、図4Dに示すように、第1アイコン36と第2アイコン35との間に、障害物の一例である壁42が挟まれることがある。このようにして、移動目標位置(第1アイコン36)と現在位置(第2アイコン35)との間に壁42などの障害物が挟まれると、第1生成部53で生成された第1移動経路に沿って移動装置12が自律移動しても、移動装置12が移動目標位置に到着することができない場合がある。これは、第1実施形態の第1生成部53が、現在位置から移動目標位置に向けた最短距離の第1移動経路(すなわち、壁42などの障害物を通過する第1移動経路)を生成しているためである。ここで、第1移動経路とは、移動装置12の現在位置と移動目標位置とを結ぶように第1生成部53で生成された、最短の移動経路である。この場合、生成された第1移動経路に沿って移動装置12が走行すると、移動装置12が壁42の手前で回避動作を繰り返して、それ以上、第1移動経路に沿って走行できなくなることがある。
 そこで、第1実施形態の移動装置12では、このような場合は、障害物を通過する第1移動経路ではなく、以下に説明するノード45を利用して開口部43を通過する第2移動経路を探索している。
 ここで、壁42の開口部43と移動装置12との間隔(距離)が第7所定距離よりも短ければ、第1取得部27を用いて開口部43を探索して、開口部43を通過する第1移動経路を設定できる場合がある。しかし、壁42の開口部43と移動装置12との間隔(距離)が第7所定距離以上であると、第1取得部27を用いて開口部43を探索することが困難である。なお、ここでの第7所定距離とは、第1取得部27によって環境情報を取得可能な距離であり、予め第1取得部27のセンサの種類や実験データなどにより求められるものである。
 ノード45を利用した第2移動経路を設定するために、第1実施形態の移動装置12は、現在位置と移動目標位置との距離ΔDが第1所定距離以上であると第1認識部23で判断する場合、又は、現在位置が変化せずに第1所定時間(例えば、30秒)だけ経過したと第1認識部23に内蔵されたタイマで判断する場合に、地図情報に含まれるノード45とその接続関係とを用いて、第1生成部53によりノード間を結ぶ経路を含む第2移動経路を生成する。ノード45は、第2記憶部70に記憶された通路80Pにおいて、曲がり角及び交差点に少なくとも設定され、通路の直線部分では、適宜の間隔で設定されている。そして、第1実施形態の移動装置12は、ノード45を用いた第2移動経路を生成した場合、現在位置から移動目標位置に向けて、第1生成部53で生成された第2移動経路に沿って、自律移動を行う。
 このように、第1実施形態の移動装置12は、現在位置と移動目標位置との距離ΔDが第1所定距離以上離れた場合、又は、現在位置が変化せずに第1所定時間以上経過した場合に、地図情報に含まれるノード45とその接続関係とを用いて、第2移動経路を第1生成部53で生成することで、より確実に、移動装置12が移動目標位置まで自律移動することを可能としている。
 次に、地図情報に含まれるノード45とその接続関係を用いて、第2移動経路を第1生成部53で生成する方法について、詳しく説明する。
 図5は、第1実施形態にかかる地図情報のノード45とその接続関係の一部を示す図である。図6は、第1実施形態にかかる遠隔制御装置13の第1モニタ31の地図上の第2移動経路46を示す図である。
 ここで、ノード45の各座標とノード45間の接続関係とは、第1記憶部24に、地図情報として予め設定してある。ノード45間の接続関係の情報は、例えば、ノード45間が一方通行又は双方通行のどちらであるかの情報、又は、ノード45間を走行するために必要なコストの情報である。ここで、コストとは、距離、時間、エネルギなどの評価値であって、移動装置12が移動するのに必要なものをまとめた指標である。まず、第1生成部53は、現在位置からのコストが一番小さなノード45を、現在位置から最初に到達すべきノード45である「始点ノード」として選択する。また、第1生成部53は、移動目標位置までのコストが一番小さなノード45を、移動目標位置へ向う最終のノード45である「終点ノード」として選択する。そして、第1生成部53は、選択された始点ノードと終点ノードとに基づいて、途中ノード(始点ノードと終点ノードの間の途中のノード45)を最小コストで結ぶ第2移動経路を検索する。この第2移動経路の探索に第1生成部53で用いられるアルゴリズムは、例えば、経路探索アルゴリズムAと呼ばれるものを使用することができる。この経路探索アルゴリズムAは、移動装置12の走行領域において設定されたノード45のコストf(N)を計算しながら、第2移動経路を第1生成部53で探索する。このコストf(N)は、始点ノードから途中ノードを経由して終点ノードに至るときの最小コスト(例えば、最短距離)の推定値であり、f(N)=g(N)+h(N)で計算される。ここで、g(N)は始点ノードと途中ノードとの間の現時点の最小コストである。h(N)は、途中ノードと終点ノードとの間の最小コストの推定値である。このようにして、始点ノードから終点ノードへの経路として、コストの合計が最小となる最適な第2移動経路が、第1生成部53で生成される。ただし、このような最適な第2移動経路の探索については、経路探索アルゴリズムAによらずに、遺伝的アルゴリズムなどの経路探索方法を第1生成部53で用いて行ってもよい。
 第1実施形態の第1生成部53は、図5に示す状態で、壁42が現在位置と移動目標位置との間に存在する場合、移動装置12の現在位置から移動目標位置までの第2移動経路46を、図6に示すように屈曲してノード45を通過する複数の直線として生成する。図6の移動経路46は、通過すべきノード45として、始点ノード45a、途中ノード45b、終点ノード45cの順にノードを選択し、これらのノード45a,45b,45cを結ぶ屈曲線を移動経路46としている。すなわち、第1実施形態の移動装置12は、図5に示すように、ノード45間を結ぶ第2移動経路46に沿って、移動目標位置へ向って移動する。
 このように、第1実施形態の遠隔制御システム11の移動装置12は、移動装置12の現在位置と移動目標位置との間に壁42などの環境物が存在する場合でも、現在位置から移動目標位置へ移動することができる。結果、操作者が第1実施形態の遠隔制御装置13を用いることで、移動装置12の周囲の環境を意識せずに、移動装置12を遠隔操作することができる。
