[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016167374A1 - 作業機械の管理装置 - Google Patents

作業機械の管理装置 Download PDF

Info

Publication number
WO2016167374A1
WO2016167374A1 PCT/JP2016/063511 JP2016063511W WO2016167374A1 WO 2016167374 A1 WO2016167374 A1 WO 2016167374A1 JP 2016063511 W JP2016063511 W JP 2016063511W WO 2016167374 A1 WO2016167374 A1 WO 2016167374A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
travel route
switchback
point
dump truck
Prior art date
Application number
PCT/JP2016/063511
Other languages
English (en)
French (fr)
Inventor
洋輔 角野
貴士 平中
勲 徳
研太 長川
聖 山本
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to PCT/JP2016/063511 priority Critical patent/WO2016167374A1/ja
Priority to CA2954753A priority patent/CA2954753C/en
Priority to US15/325,132 priority patent/US10108196B2/en
Priority to JP2016540078A priority patent/JP6243538B2/ja
Priority to AU2016248872A priority patent/AU2016248872A1/en
Priority to CN201680002072.7A priority patent/CN106662878A/zh
Publication of WO2016167374A1 publication Critical patent/WO2016167374A1/ja
Priority to AU2018201496A priority patent/AU2018201496B2/en
Priority to US16/145,459 priority patent/US10591917B2/en
Priority to AU2019280032A priority patent/AU2019280032B2/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • G05D1/0297Fleet control by controlling means in a control room
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/205Remotely operated machines, e.g. unmanned vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2054Fleet management
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • E02F9/262Surveying the work-site to be treated with follow-up actions to control the work tool, e.g. controller
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0088Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0285Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using signals transmitted via a public communication network, e.g. GSM network
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling

Definitions

  • the present invention relates to a work machine management apparatus.
  • Patent Document 1 discloses an example of an unmanned vehicle traveling system that travels an unmanned dump truck.
  • the work machine travels according to the target travel route data indicating the target travel route transmitted from the management device.
  • the plurality of work machines travel along the same target travel route. Therefore, there is a high possibility that dredging will be generated in the mine transport path or work place. If a deep kite is generated, it will interfere with the running of the work machine. For this reason, when a deep ridge has been generated, for example, a leveling work using a grader is performed. During leveling work, traveling of the work machine is hindered, and as a result, the productivity of the mine is lowered. In addition, the leveling work itself is expensive.
  • An object of an aspect of the present invention is to provide a work machine management device that can suppress the generation of dredging and suppress a decrease in mine productivity.
  • a switchback point setting unit that sets a plurality of switchback points of the work machine at a work site in a mine, and a work point setting unit that sets at least one work point of the work machine at the work site
  • a travel route generator that generates a plurality of target travel routes for the work machine to travel the work place based on the positions of the switchback points and the position of at least one of the work points;
  • a work machine management device comprising: a travel route selection unit that selects a target travel route for the machine to travel in the workplace from the plurality of target travel routes.
  • a work machine management device capable of suppressing the generation of dredging and suppressing the decrease in mine productivity.
  • FIG. 1 is a diagram schematically illustrating an example of a work machine control system according to the first embodiment.
  • FIG. 2 is a functional block diagram illustrating an example of a management device according to the first embodiment.
  • FIG. 3 is a schematic diagram illustrating an example of a target travel route according to the first embodiment.
  • FIG. 4 is a diagram schematically illustrating an example of the dump truck according to the first embodiment.
  • FIG. 5 is a functional block diagram illustrating an example of a dump truck control apparatus according to the first embodiment.
  • FIG. 6 is a diagram schematically illustrating an example of the hydraulic excavator according to the first embodiment.
  • FIG. 7 is a functional block diagram illustrating an example of a hydraulic shovel control device according to the first embodiment.
  • FIG. 1 is a diagram schematically illustrating an example of a work machine control system according to the first embodiment.
  • FIG. 2 is a functional block diagram illustrating an example of a management device according to the first embodiment.
  • FIG. 3 is a schematic diagram illustrating
  • FIG. 8 is a schematic diagram illustrating an example of the operation of the dump truck according to the first embodiment.
  • FIG. 9 is a flowchart illustrating an example of a dump truck control method according to the first embodiment.
  • FIG. 10 is a schematic diagram illustrating an example of a dump truck control method according to the first embodiment.
  • FIG. 11 is a schematic diagram illustrating an example of a dump truck control method according to the second embodiment.
  • FIG. 12 is a schematic diagram illustrating an example of a dump truck control method according to the third embodiment.
  • FIG. 13 is a schematic diagram illustrating an example of a dump truck control method according to the fourth embodiment.
  • FIG. 14 is a schematic diagram illustrating an example of a dump truck control method according to the fifth embodiment.
  • FIG. 15 is a schematic diagram illustrating an example of a dump truck control method according to the sixth embodiment.
  • FIG. 16 is a schematic diagram illustrating an example of a dump truck control method according to the seventh embodiment.
  • FIG. 17 is a schematic diagram illustrating an example of a dump truck control method according to the eighth embodiment.
  • FIG. 1 is a diagram illustrating an example of a control system 1 for a work machine 4 according to the present embodiment.
  • the work machine 4 is a mining machine 4 operating in a mine will be described.
  • Mining machine 4 is a general term for machines used for various operations in a mine.
  • the mining machine 4 includes at least one of a transport machine, a loading machine, an excavating machine, a boring machine, and a crusher.
  • the hauling machine is a mining machine for hauling a load, and includes a dump truck having a vessel.
  • the loading machine is a mining machine for loading a load onto a transporting machine, and includes at least one of a hydraulic excavator, an electric excavator, and a wheel loader.
  • the mining machine 4 includes an unmanned mining machine that operates unmanned and a manned mining machine that is boarded by a driver and operated by the operation of the driver.
  • the dump truck 2 is an unmanned dump truck that operates unattended.
  • the dump truck 2 autonomously travels in the mine based on the data or signal transmitted from the management device 10.
  • the autonomous traveling of the dump truck 2 refers to traveling based on data or a signal transmitted from the management device 10 without being operated by the driver.
  • the hydraulic excavator 3 is a manned hydraulic excavator that is boarded by the driver and operated by the operation of the driver.
  • a work area PA and a conveyance path HL are provided in the mine.
  • the work place PA includes at least one of a loading place LPA and a dumping place DPA.
  • the loading site LPA is an area where a loading operation for loading a load onto the dump truck 2 is performed.
  • the earth removal site DPA is an area where a discharging operation for discharging the load from the dump truck 2 is performed.
  • the conveyance path HL is a traveling path that leads to the work place PL.
  • the dump truck 2 travels at least a part of the mine workplace PA and the transport path HL.
  • the control system 1 includes a management device 10 installed in a mine control facility 7 and a communication system 9.
  • the communication system 9 includes a plurality of repeaters 6 that relay data or signals.
  • the communication system 9 wirelessly communicates data or signals between the management device 10 and the mining machine 4.
  • the communication system 9 wirelessly communicates data or signals between the plurality of mining machines 4.
  • GNSS Global Navigation Satellite System
  • GPS Global Positioning System
  • the GNSS has a plurality of positioning satellites 5.
  • the GNSS detects a position defined by latitude, longitude, and altitude coordinate data.
  • the position detected by GNSS is an absolute position defined in the global coordinate system.
  • the position of the dump truck 2 and the position of the excavator 3 in the mine are detected by GNSS.
  • the position detected by the GNSS is appropriately referred to as a GPS position.
  • the GPS position is an absolute position and includes latitude, longitude, and altitude coordinate data.
  • the management device 10 transmits data or signals to the mining machine 4 and receives data or signals from the mining machine 4.
  • the management device 10 includes a computer 11, a display device 16, an input device 17, and a wireless communication device 18.
  • the computer 11 includes a processing device 12, a storage device 13 connected to the processing device 12, and an input / output unit 15.
  • the display device 16, the input device 17, and the wireless communication device 18 are connected to the computer 11 via the input / output unit 15.
  • the processing device 12 performs arithmetic processing for managing the mining machine 4.
  • the processing device 12 includes a processor such as a CPU (Central Processing Unit).
  • the storage device 13 stores data for managing the mining machine 4.
  • the storage device 13 includes a nonvolatile memory such as a ROM (Read Only Memory) or a flash memory, and a volatile memory such as a RAM (Random Access Memory).
  • the display device 16 displays the result of the arithmetic processing of the processing device 12.
  • the display device 16 includes a flat panel display such as a liquid crystal display (LCD) or an organic EL display (OELD).
  • the input device 17 generates data for managing the mining machine 4 by being operated.
  • the input device 17 includes at least one of a computer keyboard, a mouse, and a touch panel, for example.
  • the processing device 12 performs arithmetic processing using at least one of data stored in the storage device 13, data generated by the input device 17, and data acquired through the communication system 9.
  • the wireless communication device 18 is installed in the control facility 7.
  • the wireless communication device 18 has an antenna 18A.
  • the wireless communication device 18 is connected to the processing device 12 via the input / output unit 15.
  • the communication system 9 includes a wireless communication device 18.
  • the wireless communication device 18 can receive data or a signal transmitted from the mining machine 4. Data or signals received by the wireless communication device 18 are output to the processing device 12 and stored in the storage device 13.
  • the wireless communication device 18 can transmit data or signals to the mining machine 4.
  • FIG. 2 is a functional block diagram illustrating an example of the management apparatus 10 according to the present embodiment.
  • the processing device 12 of the management device 10 includes a switchback point setting unit 121 that sets a switchback point of the dump truck 2 in the mine work place PA, and a work point of the dump truck 2 in the mine work place PA.
  • a work point setting unit 122 that sets a target, a travel route generation unit 123 that generates a plurality of target travel routes of the mining machine 4, a data acquisition unit 124 that acquires data or signals transmitted from the mining machine 4, and a travel route generation
  • the travel route selection unit 125 that selects a target travel route for traveling the dump truck 2 from the plurality of target travel routes generated by the unit 123, and the dump truck 2 according to the target travel route selected by the travel route selection unit 125
  • a travel control unit 126 that outputs a control signal so as to travel.
  • the switchback point setting unit 121 sets a switchback point indicating an absolute position at which the dump truck 2 switches back in at least one of the loading site LPA and the earth discharging site DPA.
  • the switchback point setting unit 121 sets a plurality of switchback points of the dump truck 2 in a work site including at least one of the mine loading site LPA and the earth discharging site DPA.
  • the switchback refers to an operation in which the advancing dump truck 2 changes its traveling direction at an acute angle and approaches the working point while moving backward.
  • the work point setting unit 122 sets a work point indicating an absolute position where the dump truck 2 performs the prescribed work in at least one of the loading site LPA and the earth discharging site DPA.
  • the prescribed work of the dump truck 2 includes at least one of a loading work for loading a load on the dump truck 2 and a discharging work for discharging the load from the dump truck 2.
  • the work point includes at least one of a loading point indicating an absolute position where the loading operation is performed and a discharging point indicating an absolute position where the discharging operation is performed.
  • a loading point is set in the loading area LPA.
  • a discharge point is set at the earth removal site DPA.
  • the travel route generation unit 123 generates a target travel route that travels with respect to each dump truck 2 traveling in the mine on at least one of the transport route HL and the work place PA.
  • the travel route generation unit 123 includes a plurality of dump trucks 2 for traveling on the workplace based on the positions of the switchback points set by the switchback point setting unit 121 and the positions of at least one work point. A target travel route is generated.
  • the data acquisition unit 124 acquires data or signals transmitted from the mining machine 4 including the dump truck 2 and the hydraulic excavator 3.
  • the travel route selection unit 125 selects a target travel route for each of the plurality of dump trucks 2 to travel through the work place from the plurality of target travel routes generated by the travel route generation unit 123.
  • the travel route selection unit 125 selects a target travel route so that soot generation is suppressed in the workplace.
  • the travel route selection unit 125 causes the first dump truck 2 to pass through the first switchback point and travel to the work point, and then the second dump truck 2
  • the target travel route is selected so as to travel to the work point through the switchback point 2.
  • the traveling control unit 126 generates and outputs a control signal for controlling the traveling of the dump truck 2.
  • the travel control unit 126 controls the dump truck 2 so that the dump truck 2 travels according to the target travel route generated by the travel route generation unit 123.
  • FIG. 3 is a schematic diagram illustrating an example of the target travel route RP according to the present embodiment.
  • the traveling route generation unit 123 of the processing device 12 generates traveling condition data of the dump truck 2 traveling in the mine.
  • the target travel route RP travel condition data includes an aggregate of a plurality of course points PI set at a constant interval W on the target travel route RP.
  • Each of the plurality of course points PI includes target absolute position data of the dump truck 2 and target travel speed data of the dump truck 2 at the position where the course point PI is set.
  • the target travel route RP is defined by the target travel route RP that is an aggregate of a plurality of course points PI.
  • a target travel route RP of the dump truck 2 is defined by a trajectory passing through a plurality of course points PI. Based on the target travel speed data, the target travel speed of the dump truck 2 at the position where the course point PI is set is defined.
  • the management device 10 outputs traveling condition data including a plurality of course points PI ahead in the traveling direction to the dump truck 2 via the wireless communication device 18.
  • the dump truck 2 travels in the mine according to the travel condition data transmitted from the management device 10.
  • FIG. 3 shows the target travel route RP set in the transport route HL.
  • the travel route generation unit 123 generates a target travel route RP indicating the target travel route RP not only in the transport route HL but also in the work place PA.
  • FIG. 4 is a diagram schematically illustrating an example of the dump truck 2 according to the present embodiment.
  • the dump truck 2 includes a traveling device 21 capable of traveling in a mine, a vehicle main body 22 supported by the traveling device 21, a vessel 23 supported by the vehicle main body 22, a drive device 24 that drives the traveling device 21, and a control. Device 25.
  • the traveling device 21 includes a wheel 26, an axle 27 that rotatably supports the wheel 26, a brake device 28 that brakes the traveling device 21, and a steering device 29 that can adjust the traveling direction.
  • the traveling device 21 is operated by the driving force generated by the driving device 24.
  • the driving device 24 generates a driving force for accelerating the dump truck 2.
  • the driving device 24 drives the traveling device 21 by, for example, an electric driving method.
  • the drive device 24 includes an internal combustion engine such as a diesel engine, a generator that operates by power of the internal combustion engine, and an electric motor that operates by electric power generated by the generator.
  • the steering device 29 adjusts the traveling direction of the dump truck 2 by changing the direction of the wheels 26.
  • the brake device 28 generates a braking force for decelerating or stopping the dump truck 2.
  • the control device 25 outputs an accelerator command signal for operating the drive device 24, a brake command signal for operating the brake device 28, and a steering command signal for operating the steering device 29.
  • the dump truck 2 includes a position detector 35 that detects the position of the dump truck 2 and a wireless communication device 36.
  • the position detector 35 includes a GPS receiver, and detects the GPS position (coordinates) of the dump truck 2.
  • the position detector 35 has a GPS antenna 35A.
  • the antenna 35 ⁇ / b> A receives radio waves from the positioning satellite 5.
  • the position detector 35 converts a signal based on the radio wave from the positioning satellite 5 received by the antenna 35A into an electric signal, and calculates the position of the antenna 35A.
  • the GPS position of the dump truck 2 is detected by calculating the GPS position of the antenna 35A.
  • the communication system 9 includes a wireless communication device 36 provided in the dump truck 2.
  • the wireless communication device 36 has an antenna 36A.
  • the wireless communication device 36 can wirelessly communicate with the management device 10.
  • the management device 10 transmits travel condition data of the dump truck 2 including the target travel route RP to the control device 25 via the communication system 9. Based on the traveling condition data supplied from the management device 10, the control device 25 causes at least the drive device 24, the brake device 28, and the steering device 29 of the dump truck 2 to travel according to the traveling condition data. Control one.
  • the dump truck 2 transmits absolute position data indicating the absolute position of the dump truck 2 detected by the position detector 35 to the management apparatus 10 via the communication system 9.
  • the data acquisition unit 124 of the management device 10 acquires absolute position data of a plurality of dump trucks 2 traveling in the mine.
  • FIG. 5 is a functional block diagram of the control device 25 of the dump truck 2 according to the present embodiment.
  • the control device 25 is mounted on the dump truck 2.
  • the dump truck 2 includes a wireless communication device 36, a position detector 35, a control device 25, a drive device 24, a brake device 28, and a steering device 29.