 なお、第1実施形態の遠隔制御システム11では、移動装置12がノード45間を結ぶ第2移動経路46に沿った走行開始後に、移動目標位置を変えることも可能である。
 図7は、第1実施形態にかかる移動目標位置の設定を走行開始後に変えた遠隔制御装置13の第1モニタ31上の第2移動経路46を示す図である。
 図7に示すように、移動経路46に沿って移動装置12が移動する場合、移動目標位置と現在位置とが離れているため、移動装置12が移動目標位置に到着するまでに長い時間を要する場合がある。そこで、第1実施形態にかかる移動装置12は、ノード45a,45b,45c間を結ぶ第2移動経路46が第1生成部53で設定された場合に、終点ノード45cまでの第2移動経路46を第1生成部53で設定して固定する。つまり、第1実施形態の移動装置12では、図7に示すように移動目標位置を移動させた場合でも、移動装置12が終点ノード45cに到達するまでは第2移動経路46を第1生成部53で変更せずに、終点ノード45cに到達した後に最新の移動目標位置へ向って移動するように第1生成部53で第2移動経路46を変更している。このようにすることで、移動目標位置が設定される度に、すでに生成されたそれまでの第2移動経路46を第1生成部53で改めて生成することがなく、第1生成部53が第2移動経路46を生成するための演算負担を軽減することができる。
 ただし、状況によっては、移動目標位置が変更された場合に第2移動経路46上の終点ノード45cまで移動すると、移動目標位置とは逆の方向に動くなど、効率の悪い第2移動経路46が生成されることがある。その対策としては、第2所定時間(例えば、10秒)毎に移動経路46を第1生成部53で更新する方法、又は、移動経路上のノード45に到達するたびに第2移動経路46を第1生成部53で更新する方法が、考えられる。また、移動装置12の周囲の環境物の配置状態が第5所定距離以上変化するなど、移動目標位置と現在位置との間の状況が変化したことを第1取得部27で検出できた場合は、第1取得部27からの検出情報に基づいて、第2移動経路46に沿った移動から移動目標位置へ直接向かう第2移動経路に、移動経路を変更しても良い。
 次に、第1実施形態の遠隔制御システム11を用いた移動装置12の遠隔制御の一連のフローについて、図8A、図8Bを用いて説明する。なお、図8A、図8Bの一連のフローの処理は、例えば、10ms程度毎のように短時間で高速に処理するのが好ましい。
 まず、図8AのステップS11において、移動装置12の第1通信部29が、遠隔制御装置13の第2通信部33からの移動開始信号又は目的地の情報を受信したか否かを、移動装置12の第1評価部73で判断する。
 次いで、移動装置12が移動開始信号又は目的地の情報を受信した場合(ステップS11のYESの場合)、図8のステップS12において、第1認識部23と第1生成部53などにより、移動装置12の移動を開始すると共に、第1生成部53ではノード間移動フラグをfalse(否)とする。
 続いて、図8AのステップS13において、移動装置12は、遠隔制御装置13の第2通信部33から第1通信部29で受信した移動目標位置を読み出して、第1演算部72に入力する。ここで、遠隔制御装置13の第2通信部33から送信される移動目標位置は、図2A~図2D、図3を用いて説明したように生成される。また、ここで読み出す移動目標位置は、第1記憶部24の一時記憶領域に記憶された直前の移動目標位置であるが、移動目標位置が一時記憶領域に保存されておらず読み出せない場合は、前回の移動目標位置をそのまま利用する。
 なお、移動開始信号又は目的地の情報を受信しない場合(ステップS11のNOの場合)、移動装置12の第1通信部29が移動開始信号又は目的地の情報を受信するまで、図8AのステップS11を繰り返す。
 続いて、図8AのステップS14において、ステップS13で移動目標位置を読み出した移動装置12の第1演算部72は、移動目標位置と現在位置との距離ΔDを演算する。
 続いて、図8AのステップS15において、移動装置12が第2移動経路を移動しているか否かを、第1生成部53で判断する。ここで、第2移動経路とは、前述のように、ノード45間を結ぶ経路を含む場合の移動経路である。具体的には、第1生成部53で、ノード間移動フラグがtrueかfalseかを判断する。ノード間移動フラグは、第1生成部53の内部記憶部に記憶されている。ノード間移動フラグは、移動装置12が第2移動経路を移動しているときはtrueとなり、移動装置12が第2移動経路を移動していないとき(例えば、移動装置12が第1移動経路を移動しているとき)はfalseとなる。ここでは、ステップS12でノード間移動フラグをfalseとしているため、ステップS15のNOの場合となり、ステップS16に進む。もし、ノード間移動フラグがtrueならば、ステップS15のYESの場合となり、ステップS24に進む。
 次いで、移動装置12が第2移動経路を移動していない場合(ステップS15のNOの場合)、図8AのステップS16において、移動装置12の第1演算部72で移動目標位置と現在位置との距離(間隔)ΔDを演算して求め、第1演算部72で求めた移動目標位置と現在位置との距離ΔDが第1所定距離(例えば、5m)以上か否かを、第1生成部53で判断する。距離ΔDが第1所定距離以上であると第1生成部53で判断する場合(ステップS16のYESの場合)、ステップS36に進む。距離ΔDが第1所定距離未満であると第1生成部53で判断する場合(ステップS16のNOの場合)、ステップS17に進む。
 次いで、ステップS17において、移動装置12が現在位置から移動目標位置へ第1移動経路に沿って直接移動可能か否かを、第1生成部53で判断する。移動装置12が現在位置から移動目標位置へ第1移動経路に沿って直接移動可能であると第1生成部53で判断する場合(ステップS17のYESの場合)、ステップS18に進む。移動装置12が現在位置から移動目標位置へ第1移動経路に沿って直接移動できないと第1生成部53で判断する場合(ステップS17のNOの場合)、ステップS22に進む。
 ステップS18では、第1生成部53と第2制御部26と駆動部22とにより、現在位置から移動目標位置へ向けて、第1移動経路に沿って移動装置12が自律移動する。
 次いで、ステップS19において、移動目標位置と現在位置との距離ΔDが第2所定距離(例えば、3m)以上あるか否か、及び、距離ΔDが第6所定距離以上の状態が第4所定時間以上続くか否かを、第1認識部23で判断する。ステップS19では、距離ΔDが第2所定距離以上の場合を、第1認識部23でYESと判断する。また、ステップS19では、距離ΔDが第6所定距離以上の状態が第4所定時間以上続く場合も、第1認識部23でYESと判断する。すなわち、ステップS19では、距離ΔDが第2所定距離未満であると共に、距離ΔDが第6所定距離以上の状態が第4所定時間未満の場合に、第1認識部23でNOと判断する。ステップS19でNOと第1認識部23で判断する場合、ステップS20に進む。ステップS19でYESと第1認識部23で判断する場合、ステップS37に進む。
 ステップS37では、遠隔制御装置13の報知部75で操作者に第1報知を行う。第1報知とは、移動装置12の移動目標位置と現在位置との距離が離れすぎていることを、遠隔制御装置13の操作者に報知することである。報知部75での第1報知の例としては、操作部32の動作抵抗を大きくする(モータなどにより抵抗力をジョイスティック32cに作用させる)、音を鳴らす、光を発光させる、第1アイコン36の位置をリセットして第2アイコン35の位置に表示するなどがある。その後、ステップS20に進む。
 次いで、ステップS20において、移動装置12の第1通信部29で遠隔制御装置13の第2通信部33から移動停止信号を受信しているか否かを、第1制御部41で判断する。移動停止信号を移動装置12の第1通信部29で受信していると判断する場合(ステップS20のYESの場合)、ステップS21に進む。移動停止信号を移動装置12の第1通信部29で受信していないと判断する場合(ステップS20のNOの場合)、ステップS13に戻る。ステップS20では、操作者の操作による緊急停止などの移動停止信号が、遠隔制御装置13から移動装置12に送信されるか否かを判断する。そして、移動停止信号により、移動装置12を停止させるか否かを第1制御部41で判断する。
 次いで、ステップS21において、移動装置12の自律移動を停止する。その後、一連の処理を終了する。
 一方、第1取得部27による移動装置12の周囲に障害物が検出されて、移動装置12が、移動目標位置へ直接移動できない場合は、その障害物を回避するために、第2生成部74で障害物回避ポイントを生成して、障害物回避ポイントに移動することで、障害物を回避する。図8Aにおいては、第1取得部27で障害物が検出された場合のステップS22(ステップS17のNOの場合)において、第2生成部74で障害物回避ポイントを生成した後、ステップS23に進む。
 次いで、ステップS23において、第1認識部23と第1生成部53と第2制御部26と駆動部22と第2生成部74とで、移動装置12を制御して、第2生成部74で生成された障害物回避ポイントに沿って、移動装置12を走行させる。その後、ステップS19に進む。
 以上のステップS17~S23が、現在位置から移動目標位置までの最短の経路である第1経路を移動する、通常の移動装置12の移動フローである。
 一方、図8Bにおいて、ノード間移動フラグがtrueの場合(ステップS15がYESの場合)は、移動装置12が第2移動経路を移動している場合である。また、距離ΔDが第1所定距離以上の場合(ステップS16がYESの場合)は、移動装置12が第2移動経路を移動すると判断する場合である。この場合、ステップS36で、目的地に対して、ノード間を結ぶ第2移動経路を生成すると共に、ノード間移動フラグをtrueとする。なお、ここでは、移動目標位置を目的地としても良い。
 これらの場合(ステップS15がYESの場合、ステップS16がYESでステップS36を行った場合)の処理を行った後、ステップS24において、一時目標位置生成部71で生成した第2移動経路上の一時目標位置を、第1評価部73で設定する。その後、ステップS25に進む。
 次いで、ステップS25において、ステップS24で設定された第2移動経路上の一時目標位置へ、移動装置12が直接移動可能か否かを、第1評価部73で判断する。
 移動装置12が現在位置から移動目標位置へ直接移動可能であると判断する場合(ステップS25のYESの場合)、ステップS26に進む。第1取得部27により障害物が発見されるなどして、移動装置12が現在位置から一時目標位置へ直接移動できないと判断する場合(ステップS25のNOの場合)、ステップS33、S34に進んで、ステップS22、S23と同様に、障害物の回避を行った後、ステップS27に進む。
 次いで、ステップS26において、移動装置12は、第1生成部53と第2制御部26と駆動部22とにより、現在位置から一時目標位置へ向けて第2移動経路上を移動する。
 次いで、ステップS27では、ステップS19と同様に、第2移動経路上の一時目標位置と移動装置12の現在位置との距離(間隔)ΔEが第2所定距離以上の場合を、第1認識部23でYESと判断する。また、ステップS27では、距離ΔEが第6所定距離以上の状態が第4所定時間以上続く場合も、第1認識部23でYESと判断する。すなわち、ステップS27では、距離ΔEが第2所定距離未満であると共に、距離ΔEが第6所定距離以上の状態が第4所定時間未満の場合に、第1認識部23でNOと判断する。
 ステップS27でNOと第1認識部23で判断する場合、ステップS28に進む。ステップS27でYESと第1認識部23で判断する場合、ステップS35に進む。
 ステップS35では、ステップS37と同様に、遠隔制御装置13の報知部75で操作者に第1報知を行う。第1報知とは、移動装置12の移動目標位置と現在位置との距離が離れすぎていることを、遠隔制御装置13の操作者に報知することである。その後、ステップS28に進む。