  • the control device 25 includes an input / output unit 41, a travel condition data acquisition unit 42, an operation control unit 43, an absolute position data acquisition unit 44, and a storage unit 45.
  • the input / output unit 41 acquires travel condition data from the management device 10 output from the wireless communication device 36 and absolute position data indicating the absolute position of the dump truck 2 output from the position detector 35.
  • the input / output unit 41 outputs an accelerator command signal to the drive device 24, outputs a brake command signal to the brake device 28, and outputs a steering command signal to the steering device 29.
  • the travel condition data acquisition unit 42 acquires travel condition data including the target travel route RP transmitted from the management device 10.
  • the operation control unit 43 outputs an operation control signal for controlling the traveling device 21 of the dump truck 2 based on the designated traveling condition data.
  • the traveling device 21 includes a brake device 28 and a steering device 29.
  • the driving control unit 43 outputs a driving control signal to the traveling device 21 including the driving device 24, the brake device 28, and the steering device 29.
  • the driving control signal includes an accelerator signal output to the drive device 24, a brake command signal output to the brake device 28, and a steering command signal output to the steering device 29.
  • the absolute position data acquisition unit 45 acquires the absolute position data of the dump truck 2 from the detection result of the position detector 35.
  • the storage unit 45 stores the traveling condition data of the dump truck 2 acquired from the wireless communication device 36.
  • the travel condition data includes a target travel route RP indicating the target travel route RP.
  • FIG. 6 is a diagram schematically illustrating an example of the hydraulic excavator 3 according to the present embodiment.
  • FIG. 7 is a functional block diagram of the control device 70 of the excavator 3 according to the present embodiment.
  • the control device 70 is mounted on the excavator 3.
  • the hydraulic excavator 3 includes a work machine 50 that is operated by hydraulic pressure, and a vehicle body 60 that supports the work machine 50.
  • the vehicle main body 60 includes an upper swing body 61 and a lower traveling body 62 that supports the upper swing body 61.
  • the upper swing body 61 has a cab 63 including a cab.
  • a driver's seat 64 on which the driver Ma sits, an operation lever 65 operated by the driver Ma, an input device 66 operated by the driver Ma, and a display device 67 are arranged in the cab.
  • the excavator 3 includes a detection device 57 that detects the relative position of the bucket 53 with respect to the upper swing body 61.
  • the excavator 3 includes a position detector 68 that detects the absolute position of the upper swing body 61 and a wireless communication device 69.
  • the position detector 68 includes a GPS receiver and an inertial measurement unit (Inertial Measurement Unit: IMU), and detects the GPS position (absolute position) and orientation of the upper swing body 61 in the excavator 3.
  • the relative position of the blade edge 53 ⁇ / b> B of the bucket 53 with respect to the upper swing body 61 is detected by the detection device 57.
  • the relative position of the bucket may be defined as being located at a point a predetermined distance away from the turning center in the direction of the upper turning body 61, or may be defined by detecting the angle of the boom, arm, bucket, or the like. .
  • the absolute position of the blade edge 53B of the bucket 53 is calculated.
  • the communication system 9 includes a wireless communication device 69 provided in the excavator 3.
  • the wireless communication device 69 can wirelessly communicate with the management device 10.
  • FIG. 9 is a functional block diagram of the control device 70 of the excavator 3 according to the present embodiment.
  • the control device 70 is mounted on the excavator 3.
  • the excavator 3 includes a wireless communication device 69, a position detector 68, a detection device 57, a control device 70, an input device 66, and a display device 67.
  • the control device 70 includes an input / output unit 71, a bucket position data acquisition unit 72, an input data acquisition unit 73, and a command data generation unit 74.
  • the input / output unit 71 operates position data indicating the position of the excavator 3 output from the position detector 68, bucket position data indicating the position of the bucket 53 detected by the detection device 57, and the input device 66. Get the input data generated by. Further, the input / output unit 41 outputs the command data generated by the command data generation unit 74 to the management device 10 via the wireless communication device 69.
  • the bucket position data acquisition unit 72 includes position data indicating the absolute position of the upper swing body 61 detected by the position detector 68, and position data indicating the relative position of the bucket 53 relative to the upper swing body 61 detected by the detection device 57. And get.
  • the bucket position data acquisition unit 72 includes position data indicating the absolute position of the upper swing body 61 detected by the position detector 68 and position data indicating the relative position of the bucket 53 relative to the upper swing body 61 detected by the detection device 57. Based on the above, bucket position data indicating the absolute position of the bucket 53 is calculated.
  • the input data acquisition unit 73 acquires input data generated by the input device 66 when operated by the driver Ma.
  • the command data generation unit 74 generates command data for commanding the setting of the work point of the mining machine 4.
  • the command data generation unit 74 generates command data for commanding the setting of the loading point of the dump truck 2 in the mine loading site LPA.
  • the driver Ma operates the operation lever 65 and operates the input device 66 in a state where the bucket 53 is disposed at a desired position.
  • the command data includes bucket position data indicating the absolute position of the bucket 53 when the input device 66 is operated.
  • the bucket position data of the bucket 53 at the time when the input device 66 is operated and the input data generated by the input device 66 is acquired by the input data acquisition unit 73 is set as a loading point.
  • the command data for instructing the setting of the loading point is generated by the command data generation unit 74.
  • the command data generated by the command data generation unit 74 is transmitted to the management device 10 via the wireless communication device 69.
  • FIG. 8 is a schematic diagram illustrating an example of an operation in the loading field LPA of the dump truck 2 according to the present embodiment.
  • the loading site LPA is an area where loading work for the dump truck 2 is performed.
  • a hydraulic excavator 3 is disposed at the loading site LPA.
  • Connected to the loading site LPA is a first transport path HL1 on which the dump truck 2 entering and leaving the loading site LPA travels, and a second transport path HL2 on which the dump truck 2 leaving the loading site LPA travels. Is done.
  • the structure by which only one conveyance path HL is connected to the loading place LPA may be sufficient as a conveyance path.
  • the travel route generation unit 123 in the management device 10 includes a target travel route RPo of the dump truck 2 in the first transport path HL1, a target travel route RPo of the dump truck 2 in the second transport path HL2, and the dump truck 2 in the loading field LPA.
  • the target travel route RP is generated.
  • the switchback point setting unit 121 in the management device 10 sets the switchback point BP in the loading site LPA.
  • the work point setting unit 122 sets the loading point LP in the loading field LPA.
  • the switchback point BP indicates a target point at the absolute position of the dump truck 2 to be switched back.
  • the loading point LP indicates a target point at the absolute position of the dump truck 2 when the excavator 3 performs loading work.
  • the dump truck 2 that has entered the loading field LPA from the first transport path HL1 while moving forward is switched back at the switchback point BP and moved to the loading point LP while moving backward.
  • the dump truck 2 on which the loading operation is performed at the loading point LP moves away from the loading field LPA to the second transport path HL2 while moving forward.
  • the loading point LP is designated by the driver Ma of the excavator 3, for example.
  • the driver Ma operates the operation lever 65 to place the bucket 53 of the work machine 50 at a desired position.
  • the driver Ma operates the input device 66 in a state where the bucket 53 is disposed at a desired position.
  • Bucket position data indicating the absolute position of the bucket 53 at the time when the input device 66 is operated and the input data generated by the input device 66 is acquired by the input data acquisition unit 73 is set as the loading point LP.
  • the command data including the position data of the loading point LP set by the driver Ma is generated by the command data generation unit 74 of the excavator 3.
  • the command data generated by the command data generation unit 74 is transmitted to the management device 10 via the wireless communication device 69.
  • the data acquisition unit 124 of the management device 10 acquires command data including the position data of the loading point LP designated by the driver Ma from the excavator 3.
  • the work point setting unit 122 of the management device 10 sets the loading point LP based on the command data transmitted from the excavator 3.
  • the travel route generation unit 123 performs the target travel from the entrance of the loading site LPA so that the target travel route RPi on the first transport route HL1 and the switchback point BP set by the switchback point setting unit 121 are connected. A route RP is generated. Further, the travel route generation unit 123 generates the target travel route RP so that the switchback point BP set by the switchback point setting unit 121 and the loading point LP set by the work point setting unit 122 are connected. To do. In addition, the travel route generation unit 123 sets the target travel to the exit of the loading site LPA so that the loading point LP set by the work point setting unit 122 is connected to the target travel route RPo in the second transport path HL2. A route RP is generated.
  • the target travel route data generated by the travel route generation unit 123, the switchback point data set by the switchback point setting unit 121, and the loading point data (work point data) set by the work point setting unit 122 are: It is transmitted to the dump truck 2 via the communication system 9.
  • the target travel route data generated by the travel route generation unit 123 and selected by the travel route selection unit 125 is transmitted to the dump truck 2 via the communication system 9.
  • the dump truck 2 includes the target travel route RPi in the first transport path HL1, the target travel route RP including the switchback point BP and the load point LP in the loading site LPA, and the second transport path generated by the management device 10.
  • the vehicle travels along the first transport path HL1, the loading site LPA, and the second transport path HL2 according to the target travel route RPo in HL2.
  • FIG. 9 is a flowchart illustrating an example of a method for controlling the dump truck 2 according to the present embodiment.
  • FIG. 10 is a schematic diagram illustrating an example of a method for controlling the dump truck 2 according to the present embodiment.
  • the switchback point setting unit 121 in the management apparatus 10 sets a plurality of switchback points BP of the dump truck 2 in the loading site LPA. As shown in FIG. 10, in this embodiment, for example, three switchback points BP1, BP2, and BP3 are set at intervals. The plurality of switchback points BP (BP1, BP2, BP3) are set at intervals in the loading field LPA.
  • the setting of the position of the switchback point BP may be performed by, for example, an administrator of the control facility 7, or may be performed by the driver Ma of the excavator 3.
  • the administrator of the control facility 7 may set the switchback point BP by operating the input device 17.
  • a plurality of points may be automatically set by the switchback point setting unit 121 in the management apparatus 10.
  • the driver Ma of the excavator 3 may operate the input device 66 to set the switchback point BP.
  • input data for setting the switchback point BP generated by operating the input device 66 is transmitted from the excavator 3 to the communication system 9.
  • the work point setting unit 122 sets one position of the loading point LP of the dump truck 2 in the loading field LPA (step SP20).
  • the loading point LP is designated by the driver Ma of the excavator 3, for example.
  • the driver Ma operates the input device 66 in a state where the bucket 53 is disposed at a desired position.
  • the command data generation unit 74 of the hydraulic excavator 3 is based on bucket position data indicating the absolute position of the bucket 53 at the time when the input data acquisition unit 73 acquires input data generated by operating the input device 66.
  • Command data for commanding the setting of the loading point LP of the dump truck 2 is generated.
  • the data acquisition unit 124 of the management device 10 acquires the command data generated by the command data generation unit 74 from the hydraulic excavator 3 via the communication system 9.
  • the work point setting unit 122 of the management device 10 sets the loading point LP based on the command data acquired by the data acquisition unit 124. Further, the loading point position may be automatically set by the work point setting unit 122 in the management apparatus 10.
  • a target travel route RP is generated based on the set switchback point BP and loading point LP (step SP30). As shown in FIG. 10, the travel route generation unit 123 connects the target travel route RPi in the first transport route HL1 and each of the plurality of switchback points BP (BP1, BP2, BP3) in the loading field LPA. In addition, a plurality of target travel routes RP (RP1, RP2, RP3) are generated.
  • the travel route generation unit 123 generates a plurality of target travel routes RP (RP1, RP2, RP3) so as to connect each of the plurality of switchback points BP (BP1, BP2, BP3) and the work point LP.
  • the plurality of target travel routes RP include a target travel route RP1 that connects the switchback point BP1 and the work point LP, a target travel route RP2 that connects the switchback point BP2 and the work point LP, and a switchback.
  • a target travel route RP3 connecting the point BP3 and the work point LP is included.
  • the travel route selection unit 125 selects a target travel route RP for traveling the dump truck 2 from the plurality of target travel routes RP (RP1, RP2, RP3) generated by the travel route generation unit 123 (step SP40). .
  • the target travel route RP generated by the travel route generation unit 123 and selected by the travel route selection unit 125 is transmitted to each of the plurality of dump trucks 2 operating in the mine.
  • Each of the plurality of dump trucks 2 travels in the loading field LPA according to any of the target travel routes RP selected by the travel route selection unit 125.
  • the traveling control unit 126 outputs a control signal for controlling the traveling of the dump truck 2 entering the loading site LPA from the first transport path HL1 (step SP50).
  • the travel control unit 126 outputs a control signal to the dump truck 2 so that the dump truck 2 entering the loading site LPA travels according to the target travel route RP selected by the travel route selection unit 125. .
  • the travel control unit 126 A control signal is output to the dump truck 2 so that the dump truck 2 travels according to the selected target travel route RP.
  • the travel route selection unit 125 selects the first target travel route RP as the target travel route RP in the first dump truck 2 at the loading site LPA, and then enters the loading site LPA.
  • the second dump truck 2 selects a second target travel route RP that is different from the first target travel route RP as the target travel route RP in the loading field LPA.
  • the travel route selection unit 125 selects the target travel route RP so that the dump truck 2 sequentially passes through a plurality of switchback points BP (BP1, BP2, BP3).
  • the first dump truck 2 passes the switchback point BP1 and travels on the target travel route RP1 toward the loading point LP
  • the second dump truck 2 passes the switchback point BP2.
  • a plurality of dump trucks are configured such that after the operation is performed in the order of the first operation, the second operation, and the third operation, the operation is performed again in the order of the first operation, the second operation, and the third operation. 2 is controlled.
  • the switchback point setting unit 121 sets a plurality of switchback points BP (BP1, BP2, BP3) so that the generation of soot is suppressed in the loading field LPA.
  • the travel route generation unit 123 sets a plurality of target travel routes RP (RP1, RP2, RP3) so as to correspond to the plurality of switchback points BP in the loading field LPA.
  • the travel route selection unit 125 selects a target travel route RP through which the dump truck 2 passes so that soot generation is suppressed at the loading site LPA.
  • the travel route control unit 126 transmits a control signal to each dump truck 2 so as to travel according to the selected target travel route RP.
  • the switchback point setting unit 121 may set the positions of the plurality of switchback points BP so that the intervals between the plurality of switchback points BP are larger than the width of the wheel 26 (tire width), for example.
  • the travel route selection unit 125 sets the switchback point BP through which the dump truck 2 passes so that the plurality of dump trucks 2 do not pass through the same switchback point BP among the plurality of switchback points BP. Select from a plurality of switchback points BP. For example, the travel route selection unit 125 may sequentially select the switchback points BP through which the dump truck 2 passes from the plurality of switchback points BP, or may randomly select them. At least, the travel route selection unit 125 has a second dump truck 2 that enters the loading site LPA after the first dump truck 2 enters the loading site LPA.