 次いで、ステップS28において、移動装置12が一時目標位置に第4所定距離まで接近したか否かを、第1認識部23で判断する。移動装置12が一時目標位置に第4所定距離まで接近した(距離ΔEが第4所定距離以下)と第1認識部23で判断する場合(ステップS28のYESの場合)、ステップS31に進む。移動装置12が一時目標位置に第4所定距離まで接近していないと第1認識部23で判断する場合(ステップS28のNOの場合)、ステップS29に進む。距離ΔEが第4所定距離以下となることで、図6を用いて説明したように、ノード45を用いた第2移動経路から通常の第1移動経路に移動経路を切替えるための処理を行う。具体的には、距離ΔEが第4所定距離以下となることで、ステップS31で、第1移動経路に戻ったことを示す第2報知を行い、ステップS32に進む。第2報知は、第1報知と同様の方法で報知される。
 次いで、ステップS29において、ステップS20と同様に、移動装置12の第1通信部29で遠隔制御装置13の第2通信部33から移動停止信号を受信しているか否かを、第1制御部41で判断する。移動停止信号を移動装置12の第1通信部29で受信していると判断する場合(ステップS30のYESの場合)、ステップS21に進む。移動停止信号を移動装置12の第1通信部29で受信していないと判断する場合(ステップS30のNOの場合)、ステップS13に戻る。ステップS30では、操作者の操作による緊急停止などの移動停止信号が、遠隔制御装置13から移動装置12に送信されるか否かを判断する。そして、移動停止信号により、移動装置12を停止させるか否かを第1制御部41で判断する。
 また、ステップS32においては、ノード間移動フラグをfalse(否)として、第2移動経路の移動を解除する。その後、ステップS20に進む。
 以上説明したステップS36、S24~S30が、ノード間を結ぶ第2移動経路を移動する、移動装置12のノード間移動用の移動フローである。
 このように、移動装置12が移動目標位置に到達していない場合(ステップS20及びS30のNO)、ステップS13に戻り、移動装置12が移動目標位置に到達するまで、ステップS13以降のステップを繰り返す。
 また、第1実施形態は、移動装置12を直接に遠隔操作するのではなく、移動目標位置を操作者が操作部32で遠隔操作することで、遠隔制御装置13で取得することのできない環境物(地図情報にない移動装置12周辺の環境物のうちの移動障害物(例えば、人などの移動体))に依存せずに、環境物を回避して移動することができる。そのため、操作者は、第1実施形態の遠隔制御システム11を用いることで、地図情報に無い環境物を意識することなく、移動装置12を遠隔操作することができる。
 図9は、第1実施形態にかかる移動装置12とその周辺を示す概略図である。図9に示すように、移動目標位置は移動装置12から離れた箇所に設定されるため、移動装置12と移動目標位置の間に、移動体37を含む環境物のうちの移動障害物が挟まれることがある。特に、移動体37が人等である場合、この環境物は地図情報に含まれないため、第1モニタ31に表示されない。そのため、遠隔制御装置13を操作する操作者は、移動体37を認識することができず、移動体37に配慮して移動目標位置を設定することができない。第1実施形態の移動装置12は、このような状態において、遠隔制御装置13から無線通信で送られてきた移動目標位置に向かって自律移動を行うと共に、第1取得部27で検出した移動体37を自動で回避する。なお、このとき、遠隔制御装置13の第1モニタ31では、移動装置12から無線通信で送られてきた移動装置12の自己位置の認識情報によって第2アイコン35を表示するため、第2アイコン35は直線的に第1アイコン36に向かわずに、第1モニタ31上では何も無いところを迂回するように移動することになる。
 また、第1実施形態の移動装置12は、移動装置12と遠隔制御装置13との間の通信が切断された場合、第1記憶部24により、切断時の移動目標位置及び移動目標姿勢を、継続して移動目標位置とする。このようにすることで、通信の切断に対しても、移動装置12が急停止することなく、既に設定された移動目標位置まで継続して移動することができる。
 なお、第1実施形態の遠隔制御システム11において、移動目標位置は、移動目標位置及び移動目標姿勢の情報を含むが、移動目標姿勢の情報を含まずに移動目標位置の情報のみであってもよい。
 以上説明したように、第1実施形態によれば、遠隔制御装置13を用いて、移動装置12を移動目標位置へ効率良く移動させることが可能となる。言い換えれば、従来の遠隔制御システムは、モニタに表示された立体空間に対して移動目標位置を設定する必要があるため、周囲の環境物(壁等の移動障害物)と移動目標位置との間隔を直感的に把握することが難しく、モニタ上に移動目標位置を設定することが困難な場合があった。しかしながら、第1実施形態では、周囲の環境物(壁等の移動障害物)と移動目標位置との間隔を直感的に把握することができ、第1モニタ31を利用して移動目標位置を容易に設定することができる。
 (第2実施形態)
 図10は、本発明の第2実施形態にかかる遠隔制御装置13の第1モニタ31及び操作部32を示す図である。図11は、第2実施形態にかかる第1アイコン36と壁42との関係を示す図である。
 以下、第2実施形態が前述の第1実施形態と異なる点について、図面を参照しながら説明する。
 第2実施形態にかかる遠隔制御装置の地図情報は、移動装置12の進入を禁止する移動禁止領域を含むことを特徴とする。そして、遠隔制御装置13の第2演算部77は、操作部32による移動禁止領域(例えば、壁、階段など)における移動目標位置の設定を禁止する。
 図10に示すように、第1アイコン36の前方が右方向(図10の右方向)である場合、操作者がジョイスティック32cを操作者により前方(x軸のプラス方向)に倒し、第1アイコン36を矢印の方向へ動かしても、第1アイコン36は壁42の手前で矢印の方向へ動かなくなる。つまり、第2演算部77により、壁42を越えて移動目標位置の位置を設定することができないようにしている。このとき、壁42は、移動禁止線分として地図情報に含まれている。第2演算部77により、移動目標位置の位置を壁42に設定することができないため、第1アイコン36が壁42を超えることもない。
 なお、第2演算部77により、移動禁止線分の周囲も移動目標位置が設定されないようにしてもよい。こうすることで、移動装置12は壁42付近に移動することがなくなる。
 具体的には、第2実施形態では、図10に示すように、第2演算部77により、移動禁止線分でもある壁42に対して、移動装置12の回転中心からの最大半径に安全のための所定距離(例えば数100mm程度)を加えた所定の距離範囲Wに、移動目標位置が設定されないようにしている。そのために、遠隔制御装置13の第2演算部77は、第1アイコン36の中心(移動目標位置)と移動禁止線分との距離rを地図情報より算出し、この距離が距離W以下になると移動目標位置の設定を禁止している。このようにすることで、移動装置12が壁42に近づくことがなくなり、さらに高い安全性を確保することができる。
 (第3実施形態)
 図12Aは、本発明の第3実施形態にかかる遠隔制御システム61の模式図である。遠隔制御システム61は、移動装置62と遠隔制御装置13とを少なくとも含んで構成される。図13は、第3実施形態にかかる遠隔制御装置13の第1モニタ31を示す図である。
 以下、第3実施形態が前述の第1実施形態と異なる点について、図面を参照しながら説明する。
 図12Aに示すように、第3実施形態の移動装置62は、周囲を撮影する第1撮影部63を有する。第1撮影部63は、移動装置62の車体の四方にカメラ63Cを有し、第1撮影部63に内蔵する画像形成部63aで、それら4つのカメラ63Cで撮影された画像を合成して移動装置62の上方より見た画像64を生成する(図12B参照)。そして、遠隔制御装置13は、第1撮影部63の画像形成部63aで得られる画像64を地図情報に重ねて、第1モニタ31に表示する(図12C参照)。4つのカメラ63Cで撮影された画像を合成して移動装置62の上方より見た画像64を生成する場合、移送装置62から定めた距離内を切り出して、表示することが望ましい。このとき、その地図の表示範囲に移動目標位置である第1アイコン36を重ねて表示する。ここで、壁(又は、障害物)で遮られてカメラ63cで撮影されない領域は、図12Bに示すように、壁部分64a(又は、障害物部分64b)として黒塗りの領域で表示される。
 なお、図示はしていないが、移動目標位置がその地図範囲に無いときは、移動目標位置の方向を矢印アイコン(例えば、「←」)などで表示する。矢印アイコンは、広域の地図情報(図12Cの右側の図)とは別の情報として、表示する(図12Cでは左上側に表示する)。
 このようにすれば、第3実施形態によれば、実際の画像を重ね合わせるため、操作者に非常に分かり易いという利点がある。
 このようにすることで、操作者は、地図情報に記録されていない移動装置62の周囲の環境情報を第1撮影部63で取得して、移動目標位置を操作部32で設定することができる。つまり、地図情報に記録されていない人等の環境物を操作者が認識して、操作者が移動目標位置を設定することができる。具体的には、操作者は、地図情報に記録されていない移動体37を認識して、移動体37を避けるように移動目標位置を設定することができる。
 なお、第3実施形態の遠隔制御システム61では、第1撮影部63で得られる画像は、移動装置62から所定の距離内に限定して第1モニタ31に表示させ、移動目標位置(第1アイコン36の中心)の変更は、第1モニタ31に表示される画像64と同じ移動装置62から所定の距離内に限定するとよい。
 図13に示す第1モニタ31に表示される画像64の範囲外に移動目標位置(第1アイコン36の中心)を設定できないように制御することで、操作者は、地図情報に記録されていない周囲の環境物のうちの移動障害物に移動目標位置を設定することがなく、適切な移動目標位置の設定が行われる。
 また、移動目標位置の変更は、画像と関係なく移動装置62から所定の距離内に限定してもよい。移動目標位置の変更位置を、所定の距離内に限定することで、移動目標位置が移動装置62より大きく離れることがなくなる。具体的には、一例として、通路80Pの幅と同じくらいの2m以内に設定することが望ましい。
 なお、頻繁に移動装置62が向かう目的地の座標を、予め第1記憶部24と第3記憶部34とに記憶させておき、遠隔制御装置13に第1リスト選択部76を設けても良い。第1リスト選択部76は、記憶部24,34と対応付けられた目的地を、図12Dに示すように、遠隔制御装置13の第1モニタ31の操作画面上に目的地リストとして列挙して表示する。第1リスト選択部76は、所望の目的地に該当するボタンを押すなどして目的地が選択されると、選択された目的地の座標を記憶部24,34から読み出して、移動経路を第1生成部53で生成して、移動装置12の移動を開始させることもできる。
 (第4実施形態)
 図14は、本発明の第4実施形態にかかる遠隔制御システム11の第1モニタ31を示す図である。
 以下、第4実施形態が前述の第1実施形態と異なる点について、図面を参照しながら説明する。
 第4実施形態では、図14に示すように、遠隔制御装置13の画像形成部31aは、第1アイコン36の姿勢を、第1モニタ31上で常に所定方向きに固定して表示する。例えば、第1アイコン36の進行方向を、常に第1モニタ31の上向とする。画像形成部31aにより、第1アイコン36を、常に第1モニタ31の上方に向けて表示することで、ジョイスティック32cの操作方向と第1アイコン36の方向とが一致する。結果、操作者は、移動目標位置における移動目標姿勢を把握し易くなり、移動目標位置の設定を容易に行なうことができる。
 なお、上記様々な実施形態又は変形例のうちの任意の実施形態又は変形例を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。
 本発明にかかる遠隔制御システムは、操作が容易であり、コミュニケーションロボットの遠隔制御システムなどに有用である。
 本発明は、添付図面を参照しながら実施形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形又は修正は明白である。そのような変形又は修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。