  • a second switchback point BP through which the first dump truck 2 has passed is different from the first switchback point BP without passing through the second dump truck 2.
  • the target travel route RP may be selected so as to pass through the switchback point BP.
  • the first switchback point BP1 is selected as the switchback point BP through which the first dump truck 2 passes in a certain loading field LPA, the first dump truck 2 is set to the same loading field next.
  • a different switchback point BP may be selected.
  • a plurality of switchback points BP are set for one loading point LP, and a plurality of switchback points are set based on the respective positions of the plurality of switchback points BP.
  • a plurality of target travel routes RP connecting each of the points BP and the loading point LP are generated, and each of the plurality of dump trucks 2 is loaded according to the target travel route RP selected from the plurality of target travel routes RP. Since the vehicle is controlled to travel to LP, it is possible to suppress the dump truck 2 from traveling continuously according to the same target travel route RP. Therefore, generation of deep soot at the loading field LP is suppressed. Since the generation of deep dredging is suppressed, the implementation of leveling work is suppressed and the decline in mine productivity is suppressed.
  • the travel route selection unit 125 selects the switchback point BP so that the dump truck 2 sequentially passes through the plurality of switchback points BP, and the dump truck 2 includes the plurality of switchback points BP.
  • the period until the dump truck 2 passes through the switchback point BP3 and again passes through the switchback point BP3 can be made substantially the same. Thereby, since the deviation of the number of times the dump truck 2 passes at the plurality of switchback points BP and the deviation of the period during which the dump truck 2 does not pass are suppressed, generation of deep soot is suppressed.
  • the traveling control unit 126 outputs a control signal so that the dump truck 2 sequentially passes through a plurality of switchback points BP (BP1, BP2, BP3). That is, the first dump truck 2 passes the switchback point BP1 and travels the target travel route RP1 toward the loading point LP, and the second dump truck 2 passes the switchback point BP2. A second operation for traveling the target travel route RP2 toward the loading point LP, and a third operation in which the third dump truck 2 travels the target travel route RP3 toward the loading point LP through the switchback point BP3.
  • BP switchback points
  • a plurality of dump trucks are configured such that after the operation is performed in the order of the first operation, the second operation, and the third operation, the operation is performed again in the order of the first operation, the second operation, and the third operation. 2 was to be controlled.
  • the first operation, the second operation, and the third operation may be randomly changed every time the dump truck 2 travels.
  • the traveling of the dump truck 2 may be controlled so that the dump truck 2 does not continuously pass through the same switchback point BP.
  • the switchback point BP may be selected using a frequency map as will be described later.
  • Second Embodiment A second embodiment will be described. Constituent elements that are the same as or equivalent to those in the above-described embodiment are given the same reference numerals, and descriptions thereof are simplified or omitted.
  • FIG. 11 is a schematic diagram showing an example of a method for controlling the dump truck 2 according to the present embodiment.
  • the switchback point setting unit 121 can set a plurality of switchback points BP at intervals along the prescribed line AL in the loading field LPA.
  • three switchback points BP (BP1, BP2, BP3) are set along the specified line AL.
  • the switchback point BP is set at any position on the specified line AL. can do.
  • the travel route selection unit 125 selects the position of the switchback point BP that passes through each travel of the dump truck 2. As a specific travel route selection method, for example, as shown in FIG.
  • switchback points BP may be set and sequentially selected, or from the switchback point BP1 in FIG.
  • the switchback points BP may be selected by moving them at equal intervals, or the switchback points BP may be selected at random on the specified line AL. Further, the switchback point BP may be selected using a frequency map described later. Any other selection method may be adopted.
  • the regulation line AL is set, and by setting a plurality of switchback points BP along the regulation line AL, generation of deep dredging at the loading site LPA is suppressed. Reduction in productivity is suppressed.
  • FIG. 12 is a schematic diagram showing an example of a method for controlling the dump truck 2 according to the present embodiment.
  • the switchback point setting unit 121 can set a plurality of switchback points BP at intervals within a specified area AR in the loading field LPA.
  • three switchback points BP (BP1, BP2, BP3) are set at intervals in the specified area AR, but the switchback points BP are located at any position on the specified area AR.
  • the travel route selection unit 125 selects which position of the switchback point BP is passed each time each dump truck 2 travels. As a specific route selection method, for example, as shown in FIG.
  • switchback points BP may be set and sequentially selected, or a predetermined direction from the switchback point BP1 in FIG.
  • the switchback points BP may be selected by moving the switchback points BP at regular intervals (up, down, left, right, diagonal, etc.), or the switchback points BP may be selected randomly on the specified area AR. . Further, the switchback point BP may be selected using a frequency map described later. Any other selection method may be adopted.
  • the specified area AR may be set anywhere within the loading area LPA.
  • the travel route selection unit 125 uses a plurality of switchback points BP so that the switchback points BP through which the dump truck 2 passes are suppressed from being generated at the loading site LPA using the frequency map.
  • a selection method for selecting from the above will be described.
  • the method for selecting the switchback point BP and the target travel route RP using the frequency map can be applied in the examples of the first to third embodiments described above, for example.
  • the travel route selection unit 125 changes the position of the switchback point BP so that soot formation is suppressed at the loading site LPA.
  • the travel route generation unit 123 changes the position (route) of the target travel route RP so that the generation of soot is suppressed at the loading site LPA.
  • FIG. 13 is a schematic diagram showing an example of a method for controlling the dump truck 2 according to the present embodiment.
  • the traveling control unit 126 divides a predetermined area AS of the loading site LPA including a plurality of switchback points BP and loading points LP by a plurality of grids GR.
  • the specified area AR is set as a part of the predetermined area AS.
  • the traveling control unit 126 identifies the grid GR through which the wheels 26 of the dump truck 2 have passed based on the absolute position data of the dump truck 2 detected by the position detector 35.
  • the traveling control unit 126 counts the number of times that the wheel 26 of the dump truck 2 has passed for each of the plurality of grids GR.
  • the switchback point setting unit 121 determines the number of times that the wheels 26 of the dump truck 2 have passed through the grid GR for each of the plurality of grids GR set in the predetermined area AS with the position of the loading point LP fixed. The position of the switchback point BP is automatically changed so as not to protrude and increase with respect to the number of times of passing through the surrounding grid GR.
  • the traveling route generation unit 123 counts the number of times the wheels 26 of the dump truck 2 have passed the grid GR for each of the plurality of grids GR set in the predetermined area AS in a state where the position of the loading point LP is fixed.
  • the route of the target travel route RP is changed so as not to protrude and increase with respect to the number of times of passing through the surrounding grid GR. Thereby, generation of deep wrinkles is suppressed.
  • the switchback point setting unit 121 changes the position of the switchback point BP from the switchback point BP2 to, for example, the switchback point BP1 or the switchback point BP3 in the specified area AR.
  • the number of counts of the grid located on the target travel route RP is increased.
  • the number of counts of the grid located on the travel route of the tire relative to the actual travel route may be increased. Good.
  • a frequency map indicating the frequency with which the wheels 26 of the dump truck 2 pass in the predetermined area AS of the loading site LPA is created, and the predetermined area AS is referred to with reference to the frequency map.
  • the switchback point BP and the target travel route RP are set so that the wheel 26 does not travel frequently only in the specific region. Accordingly, the generation of deep dredging at the loading site LPA is suppressed, and the decrease in mine productivity is suppressed.
  • FIG. 14 is a schematic diagram showing an example of a method for controlling the dump truck 2 according to the present embodiment.
  • the travel route generation unit 123 can generate a plurality of target travel routes RPi on the first transport path HL1.
  • five target travel routes RPi are generated on the first transport route HL1.
  • the travel control unit 126 controls the dump truck 2 so that the dump truck 2 passes through each of the plurality of target travel paths RPi on the first transport path HL1. As a result, the generation of deep wrinkles in the first transport path HL1 is suppressed.
  • the travel route generation unit 123 sets a plurality of target travel routes RPi in the first transport path HL1 so as to connect the switchback point BP and each of the plurality of target travel routes RPi of the first transport path HL1.
  • FIG. 14 shows an example in which the switchback point BP1 and each of the five target travel routes RPi in the first transport path HL1 are connected.
  • the travel route generation unit 123 connects a plurality of target travel routes RPi on the first transport route HL1 so as to connect the switchback point BP2 and each of the five target travel routes RPi of the first transport route HL1. Is generated.
  • the travel route generation unit 123 generates a plurality of target travel routes RPi on the first transport path HL1 so as to connect the switchback point BP3 and each of the five target travel routes RPi of the first transport path HL1.
  • FIG. 15 is a schematic diagram illustrating an example of a method for controlling the dump truck 2 according to the present embodiment.
  • the switchback point setting unit 121 can set a plurality of switchback points BP at intervals.
  • five switchback points BP are set at equal intervals along the prescribed line AL.
  • the travel route generation unit 123 can generate a plurality of target travel routes RPo on the second transport route HL2.
  • five target travel routes RPo are generated on the second transport route HL2.
  • the travel control unit 126 controls the dump truck 2 so that the dump truck 2 passes through each of the plurality of target travel paths RPo in the second transport path HL2. Thereby, it is suppressed that deep wrinkles are generated in the second transport path HL2.
  • the travel route generation unit 123 sets a plurality of target travel routes RP in the second transport path HL2 so as to connect the loading point LP and each of the plurality of target travel routes RPo of the second transport path HL2. Generate.
  • the generation of soot is suppressed in the second transport path HL2. Moreover, the generation
  • the dump truck 2 leaving the loading site LPA and traveling on the second transport path HL2 is loading.
  • the total weight of the dump truck 2 in the loaded state is larger than the total weight of the dump truck 2 in the empty state. Therefore, when the dump truck 2 travels on the second transport path HL2, soot is more easily generated on the second transport path HL2.
  • the generation of soot can be effectively suppressed.
  • FIG. 16 is a schematic diagram showing an example of a method for controlling the dump truck 2 according to the present embodiment.
  • the work point setting unit 122 can set a plurality of loading points LP.
  • the work point setting unit 122 can set a plurality of loading points LP at intervals.
  • the work point setting unit 122 sets three loading points LP (LP1, LP2, LP3).
  • the plurality of loading points LP are set along a defined line AM indicating the movement trajectory of the bucket 53 when the upper swing body 61 of the excavator 3 swings around the swing axis RX.
  • the travel route generation unit 123 generates a plurality of target travel routes RP at the loading site LPA so as to connect the switchback point BP and each of the plurality of loading points LP.
  • FIG. 16 shows an example in which the loading point LP1 and each of the five switchback points BP are connected. Although illustration is omitted, the travel route generation unit 123 generates a plurality of target travel routes RP at the loading site LPA so as to connect the loading point LP2 and each of the five switchback points BP. In addition, the travel route generation unit 123 generates a plurality of target travel routes RP at the loading site LPA so as to connect the loading point LP3 and each of the five switchback points BP.
  • a region from the switchback point BP to the loading point LP by setting a plurality of loading points LP (LP1, LP2, LP3) in the loading field LPA.
  • the generation of soot is suppressed in a wide range of the loading site LPA.
  • the component which sets several loading points LP like this embodiment, and the component demonstrated by each above-mentioned embodiment can be combined suitably.
  • the number of switchback points BP may be one, or a plurality of switchback points BP may be set in the specified area AR or along the specified line AL.
  • the dump truck 2 that enters any one of the plurality of loading points LP from the switchback point BP may sequentially select the loading points LP from the plurality of loading points LP. Alternatively, it may be selected at random, or may be selected using a frequency map.
  • FIG. 17 is a schematic diagram showing an example of a method for controlling the dump truck 2 according to the present embodiment.
  • the switchback point setting unit 121 can set a plurality of switchback points BP of the dump truck 2 in the dumping site DPA.
  • the work point setting unit 122 can set a plurality of discharge points DP of the dump truck 2 in the dump site DPA.
  • the travel route generation unit 123 can generate a plurality of target travel routes RP that connect each of the plurality of switchback points BP and the discharge point DP.
  • the generation of soot in the earth removal site DPA is suppressed.
  • the component which sets switchback point BP and discharge point DP in the earth removal field DPA like this embodiment, and the component demonstrated in each above-mentioned embodiment can be combined suitably.
  • the number of switchback points BP may be one, or a plurality of switchback points BP may be set in the defined area AR or along the defined line AL.
  • the dump truck 2 that enters any one of the plurality of discharge points DP from the switchback point BP may select the positions of the plurality of discharge points DP in order or randomly. Alternatively, it may be selected using a frequency map.
  • the setting of the work point including one or both of the loading point LP and the discharge point DP is performed based on the operation of the input device 66 by the driver Ma.
  • the work point may be automatically set by the management apparatus 10.
  • the command data generated by the hydraulic excavator 3 by the operation of the input device 66 by the driver Ma is transmitted to the dump truck 2 by inter-vehicle communication between the hydraulic excavator 3 and the dump truck 2 without passing through the management device 10. May be.
  • the dump truck 2 is an unmanned dump truck.
  • the dump truck 2 may be a manned dump truck that travels according to a driver's operation.
  • control system 1 is applied to the traveling of the dump truck 2.
  • control system 1 may be applied to the traveling of another mining machine different from the dump truck 2 such as a wheel loader. Good.
  • the working machine is a mining machine that operates in a mine, but a working machine that is used at a work site different from the mine may be used.
  • Antenna 36 DESCRIPTION OF SYMBOLS Wireless communication apparatus 36A Antenna 41 Input / output unit 42 Travel condition data acquisition unit 43 Operation control unit 44 Absolute position data acquisition unit 45 Storage unit 50 Work implement 53 Bucket 57 ... Detection device, 60 ... Vehicle body, 61 ... Upper turning body, 62 ... Lower traveling body, 62A ... Driving wheel, 62B ... Drive wheel, 62C ... Track, 63 ... Cab, 64 ... Driver's seat, 65 ... Operation lever, 66 ... input device, 67 ... display device, 68 ... position detector, 69 ... wireless communication device, 70 ... control device, 71 ... input / output unit, 72 ...
  • bucket position data acquisition unit 73 ... input data acquisition unit, 74 ... Command data generation unit 121 ... Switchback point setting unit 122 ... Work point setting unit 123 ... Travel route generation unit 124 ... Data acquisition unit 125 ... Travel route selection unit 126 ... Travel control unit AL ... Prescribed line , AR ... regulated area, AS ... predetermined area, BP ... switchback point, DPA ... discharging ground, GR ... grid, HL ... conveying path, LP ... loading point (working point), LPA ... loading place, PI ... Course points PA ... workplace, RP ... the target traveling route.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Game Theory and Decision Science (AREA)
  • Medical Informatics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本発明は、轍の生成を抑制して、鉱山の生産性の低下を抑制できる作業機械の管理装置を提供することを目的とする。作業機械の管理装置は、鉱山の作業場において作業機械のスイッチバック点を複数設定するスイッチバック点設定部と、作業場において作業機械の作業点を少なくとも1つ設定する作業点設定部と、複数のスイッチバック点のそれぞれの位置及び少なくとも1つの作業点の位置に基づいて作業機械が作業場を走行するための複数の目標走行経路を生成する走行経路生成部と、作業機械が作業場を走行するための目標走行経路を、複数の目標走行経路の中から選択する走行経路選択部と、を備える。

Description

作業機械の管理装置
 本発明は、作業機械の管理装置に関する。
 鉱山において、無人で稼働する作業機械が使用される場合がある。特許文献1には無人ダンプトラックを走行させる無人車両走行システムの一例が開示されている。
国際公開第2011/090093号
 無人車両走行システムにおいて、作業機械は、管理装置から送信された目標走行経路を示す目標走行経路データに従って走行する。複数の作業機械は、同一の目標走行経路に従って走行する。そのため、鉱山の搬送路又は作業場において轍が生成される可能性が高い。深い轍が生成されてしまうと、作業機械の走行に支障が生じる。そのため、深い轍が生成されてしまった場合、例えばグレーダを用いる整地作業が実施される。整地作業中においては、作業機械の走行を阻害することとなり、その結果、鉱山の生産性が低下してしまう。また、整地作業をすること自体に費用が発生してしまう。
 本発明の態様は、轍の生成を抑制して、鉱山の生産性の低下を抑制できる作業機械の管理装置を提供することを目的とする。
 本発明の態様に従えば、鉱山の作業場において前記作業機械のスイッチバック点を複数設定するスイッチバック点設定部と、前記作業場において前記作業機械の作業点を少なくとも1つ設定する作業点設定部と、複数の前記スイッチバック点のそれぞれの位置及び少なくとも1つの前記作業点の位置に基づいて前記作業機械が前記作業場を走行するための複数の目標走行経路を生成する走行経路生成部と、前記作業機械が前記作業場を走行するための目標走行経路を、前記複数の目標走行経路の中から選択する走行経路選択部と、を備える作業機械の管理装置が提供される。
 本発明の態様によれば、轍の生成を抑制して、鉱山の生産性の低下を抑制できる作業機械の管理装置が提供される。
図1は、第1実施形態に係る作業機械の制御システムの一例を模式的に示す図である。 図2は、第1実施形態に係る管理装置の一例を示す機能ブロック図である。 図3は、第1実施形態に係る目標走行経路の一例を示す模式図である。 図4は、第1実施形態に係るダンプトラックの一例を模式的に示す図である。 図5は、第1実施形態に係るダンプトラックの制御装置の一例を示す機能ブロック図である。 図6は、第1実施形態に係る油圧ショベルの一例を模式的に示す図である。 図7は、第1実施形態に係る油圧ショベルの制御装置の一例を示す機能ブロック図である。 図8は、第1実施形態に係るダンプトラックの動作の一例を示す模式図である。 図9は、第1実施形態に係るダンプトラックの制御方法の一例を示すフローチャートである。 図10は、第1実施形態に係るダンプトラックの制御方法の一例を示す模式図である。 図11は、第2実施形態に係るダンプトラックの制御方法の一例を示す模式図である。 図12は、第3実施形態に係るダンプトラックの制御方法の一例を示す模式図である。 図13は、第4実施形態に係るダンプトラックの制御方法の一例を示す模式図である。 図14は、第5実施形態に係るダンプトラックの制御方法の一例を示す模式図である。 図15は、第6実施形態に係るダンプトラックの制御方法の一例を示す模式図である。 図16は、第7実施形態に係るダンプトラックの制御方法の一例を示す模式図である。 図17は、第8実施形態に係るダンプトラックの制御方法の一例を示す模式図である。
 以下、本発明に係る実施形態について図面を参照しながら説明するが、本発明はこれに限定されない。
<第1実施形態>
 第1実施形態について説明する。図1は、本実施形態に係る作業機械4の制御システム1の一例を示す図である。本実施形態においては、作業機械4が鉱山で稼働する鉱山機械4である例について説明する。
 鉱山機械4とは、鉱山における各種作業に用いる機械類の総称である。鉱山機械4は、運搬機械、積込機械、掘削機械、ボーリング機械、及び破砕機の少なくとも一つを含む。運搬機械は、積荷を運搬するための鉱山機械であり、ベッセルを有するダンプトラックを含む。積込機械は、運搬機械に積荷を積み込むための鉱山機械であり、油圧ショベル、電気ショベル、及びホイールローダの少なくとも一つを含む。
 また、鉱山機械4は、無人で稼働する無人鉱山機械と、運転者が搭乗し運転者の操作により稼働する有人鉱山機械とを含む。
 本実施形態においては、鉱山機械4として、運搬機械であるダンプトラック2及び積込機械である油圧ショベル3が専ら稼働する例について説明する。
 本実施形態において、ダンプトラック2は、無人で稼働する無人ダンプトラックである。ダンプトラック2は、管理装置10から送信されたデータ又は信号に基づいて鉱山を自律走行する。ダンプトラック2の自律走行とは、運転者の操作によらずに管理装置10から送信されたデータ又は信号に基づいて走行することをいう。
 本実施形態において、油圧ショベル3は、運転者が搭乗し運転者の操作により稼働する有人油圧ショベルである。
 図1に示すように、鉱山に作業場PA及び搬送路HLが設けられる。作業場PAは、積込場LPA及び排土場DPAの少なくとも一方を含む。積込場LPAは、ダンプトラック2に積荷を積み込む積込作業が実施されるエリアである。排土場DPAは、ダンプトラック2から積荷が排出される排出作業が実施されるエリアである。搬送路HLは、作業場PLに通じる走行路である。ダンプトラック2は、鉱山の作業場PA及び搬送路HLの少なくとも一部を走行する。
 図1において、制御システム1は、鉱山の管制施設7に設置される管理装置10と、通信システム9とを備える。通信システム9は、データ又は信号を中継する中継器6を複数有する。通信システム9は、管理装置10と鉱山機械4との間においてデータ又は信号を無線通信する。また、通信システム9は、複数の鉱山機械4の間においてデータ又は信号を無線通信する。
 本実施形態において、ダンプトラック2及び油圧ショベル3を含む鉱山機械4の位置が、GNSS(Global Navigation Satellite System)を利用して検出される。GNSSとは、全地球航法衛星システムをいう。全地球航法衛星システムの一例として、GPS(Global Positioning System)が挙げられる。GNSSは、複数の測位衛星5を有する。GNSSは、緯度、経度、及び高度の座標データで規定される位置を検出する。GNSSにより検出される位置は、グローバル座標系において規定される絶対位置である。GNSSにより、鉱山におけるダンプトラック2の位置及び油圧ショベル3の位置が検出される。
 以下の説明においては、GNSSによって検出される位置を適宜、GPS位置、と称する。GPS位置は、絶対位置であり、緯度、経度、及び高度の座標データを含む。
 次に、管理装置10について説明する。管理装置10は、鉱山機械4にデータ又は信号を送信し、鉱山機械4からデータ又は信号を受信する。図1に示すように、管理装置10は、コンピュータ11と、表示装置16と、入力装置17と、無線通信装置18とを備える。
 コンピュータ11は、処理装置12と、処理装置12と接続される記憶装置13と、入出力部15とを備える。表示装置16、入力装置17、及び無線通信装置18は、入出力部15を介してコンピュータ11と接続される。
 処理装置12は、鉱山機械4を管理するための演算処理を実施する。処理装置12は、CPU(Central Processing Unit)のようなプロセッサを含む。記憶装置13は、鉱山機械4を管理するためのデータを記憶する。記憶装置13は、ROM(Read Only Memory)又はフラッシュメモリのような不揮発性メモリと、RAM(Random Access Memory)のような揮発性メモリとを含む。表示装置16は、処理装置12の演算処理の結果を表示する。表示装置16は、液晶ディスプレイ(Liquid Crystal Display:LCD)又は有機ELディスプレイ(Organic Electroluminescence Display:OELD)のようなフラットパネルディスプレイを含む。入力装置17は、操作されることにより鉱山機械4を管理するためのデータを生成する。入力装置17は、例えばコンピュータ用のキーボード、マウス、及びタッチパネルの少なくとも一つを含む。処理装置12は、記憶装置13に記憶されているデータ、入力装置17で生成されたデータ、及び通信システム9を介して取得したデータの少なくとも一つを用いて演算処理を実施する。
 無線通信装置18は、管制施設7に設置される。無線通信装置18は、アンテナ18Aを有する。無線通信装置18は、入出力部15を介して処理装置12と接続される。通信システム9は、無線通信装置18を含む。無線通信装置18は、鉱山機械4から送信されたデータ又は信号を受信可能である。無線通信装置18で受信されたデータ又は信号は、処理装置12に出力され記憶装置13に記憶される。無線通信装置18は、鉱山機械4にデータ又は信号を送信可能である。
 図2は、本実施形態に係る管理装置10の一例を示す機能ブロック図である。図2に示すように、管理装置10の処理装置12は、鉱山の作業場PAにおいてダンプトラック2のスイッチバック点を設定するスイッチバック点設定部121と、鉱山の作業場PAにおいてダンプトラック2の作業点を設定する作業点設定部122と、鉱山機械4の目標走行経路を複数生成する走行経路生成部123と、鉱山機械4から送信されたデータ又は信号を取得するデータ取得部124と、走行経路生成部123で生成された複数の目標走行経路の中からダンプトラック2を走行させる目標走行経路を選択する走行経路選択部125と、走行経路選択部125で選択された目標走行経路に従ってダンプトラック2が走行するように制御信号を出力する走行制御部126と、を備える。
 スイッチバック点設定部121は、積込場LPA及び排土場DPAの少なくとも一方において、ダンプトラック2がスイッチバックする絶対位置を示すスイッチバック点を設定する。スイッチバック点設定部121は、鉱山の積込場LPA及び排土場DPAの少なくとも一方を含む作業場において、ダンプトラック2のスイッチバック点を複数設定する。スイッチバックとは、前進するダンプトラック2が鋭角的に進行方向を転換して、後進しながら作業点に接近する動作をいう。
 作業点設定部122は、積込場LPA及び排土場DPAの少なくとも一方において、ダンプトラック2が規定作業を実施する絶対位置を示す作業点を設定する。ダンプトラック2の規定作業は、ダンプトラック2に積荷を積み込む積荷作業、及びダンプトラック2から積荷を排出する排出作業の少なくとも一方を含む。作業点は、積込作業が実施される絶対位置を示す積込点、及び排出作業が実施される絶対位置を示す排出点の少なくとも一方を含む。積込場LPAにおいて積込点が設定される。排土場DPAにおいて排出点が設定される。
 走行経路生成部123は、搬送路HL及び作業場PAの少なくとも一方において鉱山を走行する各ダンプトラック2に対して走行する目標走行経路を生成する。走行経路生成部123は、スイッチバック点設定部121で設定された複数のスイッチバック点のそれぞれの位置及び少なくとも1つの作業点の位置に基づいて、ダンプトラック2が作業場を走行するための複数の目標走行経路を生成する。
 データ取得部124は、ダンプトラック2及び油圧ショベル3を含む鉱山機械4から送信されたデータ又は信号を取得する。
 走行経路選択部125は、複数のダンプトラック2のそれぞれが作業場を走行するための目標走行経路を、走行経路生成部123で生成された複数の目標走行経路の中から選択する。走行経路選択部125は、作業場において轍の生成が抑制されるように目標走行経路を選択する。また、スイッチバック点が複数設定される場合、走行経路選択部125は、第1のダンプトラック2が第1のスイッチバック点を通過して作業点に走行後、第2のダンプトラック2が第2のスイッチバック点を通過して作業点に走行するように、目標走行経路を選択する。
 走行制御部126は、ダンプトラック2の走行を制御するための制御信号を生成し出力する。走行制御部126は、走行経路生成部123で生成された目標走行経路に従ってダンプトラック2が走行するように、ダンプトラック2を制御する。
 図3は、本実施形態に係る目標走行経路RPの一例を示す模式図である。処理装置12の走行経路生成部123は、鉱山を走行するダンプトラック2の走行条件データを生成する。目標走行経路RP走行条件データは、目標走行経路RP上に一定の間隔Wで設定される複数のコース点PIの集合体を含む。
 複数のコース点PIのそれぞれは、ダンプトラック2の目標絶対位置データと、コース点PIが設定された位置におけるダンプトラック2の目標走行速度データとを含む。目標走行経路RPは、複数のコース点PIの集合体である目標走行経路RPによって規定される。複数のコース点PIを通過する軌跡によってダンプトラック2の目標走行経路RPが規定される。目標走行速度データに基づいて、そのコース点PIが設定された位置におけるダンプトラック2の目標走行速度が規定される。
 管理装置10は、無線通信装置18を介して、ダンプトラック2に、進行方向前方の複数のコース点PIを含む走行条件データを出力する。ダンプトラック2は、管理装置10から送信された走行条件データに従って、鉱山を走行する。
 なお、図3は、搬送路HLに設定される目標走行経路RPを示す。走行経路生成部123は、搬送路HLのみならず、作業場PAにおいても目標走行経路RPを示す目標走行経路RPを生成する。
 次に、本実施形態に係るダンプトラック2について説明する。図4は、本実施形態に係るダンプトラック2の一例を模式的に示す図である。
 ダンプトラック2は、鉱山を走行可能な走行装置21と、走行装置21に支持される車両本体22と、車両本体22に支持されるベッセル23と、走行装置21を駆動する駆動装置24と、制御装置25とを備える。
 走行装置21は、車輪26と、車輪26を回転可能に支持する車軸27と、走行装置21を制動するブレーキ装置28と、進行方向を調整可能な操舵装置29とを有する。
 走行装置21は、駆動装置24が発生した駆動力により作動する。駆動装置24は、ダンプトラック2を加速させるための駆動力を発生する。駆動装置24は、例えば電気駆動方式により走行装置21を駆動する。駆動装置24は、ディーゼルエンジンのような内燃機関と、内燃機関の動力により作動する発電機と、発電機が発生した電力により作動する電動機とを有する。
 操舵装置29は、車輪26の向きを変えることによって、ダンプトラック2の進行方向を調整する。
 ブレーキ装置28は、ダンプトラック2を減速又は停止させるための制動力を発生する。制御装置25は、駆動装置24を作動するためのアクセル指令信号、ブレーキ装置28を作動するためのブレーキ指令信号、及び操舵装置29を作動するためのステアリング指令信号を出力する。
 また、ダンプトラック2は、ダンプトラック2の位置を検出する位置検出器35と、無線通信装置36とを備える。
 位置検出器35は、GPS受信機を含み、ダンプトラック2のGPS位置(座標)を検出する。位置検出器35は、GPS用のアンテナ35Aを有する。アンテナ35Aは、測位衛星5からの電波を受信する。位置検出器35は、アンテナ35Aで受信した測位衛星5からの電波に基づく信号を電気信号に変換して、アンテナ35Aの位置を算出する。アンテナ35AのGPS位置が算出されることによって、ダンプトラック2のGPS位置が検出される。
 通信システム9は、ダンプトラック2に設けられている無線通信装置36を含む。無線通信装置36は、アンテナ36Aを有する。無線通信装置36は、管理装置10と無線通信可能である。
 管理装置10は、通信システム9を介して、目標走行経路RPを含むダンプトラック2の走行条件データを制御装置25に送信する。制御装置25は、管理装置10から供給された走行条件データに基づいて、ダンプトラック2が走行条件データに従って走行するように、ダンプトラック2の駆動装置24、ブレーキ装置28、及び操舵装置29の少なくとも一つを制御する。
 また、ダンプトラック2は、通信システム9を介して、位置検出器35で検出されたダンプトラック2の絶対位置を示す絶対位置データを管理装置10に送信する。管理装置10のデータ取得部124は、鉱山を走行する複数のダンプトラック2の絶対位置データを取得する。
 次に、本実施形態に係るダンプトラック2の制御装置25について説明する。図5は、本実施形態に係るダンプトラック2の制御装置25の機能ブロック図である。制御装置25は、ダンプトラック2に搭載される。
 図5に示すように、ダンプトラック2は、無線通信装置36と、位置検出器35と、制御装置25と、駆動装置24と、ブレーキ装置28と、操舵装置29とを備える。
 制御装置25は、入出力部41と、走行条件データ取得部42と、運転制御部43と、絶対位置データ取得部44と、記憶部45とを備える。
 入出力部41は、無線通信装置36から出力された管理装置10からの走行条件データ、及び位置検出器35から出力されたダンプトラック2の絶対位置を示す絶対位置データを取得する。また、入出力部41は、駆動装置24にアクセル指令信号を出力し、ブレーキ装置28にブレーキ指令信号を出力し、操舵装置29にステアリング指令信号を出力する。
 走行条件データ取得部42は、管理装置10から送信された、目標走行経路RPを含む走行条件データを取得する。
 運転制御部43は、指定された走行条件データに基づいて、ダンプトラック2の走行装置21を制御する運転制御信号を出力する。走行装置21は、ブレーキ装置28及び操舵装置29を含む。運転制御部43は、駆動装置24、ブレーキ装置28、及び操舵装置29を含む走行装置21に運転制御信号を出力する。運転制御信号は、駆動装置24に出力されるアクセル信号、ブレーキ装置28に出力されるブレーキ指令信号、及び操舵装置29に出力されるステアリング指令信号を含む。
 絶対位置データ取得部45は、位置検出器35の検出結果からダンプトラック2の絶対位置データを取得する。
 記憶部45は、無線通信装置36から取得したダンプトラック2の走行条件データを記憶する。走行条件データは、目標走行経路RPを示す目標走行経路RPを含む。