Claims (11)

  1.  移動装置及び遠隔制御装置から構成される遠隔制御システムであって、
     前記遠隔制御装置は、操作部と、前記操作部により入力された移動目標位置を前記移動装置へ送信する通信部と、前記操作部の入力値を変化量として検出する検出部と、を有し、
     前記移動装置は、地図情報を記憶する記憶部と、移動経路に沿って前記移動目標位置へ自律移動する制御部と、前記変化量に応じて前記移動目標位置を変更させながら自律移動する制御部と、を有する、
    遠隔制御システム。
  2.  前記移動装置の前記制御部は、前記移動装置の現在位置に前記操作部による前記変化量を加算して移動目標位置を求める、
    請求項1に記載の遠隔制御システム。
  3.  前記遠隔制御装置は、前記移動装置の現在位置と前記移動目標位置との距離が所定距離以上離れた場合、又は、前記移動目標位置に所定時間以上の間に前記移動装置が到達しない場合に、報知を行う報知部をさらに備える、
    請求項1に記載の遠隔制御システム。
  4.  前記移動装置の前記制御部は、前記移動装置の現在位置と前記移動目標位置との距離が所定距離以上だけ離れた場合、又は、前記移動目標位置に所定時間以上の間に到達しない場合に、前記地図情報に含まれるノードの接続関係に基づいて前記現在位置と前記移動目標位置とを結ぶ移動経路を生成する生成部をさらに備える、
    請求項1又は2に記載の遠隔制御システム。
  5.  前記生成部は、前記移動装置が前記移動経路に沿って自律移動を始めた場合に、前記ノード間を結ぶ移動経路を固定する、
    請求項4に記載の遠隔制御システム。
  6.  前記遠隔制御装置は、前記移動装置の現在位置を示す移動装置アイコン及び前記移動目標位置を示す移動目標位置アイコンを前記地図情報に重ねて表示するモニタ、をさらに備える、
    請求項1又は2に記載の遠隔制御システム。
  7.  前記遠隔制御部は、前記地図情報に含まれる移動禁止領域に前記移動目標位置を設定することを禁止している、
    請求項1又は2に記載の遠隔制御システム。
  8.  前記移動禁止領域は、前記地図情報に含まれる壁である、
    請求項7に記載の遠隔制御システム。
  9.  前記移動装置は、周囲を撮影する撮影部を有し、
     前記遠隔制御装置は、前記撮影部で撮影された画像を前記地図情報に重ねて前記モニタに表示する、
    請求項6に記載の遠隔制御システム。
  10.  前記移動装置の車体の四方に配置された撮影部と、
     前記撮影部で取得した画像を合成して前記移動装置の上方から見た画像を生成する画像形成部と、
     前記遠隔制御部に配置されかつ前記画像形成部で形成した画像を表示するモニタとをさらに備える、
    請求項1又は2に記載の遠隔制御システム。
  11.  前記遠隔制御部は、前記移動目標位置アイコンの姿勢を、前記モニタ上で常に所定の方向に固定して表示する、
    請求項6に記載の遠隔制御システム。
PCT/JP2012/007019 2011-11-04 2012-11-01 遠隔制御システム WO2013065312A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12846550.7A EP2775365A4 (en) 2011-11-04 2012-11-01 REMOTE CONTROL SYSTEM
JP2013541634A JP5828088B2 (ja) 2011-11-04 2012-11-01 遠隔制御システム
US14/355,343 US20140297066A1 (en) 2011-11-04 2012-11-01 Remote control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011241892 2011-11-04
JP2011-241892 2011-11-04

Publications (1)

Publication Number Publication Date
WO2013065312A1 true WO2013065312A1 (ja) 2013-05-10

Family

ID=48191684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007019 WO2013065312A1 (ja) 2011-11-04 2012-11-01 遠隔制御システム

Country Status (4)

Country Link
US (1) US20140297066A1 (ja)
EP (1) EP2775365A4 (ja)
JP (1) JP5828088B2 (ja)
WO (1) WO2013065312A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014229300A (ja) * 2013-05-17 2014-12-08 恩斯邁電子(深▲しん▼)有限公司Msi Computer (Shenzhen) Co.,Ltd. 移動装置
WO2015087430A1 (ja) * 2013-12-12 2015-06-18 日立建機株式会社 車両走行システム及び車両走行制御方法
JP2019133701A (ja) * 2019-04-01 2019-08-08 ヤンマー株式会社 走行領域形状登録システム
JP2021036451A (ja) * 2014-04-25 2021-03-04 ソニー株式会社 情報処理装置、情報処理方法及び情報処理プログラム
JP2022040377A (ja) * 2020-06-15 2022-03-10 ソニーグループ株式会社 制御方法及び制御装置
JP2022065749A (ja) * 2020-10-16 2022-04-28 株式会社キビテク 移動体の制御システム
US11927960B2 (en) 2014-10-17 2024-03-12 Sony Group Corporation Control device, control method, and computer program
US12140952B2 (en) 2014-04-25 2024-11-12 Sony Group Corporation Control device, imaging device, control method, imaging method, and computer program

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105787463A (zh) * 2016-03-18 2016-07-20 哈尔滨工程大学 基于Wi-Fi的远程目标跟踪系统及方法
CN111480131B (zh) * 2018-08-23 2024-01-12 日本精工株式会社 自行装置、自行装置的行进控制方法以及行进控制程序

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0854925A (ja) * 1994-08-09 1996-02-27 Yamaha Motor Co Ltd 無人車
JPH11149315A (ja) * 1997-11-19 1999-06-02 Mitsubishi Heavy Ind Ltd ロボット制御システム
JP2001116567A (ja) * 1999-10-20 2001-04-27 Matsushita Electric Ind Co Ltd 車載運転支援情報表示装置
JP2003532218A (ja) 2000-05-01 2003-10-28 アイロボット コーポレーション 移動ロボットを遠隔操作するための方法およびシステム
JP3844247B2 (ja) 2003-07-28 2006-11-08 松下電工株式会社 自律移動のための経路生成装置及び該装置を用いた自律移動装置
JP2010169692A (ja) * 2010-04-08 2010-08-05 Kyocera Corp 携帯型地図表示装置及びその表示制御方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7474945B2 (en) * 2004-12-14 2009-01-06 Honda Motor Company, Ltd. Route generating system for an autonomous mobile robot
WO2008013568A2 (en) * 2005-12-30 2008-01-31 Irobot Corporation Autonomous mobile robot
IL183006A0 (en) * 2007-05-06 2007-12-03 Wave Group Ltd A bilateral robotic omni-directional situational awarness system having a smart throw able transportaion case
US8032296B2 (en) * 2008-04-30 2011-10-04 Verizon Patent And Licensing Inc. Method and system for providing video mapping and travel planning services
JP5124351B2 (ja) * 2008-06-04 2013-01-23 三洋電機株式会社 車両操作システム
US8392065B2 (en) * 2008-09-11 2013-03-05 Deere & Company Leader-follower semi-autonomous vehicle with operator on side