 次に、本実施形態に係る油圧ショベル3について説明する。図6は、本実施形態に係る油圧ショベル3の一例を模式的に示す図である。図7は、本実施形態に係る油圧ショベル3の制御装置70の機能ブロック図である。制御装置70は、油圧ショベル3に搭載される。
 図6に示すように、油圧ショベル3は、油圧により作動する作業機50と、作業機50を支持する車両本体60とを備える。車両本体60は、上部旋回体61と、上部旋回体61を支持する下部走行体62とを含む。上部旋回体61は、運転室を含むキャブ63を有する。運転室には、運転者Maが着座する運転席64と、運転者Maに操作される操作レバー65と、運転者Maに操作される入力装置66と、表示装置67とが配置される。
 図7に示すように、油圧ショベル3は、上部旋回体61に対するバケット53の相対位置を検出する検出装置57を備える。また、油圧ショベル3は、上部旋回体61の絶対位置を検出する位置検出器68と、無線通信装置69とを備える。
 位置検出器68は、GPS受信機及び慣性計測装置(Inertial Measurement Unit:IMU)を含み、油圧ショベル3における上部旋回体61のGPS位置(絶対位置)及び方位を検出する。検出装置57によって上部旋回体61に対するバケット53の刃先53Bの相対位置が検出される。バケットの相対位置は、旋回中心から上部旋回体61の向きに所定距離離れた点に位置するものとして規定されてもよいし、ブーム、アーム、バケット等の角度を検出して規定されてもよい。位置検出器68の検出結果と検出装置57の検出結果とに基づいて、バケット53の刃先53Bの絶対位置が算出される。
 通信システム9は、油圧ショベル3に設けられている無線通信装置69を含む。無線通信装置69は、管理装置10と無線通信可能である。
 次に、本実施形態に係る油圧ショベル3の制御装置について説明する。図9は、本実施形態に係る油圧ショベル3の制御装置70の機能ブロック図である。制御装置70は、油圧ショベル3に搭載される。
 図9に示すように、油圧ショベル3は、無線通信装置69と、位置検出器68と、検出装置57と、制御装置70と、入力装置66と、表示装置67とを備える。
 制御装置70は、入出力部71と、バケット位置データ取得部72と、入力データ取得部73と、指令データ生成部74を備える。
 入出力部71は、位置検出器68から出力された油圧ショベル3の位置を示す位置データ、検出装置57で検出されたバケット53の位置を示すバケット位置データ、及び入力装置66が操作されることにより生成された入力データを取得する。また、入出力部41は、指令データ生成部74で生成された指令データを、無線通信装置69を介して管理装置10に出力する。
 バケット位置データ取得部72は、位置検出器68によって検出された上部旋回体61の絶対位置を示す位置データと、検出装置57によって検出された上部旋回体61に対するバッケット53の相対位置を示す位置データとを取得する。バケット位置データ取得部72は、位置検出器68で検出された上部旋回体61の絶対位置を示す位置データと、検出装置57で検出された上部旋回体61に対するバケット53の相対位置を示す位置データとに基づいて、バケット53の絶対位置を示すバケット位置データを算出する。
 入力データ取得部73は、運転者Maに操作されることにより入力装置66で生成された入力データを取得する。
 指令データ生成部74は、鉱山機械4の作業点の設定を指令する指令データを生成する。本実施形態において、指令データ生成部74は、鉱山の積込場LPAにおいてダンプトラック2の積込点の設定を指令する指令データを生成する。積込点の設定方法として、例えば、運転者Maは、操作レバー65を操作して、バケット53を希望する位置に配置した状態で、入力装置66を操作する。指令データは、入力装置66が操作された時点におけるバケット53の絶対位置を示すバケット位置データを含む。入力装置66が操作され、入力装置66で生成された入力データが入力データ取得部73に取得された時点におけるバケット53のバケット位置データが積込点として設定される。このように、本実施形態においては、油圧ショベル3に設けられた入力装置66が操作されることにより、積込点の設定を指令する指令データが指令データ生成部74によって生成される。指令データ生成部74で生成された指令データは、無線通信装置69を介して管理装置10に送信される。
 次に、本実施形態に係るダンプトラック2の動作の一例について説明する。図8は、本実施形態に係るダンプトラック2の積込場LPAにおける動作の一例を示す模式図である。
 積込場LPAは、ダンプトラック2に対する積込作業が実施されるエリアである。油圧ショベル3が積込場LPAに配置される。積込場LPAには、積込場LPAに進入および退去するダンプトラック2が走行する第1搬送路HL1と、積込場LPAから退去したダンプトラック2が走行する第2搬送路HL2とが接続される。なお、搬送路は1つの搬送路HLのみが積込場LPAに接続される構成であってもよい。
 管理装置10における走行経路生成部123は、第1搬送路HL1におけるダンプトラック2の目標走行経路RPi、第2搬送路HL2におけるダンプトラック2の目標走行経路RPo、及び積込場LPAにおけるダンプトラック2の目標走行経路RPを生成する。
 管理装置10におけるスイッチバック点設定部121は、積込場LPAにおいてスイッチバック点BPを設定する。作業点設定部122は、積込場LPAにおいて積込点LPを設定する。スイッチバック点BPは、スイッチバックするダンプトラック2の絶対位置における目標点を示す。積込点LPは、油圧ショベル3が積込作業する際のダンプトラック2の絶対位置における目標点を示す。前進しながら第1搬送路HL1から積込場LPAに進入したダンプトラック2は、スイッチバック点BPでスイッチバックして、後進しながら積込点LPに移動する。積込点LPにおいて積込作業が実施されたダンプトラック2は、前進しながら積込場LPAから第2搬送路HL2に退去する。
 本実施形態において、積込点LPは、例えば油圧ショベル3の運転者Maにより指定される。運転者Maは、操作レバー65を操作して、作業機50のバケット53を希望する位置に配置する。バケット53が希望する位置に配置された状態で、運転者Maは、入力装置66を操作する。入力装置66が操作され、入力装置66で生成された入力データが入力データ取得部73に取得された時点におけるバケット53の絶対位置を示すバケット位置データが積込点LPに設定される。
 運転者Maにより設定された積込点LPの位置データを含む指令データが油圧ショベル3の指令データ生成部74で生成される。指令データ生成部74で生成された指令データは、無線通信装置69を介して管理装置10に送信される。
 管理装置10のデータ取得部124は、運転者Maにより指定された積込点LPの位置データを含む指令データを油圧ショベル3から取得する。管理装置10の作業点設定部122は、油圧ショベル3から送信された指令データに基づいて、積込点LPを設定する。
 走行経路生成部123は、第1搬送路HL1における目標走行経路RPiと、スイッチバック点設定部121で設定されたスイッチバック点BPとが結ばれるように、積込場LPAの入口からの目標走行経路RPを生成する。また、走行経路生成部123は、スイッチバック点設定部121で設定されたスイッチバック点BPと作業点設定部122で設定された積込点LPとが結ばれるように、目標走行経路RPを生成する。また、走行経路生成部123は、作業点設定部122で設定された積込点LPと第2搬送路HL2における目標走行経路RPoとが結ばれるように、積込場LPAの出口までの目標走行経路RPを生成する。
 走行経路生成部123で生成された目標走行経路データ、スイッチバック点設定部121で設定されたスイッチバック点データ、及び作業点設定部122で設定された積込点データ(作業点データ)は、通信システム9を介してダンプトラック2に送信される。本実施形態においては、走行経路生成部123で生成され、走行経路選択部125で選択された目標走行経路データが、通信システム9を介してダンプトラック2に送信される。ダンプトラック2は、管理装置10で生成された、第1搬送路HL1における目標走行経路RPi、積込場LPAにおけるスイッチバック点BP及び積込点LPを含む目標走行経路RP、及び第2搬送路HL2における目標走行経路RPoに従って、第1搬送路HL1、積込場LPA、及び第2搬送路HL2を走行する。
 次に、本実施形態に係るダンプトラック2の制御方法について説明する。図9は、本実施形態に係るダンプトラック2の制御方法の一例を示すフローチャートである。図10は、本実施形態に係るダンプトラック2の制御方法の一例を示す模式図である。
 管理装置10におけるスイッチバック点設定部121において、スイッチバック点BPの位置が設定される(ステップSP10)。本実施形態において、スイッチバック点設定部121は、積込場LPAにおいてダンプトラック2のスイッチバック点BPを複数設定する。図10に示すように、本実施形態においては、例えば3つのスイッチバック点BP1,BP2,BP3が間隔をあけて設定される。複数のスイッチバック点BP(BP1,BP2,BP3)は、積込場LPA内において間隔をあけて設定される。
 スイッチバック点BPの位置の設定は、例えば管制施設7の管理者により実施されてもよいし、油圧ショベル3の運転者Maにより実施されてもよい。例えば、管制施設7の管理者が入力装置17を操作して、スイッチバック点BPを設定してもよい。また、管理装置10におけるスイッチバック点設定部121により自動的に複数点が設定されてもよい。油圧ショベル3の運転者Maが入力装置66を操作して、スイッチバック点BPを設定してもよい。油圧ショベル3の運転者Maがスイッチバック点BPを設定する場合、入力装置66が操作されることにより生成されたスイッチバック点BPを設定するための入力データが、油圧ショベル3から通信システム9を介して管理装置10に送信される。
 作業点設定部122は、積込場LPAにおいてダンプトラック2の積込点LPの位置を1つ設定する(ステップSP20)。
 上述のように、積込点LPは、例えば油圧ショベル3の運転者Maにより指定される。運転者Maは、希望する位置にバケット53が配置された状態で、入力装置66を操作する。油圧ショベル3の指令データ生成部74は、入力装置66が操作されることにより生成された入力データを入力データ取得部73が取得した時点におけるバケット53の絶対位置を示すバケット位置データに基づいて、ダンプトラック2の積込点LPの設定を指令する指令データを生成する。管理装置10のデータ取得部124は、指令データ生成部74で生成された指令データを、通信システム9を介して油圧ショベル3から取得する。管理装置10の作業点設定部122は、データ取得部124で取得された指令データに基づいて、積込点LPを設定する。また、管理装置10における作業点設定部122により自動的に積込点の位置が設定されてもよい。
 設定されたスイッチバック点BP及び積込点LPに基づいて、目標走行経路RPが生成される(ステップSP30)。図10に示すように、走行経路生成部123は、第1搬送路HL1における目標走行経路RPiと積込場LPAにおける複数のスイッチバック点BP(BP1,BP2,BP3)のそれぞれとが結ばれるように、複数の目標走行経路RP(RP1,RP2,RP3)を生成する。
 また、走行経路生成部123は、複数のスイッチバック点BP(BP1,BP2,BP3)のそれぞれと作業点LPとを結ぶように、複数の目標走行経路RP(RP1,RP2,RP3)を生成する。図10に示す例では、複数の目標走行経路RPは、スイッチバック点BP1と作業点LPとを結ぶ目標走行経路RP1、スイッチバック点BP2と作業点LPとを結ぶ目標走行経路RP2、及びスイッチバック点BP3と作業点LPとを結ぶ目標走行経路RP3を含む。
 走行経路選択部125は、走行経路生成部123で生成された複数の目標走行経路RP(RP1,RP2,RP3)の中から、ダンプトラック2を走行させる目標走行経路RPを選択する(ステップSP40)。
 走行経路生成部123で生成され走行経路選択部125で選択された目標走行経路RPは、鉱山で稼働する複数のダンプトラック2のそれぞれに送信される。複数のダンプトラック2はそれぞれ、走行経路選択部125で選択された目標走行経路RPのいずれかに従って積込場LPA内を走行する。
 走行制御部126は、第1搬送路HL1から積込場LPAに進入するダンプトラック2の走行を制御するための制御信号を出力する(ステップSP50)。本実施形態において、走行制御部126は、積込場LPAに進入するダンプトラック2が走行経路選択部125で選択された目標走行経路RPに従って走行するように、ダンプトラック2に制御信号を出力する。
 積込場LPAにおいて設定された複数の目標走行経路RP(RP1,RP2,RP3)からダンプトラック2に走行させる目標走行経路RPが走行経路選択部125によって選択された場合、走行制御部126は、その選択された目標走行経路RPに従ってダンプトラック2が走行するように、そのダンプトラック2に制御信号を出力する。
 本実施形態において、走行経路選択部125は、第1のダンプトラック2が積込場LPAにおける目標走行経路RPとして第1の目標走行経路RPを選択し、次に積込場LPAに進入する第2のダンプトラック2が積込場LPAにおける目標走行経路RPとして、第1の目標走行経路RPとは異なる第2の目標走行経路RPを選択する。
 本実施形態において、走行経路選択部125は、ダンプトラック2が複数のスイッチバック点BP(BP1,BP2,BP3)を順次通過するように目標走行経路RPを選択する。例えば、第1のダンプトラック2がスイッチバック点BP1を通過して積込点LPに向かって目標走行経路RP1を走行させる第1動作、第2のダンプトラック2がスイッチバック点BP2を通過して積込点LPに向かって目標走行経路RP2を走行させる第2動作、及び第3のダンプトラック2がスイッチバック点BP3を通過して積込点LPに向かって目標走行経路RP3を走行させる第3動作が、第1動作、第2動作、及び第3動作の順番で実施された後、再度、第1動作、第2動作、及び第3動作の順番で実施されるように、複数のダンプトラック2が制御される。
 本実施形態において、スイッチバック点設定部121は、積込場LPAにおいて轍の生成が抑制されるように、複数のスイッチバック点BP(BP1,BP2,BP3)を設定する。走行経路生成部123は、積込場LPAにおいて複数のスイッチバック点BPに対応するように、複数の目標走行経路RP(RP1,RP2,RP3)を設定する。走行経路選択部125は、積込場LPAにおいて轍の生成が抑制されるように、ダンプトラック2を通過させる目標走行経路RPを選択する。走行経路制御部126は、選択された目標走行経路RPに従って走行するように、各ダンプトラック2に制御信号を送信する。
 例えば、複数のスイッチバック点BPの間隔が狭かったり、複数の目標走行経路RPの間隔が狭かったりする場合、複数のダンプトラック2の車輪26は、実質的に同一ルートを通過することとなる。その結果、深い轍が生成される可能性がある。スイッチバック点設定部121は、複数のスイッチバック点BPの間隔が、例えば車輪26の幅(タイヤ幅)よりも大きくなるように、複数のスイッチバック点BPの位置を設定してもよい。
 また、スイッチバック点BPが複数設定されても、複数のスイッチバック点BPのうち特定のスイッチバック点BPを連続して通過する場合、深い轍が生成される可能性がある。
 そこで、走行経路選択部125は、複数のスイッチバック点BPのうち同一のスイッチバック点BPに複数のダンプトラック2が連続して通過しないように、ダンプトラック2が通過するスイッチバック点BPを、複数のスイッチバック点BPの中から選択する。例えば、走行経路選択部125は、ダンプトラック2が通過するスイッチバック点BPを、複数のスイッチバック点BPの中から順次選択してもよいし、ランダムに選択してもよい。少なくとも、走行経路選択部125は、第1のダンプトラック2が積込場LPAに進入した後に、次に積込場LPAに進入するダンプトラック2が第1のダンプトラック2とは異なる第2のダンプトラック2であった場合、第1のダンプトラック2が通過した第1のスイッチバック点BPを、第2のダンプトラック2が通過せずに第1のスイッチバック点BPとは異なる第2のスイッチバック点BPを通過するように、目標走行経路RPを選択してもよい。
 なお、ある積込場LPAにおいて、第1のダンプトラック2が通過するスイッチバック点BPとして第1のスイッチバック点BP1が選択されたとしても、次に第1のダンプトラック2が同じ積込場LPAに進入する場合には、異なるスイッチバック点BPが選択されてもよい。
 以上説明したように、本実施形態によれば、1つの積込点LPに対して複数のスイッチバック点BPが設定され、複数のスイッチバック点BPのそれぞれの位置に基づいて、複数のスイッチバック点BPのそれぞれと積込点LPとを結ぶ複数の目標走行経路RPが生成され、複数の目標走行経路RPの中から選択された目標走行経路RPに従って複数のダンプトラック2のそれぞれが積込点LPに走行するように制御されるので、同一の目標走行経路RPに従ってダンプトラック2が連続的に走行することが抑制される。したがって、積込場LPにおいて深い轍が生成されることが抑制される。深い轍の生成が抑制されるため、整地作業の実施が抑制され、鉱山の生産性の低下が抑制される。
 また、本実施形態においては、走行経路選択部125は、ダンプトラック2が複数のスイッチバック点BPを順次通過するようにスイッチバック点BPを選択し、ダンプトラック2は、複数のスイッチバック点BPを順次通過するように制御される。これにより、例えばダンプトラック2がスイッチバック点BP1を通過してから再度スイッチバック点BP1を通過するまでの期間と、ダンプトラック2がスイッチバック点BP2を通過してから再度スイッチバック点BP2を通過するまでの期間と、ダンプトラック2がスイッチバック点BP3を通過してから再度スイッチバック点BP3を通過するまでの期間とを、実質的に同一にすることができる。これにより、複数のスイッチバック点BPにおいてダンプトラック2が通過する回数の偏り及び通過しない期間の偏りが抑制されるので、深い轍の生成が抑制される。
 なお、本実施形態においては、走行制御部126は、ダンプトラック2が複数のスイッチバック点BP(BP1,BP2,BP3)を順次通過するように制御信号を出力することとした。すなわち、第1のダンプトラック2がスイッチバック点BP1を通過して積込点LPに向かって目標走行経路RP1を走行させる第1動作、第2のダンプトラック2がスイッチバック点BP2を通過して積込点LPに向かって目標走行経路RP2を走行させる第2動作、及び第3のダンプトラック2がスイッチバック点BP3を通過して積込点LPに向かって目標走行経路RP3を走行させる第3動作が、第1動作、第2動作、及び第3動作の順番で実施された後、再度、第1動作、第2動作、及び第3動作の順番で実施されるように、複数のダンプトラック2が制御されることとした。第1動作、第2動作、及び第3動作が、ダンプトラック2の走行毎にランダムに変更されてもよい。上述のように、同一のスイッチバック点BPを連続的にダンプトラック2が通過しないように、ダンプトラック2の走行が制御されてもよい。また、後述するような、頻度マップを用いてスイッチバック点BPが選択されてもよい。
<第2実施形態>
 第2実施形態について説明する。上述の実施形態と同一又は同等の構成要素については同一の符号を付し、その説明を簡略又は省略する。
 図11は、本実施形態に係るダンプトラック2の制御方法の一例を示す模式図である。図11に示すように、スイッチバック点設定部121は、複数のスイッチバック点BPを、積込場LPA内における規定ラインALに沿って間隔をあけて設定することができる。図11に示す例では、規定ラインALに沿って3つのスイッチバック点BP(BP1,BP2,BP3)が設定されているが、規定ラインAL上であればどの位置においてもスイッチバック点BPを設定することができる。走行経路選択部125は、各ダンプトラック2の走行毎に通過するスイッチバック点BPの位置を選択する。具体的な走行経路の選択手法としては、例えば図11のように所定のスイッチバック点をいくつか設定して順次選択されるようにしてもよいし、図11におけるスイッチバック点BP1から右上方向に等間隔にスイッチバック点BPを移動させて選択するようにしてもよいし、ランダムに規定ラインAL上にスイッチバック点BPを選択するようにしてもよい。また、後述する頻度マップを用いてスイッチバック点BPを選択するようにしてもよい。その他、どのような選択方法を採用してもよい。
 以上説明したように、規定ラインALが設定され、規定ラインALに沿って複数のスイッチバック点BPが設定されることにより、積込場LPAにおいて深い轍が生成されることが抑制され、鉱山の生産性の低下が抑制される。
<第3実施形態>
 第3実施形態について説明する。上述の実施形態と同一又は同等の構成要素については同一の符号を付し、その説明を簡略又は省略する。
 図12は、本実施形態に係るダンプトラック2の制御方法の一例を示す模式図である。図12に示すように、スイッチバック点設定部121は、複数のスイッチバック点BPを、積込場LPA内における規定エリアAR内に間隔をあけて設定することができる。図12に示す例では、規定エリアARに3つのスイッチバック点BP(BP1,BP2,BP3)が間隔をあけて設定されているが、規定エリアAR上であればどの位置においてもスイッチバック点BPを設定することができる。各ダンプトラック2が走行する毎にどの位置のスイッチバック点BPを通過させるかは、走行経路選択部125が選択する。具体的な走行経路の選択手法としては、例えば図12のように所定のスイッチバック点をいくつか設定して順次選択されるようにしてもよいし、図12におけるスイッチバック点BP1から所定の方向(上、下、左右、斜め等)に等間隔にスイッチバック点BPを移動させて選択するようにしてもよいし、ランダムに規定エリアAR上にスイッチバック点BPを選択するようにしてもよい。また、後述する頻度マップを用いてスイッチバック点BPを選択するようにしてもよい。その他、どのような選択方法を採用してもよい。なお、規定エリアARは、積込場LPA内であればどこに設定してもよい。
 以上説明したように、規定エリアARが設定され、規定ARにおいて複数のスイッチバック点BPが設定されることにより、積込場LPAにおいて深い轍が生成されることが抑制され、鉱山の生産性の低下が抑制される。
<第4実施形態>
 第4実施形態について説明する。上述の実施形態と同一又は同等の構成要素については同一の符号を付し、その説明を簡略又は省略する。
 本実施形態においては、走行経路選択部125が、ダンプトラック2が通過するスイッチバック点BPを、頻度マップを用いて積込場LPAにおいて轍の生成が抑制されるように複数のスイッチバック点BPの中から選択する選択方法について説明する。頻度マップを用いたスイッチバック点BP及び目標走行経路RPの選択方法は、例えば上述した第1実施形態から第3実施形態の例において適用することができる。本実施形態において、走行経路選択部125は、積込場LPAにおいて轍の生成が抑制されるように、スイッチバック点BPの位置を変える。走行経路生成部123は、積込場LPAにおいて轍の生成が抑制されるように、目標走行経路RPの位置(ルート)を変える。
 図13は、本実施形態に係るダンプトラック2の制御方法の一例を示す模式図である。本実施形態においては、上述の第3実施形態で説明した規定エリアARを用いた例において説明する。走行制御部126は、複数のスイッチバック点BP及び積込点LPを含む積込場LPAの所定エリアASを複数のグリッドGRで区画する。規定エリアARは、所定エリアASの一部に設定される。走行制御部126は、位置検出器35で検出されるダンプトラック2の絶対位置データに基づいて、ダンプトラック2の車輪26が通過したグリッドGRを特定する。走行制御部126は、複数のグリッドGR毎に、ダンプトラック2の車輪26が通過した回数をカウントする。つまり、あるグリッドGRのカウント回数が周囲のグリッドGRのカウント回数に対して大きい差がある場合、その領域に轍が発生していると推定することができる。スイッチバック点設定部121は、積込点LPの位置が固定された状態で、所定エリアASに設定された複数のグリッドGRのそれぞれについて、ダンプトラック2の車輪26がグリッドGRを通過した回数が、周囲のグリッドGRを通過した回数に対して突出して大きくならないように、スイッチバック点BPの位置を自動的に変える。また、走行経路生成部123は、積込点LPの位置が固定された状態で、所定エリアASに設定された複数のグリッドGRのそれぞれについて、ダンプトラック2の車輪26がグリッドGRを通過した回数が、周囲のグリッドGRを通過した回数に対して突出して大きくならないように、目標走行経路RPのルートを変える。これにより、深い轍の生成が抑制される。
 図13に示す例では、目標走行経路RP2及びスイッチバック点BP2を含むグリッドGRbをダンプトラック2の車輪26が通過した回数が、そのグリッドGRbの周囲のグリッドGRを通過した回数よりも多いと判定される。この場合、スイッチバック点設定部121は、規定エリアARにおいて、スイッチバック点BPの位置を、スイッチバック点BP2から、例えばスイッチバック点BP1又はスイッチバック点BP3に変更する。
 なお、本実施形態では目標走行経路RP上に位置するグリッドのカウント回数を増加させるようにしたが、実際の走行経路に対するタイヤの走行経路上に位置するグリッドのカウント回数を増加させるようにしてもよい。
 以上説明したように、本実施形態においては、積込場LPAの所定エリアASにおいてダンプトラック2の車輪26が通過する頻度を示す頻度マップが作成され、その頻度マップを参照して、所定エリアASの特定領域だけ車輪26が高頻度で走行しないように、スイッチバック点BP及び目標走行経路RPが設定される。したがって、積込場LPAにおいて深い轍が生成されることが抑制され、鉱山の生産性の低下が抑制される。
<第5実施形態>
 第5実施形態について説明する。上述の実施形態と同一又は同等の構成要素については同一の符号を付し、その説明を簡略又は省略する。
 図14は、本実施形態に係るダンプトラック2の制御方法の一例を示す模式図である。図14に示すように、走行経路生成部123は、第1搬送路HL1において複数の目標走行経路RPiを生成することができる。図14に示す例では、第1搬送路HL1において5つの目標走行経路RPiが生成される。走行制御部126は、第1搬送路HL1においてダンプトラック2が複数の目標走行経路RPiのそれぞれを通過するように、ダンプトラック2を制御する。これにより、第1搬送路HL1において深い轍が生成されることが抑制される。
 本実施形態において、走行経路生成部123は、スイッチバック点BPと第1搬送路HL1の複数の目標走行経路RPiのそれぞれとを結ぶように、第1搬送路HL1において複数の目標走行経路RPiを生成する。なお、図14は、スイッチバック点BP1と第1搬送路HL1における5つの目標走行経路RPiのそれぞれとが結ばれる例を示す。図示は省略するが、走行経路生成部123は、スイッチバック点BP2と第1搬送路HL1の5つの目標走行経路RPiのそれぞれとを結ぶように、第1搬送路HL1において複数の目標走行経路RPiを生成する。また、走行経路生成部123は、スイッチバック点BP3と第1搬送路HL1の5つの目標走行経路RPiのそれぞれとを結ぶように、第1搬送路HL1において複数の目標走行経路RPiを生成する。
 以上説明したように、本実施形態によれば、第1搬送路HL1においても複数の目標走行経路RPiが生成されることより、第1搬送路HL1においても轍の生成が抑制される。また、積込場LPAにおいても広い範囲において轍の生成が抑制される。
<第6実施形態>
 第6実施形態について説明する。上述の実施形態と同一又は同等の構成要素については同一の符号を付し、その説明を簡略又は省略する。
 図15は、本実施形態に係るダンプトラック2の制御方法の一例を示す模式図である。図15に示すように、スイッチバック点設定部121は、複数のスイッチバック点BPを、間隔をあけて設定することができる。図15に示す例では、規定ラインALに沿って5つのスイッチバック点BPが等間隔で設定される。
 また、図15に示すように、走行経路生成部123は、第2搬送路HL2において複数の目標走行経路RPoを生成することができる。図15に示す例では、第2搬送路HL2において5つの目標走行経路RPoが生成される。走行制御部126は、第2搬送路HL2においてダンプトラック2が複数の目標走行経路RPoのそれぞれを通過するように、ダンプトラック2を制御する。これにより、第2搬送路HL2において深い轍が生成されることが抑制される。
 本実施形態において、走行経路生成部123は、積込点LPと第2搬送路HL2の複数の目標走行経路RPoのそれぞれとを結ぶように、第2搬送路HL2において複数の目標走行経路RPを生成する。
 以上説明したように、本実施形態によれば、第2搬送路HL2においても複数の目標走行経路RPoが生成されることより、第2搬送路HL2においても轍の生成が抑制される。また、積込場LPAにおいても広い範囲において轍の生成が抑制される。
 積込場LPAから退去し、第2搬送路HL2を走行するダンプトラック2は積荷を積んでいる。積荷状態のダンプトラック2の総重量は、空荷状態のダンプトラック2の総重量よりも大きい。そのため、第2搬送路HL2をダンプトラック2が走行すると、第2搬送路HL2において轍がより生成され易い。本実施形態においては、第2搬送路HL2において複数の目標走行経路RPoが生成されるため、轍の生成を効果的に抑制することができる。
<第7実施形態>
 第7実施形態について説明する。上述の実施形態と同一又は同等の構成要素については同一の符号を付し、その説明を簡略又は省略する。
 図16は、本実施形態に係るダンプトラック2の制御方法の一例を示す模式図である。図16に示すように、作業点設定部122は、積込点LPを複数設定することができる。作業点設定部122は、複数の積込点LPを、間隔をあけて設定することができる。図16に示す例では、作業点設定部122は、3つの積込点LP(LP1,LP2,LP3)を設定する。
 本実施形態において、複数の積込点LPは、油圧ショベル3の上部旋回体61が旋回軸RXを中心に旋回したときのバケット53の移動軌跡を示す規定ラインAMに沿って設定される。
 本実施形態において、走行経路生成部123は、スイッチバック点BPと複数の積込点LPのそれぞれとを結ぶように、積込場LPAにおいて複数の目標走行経路RPを生成する。なお、図16は、積込点LP1と5つのスイッチバック点BPのそれぞれとが結ばれる例を示す。図示は省略するが、走行経路生成部123は、積込点LP2と5つのスイッチバック点BPのそれぞれとを結ぶように、積込場LPAにおいて複数の目標走行経路RPを生成する。また、走行経路生成部123は、積込点LP3と5つのスイッチバック点BPのそれぞれとを結ぶように、積込場LPAにおいて複数の目標走行経路RPを生成する。
 以上説明したように、本実施形態によれば、積込場LPAにおいて複数の積込点LP(LP1,LP2、LP3)が設定されることにより、スイッチバック点BPから積込点LPまでの領域において積込場LPAの広い範囲において轍を生成が抑制される。
 なお、本実施形態のような複数の積込点LPを設定する構成要素と、上述の各実施形態で説明した構成要素とは適宜組み合わせることができる。例えば、図16に示す実施形態において、スイッチバック点BPは1つでもよいし、複数のスイッチバック点BPが規定エリアARに設定されたり規定ラインALに沿って設定されたりしてもよい。また、スイッチバック点BPから複数の積込点LPのいずれか一つに進入するダンプトラック2が、複数の積込点LPの中から順次積込点LPが選択されるようにしてもよいし、ランダムに選択されるようにしてもよいし、頻度マップを用いて選択されるようにしてもよい。
<第8実施形態>
 第8実施形態について説明する。上述の実施形態と同一又は同等の構成要素については同一の符号を付し、その説明を簡略又は省略する。
 図17は、本実施形態に係るダンプトラック2の制御方法の一例を示す模式図である。図17に示すように、スイッチバック点設定部121は、排土場DPAにおいてダンプトラック2のスイッチバック点BPを複数設定することができる。また、作業点設定部122は、排土場DPAにおいてダンプトラック2の排出点DPを複数設定することができる。走行経路生成部123は、複数のスイッチバック点BPのそれぞれと排出点DPとを結ぶ複数の目標走行経路RPを生成することができる。
 以上説明したように、本実施形態によれば、排土場DPAにおける轍の生成が抑制される。
 なお、本実施形態のような排土場DPAにおいてスイッチバック点BP及び排出点DPを設定する構成要素と、上述の各実施形態で説明した構成要素とは適宜組み合わせることができる。例えば、図17に示す実施形態において、スイッチバック点BPは1つでもよいし、複数のスイッチバック点BPが規定エリアARに設定されたり規定ラインALに沿って設定されたりしてもよい。また、スイッチバック点BPから複数の排出点DPのいずれか一つに進入するダンプトラック2が、複数の排出点DPの位置を順番に選択されるようにしてもよいし、ランダムに選択されるようにしてもよいし、頻度マップを用いて選択されるようにしてもよい。
 なお、上述の実施形態において、積込点LP及び排出点DPの一方又は両方を含む作業点の設定は、運転者Maによる入力装置66の操作に基づいて実施されることとした。作業点は、管理装置10により自動的に設定されてもよい。また、運転者Maによる入力装置66の操作により油圧ショベル3で生成された指令データは、管理装置10を経由せずに、油圧ショベル3とダンプトラック2との車々間通信によってダンプトラック2に送信されてもよい。
 なお、上述の実施形態においては、ダンプトラック2が無人ダンプトラックであることとした。ダンプトラック2は、運転者の操作に従って走行する有人ダンプトラックでもよい。
 なお、上述の実施形態においては、制御システム1がダンプトラック2の走行に適用されることとしたが、例えばホイールローダのようなダンプトラック2とは異なる他の鉱山機械の走行に適用されてもよい。
 なお、上述の実施形態においては、作業機械が鉱山で稼働する鉱山機械であることとしたが、鉱山とは異なる作業現場で用いられる作業機械でもよい。
 1…制御システム、2…ダンプトラック(鉱山機械)、3…油圧ショベル(鉱山機械)、4…鉱山機械(作業機械)、5…測位衛星、6…中継器、7…管制施設、9…通信システム、10…管理装置、11…コンピュータ、12…処理装置、13…記憶装置、15…入出力部、16…表示装置、17…入力装置、18…無線通信装置、18A…アンテナ、21…走行装置、22…車両本体、23…ベッセル、24…駆動装置、25…制御装置、26…車輪、27…車軸、28…ブレーキ装置、29…操舵装置、35…位置検出器、35A…アンテナ、36…無線通信装置、36A…アンテナ、41…入出力部、42…走行条件データ取得部、43…運転制御部、44…絶対位置データ取得部、45…記憶部、50…作業機、53…バケット、57…検出装置、60…車両本体、61…上部旋回体、62…下部走行体、62A…駆動輪、62B…従動輪、62C…履帯、63…キャブ、64…運転席、65…操作レバー、66…入力装置、67…表示装置、68…位置検出器、69…無線通信装置、70…制御装置、71…入出力部、72…バケット位置データ取得部、73…入力データ取得部、74…指令データ生成部、121…スイッチバック点設定部、122…作業点設定部、123…走行経路生成部、124…データ取得部、125…走行経路選択部、126…走行制御部、AL…規定ライン、AR…規定エリア、AS…所定エリア、BP…スイッチバック点、DPA…排土場、GR…グリッド、HL…搬送路、LP…積込点(作業点)、LPA…積込場、PI…コース点、PA…作業場、RP…目標走行経路。

Claims (12)

  1.  鉱山の作業場において前記作業機械のスイッチバック点を複数設定するスイッチバック点設定部と、
     前記作業場において前記作業機械の作業点を少なくとも1つ設定する作業点設定部と、
     複数の前記スイッチバック点のそれぞれの位置及び少なくとも1つの前記作業点の位置に基づいて前記作業機械が前記作業場を走行するための複数の目標走行経路を生成する走行経路生成部と、
     前記作業機械が前記作業場を走行するための目標走行経路を、前記複数の目標走行経路の中から選択する走行経路選択部と、
    を備える作業機械の管理装置。
  2.  複数の前記スイッチバック点は、前記作業場内における規定エリア内に間隔をあけて設定される、
    請求項1に記載の作業機械の管理装置。
  3.  複数の前記スイッチバック点は、前記作業場内における規定ラインに沿って間隔をあけて設定される、
    請求項1に記載の作業機械の管理装置。
  4.  前記走行経路選択部は、第1の作業機械が前記作業場における目標走行経路として第1の目標走行経路を選択し、次に前記作業場に進入する第2の作業機械が前記作業場における目標走行経路として、第1の目標走行経路とは異なる第2の目標走行経路を選択する、
     請求項1から請求項3のいずれか一項に記載の作業機械の管理装置。
  5.  前記走行経路選択部は、前記作業機械が前記複数のスイッチバック点を順次通過するようにスイッチバック点を選択する、
    請求項1から請求項4のいずれか一項に記載の作業機械の管理装置。
  6.  前記走行経路選択部は、前記作業機械が通過する前記スイッチバック点を、前記複数のスイッチバック点の中からランダムに選択する、
    請求項1から請求項4のいずれか一項に記載の作業機械の管理装置。
  7.  前記走行経路選択部は、前記作業機械が通過する前記スイッチバック点を、頻度マップを用いて前記作業場において轍の生成が抑制されるように前記複数のスイッチバック点の中から選択する、
    請求項1から請求項4のいずれか一項に記載の作業機械の管理装置。
  8.  前記作業場において前記作業機械の作業点を設定する作業点設定部をさらに備え、
     前記作業点設定部は、前記作業点を複数設定し、
     前記走行経路生成部は、前記複数のスイッチバック点と複数の前記作業点のそれぞれとを結ぶように生成される、
    請求項1から請求項7のいずれか一項に記載の作業機械の管理装置。
  9.  前記走行経路生成部は、前記作業場と接続され前記作業場に進入する前記作業機械が走行する搬送路における前記作業機械の目標走行経路を生成し、
     前記搬送路における前記目標走行経路と前記作業場における複数の前記スイッチバック点のそれぞれとが結ばれる、
    請求項1から請求項8のいずれか一項に記載の作業機械の管理装置。
  10.  前記走行経路生成部は、前記搬送路において複数の前記目標走行経路を生成し、
     前記複数のスイッチバック点と前記搬送路の複数の前記目標走行経路のそれぞれとが結ばれる、
    請求項9に記載の作業機械の管理装置。
  11.  前記走行経路生成部は、前記作業場と接続され前記作業場から退去する前記作業機械が走行する搬送路における前記作業機械の目標走行経路を複数生成し、
     前記作業点と前記搬送路の複数の前記目標走行経路のそれぞれとが結ばれる、
    請求項1から請求項9のいずれか一項に記載の作業機械の管理装置。
  12.  前記作業点設定部は、複数の前記作業点を設定し、
     前記複数の作業点と前記搬送路の複数の前記目標走行経路のそれぞれとが結ばれる、
    請求項11に記載の作業機械の管理装置。
PCT/JP2016/063511 2016-04-28 2016-04-28 作業機械の管理装置 WO2016167374A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
PCT/JP2016/063511 WO2016167374A1 (ja) 2016-04-28 2016-04-28 作業機械の管理装置
CA2954753A CA2954753C (en) 2016-04-28 2016-04-28 Work machine management apparatus
US15/325,132 US10108196B2 (en) 2016-04-28 2016-04-28 Work machine management apparatus
JP2016540078A JP6243538B2 (ja) 2016-04-28 2016-04-28 運搬機械の管理装置及び運搬機械の管理方法
AU2016248872A AU2016248872A1 (en) 2016-04-28 2016-04-28 Work machine management apparatus
CN201680002072.7A CN106662878A (zh) 2016-04-28 2016-04-28 作业机械的管理装置
AU2018201496A AU2018201496B2 (en) 2016-04-28 2018-03-01 Work machine management apparatus
US16/145,459 US10591917B2 (en) 2016-04-28 2018-09-28 Work machine management apparatus
AU2019280032A AU2019280032B2 (en) 2016-04-28 2019-12-12 Work machine management apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/063511 WO2016167374A1 (ja) 2016-04-28 2016-04-28 作業機械の管理装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/325,132 A-371-Of-International US10108196B2 (en) 2016-04-28 2016-04-28 Work machine management apparatus
US16/145,459 Division US10591917B2 (en) 2016-04-28 2018-09-28 Work machine management apparatus

Publications (1)

Publication Number Publication Date
WO2016167374A1 true WO2016167374A1 (ja) 2016-10-20

Family

ID=57125942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063511 WO2016167374A1 (ja) 2016-04-28 2016-04-28 作業機械の管理装置

Country Status (6)

Country Link
US (2) US10108196B2 (ja)
JP (1) JP6243538B2 (ja)
CN (1) CN106662878A (ja)
AU (3) AU2016248872A1 (ja)
CA (1) CA2954753C (ja)
WO (1) WO2016167374A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018161921A (ja) * 2017-03-24 2018-10-18 株式会社デンソー 制御装置
JP2019156249A (ja) * 2018-03-15 2019-09-19 パイオニア株式会社 制御装置、送信装置、制御方法、送信方法、プログラム、及び記憶媒体

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11434621B2 (en) * 2017-03-20 2022-09-06 Volvo Construction Equipment Ab Method for determining object position information
JP7202064B2 (ja) * 2017-10-04 2023-01-11 株式会社小松製作所 作業機械制御装置および制御方法
US11308735B2 (en) * 2017-10-13 2022-04-19 Deere & Company Unmanned aerial vehicle (UAV)-assisted worksite data acquisition
US10761544B2 (en) 2017-10-13 2020-09-01 Deere & Company Unmanned aerial vehicle (UAV)-assisted worksite operations
JP7027142B2 (ja) * 2017-12-06 2022-03-01 ヤンマーパワーテクノロジー株式会社 作業車両用の目標経路生成システム
CN111137277A (zh) * 2018-11-05 2020-05-12 陕西汽车集团有限责任公司 一种无人驾驶矿用车自动泊车位置的设置方法
US11656626B2 (en) * 2018-11-12 2023-05-23 Robotic Research Opco, Llc Autonomous truck loading for mining and construction applications
US11131082B2 (en) 2019-06-13 2021-09-28 Deere & Company Work vehicle with a payload tracking system
AU2019250202A1 (en) * 2019-10-17 2021-05-06 Caterpillar Underground Mining Pty Ltd System and method for changing orientation of machines
JP7352911B2 (ja) * 2020-03-10 2023-09-29 株式会社小松製作所 運搬車両を制御するためのシステム及び方法
DE102020133196A1 (de) 2020-12-11 2022-06-15 Weetech Gmbh Verbindungsprüfgerät und Verfahren zum Prüfen einer intermittierenden Impedanzänderung

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009525553A (ja) * 2006-02-01 2009-07-09 ジエービス・ビー・ウエブ・カンパニー 可変走行路を有する自動案内車両
WO2011090093A1 (ja) * 2010-01-25 2011-07-28 株式会社小松製作所 車両の走行システムおよびその走行方法
JP2012022611A (ja) * 2010-07-16 2012-02-02 Komatsu Ltd 無人車両の走行システムおよびその走行制御方法
JP2012113429A (ja) * 2010-11-22 2012-06-14 Komatsu Ltd 無人車両の走行システムおよび走行経路生成方法
JP2014142831A (ja) * 2013-01-24 2014-08-07 Toyota Industries Corp 車両
WO2015087430A1 (ja) * 2013-12-12 2015-06-18 日立建機株式会社 車両走行システム及び車両走行制御方法
WO2016051526A1 (ja) * 2014-09-30 2016-04-07 日立建機株式会社 無人運搬車両の走行制御方法及びシステム

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3289565B2 (ja) 1995-08-23 2002-06-10 トヨタ自動車株式会社 自動操舵システム
JP3769927B2 (ja) 1998-03-30 2006-04-26 オムロン株式会社 移動局および車両走行位置制御システム
JP3852647B2 (ja) * 1998-11-04 2006-12-06 株式会社小松製作所 車両の誘導装置
US6393362B1 (en) * 2000-03-07 2002-05-21 Modular Mining Systems, Inc. Dynamic safety envelope for autonomous-vehicle collision avoidance system
JP2003265663A (ja) * 2002-03-19 2003-09-24 Sanyo Electric Co Ltd 自走車両
US8407157B2 (en) * 2003-12-22 2013-03-26 Deere & Company Locating harvested material within a work area
JP4369419B2 (ja) * 2005-12-09 2009-11-18 株式会社小松製作所 無人車両の誘導走行制御装置
CN101379368A (zh) * 2006-02-01 2009-03-04 杰维斯·B·韦布国际公司 可变路径自动导引车辆
JP2009059192A (ja) * 2007-08-31 2009-03-19 Toyota Motor Corp 走行支援装置
JP5332034B2 (ja) 2008-09-22 2013-11-06 株式会社小松製作所 無人車両の走行経路生成方法
WO2013065415A1 (ja) * 2011-11-04 2013-05-10 株式会社小松製作所 積載システム及び運搬機
JP5714129B1 (ja) * 2013-07-30 2015-05-07 株式会社小松製作所 鉱山機械の管理システム及び管理方法
US10373274B2 (en) 2013-08-20 2019-08-06 Komatsu Ltd. Management system and management method for a haul machine
WO2015025369A1 (ja) * 2013-08-20 2015-02-26 株式会社小松製作所 管理システム及び管理方法
JP5809710B2 (ja) * 2013-08-20 2015-11-11 株式会社小松製作所 管理システム及び管理方法
JP5731021B1 (ja) 2013-08-30 2015-06-10 株式会社小松製作所 鉱山機械の管理システム及び鉱山機械の管理システムの管理方法
CN104603819B (zh) * 2013-08-30 2017-09-29 株式会社小松制作所 矿山机械的管理系统及矿山机械的管理系统的管理方法
CN104641393B (zh) * 2013-08-30 2016-08-17 株式会社小松制作所 矿山机械管理系统以及矿山机械管理方法
KR20240134061A (ko) 2014-02-06 2024-09-05 얀마 파워 테크놀로지 가부시키가이샤 병주 작업 시스템
US9842501B2 (en) * 2015-08-31 2017-12-12 Komatsu Ltd. Mine management system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009525553A (ja) * 2006-02-01 2009-07-09 ジエービス・ビー・ウエブ・カンパニー 可変走行路を有する自動案内車両
WO2011090093A1 (ja) * 2010-01-25 2011-07-28 株式会社小松製作所 車両の走行システムおよびその走行方法
JP2012022611A (ja) * 2010-07-16 2012-02-02 Komatsu Ltd 無人車両の走行システムおよびその走行制御方法
JP2012113429A (ja) * 2010-11-22 2012-06-14 Komatsu Ltd 無人車両の走行システムおよび走行経路生成方法
JP2014142831A (ja) * 2013-01-24 2014-08-07 Toyota Industries Corp 車両
WO2015087430A1 (ja) * 2013-12-12 2015-06-18 日立建機株式会社 車両走行システム及び車両走行制御方法
WO2016051526A1 (ja) * 2014-09-30 2016-04-07 日立建機株式会社 無人運搬車両の走行制御方法及びシステム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018161921A (ja) * 2017-03-24 2018-10-18 株式会社デンソー 制御装置
JP2019156249A (ja) * 2018-03-15 2019-09-19 パイオニア株式会社 制御装置、送信装置、制御方法、送信方法、プログラム、及び記憶媒体
JP7033473B2 (ja) 2018-03-15 2022-03-10 パイオニア株式会社 制御装置、送信装置、制御方法、送信方法、プログラム、及び記憶媒体

Also Published As

Publication number Publication date
JPWO2016167374A1 (ja) 2017-04-27
AU2016248872A1 (en) 2017-11-16
US20190033873A1 (en) 2019-01-31
AU2019280032A1 (en) 2020-01-16
AU2018201496A1 (en) 2018-03-22
CA2954753A1 (en) 2016-10-20
JP6243538B2 (ja) 2017-12-06
US20170315553A1 (en) 2017-11-02
US10591917B2 (en) 2020-03-17
AU2019280032B2 (en) 2021-05-27
CA2954753C (en) 2019-06-11
US10108196B2 (en) 2018-10-23
AU2018201496B2 (en) 2019-09-12
CN106662878A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
JP6159031B2 (ja) 作業機械の管理装置
JP6243538B2 (ja) 運搬機械の管理装置及び運搬機械の管理方法
JP6712906B2 (ja) 作業機械の管理装置、作業機械、及び作業機械の管理システム
AU2016400807B2 (en) Work machine management system and work machine management method
US20160196749A1 (en) Method for assisting hauling trucks at worksite
WO2016060283A1 (ja) 作業機械の制御システム、作業機械、作業機械の管理システム及び作業機械の制御方法
AU2023216835A1 (en) Management system of work site and management method of work site
JP6701125B2 (ja) 作業機械の管理方法
AU2020240270B2 (en) Work site management system and work site management method
JP2019139809A (ja) 作業機械の管理装置及び作業機械の管理方法
US11869355B2 (en) Management system of work site and management method of work site
WO2020246319A1 (ja) 作業現場の管理システム及び作業現場の管理方法
CA3190240A1 (en) Control system of unmanned vehicle, unmanned vehicle, and method of controlling unmanned vehicle

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016540078

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16780165

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2954753

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15325132

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016248872

Country of ref document: AU

Date of ref document: 20160428

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16780165

Country of ref document: EP

Kind code of ref document: A1