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0854925A (ja) * 1994-08-09 1996-02-27 Yamaha Motor Co Ltd 無人車
JPH11149315A (ja) * 1997-11-19 1999-06-02 Mitsubishi Heavy Ind Ltd ロボット制御システム
JP2001116567A (ja) * 1999-10-20 2001-04-27 Matsushita Electric Ind Co Ltd 車載運転支援情報表示装置
JP2003532218A (ja) 2000-05-01 2003-10-28 アイロボット コーポレーション 移動ロボットを遠隔操作するための方法およびシステム
JP3844247B2 (ja) 2003-07-28 2006-11-08 松下電工株式会社 自律移動のための経路生成装置及び該装置を用いた自律移動装置
JP2010169692A (ja) * 2010-04-08 2010-08-05 Kyocera Corp 携帯型地図表示装置及びその表示制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2775365A4

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014229300A (ja) * 2013-05-17 2014-12-08 恩斯邁電子(深▲しん▼)有限公司Msi Computer (Shenzhen) Co.,Ltd. 移動装置
WO2015087430A1 (ja) * 2013-12-12 2015-06-18 日立建機株式会社 車両走行システム及び車両走行制御方法
CN105518556A (zh) * 2013-12-12 2016-04-20 日立建机株式会社 车辆行驶系统以及车辆行驶控制方法
JPWO2015087430A1 (ja) * 2013-12-12 2017-03-16 日立建機株式会社 車両走行システム及び車両走行制御方法
US10048692B2 (en) 2013-12-12 2018-08-14 Hitachi Construction Machinery Co., Ltd. Vehicle travel system
JP2022111131A (ja) * 2014-04-25 2022-07-29 ソニーグループ株式会社 飛行制御方法、情報処理装置及びコンピュータプログラム
US12140952B2 (en) 2014-04-25 2024-11-12 Sony Group Corporation Control device, imaging device, control method, imaging method, and computer program
JP2021036451A (ja) * 2014-04-25 2021-03-04 ソニー株式会社 情報処理装置、情報処理方法及び情報処理プログラム
US11237560B2 (en) 2014-04-25 2022-02-01 Sony Corporation Control device, imaging device, control method, imaging method, and computer program
JP7078093B2 (ja) 2014-04-25 2022-05-31 ソニーグループ株式会社 情報処理装置、情報処理方法及び情報処理プログラム
US11927960B2 (en) 2014-10-17 2024-03-12 Sony Group Corporation Control device, control method, and computer program
JP7142597B2 (ja) 2019-04-01 2022-09-27 ヤンマーパワーテクノロジー株式会社 走行領域形状登録システム
JP2019133701A (ja) * 2019-04-01 2019-08-08 ヤンマー株式会社 走行領域形状登録システム
JP7392742B2 (ja) 2020-06-15 2023-12-06 ソニーグループ株式会社 制御方法及び制御装置
JP2022040377A (ja) * 2020-06-15 2022-03-10 ソニーグループ株式会社 制御方法及び制御装置
JP2022065749A (ja) * 2020-10-16 2022-04-28 株式会社キビテク 移動体の制御システム

Also Published As

Publication number Publication date
JPWO2013065312A1 (ja) 2015-04-02
EP2775365A1 (en) 2014-09-10
US20140297066A1 (en) 2014-10-02
JP5828088B2 (ja) 2015-12-02
EP2775365A4 (en) 2015-09-30

Similar Documents

Publication Publication Date Title
WO2013065312A1 (ja) 遠隔制御システム
JP3906743B2 (ja) 案内ロボット
JP5550671B2 (ja) 自律走行ロボット及び自律走行ロボットの走行制御方法
JP5768273B2 (ja) 歩行者の軌跡を予測して自己の回避行動を決定するロボット
JP5366711B2 (ja) 半自律型車両の遠隔操縦システム
JP2006185438A (ja) ロボット制御装置
JP5946428B2 (ja) 移動ロボットシステム
EP2237127B1 (en) Target route setting support system
JP2006113858A (ja) 移動体の遠隔操作支援方法及びシステム
JP2010231698A (ja) ネットワークロボットシステム、ロボット制御装置、ロボット制御方法およびロボット制御プログラム
JP7312582B2 (ja) 無人移動装置
JP2007260822A (ja) 道案内ロボット
JP2005239048A (ja) 駐車支援システム
JP5187757B2 (ja) 無人移動体システム
CN110554692A (zh) 地图信息更新系统
JP4910787B2 (ja) 駐車支援装置および方法、駐車位置設定装置および方法、記録媒体、並びに、プログラム
JP2008134744A (ja) 自律移動装置群制御システム
CN113576854A (zh) 信息处理器
JP2019196065A (ja) 自動駐車制御装置、及び自動駐車制御システム
US20050212680A1 (en) Self-propelled cleaner
JP2018112775A (ja) 自律移動ロボット
JP5024896B2 (ja) 移動ロボットの操縦システム
JP7052260B2 (ja) カメラ付き移動体、カメラ付き移動体制御システム、及びプログラム
JP2006139525A (ja) 自律移動型ロボット
JP2011000656A (ja) 案内ロボット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846550

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013541634

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012846550

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14355343

Country of ref document: US

Ref document number: 2012846550

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE