[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2019069947A1 - 積込機械制御装置および制御方法 - Google Patents

積込機械制御装置および制御方法 Download PDF

Info

Publication number
WO2019069947A1
WO2019069947A1 PCT/JP2018/036939 JP2018036939W WO2019069947A1 WO 2019069947 A1 WO2019069947 A1 WO 2019069947A1 JP 2018036939 W JP2018036939 W JP 2018036939W WO 2019069947 A1 WO2019069947 A1 WO 2019069947A1
Authority
WO
WIPO (PCT)
Prior art keywords
bucket
loading machine
information
operation signal
loading
Prior art date
Application number
PCT/JP2018/036939
Other languages
English (en)
French (fr)
Inventor
知樹 根田
雄祐 西郷
一尋 畠
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=65995383&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2019069947(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to DE112018004146.8T priority Critical patent/DE112018004146T5/de
Priority to AU2018345153A priority patent/AU2018345153B2/en
Priority to US16/644,265 priority patent/US11661725B2/en
Publication of WO2019069947A1 publication Critical patent/WO2019069947A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/205Remotely operated machines, e.g. unmanned vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • E02F3/437Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like providing automatic sequences of movements, e.g. linear excavation, keeping dipper angle constant
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2033Limiting the movement of frames or implements, e.g. to avoid collision between implements and the cabin
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2054Fleet management
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/40Special vehicles
    • B60Y2200/41Construction vehicles, e.g. graders, excavators
    • B60Y2200/412Excavators
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2004Control mechanisms, e.g. control levers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump

Definitions

  • the present invention relates to a loading machine control device and control method for controlling a loading machine at a work site where a loading machine and a transport vehicle are deployed.
  • Patent Document 1 and Patent Document 2 disclose a technology for automatically operating a hydraulic shovel by designating a digging position and an unloading position.
  • An aspect of the present invention aims to provide a loading machine control device and control method capable of automatically operating a loading machine without specifying a discharge position.
  • a first aspect is a loading machine control device for controlling a loading machine including a swing body swinging around a swing center and a work machine attached to the swing body and including a bucket
  • the loading machine control device comprising: A loading machine information acquisition unit for obtaining position information and orientation information, and a discharge position specifying unit for identifying an earth unloading position for loading earth and sand onto the loading machine based on the position information and the orientation information
  • a bucket position specifying unit for specifying the position of the bucket when the earth removal instruction signal for moving the bucket to the earth removal position is input; and moving the bucket from the specified position to the earth removal position
  • an operation signal generation unit configured to generate an operation signal for causing the load control unit to perform an operation.
  • the loading machine control device can automatically operate the loading machine without specifying the unloading position.
  • FIG. 1 is a schematic view showing the configuration of the remote control system according to the first embodiment.
  • the work system 1 includes a loading machine 100, one or more transport vehicles 200 that are loading machines, a management device 300, and a remote operation room 500.
  • the loading machine 100 and the transport vehicle 200 operate at a work site (eg, a mine, a quarry).
  • Remote operation room 500 is provided at a point away from the work site (for example, in the city, in the work site).
  • the transport vehicle 200 runs unmanned based on the control information received from the management device 300.
  • the transport vehicle 200 and the management device 300 are connected by communication via the access point 360.
  • the management device 300 acquires the position and orientation of the transport vehicle 200 from the transport vehicle 200, and generates course information used for traveling the transport vehicle 200 based on these.
  • the management device 300 transmits the course information to the transport vehicle 200.
  • the transporter vehicle 200 runs unmanned based on the received course information. That is, the work system 1 includes an unmanned transfer system including the transport vehicle 200 and the management device 300.
  • the access point 360 is used for communication of an unmanned carrier system.
  • the management device 300 receives an instruction signal of the transport vehicle 200 from the loading machine 100 and the remote operation room 500, and transmits the signal to the transport vehicle 200.
  • the loading machine 100 and the management device 300 are connected by communication via the access point 360. Further, the remote operation room 500 and the management device 300 are connected via a network.
  • Examples of the instruction signal of the transport vehicle 200 received from the loading machine 100 and the remote driver's cab 500 include an entry instruction signal and a start instruction signal.
  • the entry instruction signal is a signal instructing the delivery vehicle 200 to enter from the standby point P1 to the loading point P3.
  • the start instruction signal is a signal for starting the loading point P3 when the loading of the transport vehicle 200 is completed and instructing the leaving of the loading station A1.
  • the loading machine 100 is remotely operated based on an operation signal transmitted from the remote operation room 500.
  • the loading machine 100 and the remote driver's cab 500 are connected by communication via the access point 350.
  • the first operation device 530 of the remote driver's cab 500 receives the operation of the loading machine 100 by the operation of the operator, and the control device 540 transmits an operation signal to the management device 300.
  • the loading machine 100 operates based on the operation signal received from the remote driver's cab 500. That is, the work system 1 includes a remote operation system including the loading machine 100 and the remote operation room 500.
  • the access point 350 is used for communication of the remote control system.
  • the transport vehicle 200 according to the first embodiment is an unmanned dump truck that travels unmanned on a set travel route.
  • the transport vehicle 200 according to another embodiment may be a transport vehicle other than a dump truck.
  • the transport vehicle 200 includes a position and orientation detector 210 and a controller 220.
  • the position and orientation detector 210 detects the position and orientation of the transport vehicle 200.
  • the position and orientation detector 210 includes two receivers that receive positioning signals from satellites that constitute a Global Navigation Satellite System (GNSS).
  • GNSS Global Navigation Satellite System
  • An example of the GNSS is GPS (Global Positioning System).
  • the two receivers are respectively installed at different positions of the carrier vehicle 200.
  • the position and orientation detector 210 detects the position of the representative point of the transporter vehicle 200 (the origin of the vehicle coordinate system, for example, the center position of the rear axle of the transporter vehicle 200) in the site coordinate system based on the positioning signal received by the receiver. To detect.
  • the position and orientation detector 210 calculates the heading of the transport vehicle 200 as the relationship between the installation position of one receiver and the installation position of the other receiver, using each positioning signal received by the two receivers.
  • the conveyance vehicle 200 may be provided with an inertial measurement device (IMU: Inertial Measurement Unit), and may calculate direction based on the measurement result of an inertial measurement device. In this case, the drift of the inertial measurement device may be corrected based on the traveling trajectory of the transport vehicle 200.
  • IMU Inertial Measurement Unit
  • the transport vehicle 200 may be provided with one receiver.
  • the controller 220 transmits the position and orientation detected by the position and orientation detector 210 to the management device 300.
  • the control device 220 receives course information and an instruction signal from the management device 300.
  • the control device 220 causes the transport vehicle 200 to travel or raises and lowers the vessel of the transport vehicle 200 based on the received course information and the instruction signal.
  • FIG. 2 is an external view of the loading machine according to the first embodiment.
  • the loading machine 100 according to the first embodiment is a hydraulic shovel.
  • the loading machine 100 according to the other embodiment may be a loading machine other than a hydraulic shovel.
  • the loading machine 100 shown in FIG. 2 is a face shovel, it may be a backhoe shovel or a rope shovel.
  • the loading machine 100 includes a traveling body 130, a swinging body 120 supported by the traveling body 130, and a work implement 110 operated by oil pressure and supported by the swinging body 120.
  • the pivoting body 120 is pivotably supported about a pivoting center.
  • the work implement 110 includes a boom 111, an arm 112, a bucket 113, a boom cylinder 114, an arm cylinder 115, a bucket cylinder 116, a boom angle sensor 117, an arm angle sensor 118, and a bucket angle sensor 119.
  • the proximal end of the boom 111 is attached to the rotating body 120 via a pin.
  • the arm 112 couples the boom 111 and the bucket 113.
  • the proximal end of the arm 112 is attached to the distal end of the boom 111 via a pin.
  • the bucket 113 includes a blade for excavating earth and sand and a container for accommodating the excavated earth and sand.
  • the proximal end of the bucket 113 is attached to the distal end of the arm 112 via a pin.
  • the boom cylinder 114 is a hydraulic cylinder for operating the boom 111.
  • the proximal end of the boom cylinder 114 is attached to the rotating body 120.
  • the tip of the boom cylinder 114 is attached to the boom 111.
  • Arm cylinder 115 is a hydraulic cylinder for driving arm 112.
  • the proximal end of the arm cylinder 115 is attached to the boom 111.
  • the tip of the arm cylinder 115 is attached to the arm 112.
  • the bucket cylinder 116 is a hydraulic cylinder for driving the bucket 113.
  • the proximal end of the bucket cylinder 116 is attached to the boom 111.
  • the tip of the bucket cylinder 116 is attached to the bucket 113.
  • the boom angle sensor 117 is attached to the boom 111 and detects the tilt angle of the boom 111.
  • the arm angle sensor 118 is attached to the arm 112 and detects an inclination angle of the arm 112.
  • the bucket angle sensor 119 is attached to the bucket 113 and detects an inclination angle of the bucket 113.
  • the boom angle sensor 117, the arm angle sensor 118, and the bucket angle sensor 119 according to the first embodiment detect an inclination angle with respect to the ground plane.
  • the angle sensor which concerns on other embodiment is not restricted to this, You may detect the inclination angle with respect to another reference plane.
  • the angle sensor may detect the relative rotation angle by a potentiometer provided at the base end of the boom 111, the arm 112 and the bucket 113, or the boom cylinder 114, the arm cylinder 115 and The inclination angle may be detected by measuring the cylinder length of the bucket cylinder 116 and converting the cylinder length into an angle.
  • the revolving structure 120 is provided with a cab 121.
  • An imaging device 122 is provided in the upper part of the cab 121.
  • the imaging device 122 is installed forward and upward in the cab 121.
  • the imaging device 122 captures an image of the front of the cab 121 through the windshield on the front of the cab 121.
  • Examples of the imaging device 122 include, for example, an imaging device using a charge coupled device (CCD) sensor and a complementary metal oxide semiconductor (CMOS) sensor.
  • the imaging device 122 may not necessarily be provided in the operation room 121, and the imaging device 122 may be provided at a position at which at least the work object and the work machine 110 can be imaged. Just do it.
  • the loading machine 100 includes an imaging device 122, a position and orientation computing device 123, an inclination measuring device 124, a hydraulic device 125, and a control device 126.
  • the position / orientation calculator 123 calculates the position of the rotating body 120 and the direction in which the rotating body 120 faces.
  • the position / orientation calculator 123 includes two receivers that receive positioning signals from the satellites that constitute the GNSS. The two receivers are respectively installed at different positions of the swing body 120.
  • the position / orientation calculator 123 detects the position of the representative point (the origin of the shovel coordinate system) of the revolving unit 120 in the site coordinate system based on the positioning signal received by the receiver.
  • the position / orientation calculator 123 calculates the direction in which the revolving unit 120 faces, as the relationship between the installation position of one receiver and the installation position of the other receiver, using the positioning signals received by the two receivers.
  • the inclination measuring device 124 measures the acceleration and angular velocity of the rotating body 120, and detects the posture (for example, roll angle, pitch angle, yaw angle) of the rotating body 120 based on the measurement result.
  • the inclination measuring instrument 124 is installed, for example, on the lower surface of the revolving unit 120.
  • an inertial measurement unit (IMU) may be used as the tilt measurement device 124.
  • the hydraulic device 125 includes a hydraulic fluid tank, a hydraulic pump, and a flow control valve.
  • the hydraulic pump is driven by the power of an engine (not shown) and supplies hydraulic fluid to the boom cylinder 114, the arm cylinder 115, and the bucket cylinder 116 through the flow control valve.
  • the flow control valve has a rod-like spool, and adjusts the flow rate of the hydraulic oil supplied to the boom cylinder 114, the arm cylinder 115, and the bucket cylinder 116 depending on the position of the spool.
  • the spool is driven based on a control command received from the controller 126. That is, the amount of hydraulic fluid supplied to the boom cylinder 114, the arm cylinder 115, and the bucket cylinder 116 is controlled by the controller 126.
  • the control device 126 sets the image captured by the imaging device 122, the swing speed, position and orientation of the swing body 120, the inclination angles of the boom 111, the arm 112 and the bucket 113, the traveling speed of the traveling body 130, and the attitude of the swing body 120. , To the remote control room 500.
  • the image, the turning speed, position and orientation of the turning body 120, the inclination angles of the boom 111, the arm 112 and the bucket 113, the traveling speed of the traveling body 130, and the posture of the turning body 120 are also referred to as vehicle information.
  • the vehicle information which concerns on other embodiment is not restricted to this.
  • the vehicle information may not include any of the turning speed, the position, the heading, the inclination angle, the traveling speed, and the attitude, and may include values detected by other sensors. And may include a value calculated from the detected value.
  • the controller 126 receives an operation signal from the remote driver's cab 500.
  • the control device 126 drives the work implement 110, the swing body 120, or the traveling body 130 based on the received operation signal.
  • FIG. 3 is a schematic block diagram showing the configuration of the management device according to the first embodiment.
  • the management device 300 manages the traveling of the transport vehicle 200.
  • the management device 300 is a computer including a processor 3100, a main memory 3200, a storage 3300, and an interface 3400.
  • the storage 3300 stores the program p3.
  • the processor 3100 reads the program p3 from the storage 3300, develops it in the main memory 3200, and executes processing according to the program p3.
  • the management device 300 is connected to the network via an interface 3400.
  • An access point 360 is connected to the interface 3400.
  • the management device 300 is wirelessly connected to the loading machine 100 and the transporter vehicle 200 via the access point 360.
  • the storage 3300 includes storage areas as a travel route storage unit 3301 and a position and orientation storage unit 3302. Examples of the storage 3300 include a hard disk drive (HDD), a solid state drive (SSD), a magnetic disk, an optical magnetic disk, a compact disc read only memory (CD-ROM), and a digital versatile disc read only memory (DVD-ROM). , Semiconductor memory and the like.
  • the storage 3300 may be internal media directly connected to the common communication line of the management apparatus 300, or may be external media connected to the management apparatus 300 via the interface 3400.
  • the storage 3300 is a non-temporary tangible storage medium.
  • the travel route storage unit 3301 stores the travel route R for each transport vehicle 200.
  • FIG. 4 is a diagram illustrating an example of a travel route.
  • the traveling route R is a predetermined connection route R1 connecting two areas A (for example, the loading site A1 and the unloading site A2), an approach route R2 which is a route in the area A, an approach route R3 and an exit route It has R4.
  • the entry route R2 is a route connecting the waiting point P1 which is one end of the connection route R1 in the area A and a predetermined switching point P2.
  • the approach route R3 is a route connecting the turning point P2 in the area A and the loading point P3 or the unloading point P4.
  • the exit route R4 is a route connecting the loading point P3 or the unloading point P4 in the area A and the exit point P5 which is the other end of the connection route R1.
  • the loading point P3 is a point set by the operation of the operator of the loading machine 100.
  • the turning point P2 is a point set by the management device 300 according to the position of the loading point P3.
  • the position and orientation storage unit 3302 stores position information and orientation information of each transport vehicle 200.
  • the processor 3100 includes a position and orientation collection unit 3101 and a traveling course generation unit 3102 by executing the program p3.
  • the position and orientation collection unit 3101 receives position information and orientation information of the transport vehicle 200 from the transport vehicle 200 via the access point 360.
  • the position and orientation collection unit 3101 causes the position and orientation storage unit 3302 to store the received position information and orientation information.
  • the traveling course generation unit 3102 includes information of an area for permitting the movement of the transport vehicle 200 based on the traveling route stored by the traveling route storage unit 3301 and the position information and orientation information stored by the position and orientation storage unit 3302. Generate course information.
  • the generated course information is transmitted to the transport vehicle 200.
  • the course information includes position information of points set at predetermined intervals on the travel route, target speed information at that point, and travel permission area information that does not overlap with the travel permission areas of the other transport vehicles 200.
  • the traveling course generation unit 3102 does not include the approach route R2 and the approach route R3 in the area indicated by the course information until the approach instruction signal is received from the remote driver's cab 500.
  • the transport vehicle 200 stands by at the standby point P1 until it receives the entry instruction signal.
  • the traveling course generation unit 3102 receives the entry instruction signal, the traveling course generation unit 3102 generates course information that includes the entry route R2 and the approach route R3 but does not include the exit route R4.
  • the transport vehicle 200 starts from the standby point P1, travels to the loading point P3, and stops at the loading point P3.
  • the traveling course generation unit 3102 When receiving the start instruction signal, the traveling course generation unit 3102 generates course information including the exit route R4.
  • the conveyance vehicle 200 waits until the conveyance vehicle 200 receives an approach instruction
  • the position where the transport vehicle 200 stands by may be the turning point P2 or a halfway point in the approach route R2 or the approach route R3.
  • the remote driver's cab 500 includes a driver's seat 510, a display 520, a first operating device 530, a second operating device 531, and a controller 540.
  • the display device 520 is disposed in front of the driver's seat 510.
  • the display device 520 is located in front of the operator when the operator sits in the driver's seat 510.
  • the display device 520 may be configured by a plurality of displays arranged side by side as shown in FIG. 1 or may be configured by one large display.
  • the display device 520 may project an image on a curved surface or a spherical surface by a projector or the like.
  • the first operating device 530 is an operating device for a remote operation system.
  • the first operating device 530 controls the operation signal of the boom cylinder 114, the operation signal of the arm cylinder 115, the operation signal of the bucket cylinder 116, the turning operation signal to the left and right of the revolving unit 120, and the traveling unit 130 according to the operator's operation.
  • a travel operation signal for forward and reverse travel is generated and output to control device 540.
  • the first operating device 530 is configured of, for example, a lever, a knob switch, and a pedal.
  • the discharge instruction signal is generated by the operation of the knob switch.
  • the second operating device 531 transmits a start instruction signal to the management device 300 by the operation of the operator.
  • the second operating device 531 is configured of, for example, a touch panel.
  • the first operating device 530 and the second operating device 531 are disposed in the vicinity of the driver's seat 510.
  • the first operating device 530 and the second operating device 531 are located within the operable range of the operator when the operator sits on the driver's seat 510.
  • Control device 540 causes display device 520 to display the image received from loading machine 100 and transmits an operation signal representing the operation of first operation device 530 to loading machine 100.
  • FIG. 5 is a schematic block diagram showing the configuration of the control device for the remote driver's cab according to the first embodiment.
  • the control device 540 is a computer including a processor 5100, a main memory 5200, a storage 5300, and an interface 5400.
  • the storage 5300 stores the program p5.
  • the processor 5100 reads the program p5 from the storage 5300, develops it in the main memory 5200, and executes processing according to the program p5.
  • Control device 540 is connected to the network via interface 5400.
  • Examples of the storage 5300 include an HDD, an SSD, a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, and the like.
  • the storage 5300 may be internal media directly connected to the common communication line of the control device 540, or may be external media connected to the control device 540 via the interface 5400.
  • the storage 5300 is a non-temporary, tangible storage medium.
  • the processor 5100 executes the program p5 to load a loaded vehicle information acquisition unit 5101, a display control unit 5102, a transport vehicle information acquisition unit 5103, an operation signal input unit 5104, a bucket position specification unit 5105, an earth removal position specification unit 5106, and avoidance
  • a position specifying unit 5107, an operation signal generation unit 5109, and an operation signal output unit 5110 are provided.
  • the loaded vehicle information acquisition unit 5101 acquires vehicle information from the loading machine 100.
  • Display control unit 5102 generates a display signal for displaying an image included in the vehicle information received by loaded vehicle information acquisition unit 5101, and outputs the display signal to display device 520.
  • the transport vehicle information acquisition unit 5103 acquires position information and orientation information of each transport vehicle 200 from the management device 300.
  • the transport vehicle information acquisition unit 5103 is an example of a loading machine information acquisition unit that acquires position information and orientation information of the loading machine.
  • Operation signal input unit 5104 receives an input of an operation signal from first operation device 530.
  • the operation signals include an operation signal of the boom 111, an operation signal of the arm 112, an operation signal of the bucket 113, a swing operation signal of the revolving unit 120, a traveling operation signal of the traveling unit 130, and a discharge instruction signal of the loading machine 100. included.
  • the discharge instruction signal is a signal for instructing automatic discharge control for moving the bucket 113 to the discharge position to perform the discharge.
  • the bucket position specification unit 5105 determines the position P of the tip of the arm 112 and the height from the tip of the arm 112 to the lowest point of the bucket 113 in the shovel coordinate system. Identify Hb.
  • the lowest point of the bucket 113 refers to the point of the outer shape of the bucket 113 that has the shortest distance from the ground surface.
  • the bucket position specifying unit 5105 specifies the position P of the tip of the arm 112 when receiving the input of the discharge instruction signal as the digging completion position P10.
  • FIG. 6 is a diagram showing an example of a path of a bucket according to the first embodiment.
  • the bucket position specifying unit 5105 determines the length of the boom 111 based on the tilt angle of the boom 111 and the known length of the boom 111 (the distance from the pin at the base end to the pin at the tip). Find the vertical and horizontal components of. Similarly, the bucket position specifying unit 5105 obtains the vertical component and the horizontal component of the length of the arm 112. Bucket position specifying unit 5105 is a sum of vertical components of lengths of boom 111 and arm 112 and a sum of horizontal components from the position of loading machine 100 to the direction specified from the orientation and posture of loading machine 100. A position far apart is specified as the position P of the tip of the arm 112 (the position P of the pin at the tip of the arm 112 shown in FIG. 2).
  • the bucket position specifying unit 5105 specifies the lowermost point of the bucket 113 in the vertical direction based on the inclination angle of the bucket 113 and the shape of the known bucket, and the height from the tip of the arm 112 to the lowermost point Identify Hb.
  • the discharge position specifying unit 5106 is a discharge position based on the position information and the azimuth information of the transport vehicle 200 acquired by the transport vehicle information acquisition unit 5103. Identify P13. That is, the discharge position specifying unit 5106 specifies the discharge position P13 based on the position information and the azimuth information when the transport vehicle 200 stops at the loading point P3.
  • the earth unloading position specifying unit 5106 changes the reference position P21 indicated by the position information of the transport vehicle 200 based on the position, orientation and attitude of the swing body 120 acquired by the loaded vehicle information acquiring unit 5101 from the site coordinate system to the shovel coordinate system.
  • the earth unloading point P22 separated by the distance D1 in the direction indicated by the azimuth information of the transportation vehicle 200 is specified.
  • the distance D1 is a known distance between the reference position P21 and the discharge point P22 on the vessel.
  • the discharge position specifying unit 5106 is separated from the specified position P22 by a distance D2 from the center of the bucket 113 to the tip of the arm 112 in the direction toward the swing body 120 of the loading machine 100 at the discharge position P13. Identify as a flat position.
  • the discharge position specifying unit 5106 sets the height Ht of the transport vehicle 200 to the height Hb from the tip of the arm 112 specified by the bucket position specifying unit 5105 to the lowermost point and the height of the control margin of the bucket 113.
  • the discharge position specifying unit 5106 may specify the discharge position P13 without adding the height for the control margin. That is, the unloading position specifying unit 5106 may specify the height of the unloading position P13 by adding the height Hb to the height Ht.
  • the avoidance position specifying unit 5107 includes the earth unloading position P13 specified by the earth unloading position specifying unit 5106, the position of the loading machine 100 acquired by the loading vehicle information acquisition unit 5101, and the transportation acquired by the transporting vehicle information acquisition unit 5103. Based on the position and orientation of the vehicle 200, an interference avoidance position P12 that is a point that does not interfere with the transport vehicle 200 is identified.
  • the interference avoidance position P12 has the same height as the earth unloading position P13, and the distance from the turning center of the turning body 120 is equal to the distance from the turning center to the earth unloading position P13 and the transport vehicle 200 downward. Is not present.
  • the avoidance position specifying unit 5107 specifies, for example, a circle whose center is the turning center of the turning body 120 and whose radius is the distance between the turning center and the unloading position, and the outer shape of the bucket 113 among the positions on the circle.
  • a position which does not interfere with the transport vehicle 200 in plan view and is closest to the earth unloading position P13 is specified as an interference avoidance position P12.
  • the avoidance position specifying unit 5107 can determine whether the transporter vehicle 200 and the bucket 113 interfere with each other based on the position, the orientation, the known outer shape of the transporter vehicle 200, and the known shape of the bucket 113.
  • “the same height” and “the distance are equal” are not necessarily limited to those whose heights or distances completely match, but some error or margin is allowed.
  • the operation signal generation unit 5109 is an operation for moving the bucket 113 to the unloading position P13 based on the unloading position P13 identified by the unloading position identifying unit 5106 and the interference avoidance position P12 identified by the avoidance position identifying unit 5107. Generate a signal. That is, the operation signal generation unit 5109 generates an operation signal so as to reach the earth unloading position P13 from the excavation completion position P10 via the position P11 and the interference avoidance position P12. Further, the operation signal generation unit 5109 generates an operation signal of the bucket 113 so that the angle of the bucket 113 does not change even if the boom 111 and the arm 112 are driven.
  • the operation signal output unit 5110 outputs the operation signal input to the operation signal input unit 5104 or the operation signal generated by the operation signal generation unit 5109 to the loading machine 100.
  • the transport vehicle 200 travels along the travel route R according to the course information generated by the management device 300, and stops at the standby point P1.
  • the operator of the loading machine 100 inputs an entry instruction signal to the second operating device 531 by operating the second operating device 531 (for example, pressing a predetermined button).
  • the entry instruction signal is transmitted from the second operating device 531 to the management device 300.
  • the management device 300 generates course information indicating the area of the approach route R2 and the approach route R3.
  • the transporter vehicle 200 travels along the approach route R3 and stops at the loading point P3.
  • the operator scoops the soil with the bucket 113 of the loading machine 100 by operating the first operating device 530, operates the knob switch of the first operating device 530, and generates and outputs a discharge instruction signal.
  • FIG. 7 is a first flowchart showing an automatic discharge control method of the remote driver's cab according to the first embodiment.
  • FIG. 8 is a second flowchart showing the automatic unloading control method of the remote driver's cab according to the first embodiment.
  • the loading vehicle information acquisition unit 5101 acquires the position and orientation of the swing body 120, the tilt angles of the boom 111, the arm 112 and the bucket 113, and the posture of the swing body 120 from the loading machine 100 (step S1).
  • the transporter vehicle information acquisition unit 5103 acquires the position and orientation of the transporter vehicle 200 from the management device 300 (step S2).
  • the bucket position specifying unit 5105 Based on the vehicle information acquired by the loading vehicle information acquisition unit 5101, the bucket position specifying unit 5105 detects the position P of the tip of the arm 112 at the time of inputting the earth removal instruction signal and the bottom of the bucket 113 from the tip of the arm 112. The height to the point is specified (step S3). The bucket position specifying unit 5105 specifies the position P as the digging completion position P10.
  • the earth unloading position specifying unit 5106 converts the position information of the transporter vehicle 200 acquired by the transporter vehicle information acquiring unit 5103 based on the position, orientation, and posture of the swing body 120 acquired in step S1 from the site coordinate system to the shovel coordinate system. Do.
  • the earth removal position specifying unit 5106 specifies the plane position of the earth removal position P13 based on the position information and the orientation information of the transport vehicle 200 acquired by the transport vehicle information acquisition unit 5103 and the known shape of the transport vehicle 200 ( Step S4).
  • the unloading position specifying unit 5106 sets the known height Ht of the transport vehicle 200 to the height Hb from the tip of the arm 112 specified in step S3 to the lowest point of the bucket 113 and the control margin of the bucket 113.
  • the height of the earth unloading position P13 is specified by adding the height of the minute (step S5).
  • the avoidance position specifying unit 5107 specifies the position of the turning center of the turning body 120 based on the position and orientation of the turning body 120 acquired by the loading vehicle information acquisition unit 5101 (step S6).
  • the avoidance position specifying unit 5107 specifies a plane distance from the turning center to the earth unloading position P13 (step S7).
  • the avoidance position specifying unit 5107 is a position separated by a plane distance specified from the turning center, and the outer shape of the bucket 113 does not interfere with the transport vehicle 200 in a plan view, and interferes with a position closest to the unloading position P13. It specifies as the avoidance position P12 (step S8).
  • the operation signal generation unit 5109 determines whether or not the position of the tip of the arm 112 has reached the discharge position P13 (step S9). If the position of the tip of the arm 112 has not reached the discharge position P13 (step S9: NO), the operation signal generation unit 5109 has a height of the tip of the arm 112 less than the height of the interference avoidance position P12, or turns It is determined whether the planar distance from the pivot center of the body 120 to the tip of the arm 112 is less than the planar distance from the pivot center to the interference avoidance position P12 (step S10).
  • the operation signal generation unit 5109 If the height of the bucket 113 is less than the height of the interference avoidance position P12, or if the plane distance from the turning center to the tip of the arm 112 is less than the plane distance from the turning center to the interference avoiding position P12 (step S10: YES), the operation signal generation unit 5109 generates an operation signal for raising the boom 111 and the arm 112 to the height of the interference avoidance position P12 (step S11). At this time, the operation signal generation unit 5109 generates an operation signal based on the positions and speeds of the boom 111 and the arm 112.
  • the operation signal generation unit 5109 calculates the sum of the angular velocities of the boom 111 and the arm 112 based on the generated operation signals of the boom 111 and the arm 112, and rotates the bucket 113 at the same speed as the sum of the angular velocities. Are generated (step S12). Thereby, the operation signal generation unit 5109 can generate an operation signal for holding the ground angle of the bucket 113. In another embodiment, when the automatic ground control starts, the operation signal generation unit 5109 calculates the ground angle of the bucket 113 calculated from the detection values of the boom angle sensor 117, the arm angle sensor 118, and the bucket angle sensor 119. An operation signal may be generated to rotate the bucket 113 so as to be equal to the ground angle.
  • step S10 NO
  • the operation signal generation unit 5109 does not generate operation signals of the boom 111, the arm 112, and the bucket 113.
  • the operation signal generation unit 5109 specifies a rising time which is a time from the height of the bucket 113 to the height of the interference avoidance position P12 from the height of the digging completion position P10 (step S13).
  • the operation signal generation unit 5109 generates a turning operation signal (step S14).
  • the operation signal generation unit 5109 turns and the tip of the arm 112 is the interference avoidance position P12. To generate a turning operation signal.
  • the operation signal output unit 5110 When at least one of the operation signal of the boom 111, the arm 112 and the bucket 113, and the swing operation signal of the swing body 120 is generated in the process of step S9 to step S14, the operation signal output unit 5110 generates the generated operation signal. It outputs to the loading machine 100 (step S15).
  • the loading vehicle information acquisition unit 5101 acquires vehicle information from the loading machine 100 (step S16). Thus, the loaded vehicle information acquisition unit 5101 can acquire vehicle information after being driven by the output operation signal.
  • Control device 540 returns the process to step S9, and repeatedly executes the generation of the operation signal.
  • step S9 when the position of the tip of the arm 112 has reached the earth unloading position P13 in step S9 (step S9: YES), the operation signal generation unit 5109 does not generate an operation signal. Therefore, when the position of the tip of the arm 112 reaches the earth unloading position P13, the work implement 110 and the rotating body 120 stop.
  • step S9: YES that is, when the operation signal generation unit 5109 has not generated an operation signal in the process from step S9 to step S14, the operation signal generation unit 5109 generates an operation signal for discharging the bucket 113 (step S17).
  • Examples of the operation signal for removing the bucket 113 include an operation signal for rotating the bucket 113 in the unloading direction and an operation signal for opening a crumb when the bucket 113 is a clam bucket.
  • the operation signal output unit 5110 outputs the generated operation signal to the loading machine 100 (step S18). Then, the control device 540 ends the automatic discharge control.
  • the rotating body 120 starts turning toward the unloading position P13.
  • the raising of the boom 111 and the arm 112 is continued. While moving the tip of the arm 112 from the position P11 to the interference avoidance position P12, the boom 111, the arm 112 and the bucket 113 decelerate so that the height of the tip of the arm 112 becomes equal to the interference avoidance position P12.
  • the drive of the work implement 110 is stopped.
  • the swing body 120 continues the swing. That is, from the interference avoidance position P12 to the earth unloading position P13, the tip end of the arm 112 is moved only by the swing of the swing body 120 without the drive of the work implement 110.
  • the revolving unit 120 decelerates so that the position of the tip of the arm 112 becomes equal to the unloading position P13.
  • the loading machine 100 can automatically discharge the soil that the bucket 113 has scooped to the transport vehicle 200.
  • the operator repeatedly executes the digging by the work implement 110 and the automatic earth removal control based on the input of the earth removal instruction signal to such an extent that the load of the transport vehicle 200 does not exceed the maximum load.
  • the operator operates the second operating device 531 to input a start instruction signal to the second operating device 531.
  • the start instruction signal is transmitted from the second operation device 531 to the management device 300.
  • the management device 300 generates course information including the area of the exit route R4.
  • the transporter vehicle 200 starts from the loading point P3, travels along the exit route R4, and exits from the loading station A1.
  • the control device 540 specifies the earth removal position for loading the earth and sand onto the transport vehicle 200 based on the position information and the orientation information of the transport vehicle 200 detected by the transport vehicle 200.
  • the control device 540 can automatically operate the loading machine 100 without receiving designation of the earth unloading position by the operator or the like.
  • the control device 540 specifies the digging completion position P10 of the bucket 113, and generates an operation signal for moving the bucket 113 from the digging completion position P10 to the discharge position P13. . Thereby, the control device 540 can automatically discharge the earth and sand that the bucket 113 has scooped to the transport vehicle 200.
  • the control device 540 generates a control signal such that the bucket 113 passes through the interference avoidance position P12.
  • the interference avoidance position P12 according to the first embodiment has a height equal to the discharge position P13, and a distance from the turning center of the rotating body 120 equal to a distance from the turning center to the discharge position P13, and the bucket 113 In consideration of the outer shape of the lower position of the transport vehicle 200. Accordingly, it is possible to reliably prevent the bucket 113 from coming into contact with the transport vehicle 200 due to the turning of the turning body 120.
  • the loading machine 100 according to the first embodiment acquires position information and orientation information of the transport vehicle 200 from the management device 300.
  • the loading machine 100 according to the second embodiment includes a detection device that detects the spatial position of the object present in the detection direction, and based on the detection result of the detection device, the position information of the transport vehicle 200 and Get direction information.
  • the loading machine 100 can acquire the position information and the orientation information of the transport vehicle 200 without using the management device 300.
  • FIG. 9 is a schematic view showing the configuration of the remote control system according to the second embodiment.
  • the loading machine 100 and the transport vehicle 200 are boarded and operated. Therefore, the work system 1 according to the second embodiment does not include the management device 300 and the remote operation room 500.
  • FIG. 10 is an external view of the loading machine according to the second embodiment.
  • the loading machine 100 according to the second embodiment further includes a detection device 127 and an operating device 128 in addition to the configuration of the loading machine 100 according to the first embodiment.
  • the loading machine 100 according to the second embodiment does not include the imaging device 122.
  • the detection device 127 detects the spatial position of the object present in the detection direction.
  • Examples of the detection device 127 include a stereo camera, a laser scanner, a UWB (Ultra Wide Band) distance measuring device, and the like.
  • the detection device 127 is provided, for example, such that the detection direction is directed to the front of the cab 121 of the loading machine 100.
  • the detection device 127 specifies the spatial position of the object in a coordinate system based on the position of the detection device 127.
  • the operating device 128 is provided inside the cab 121.
  • Examples of the operation device 128 include an operation lever, an operation panel, and the like.
  • the operating device 128 according to the second embodiment receives an input of an operation of the working machine 110, the swing body 120, and the traveling body 130 by the operation lever. Further, the controller device 128 according to the second embodiment receives an input of the discharge instruction signal through the operation panel.
  • FIG. 11 is a schematic block diagram showing a configuration of a control device of a loading machine according to a second embodiment.
  • the control device 126 drives the working machine 110, the swing body 120, or the traveling body 130 based on the operation signal input to the operation device 128.
  • the control device 126 recognizes the transport vehicle 200 based on the vehicle information and the detection information of the detection device 127, and performs the automatic discharge processing.
  • the control device 126 is a computer including a processor 1100, a main memory 1200, a storage 1300, and an interface 1400.
  • the storage 1300 stores the program p1.
  • the processor 1100 reads the program p1 from the storage 1300, develops it in the main memory 1200, and executes processing in accordance with the program p1.
  • the controller 126 is connected to the network via the interface 1400.
  • Examples of the storage 1300 include an HDD, an SSD, a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, and the like.
  • the storage 1300 may be internal media directly connected to the common communication line of the controller 126 or may be external media connected to the controller 126 via the interface 1400.
  • the storage 1300 is a non-temporary, tangible storage medium.
  • the processor 1100 executes the program p1 to generate a vehicle information acquisition unit 1101, a detection information acquisition unit 1102, an operation signal input unit 1103, a bucket position specification unit 1104, an earth removal position specification unit 1105, an avoidance position specification unit 1106, and an operation signal generation.
  • a unit 1108, a drive control unit 1109, and an instruction signal output unit 1110 are provided.
  • the vehicle information acquisition unit 1101 acquires the position and orientation of the revolving unit 120 from the position / orientation calculator 123.
  • the vehicle information acquisition unit 1101 acquires the turning speed and the attitude of the turning body 120 from the inclination measuring instrument 124.
  • the vehicle information acquisition unit 1101 acquires the inclination angles of the boom 111, the arm 112, and the bucket 113 from the boom angle sensor 117, the arm angle sensor 118, and the bucket angle sensor 119, respectively.
  • the detection information acquisition unit 1102 acquires three-dimensional data (for example, point cloud data, polygon data, voxel data, etc.) indicating the spatial position of the object detected by the detection device 127.
  • three-dimensional data for example, point cloud data, polygon data, voxel data, etc.
  • the operation signal input unit 1103 receives an input of an operation signal and an instruction signal (entry instruction signal and start instruction signal) for the transport vehicle 200 from the operation device 128.
  • the bucket position specifying unit 1104 determines the digging completion position P10 of the tip of the arm 112 and the height from the tip of the arm 112 to the lowest point of the bucket 113 in the shovel coordinate system. Identify Hb.
  • the bucket position specifying unit 1104 specifies the digging completion position P10 and the height Hb in the same manner as the bucket position specifying unit 5105 according to the first embodiment.
  • the discharge position specifying unit 1105 specifies the discharge position P13 based on the three-dimensional data acquired by the detection information acquisition unit 1102.
  • the earth unloading position specifying unit 1105 is a target indicated by the three-dimensional data based on the position, orientation, and attitude of the swing body 120 acquired by the vehicle information acquisition unit 1101 and the known installation position of the detection device 127 in the swing body 120.
  • the spatial position of the object is converted from the coordinate system based on the installation position of the detection device 127 into the shovel coordinate system.
  • the earth removal position specifying unit 1105 specifies the position and orientation of the transport vehicle 200 in the shovel coordinate system by applying the shape of the known transport vehicle 200 to the converted three-dimensional data.
  • the earth unloading position specifying unit 1105 specifies the earth unloading point P22 separated from the reference position P21 indicated by the position information of the transporter 200 by the distance D1 in the direction indicated by the azimuth information of the transporter 200.
  • the discharge position specifying unit 5106 is separated from the specified position P22 by a distance D2 from the center of the bucket 113 to the tip of the arm 112 in the direction toward the swing body 120 of the loading machine 100 at the discharge position P13. Identify as a flat position.
  • the discharge position specifying unit 1105 sets the height Ht of the transport vehicle 200 to the height Hb from the tip of the arm 112 specified by the bucket position specifying unit 1104 to the lowermost point of the bucket 113 and the control margin of the bucket 113.
  • the height of the discharge position P13 is specified by adding the height.
  • the avoidance position specifying unit 1106 is an avoidance position according to the first embodiment based on the earth unloading position P13 specified by the earth unloading position specifying unit 1105 and the position of the loading machine 100 acquired by the vehicle information acquiring unit 1101.
  • the interference avoidance position P12 is specified by the same method as the specifying unit 5107.
  • the operation signal generation unit 1108 is similar to the operation signal generation unit 5109 according to the first embodiment, based on the earth unloading position specified by the earth unloading position specifying unit 1105 and the interference avoidance position specified by the avoidance position specifying unit 1106. In the method, an operation signal for moving the bucket 113 to the earth unloading position is generated.
  • the drive control unit 1109 drives the working machine 110, the swing body 120, and the traveling body 130 based on the operation signal input to the operation signal input unit 1103 or the operation signal generated by the operation signal generation unit 1108.
  • the instruction signal output unit 1110 transmits the instruction signal (the entry instruction signal and the start instruction signal) input to the operation signal input unit 1103 to the management device 300.
  • the control device 540 according to the second embodiment includes a detection device 127 that detects the spatial position of an object present in the detection direction, and based on the detection result of the detection device 127, position information and orientation information of the transport vehicle 200 get.
  • the loading machine 100 according to the second embodiment acquires the position information and the orientation information of the transport vehicle 200 without using the management device 300, and the loading machine 100 does not receive the designation of the discharge position. Can be operated automatically.
  • the remotely controlled loading machine 100 removes soil on the unmanned transport vehicle 200
  • the loading machine 100 on boarding operation removes the load on the transporting vehicle 200.
  • the loading machine 100 of remote control may be unloaded to the carrying vehicle 200 of boarding operation
  • the loading machine 100 of boarding operation may be unloaded to the carrying vehicle 200 of unmanned operation It is also good.
  • the loading machine 100 may acquire position information and orientation information of the transport vehicle 200 based on the detection device 127 as in the second embodiment. Further, even when the transport vehicle 200 operates by the boarding operation, the management device 300 manages the position information and the orientation information of the transport vehicle 200 as in the first embodiment, and the loading machine 100 receives these from the management device 300. You may obtain the information of
  • the control device 540 of the remote driver's cab 500 calculates the automatic earth removal processing based on the position information and the orientation information of the transport vehicle 200 received from the management device 300. It is not limited to.
  • the work system 1 according to another embodiment may calculate the automatic discharge processing based on the position information and the direction information of the transport vehicle 200 received from the management device 300 by the control device 126 of the loading machine 100. Good. That is, the detection information acquisition unit 1102 of the control device 126 according to the second embodiment may acquire the position information and the orientation information of the transport vehicle 200 from the management device 300.
  • the loading machine 100 acquires the position and orientation of the transport vehicle 200 via the management device 300, but the invention is not limited thereto.
  • the loading machine 100 may acquire the position and orientation of the transport vehicle 200 from the transport vehicle 200 by inter-vehicle communication.
  • earth removal position P13 is specified based on position information and direction information when conveyance vehicle 200 stops at loading point P3, it is not restricted to this.
  • the unloading position P13 may be identified based on the position of the loading point P3 instead of the position information and the orientation information of the transporter vehicle 200.
  • the work system 1 can specify the loading point P3 before the transport vehicle 200 stops.
  • the loading machine is a manned or unmanned transport vehicle 200, but is not limited thereto.
  • Other examples of the loading machine include an in-pit crusher including a hopper and a belt conveyor, and a self-propelled crusher including a hopper and a traveling body.
  • the discharge position specifying unit 5106 and the discharge position specifying unit 1105 can specify the discharge position based on the hopper position of the loading machine.
  • the automatic earth unloading control such as the earth unloading position is handled by the shovel coordinate system, but may be handled by the site coordinate system.
  • the loading machine 100 loads earth and sand in the work system 1 which concerns on embodiment mentioned above, it is not restricted to this in other embodiment.
  • the loading object according to another embodiment may be ore, crushed stone, coal or the like.
  • control device 126 the management device 300, and the control device 540 according to the above-described embodiment
  • the program may be distributed to the control device by a communication line.
  • the control device that has received the distribution develops the program in the main memory and executes the above processing.
  • program p1 and the program p5 may be for realizing a part of the above-described functions.
  • the program p1 and the program p5 may be realized by combining the functions described above with other programs already stored in the storage, or with other programs implemented in other devices. .
  • control device 126, the management device 300, and the control device 540 may include a PLD (Programmable Logic Device).
  • PLDs include Programmable Array Logic (PAL), Generic Array Logic (GAL), Complex Programmable Logic Device (CPLD), and Field Programmable Gate Array (FPGA).
  • PAL Programmable Array Logic
  • GAL Generic Array Logic
  • CPLD Complex Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the loading machine control device can automatically operate the loading machine without specifying the discharge position.
  • Control device 5101 Loaded vehicle information Acquisition unit 5102 ... display control unit 51 3 Transport vehicle information acquisition unit (loading machine information acquisition unit) 5104 Operation signal input unit 5105 Bucket position specification unit 5106 Discharge position specification unit 5107 Avoidance position specification unit 5108 Turn timing specification unit 5109 Operation Signal generation unit 5110 ... Operation signal output unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)

Abstract

被積込機械情報取得部は、運搬車両の位置情報および方位情報を取得する。排土位置特定部は、位置情報および方位情報に基づいて、積込対象を運搬車両に積み込むための排土位置を特定する。バケット位置特定部は、バケットの位置を特定する。操作信号生成部は、バケットを特定した位置から排土位置まで移動させるための操作信号を生成する。

Description

積込機械制御装置および制御方法
 本発明は、積込機械および運搬車両が配備された作業現場において積込機械を制御する積込機械制御装置および制御方法に関する。
 本願は、2017年10月4日に日本に出願された特願2017-194678号について優先権を主張し、その内容をここに援用する。
 特許文献1および特許文献2には、掘削位置、および排土位置を指定して油圧ショベルを自動運転させる技術が開示されている。
特開2002-115271号公報 特開2002-332655号公報
 自動制御の効率を向上するために、排土位置の指定を省略することが望まれている。
 本発明の態様は、排土位置の指定なしに積込機械を自動運転させることができる積込機械制御装置および制御方法を提供することを目的とする。
 第1の態様は、旋回中心まわりに旋回する旋回体と、前記旋回体に取り付けられバケットを含む作業機とを備える積込機械を制御する積込機械制御装置であって、被積込機械の位置情報および方位情報を取得する被積込機械情報取得部と、前記位置情報および前記方位情報に基づいて、土砂を前記被積込機械に積み込むための排土位置を特定する排土位置特定部と、前記バケットを前記排土位置まで移動させる排土指示信号が入力されたときの前記バケットの位置を特定するバケット位置特定部と、前記バケットを、前記特定した位置から前記排土位置まで移動させるための操作信号を生成する操作信号生成部と、を備える積込機械制御装置。
 上記態様によれば、積込機械制御装置は、排土位置の指定なしに積込機械を自動運転させることができる。
第1の実施形態に係る遠隔操作システムの構成を示す概略図である。 第1の実施形態に係る積込機械の外観図である。 第1の実施形態に係る管理装置の構成を示す概略ブロック図である。 走行経路の例を表す図である。 第1の実施形態に係る遠隔運転室の制御装置の構成を示す概略ブロック図である。 第1の実施形態に係るバケットの経路の例を示す図である。 第1の実施形態に係る遠隔運転室の自動排土制御方法を示す第1のフローチャートである。 第1の実施形態に係る遠隔運転室の自動排土制御方法を示す第2のフローチャートである。 第2の実施形態に係る遠隔操作システムの構成を示す概略図である。 第2の実施形態に係る積込機械の外観図である。 第2の実施形態に係る積込機械の制御装置の構成を示す概略ブロック図である。
〈第1の実施形態〉
《作業システム》
 図1は、第1の実施形態に係る遠隔操作システムの構成を示す概略図である。
 作業システム1は、積込機械100と、被積込機械である1または複数の運搬車両200と、管理装置300と、遠隔運転室500とを備える。積込機械100および運搬車両200は、作業現場(例えば、鉱山、採石場)で稼働する。遠隔運転室500は、作業現場から離れた地点(例えば、市街、作業現場内)に設けられる。
 運搬車両200は、管理装置300から受信する制御情報に基づいて無人走行する。運搬車両200と管理装置300とはアクセスポイント360を介した通信により接続される。管理装置300は、運搬車両200から運搬車両200の位置及び方位を取得し、これらに基づいて運搬車両200の走行に用いるコース情報を生成する。管理装置300は、コース情報を運搬車両200に送信する。運搬車両200は、受信したコース情報に基づいて無人走行する。つまり、作業システム1は、運搬車両200と管理装置300とを含む無人搬送システムを備える。アクセスポイント360は、無人搬送システムの通信に用いられる。
 管理装置300は、積込機械100および遠隔運転室500から運搬車両200の指示信号を受信し、これを運搬車両200に送信する。積込機械100と管理装置300とはアクセスポイント360を介した通信により接続される。また遠隔運転室500と管理装置300とはネットワークを介して接続される。積込機械100および遠隔運転室500から受信する運搬車両200の指示信号の例としては、進入指示信号、発進指示信号が挙げられる。進入指示信号は、運搬車両200に待機点P1から積込点P3まで進入することを指示する信号である。発進指示信号は、運搬車両200に積込の完了により積込点P3を発進し積込場A1からの退出を指示する信号である。
 積込機械100は、遠隔運転室500から送信される操作信号に基づいて遠隔操作される。積込機械100と遠隔運転室500とは、アクセスポイント350を介した通信により接続される。遠隔運転室500の第1操作装置530は、オペレータの操作により、積込機械100の操作を受け付け、制御装置540は、操作信号を管理装置300に送信する。積込機械100は、遠隔運転室500から受信した操作信号に基づいて動作する。つまり、作業システム1は、積込機械100と遠隔運転室500とから構成される遠隔運転システムを備える。アクセスポイント350は、遠隔運転システムの通信に用いられる。
《運搬車両》
 第1の実施形態に係る運搬車両200は、設定された走行経路を無人で走行する無人ダンプトラックである。なお、他の実施形態に係る運搬車両200は、ダンプトラック以外の運搬車であってもよい。
 運搬車両200は、位置方位検出器210および制御装置220を備える。
 位置方位検出器210は、運搬車両200の位置および方位を検出する。位置方位検出器210は、GNSS(Global Navigation Satellite System)を構成する人工衛星から測位信号を受信する2つの受信器を備える。GNSSの例としては、GPS(Global Positioning System)が挙げられる。2つの受信器は、それぞれ運搬車両200の異なる位置に設置される。位置方位検出器210は、受信器が受信した測位信号に基づいて、現場座標系における運搬車両200の代表点(車体座標系の原点、例えば、運搬車両200のリアアクスルの中心位置)の位置を検出する。
 位置方位検出器210は、2つの受信器が受信した各測位信号を用いて、一方の受信器の設置位置に対する他方の受信器の設置位置の関係として、運搬車両200の向く方位を演算する。なお、他の実施形態においてはこれに限られず、例えば運搬車両200が慣性計測装置(IMU:Inertial Measurement Unit)を備え、慣性計測装置の計測結果に基づいて方位を演算してもよい。この場合、運搬車両200の走行軌跡に基づいて慣性計測装置のドリフトを補正してもよい。慣性計測装置を用いて方位を演算する場合、運搬車両200は1つの受信機を備えていればよい。
 制御装置220は、位置方位検出器210が検出した位置および方位を管理装置300に送信する。制御装置220は、管理装置300からコース情報および指示信号を受信する。制御装置220は、受信したコース情報および指示信号に基づいて運搬車両200を走行させ、または運搬車両200のベッセルを上下させる。
《積込機械》
 図2は、第1の実施形態に係る積込機械の外観図である。
 第1の実施形態に係る積込機械100は、油圧ショベルである。なお、他の実施形態に係る積込機械100は、油圧ショベル以外の積込機械であってもよい。また図2に示す積込機械100はフェイスショベルであるが、バックホウショベルやロープショベルであってもよい。
 積込機械100は、走行体130と、走行体130に支持される旋回体120と、油圧により作動し旋回体120に支持される作業機110とを備える。旋回体120は旋回中心を中心として旋回自在に支持される。
 作業機110は、ブーム111と、アーム112と、バケット113と、ブームシリンダ114と、アームシリンダ115と、バケットシリンダ116と、ブーム角度センサ117と、アーム角度センサ118と、バケット角度センサ119とを備える。
 ブーム111の基端部は、旋回体120にピンを介して取り付けられる。
 アーム112は、ブーム111とバケット113とを連結する。アーム112の基端部は、ブーム111の先端部にピンを介して取り付けられる。
 バケット113は、土砂などを掘削するための刃と掘削した土砂を収容するための容器とを備える。バケット113の基端部は、アーム112の先端部にピンを介して取り付けられる。
 ブームシリンダ114は、ブーム111を作動させるための油圧シリンダである。ブームシリンダ114の基端部は、旋回体120に取り付けられる。ブームシリンダ114の先端部は、ブーム111に取り付けられる。
 アームシリンダ115は、アーム112を駆動するための油圧シリンダである。アームシリンダ115の基端部は、ブーム111に取り付けられる。アームシリンダ115の先端部は、アーム112に取り付けられる。
 バケットシリンダ116は、バケット113を駆動するための油圧シリンダである。バケットシリンダ116の基端部は、ブーム111に取り付けられる。バケットシリンダ116の先端部は、バケット113に取り付けられる。
 ブーム角度センサ117は、ブーム111に取り付けられ、ブーム111の傾斜角を検出する。
 アーム角度センサ118は、アーム112に取り付けられ、アーム112の傾斜角を検出する。
 バケット角度センサ119は、バケット113に取り付けられ、バケット113の傾斜角を検出する。
 第1の実施形態に係るブーム角度センサ117、アーム角度センサ118、およびバケット角度センサ119は、地平面に対する傾斜角を検出する。なお、他の実施形態に係る角度センサはこれに限られず、他の基準面に対する傾斜角を検出してもよい。例えば、他の実施形態においては、角度センサは、ブーム111、アーム112およびバケット113の基端部に設けられたポテンショメータによって相対回転角を検出してもよいし、ブームシリンダ114、アームシリンダ115およびバケットシリンダ116のシリンダ長さを計測し、シリンダ長さを角度に変換することで傾斜角を検出するものであってもよい。
 旋回体120には、運転室121が備えられる。運転室121の上部には、撮像装置122が設けられる。撮像装置122は、運転室121内の前方かつ上方に設置される。撮像装置122は、運転室121前面のフロントガラスを通して、運転室121の前方を撮像する。撮像装置122の例としては、例えばCCD(Charge Coupled Device)センサ、およびCMOS(Complementary Metal Oxide Semiconductor)センサを用いた撮像装置が挙げられる。なお、他の実施形態においては、撮像装置122は、必ずしも運転室121内に設けられなくてもよく、撮像装置122は、少なくとも作業対象と作業機110とを撮像可能な位置に設けられていればよい。
 積込機械100は、撮像装置122、位置方位演算器123、傾斜計測器124、油圧装置125、制御装置126を備える。
 位置方位演算器123は、旋回体120の位置および旋回体120が向く方位を演算する。位置方位演算器123は、GNSSを構成する人工衛星から測位信号を受信する2つの受信器を備える。2つの受信器は、それぞれ旋回体120の異なる位置に設置される。位置方位演算器123は、受信器が受信した測位信号に基づいて、現場座標系における旋回体120の代表点(ショベル座標系の原点)の位置を検出する。
 位置方位演算器123は、2つの受信器が受信した各測位信号を用いて、一方の受信器の設置位置に対する他方の受信器の設置位置の関係として、旋回体120の向く方位を演算する。
 傾斜計測器124は、旋回体120の加速度および角速度を計測し、計測結果に基づいて旋回体120の姿勢(例えば、ロール角、ピッチ角、ヨー角)を検出する。傾斜計測器124は、例えば旋回体120の下面に設置される。傾斜計測器124は、例えば、慣性計測装置(IMU:Inertial Measurement Unit)を用いることができる。
 油圧装置125は、作動油タンク、油圧ポンプ、および流量制御弁を備える。油圧ポンプは、図示しないエンジンの動力で駆動し、流量制御弁を介してブームシリンダ114、アームシリンダ115、およびバケットシリンダ116に作動油を供給する。流量制御弁はロッド状のスプールを有し、スプールの位置によってブームシリンダ114、アームシリンダ115、およびバケットシリンダ116に供給する作動油の流量を調整する。スプールは、制御装置126から受信する制御指令に基づいて駆動される。つまり、ブームシリンダ114、アームシリンダ115、およびバケットシリンダ116に供給される作動油の量は、制御装置126によって制御される。
 制御装置126は、撮像装置122が撮像した画像、旋回体120の旋回速度、位置および方位、ブーム111、アーム112およびバケット113の傾斜角、走行体130の走行速度、ならびに旋回体120の姿勢を、遠隔運転室500に送信する。以下、画像、旋回体120の旋回速度、位置および方位、ブーム111、アーム112およびバケット113の傾斜角、走行体130の走行速度、ならびに旋回体120の姿勢を、車両情報ともよぶ。なお、他の実施形態に係る車両情報はこれに限られない。例えば、他の実施形態に係る車両情報は、旋回速度、位置、方位、傾斜角、走行速度、および姿勢のいずれかを含まなくてもよいし、その他のセンサによって検出された値を含んでもよいし、検出された値から演算された値を含んでもよい。
 制御装置126は、遠隔運転室500から操作信号を受信する。制御装置126は、受信した操作信号に基づいて、作業機110、旋回体120、または走行体130を駆動させる。
《管理装置》
 図3は、第1の実施形態に係る管理装置の構成を示す概略ブロック図である。
 管理装置300は、運搬車両200の走行を管理する。
 管理装置300は、プロセッサ3100、メインメモリ3200、ストレージ3300、インタフェース3400を備えるコンピュータである。ストレージ3300は、プログラムp3を記憶する。プロセッサ3100は、プログラムp3をストレージ3300から読み出してメインメモリ3200に展開し、プログラムp3に従った処理を実行する。管理装置300は、インタフェース3400を介してネットワークに接続される。インタフェース3400には、アクセスポイント360が接続される。管理装置300は、アクセスポイント360を介して積込機械100および運搬車両200と無線接続される。
 ストレージ3300は、走行経路記憶部3301、位置方位記憶部3302としての記憶領域を有する。ストレージ3300の例としては、HDD(Hard Disk Drive)、SSD(Solid State Drive)、磁気ディスク、光磁気ディスク、CD-ROM(Compact Disc Read Only Memory)、DVD-ROM(Digital Versatile Disc Read Only Memory)、半導体メモリ等が挙げられる。ストレージ3300は、管理装置300の共通通信線に直接接続された内部メディアであってもよいし、インタフェース3400を介して管理装置300に接続される外部メディアであってもよい。ストレージ3300は、一時的でない有形の記憶媒体である。
 走行経路記憶部3301は、運搬車両200ごとに走行経路Rを記憶する。図4は、走行経路の例を表す図である。走行経路Rは、2つのエリアA(例えば、積込場A1と排土場A2)を結ぶあらかじめ定められた接続経路R1、ならびにエリアA内の経路である進入経路R2、アプローチ経路R3および退出経路R4を有する。進入経路R2は、エリアA内において接続経路R1の一端である待機点P1と所定の切り返し点P2とを接続する経路である。アプローチ経路R3は、エリアA内の切り返し点P2と積込点P3または排土点P4とを接続する経路である。退出経路R4は、エリアA内の積込点P3または排土点P4と接続経路R1の他端である出口点P5とを接続する経路である。積込点P3は、積込機械100のオペレータの操作によって設定される点である。切り返し点P2は、積込点P3の位置に応じて管理装置300によって設定される点である。
 位置方位記憶部3302は、各運搬車両200それぞれの位置情報および方位情報を記憶する。
 プロセッサ3100は、プログラムp3の実行により、位置方位収集部3101、走行コース生成部3102を備える。
 位置方位収集部3101は、アクセスポイント360を介して運搬車両200から運搬車両200の位置情報および方位情報を受信する。位置方位収集部3101は、受信した位置情報および方位情報を位置方位記憶部3302に記憶させる。
 走行コース生成部3102は、走行経路記憶部3301が記憶する走行経路と、位置方位記憶部3302が記憶する位置情報および方位情報とに基づいて、運搬車両200の移動を許可する領域の情報を含むコース情報を生成する。生成されたコース情報は運搬車両200に送信される。コース情報は、走行経路上に所定間隔で設定された地点の位置情報、その地点での目標速度情報、および他の運搬車両200の走行許可領域と重複しない走行許可領域情報を含む。
 走行コース生成部3102は、遠隔運転室500から進入指示信号を受信するまで、コース情報が示す領域に進入経路R2およびアプローチ経路R3を含めない。これにより、運搬車両200は、進入指示信号を受信するまで待機点P1で待機することとなる。走行コース生成部3102は、進入指示信号を受信した場合に、進入経路R2およびアプローチ経路R3を含み、退出経路R4を含まないコース情報を生成する。これにより、運搬車両200は、待機点P1から発進して積込点P3まで走行し、積込点P3で停止することとなる。走行コース生成部3102は、発進指示信号を受信した場合に、退出経路R4を含むコース情報を生成する。なお、本実施形態に係る作業システム1では、運搬車両200が待機点P1で進入指示信号を受信するまで待機するが、これに限られない。例えば、他の実施形態においては、運搬車両200が待機する位置は、切り返し点P2でもよいし、進入経路R2またはアプローチ経路R3の途中の地点であってもよい。
《遠隔運転室》
 遠隔運転室500は、運転席510、表示装置520、第1操作装置530、第2操作装置531、制御装置540を備える。
 表示装置520は、運転席510の前方に配置される。表示装置520は、オペレータが運転席510に座ったときにオペレータの眼前に位置する。表示装置520は、図1に示すように、並べられた複数のディスプレイによって構成されてもよいし、1つの大きなディスプレイによって構成されてもよい。また、表示装置520は、プロジェクタ等によって曲面や球面に画像を投影するものであってもよい。
 第1操作装置530は、遠隔運転システム用の操作装置である。第1操作装置530は、オペレータの操作に応じて、ブームシリンダ114の操作信号、アームシリンダ115の操作信号、バケットシリンダ116の操作信号、旋回体120の左右への旋回操作信号、走行体130の前後進のための走行操作信号を生成し制御装置540に出力する。第1操作装置530は、例えばレバー、ノブスイッチおよびペダルにより構成される。排土指示信号はノブスイッチの操作により生成される。
 第2操作装置531は、オペレータの操作により、発進指示信号を管理装置300に送信する。第2操作装置531は、例えばタッチパネル等により構成される。
 第1操作装置530および第2操作装置531は、運転席510の近傍に配置される。第1操作装置530および第2操作装置531は、オペレータが運転席510に座ったときにオペレータの操作可能な範囲内に位置する。
 制御装置540は、積込機械100から受信した画像を表示装置520に表示させ、第1操作装置530の操作を表す操作信号を積込機械100に送信する。
 図5は、第1の実施形態に係る遠隔運転室の制御装置の構成を示す概略ブロック図である。
 制御装置540は、プロセッサ5100、メインメモリ5200、ストレージ5300、インタフェース5400を備えるコンピュータである。ストレージ5300は、プログラムp5を記憶する。プロセッサ5100は、プログラムp5をストレージ5300から読み出してメインメモリ5200に展開し、プログラムp5に従った処理を実行する。制御装置540は、インタフェース5400を介してネットワークに接続される。
 ストレージ5300の例としては、HDD、SSD、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等が挙げられる。ストレージ5300は、制御装置540の共通通信線に直接接続された内部メディアであってもよいし、インタフェース5400を介して制御装置540に接続される外部メディアであってもよい。ストレージ5300は、一時的でない有形の記憶媒体である。
 プロセッサ5100は、プログラムp5の実行により、積込車両情報取得部5101、表示制御部5102、運搬車両情報取得部5103、操作信号入力部5104、バケット位置特定部5105、排土位置特定部5106、回避位置特定部5107、操作信号生成部5109、操作信号出力部5110を備える。
 積込車両情報取得部5101は、積込機械100から車両情報を取得する。
 表示制御部5102は、積込車両情報取得部5101が受信した車両情報に含まれる画像を表示するための表示信号を生成し、表示装置520に出力する。
 運搬車両情報取得部5103は、管理装置300から各運搬車両200の位置情報および方位情報を取得する。運搬車両情報取得部5103は、被積込機械の位置情報および方位情報を取得する被積込機械情報取得部の一例である。
 操作信号入力部5104は、第1操作装置530から操作信号の入力を受け付ける。操作信号には、ブーム111の操作信号、アーム112の操作信号、バケット113の操作信号、旋回体120の旋回操作信号、走行体130の走行操作信号、および積込機械100の排土指示信号が含まれる。排土指示信号は、バケット113を排土位置まで移動させて排土を行う自動排土制御の指示を行う信号である。
 バケット位置特定部5105は、積込車両情報取得部5101が受信した車両情報に基づいて、ショベル座標系におけるアーム112の先端の位置Pおよびアーム112の先端からバケット113の最下点までの高さHbを特定する。バケット113の最下点とは、バケット113の外形のうち地表面からの距離が最も短い点をいう。特に、バケット位置特定部5105は、排土指示信号の入力を受け付けたときのアーム112の先端の位置Pを掘削完了位置P10として特定する。図6は、第1の実施形態に係るバケットの経路の例を示す図である。具体的には、バケット位置特定部5105は、ブーム111の傾斜角と既知のブーム111の長さ(基端部のピンから先端部のピンまでの距離)とに基づいて、ブーム111の長さの垂直方向成分および水平方向成分を求める。同様に、バケット位置特定部5105は、アーム112の長さの垂直方向成分および水平方向成分を求める。バケット位置特定部5105は、積込機械100の位置から、積込機械100の方位および姿勢から特定される方向に、ブーム111およびアーム112の長さの垂直方向成分の和および水平方向成分の和だけ離れた位置を、アーム112の先端の位置P(図2に示すアーム112の先端部のピンの位置P)として特定する。また、バケット位置特定部5105は、バケット113の傾斜角と既知のバケットの形状とに基づいて、バケット113の鉛直方向の最下点を特定し、アーム112の先端から最下点までの高さHbを特定する。
 排土位置特定部5106は、操作信号入力部5104に排土指示信号が入力された場合に、運搬車両情報取得部5103が取得した運搬車両200の位置情報および方位情報に基づいて、排土位置P13を特定する。すなわち、排土位置特定部5106は、運搬車両200が積込点P3で停止したときの位置情報および方位情報に基づいて、排土位置P13を特定する。排土位置特定部5106は、積込車両情報取得部5101が取得した旋回体120の位置、方位および姿勢に基づいて運搬車両200の位置情報が示す基準位置P21を現場座標系からショベル座標系に変換し、当該基準位置P21から、当該運搬車両200の方位情報が示す方向に距離D1だけ離れた排土点P22を特定する。距離D1は、基準位置P21とベッセル上の排土点P22との間の既知の距離である。排土位置特定部5106は、特定した位置P22から、積込機械100の旋回体120の向く方向にバケット113の中心からアーム112の先端までの距離D2だけ離れた位置を、排土位置P13の平面位置として特定する。排土位置特定部5106は、運搬車両200の高さHtに、バケット位置特定部5105が特定したアーム112の先端から最下点までの高さHbと、バケット113の制御余裕分の高さとを加算することで、排土位置P13の高さを特定する。なお、他の実施形態においては、排土位置特定部5106は、制御余裕分の高さを加算せずに排土位置P13を特定してもよい。すなわち、排土位置特定部5106は、高さHtに高さHbを加算することで、排土位置P13の高さを特定してもよい。
 回避位置特定部5107は、排土位置特定部5106が特定した排土位置P13と、積込車両情報取得部5101が取得した積込機械100の位置と、運搬車両情報取得部5103が取得した運搬車両200の位置及び方位に基づいて、運搬車両200と干渉しない点である干渉回避位置P12を特定する。干渉回避位置P12は、排土位置P13と同じ高さを有し、かつ旋回体120の旋回中心からの距離が、当該旋回中心から排土位置P13までの距離と等しく、かつ下方に運搬車両200が存在しない位置である。回避位置特定部5107は、例えば、旋回体120の旋回中心を中心とし、当該旋回中心と排土位置との距離を半径とする円を特定し、当該円上の位置のうち、バケット113の外形が平面視で運搬車両200と干渉せず、かつ排土位置P13に最も近い位置を、干渉回避位置P12と特定する。回避位置特定部5107は、運搬車両200の位置、方位および既知の外形、ならびにバケット113の既知の形状に基づいて、運搬車両200とバケット113とが干渉するか否かを判定することができる。ここで、「同じ高さ」、「距離が等しい」とは、必ずしも高さまたは距離が完全に一致するものに限られず、多少の誤差やマージンが許容されるものとする。
 操作信号生成部5109は、排土位置特定部5106が特定した排土位置P13、回避位置特定部5107が特定した干渉回避位置P12に基づいて、バケット113を排土位置P13まで移動させるための操作信号を生成する。すなわち、操作信号生成部5109は、掘削完了位置P10から、位置P11および干渉回避位置P12を経由して、排土位置P13に到達するように、操作信号を生成する。また、操作信号生成部5109は、ブーム111およびアーム112が駆動してもバケット113の角度が変化しないように、バケット113の操作信号を生成する。
 操作信号出力部5110は、操作信号入力部5104に入力された操作信号または操作信号生成部5109が生成した操作信号を、積込機械100に出力する。
《方法》
 運搬車両200は、管理装置300が生成するコース情報によって走行経路Rに沿って走行し、待機点P1で停止する。積込機械100のオペレータは、第2操作装置531を操作することで(例えば、所定のボタンを押下することで)、第2操作装置531に進入指示信号を入力する。進入指示信号は、第2操作装置531から管理装置300に送信される。これによって、管理装置300が進入経路R2およびアプローチ経路R3の領域を示すコース情報を生成する。運搬車両200は、アプローチ経路R3に沿って走行し、積込点P3で停止する。オペレータは、第1操作装置530の操作により積込機械100のバケット113で土砂をすくい、第1操作装置530のノブスイッチを操作して排土指示信号を生成し出力する。
 図7は、第1の実施形態に係る遠隔運転室の自動排土制御方法を示す第1のフローチャートである。図8は、第1の実施形態に係る遠隔運転室の自動排土制御方法を示す第2のフローチャートである。制御装置540は、オペレータから排土指示信号の入力を受け付けると、図7に示す自動排土制御を実行する。
 積込車両情報取得部5101は、積込機械100から、旋回体120の位置および方位、ブーム111、アーム112およびバケット113の傾斜角、ならびに旋回体120の姿勢を取得する(ステップS1)。運搬車両情報取得部5103は、管理装置300から、運搬車両200の位置および方位を取得する(ステップS2)。
 バケット位置特定部5105は、積込車両情報取得部5101が取得した車両情報に基づいて、排土指示信号の入力時のアーム112の先端の位置P、およびアーム112の先端からバケット113の最下点までの高さを特定する(ステップS3)。バケット位置特定部5105は、当該位置Pを掘削完了位置P10と特定する。
 排土位置特定部5106は、ステップS1で取得した旋回体120の位置、方位および姿勢に基づいて運搬車両情報取得部5103が取得した運搬車両200の位置情報を現場座標系からショベル座標系に変換する。排土位置特定部5106は、運搬車両情報取得部5103が取得した運搬車両200の位置情報および方位情報、ならびに運搬車両200の既知の形状に基づいて、排土位置P13の平面位置を特定する(ステップS4)。このとき、排土位置特定部5106は、運搬車両200の既知の高さHtに、ステップS3で特定したアーム112の先端からバケット113の最下点までの高さHbと、バケット113の制御余裕分の高さとを加算することで、排土位置P13の高さを特定する(ステップS5)。
 回避位置特定部5107は、積込車両情報取得部5101が取得した旋回体120の位置および方位に基づいて、旋回体120の旋回中心の位置を特定する(ステップS6)。回避位置特定部5107は、旋回中心から排土位置P13までの平面距離を特定する(ステップS7)。回避位置特定部5107は、旋回中心から特定した平面距離だけ離れた位置であって、バケット113の外形が平面視で運搬車両200と干渉せず、かつ排土位置P13から最も近い位置を、干渉回避位置P12として特定する(ステップS8)。
 操作信号生成部5109は、アーム112の先端の位置が排土位置P13に至ったか否かを判定する(ステップS9)。アーム112の先端の位置が排土位置P13に至っていない場合(ステップS9:NO)、操作信号生成部5109は、アーム112の先端の高さが干渉回避位置P12の高さ未満であり、または旋回体120の旋回中心からアーム112の先端までの平面距離が旋回中心から干渉回避位置P12までの平面距離未満であるか否かを判定する(ステップS10)。バケット113の高さが干渉回避位置P12の高さ未満である場合、または旋回中心からアーム112の先端までの平面距離が旋回中心から干渉回避位置P12までの平面距離未満である場合(ステップS10:YES)、操作信号生成部5109は、ブーム111およびアーム112を干渉回避位置P12の高さまで上昇させる操作信号を生成する(ステップS11)。このとき、操作信号生成部5109は、ブーム111およびアーム112の位置および速度に基づいて、操作信号を生成する。
 また操作信号生成部5109は、生成したブーム111およびアーム112の操作信号に基づいてブーム111およびアーム112の角速度の和を算出し、当該角速度の和と同じ速度でバケット113を回動させる操作信号を生成する(ステップS12)。これにより、操作信号生成部5109は、バケット113の対地角を保持する操作信号を生成することができる。なお、他の実施形態においては、操作信号生成部5109は、ブーム角度センサ117、アーム角度センサ118およびバケット角度センサ119の検出値より算出されるバケット113の対地角度が、自動排土制御開始時の対地角度と等しくなるようにバケット113を回動させる操作信号を生成してもよい。
 バケット113の高さが干渉回避位置P12の高さ以上である場合(ステップS10:NO)、操作信号生成部5109は、ブーム111、アーム112およびバケット113の操作信号を生成しない。
 次に、操作信号生成部5109は、バケット113の高さが掘削完了位置P10の高さから干渉回避位置P12の高さに至るまでの時間である上昇時間を特定する(ステップS13)。操作信号生成部5109は、旋回操作信号を生成する(ステップS14)。このとき、操作信号生成部5109は、バケット113の上昇時間に基づいて、バケット113の高さが干渉回避位置P12の高さ以上になった後に、旋回してアーム112の先端が干渉回避位置P12を通過するように、旋回操作信号を生成する。
 ステップS9からステップS14の処理でブーム111、アーム112およびバケット113の操作信号、並びに旋回体120の旋回操作信号の少なくともいずれか1つを生成すると、操作信号出力部5110は、生成した操作信号を積込機械100に出力する(ステップS15)。積込車両情報取得部5101は、積込機械100から車両情報を取得する(ステップS16)。これにより、積込車両情報取得部5101は、出力した操作信号によって駆動した後の車両情報を取得することができる。制御装置540は、処理をステップS9に戻し、操作信号の生成を繰り返し実行する。
 他方、ステップS9にて、アーム112の先端の位置が排土位置P13に至っている場合(ステップS9:YES)、操作信号生成部5109は操作信号を生成しない。したがって、アーム112の先端の位置が排土位置P13に至ると、作業機110および旋回体120は停止する。アーム112の先端の位置が排土位置P13に至っている場合(ステップS9:YES)、すなわちステップS9からステップS14の処理で操作信号生成部5109が操作信号を生成していない場合、操作信号生成部5109は、バケット113を排土させる操作信号を生成する(ステップS17)。バケット113を排土させる操作信号の例としては、バケット113を排土方向に回動させる操作信号や、バケット113がクラムバケットである場合におけるクラムを開く操作信号が挙げられる。操作信号出力部5110は、生成した操作信号を積込機械100に出力する(ステップS18)。そして、制御装置540は、自動排土制御を終了する。
 ここで、図6を用いて、自動排土制御時の積込機械100の動作について説明する。
 自動排土制御が開始されると、ブーム111およびアーム112は、掘削完了位置P10から位置P11へ向けて上昇する。このとき、バケット113は、掘削終了時の角度を維持するように駆動する。
 アーム112の先端が位置P11にくると、旋回体120は排土位置P13へ向けて旋回を開始する。このとき、アーム112の先端は干渉回避位置P12の高さに至っていないため、ブーム111およびアーム112の上昇は継続される。アーム112の先端が位置P11から干渉回避位置P12へ移動する途中で、アーム112の先端の高さが干渉回避位置P12と等しくなるように、ブーム111、アーム112およびバケット113は減速する。
 アーム112の先端が干渉回避位置P12にくると、作業機110の駆動は停止する。一方、旋回体120は旋回を継続する。すなわち、干渉回避位置P12から排土位置P13までの間、アーム112の先端は、作業機110の駆動によらず、旋回体120の旋回のみにより移動する。アーム112の先端が位置P11から排土位置P13へ移動する途中で、アーム112の先端の位置が排土位置P13と等しくなるように、旋回体120は減速する。
 アーム112の先端が排土位置P13にくると、作業機110および旋回体120の駆動は停止する。その後、バケット113が排土動作を実行する。
 上述の自動排土制御により、積込機械100は、バケット113がすくった土砂を自動的に運搬車両200に排土することができる。オペレータは、作業機110による掘削と、排土指示信号の入力による自動排土制御とを、運搬車両200の積載量が最大積載量を超えない程度に繰り返し実行する。そして、オペレータは、第2操作装置531を操作することで、第2操作装置531に発進指示信号を入力する。発進指示信号は、第2操作装置531から、管理装置300に送信される。これによって、管理装置300が退出経路R4の領域を含むコース情報を生成する。運搬車両200は、積込点P3から発進し、退出経路R4に沿って走行し、積込場A1から退出する。
《作用・効果》
 第1の実施形態によれば、制御装置540は、運搬車両200が検出した運搬車両200の位置情報および方位情報に基づいて、土砂を運搬車両200に積み込むための排土位置を特定する。これにより、制御装置540は、オペレータ等によって排土位置の指定を受けることなく、積込機械100を自動運転させることができる。
 また、第1の実施形態によれば、制御装置540は、バケット113の掘削完了位置P10を特定し、バケット113を、掘削完了位置P10から排土位置P13まで移動させるための操作信号を生成する。これにより、制御装置540は、バケット113がすくった土砂を自動的に運搬車両200に排土することができる。
 また、第1の実施形態によれば、制御装置540は、バケット113が干渉回避位置P12を経由するように制御信号を生成する。第1の実施形態に係る干渉回避位置P12は、高さが排土位置P13と等しく、かつ旋回体120の旋回中心からの距離が旋回中心から排土位置P13までの距離と等しく、かつバケット113の外形を考慮して下方に運搬車両200が存在しない位置である。これにより、旋回体120の旋回によってバケット113が運搬車両200に接触することを確実に防ぐことができる。
〈第2の実施形態〉
 第1の実施形態に係る積込機械100は、管理装置300から運搬車両200の位置情報および方位情報を取得する。これに対し、第2の実施形態に係る積込機械100は、検出方向に存在する対象物の空間位置を検出する検出装置を備え、検出装置の検出結果に基づいて運搬車両200の位置情報および方位情報を取得する。
 これにより、積込機械100は、管理装置300によらずに運搬車両200の位置情報および方位情報を取得することができる。
 図9は、第2の実施形態に係る遠隔操作システムの構成を示す概略図である。
 第2の実施形態に係る作業システム1においては、積込機械100および運搬車両200は搭乗操作される。そのため、第2の実施形態に係る作業システム1は、管理装置300および遠隔運転室500を備えない。
《積込機械》
 図10は、第2の実施形態に係る積込機械の外観図である。
 第2の実施形態に係る積込機械100は、第1の実施形態に係る積込機械100の構成に加え、さらに検出装置127および操作装置128を備える。他方、第2の実施形態に係る積込機械100は、撮像装置122を備えない。
 検出装置127は、検出方向に存在する対象物の空間位置を検出する。検出装置127の例としては、ステレオカメラ、レーザスキャナ、UWB(Ultra Wide Band)測距装置などが挙げられる。検出装置127は、例えば検出方向が積込機械100の運転室121の前方を向くように設けられる。検出装置127は、対象物の空間位置を、検出装置127の位置を基準とした座標系で特定する。
 操作装置128は、運転室121の内部に設けられる。操作装置128の例としては、操作レバー、操作パネルなどが挙げられる。第2の実施形態に係る操作装置128は、操作レバーによって作業機110、旋回体120、および走行体130の操作の入力を受け付ける。また第2の実施形態に係る操作装置128は、操作パネルによって排土指示信号の入力を受け付ける。
 図11は、第2の実施形態に係る積込機械の制御装置の構成を示す概略ブロック図である。
 制御装置126は、操作装置128に入力された操作信号に基づいて作業機110、旋回体120、または走行体130を駆動させる。また、制御装置126は、車両情報および検出装置127の検出情報に基づいて運搬車両200を認識し、自動排土処理を行う。
 制御装置126は、プロセッサ1100、メインメモリ1200、ストレージ1300、インタフェース1400を備えるコンピュータである。ストレージ1300は、プログラムp1を記憶する。プロセッサ1100は、プログラムp1をストレージ1300から読み出してメインメモリ1200に展開し、プログラムp1に従った処理を実行する。制御装置126は、インタフェース1400を介してネットワークに接続される。
 ストレージ1300の例としては、HDD、SSD、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等が挙げられる。ストレージ1300は、制御装置126の共通通信線に直接接続された内部メディアであってもよいし、インタフェース1400を介して制御装置126に接続される外部メディアであってもよい。ストレージ1300は、一時的でない有形の記憶媒体である。
 プロセッサ1100は、プログラムp1の実行により、車両情報取得部1101、検出情報取得部1102、操作信号入力部1103、バケット位置特定部1104、排土位置特定部1105、回避位置特定部1106、操作信号生成部1108、駆動制御部1109、指示信号出力部1110を備える。
 車両情報取得部1101は、位置方位演算器123から旋回体120の位置および方位を取得する。車両情報取得部1101は、傾斜計測器124から旋回体120の旋回速度および姿勢を取得する。車両情報取得部1101は、ブーム角度センサ117、アーム角度センサ118、およびバケット角度センサ119から、それぞれブーム111、アーム112およびバケット113の傾斜角を取得する。
 検出情報取得部1102は、検出装置127が検出した対象物の空間位置を示す三次元データ(例えば、点群データ、ポリゴンデータ、ボクセルデータなど)を取得する。
 操作信号入力部1103は、操作装置128から操作信号および運搬車両200に対する指示信号(進入指示信号および発進指示信号)の入力を受け付ける。
 バケット位置特定部1104は、車両情報取得部1101が取得した車両情報に基づいて、ショベル座標系におけるアーム112の先端の掘削完了位置P10およびアーム112の先端からバケット113の最下点までの高さHbを特定する。バケット位置特定部1104は、第1の実施形態に係るバケット位置特定部5105と同様の方法で掘削完了位置P10および高さHbを特定する。
 排土位置特定部1105は、操作信号入力部1103に排土指示信号が入力された場合に、検出情報取得部1102が取得した三次元データに基づいて、排土位置P13を特定する。排土位置特定部1105は、車両情報取得部1101が取得した旋回体120の位置、方位、および姿勢、ならびに旋回体120における検出装置127の既知の設置位置に基づいて、三次元データが示す対象物の空間位置を、検出装置127の設置位置を基準とした座標系からショベル座標系に変換する。排土位置特定部1105は、変換された三次元データに、既知の運搬車両200の形状を当てはめることで、運搬車両200のショベル座標系における位置および方位を特定する。排土位置特定部1105は、運搬車両200の位置情報が示す基準位置P21から、当該運搬車両200の方位情報が示す方向に距離D1だけ離れた排土点P22を特定する。排土位置特定部5106は、特定した位置P22から、積込機械100の旋回体120の向く方向にバケット113の中心からアーム112の先端までの距離D2だけ離れた位置を、排土位置P13の平面位置として特定する。排土位置特定部1105は、運搬車両200の高さHtに、バケット位置特定部1104が特定したアーム112の先端からバケット113の最下点までの高さHbと、バケット113の制御余裕分の高さとを加算することで、排土位置P13の高さを特定する。
 回避位置特定部1106は、排土位置特定部1105が特定した排土位置P13と、車両情報取得部1101が取得した積込機械100の位置とに基づいて、第1の実施形態に係る回避位置特定部5107と同様の方法で干渉回避位置P12を特定する。
 操作信号生成部1108は、排土位置特定部1105が特定した排土位置および回避位置特定部1106が特定した干渉回避位置に基づいて、第1の実施形態に係る操作信号生成部5109と同様の方法でバケット113を排土位置まで移動させるための操作信号を生成する。
 駆動制御部1109は、操作信号入力部1103に入力された操作信号または操作信号生成部1108が生成した操作信号に基づいて、作業機110、旋回体120、および走行体130を駆動させる。
 指示信号出力部1110は、操作信号入力部1103に入力された指示信号(進入指示信号および発進指示信号)を、管理装置300に送信する。
《作用・効果》
 第2の実施形態に係る制御装置540は、検出方向に存在する対象物の空間位置を検出する検出装置127を備え、検出装置127の検出結果に基づいて運搬車両200の位置情報および方位情報を取得する。これにより、第2の実施形態に係る積込機械100は、管理装置300によらずに運搬車両200の位置情報および方位情報を取得し、排土位置の指定を受けることなく、積込機械100を自動運転させることができる。
〈他の実施形態〉
 以上、図面を参照して一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、様々な設計変更等をすることが可能である。
 例えば、第1の実施形態では遠隔操作の積込機械100が無人運転の運搬車両200に排土し、第2の実施形態では搭乗操作の積込機械100が搭乗操作の運搬車両200に排土するが、これに限られない。例えば、他の実施形態では、遠隔操作の積込機械100が搭乗操作の運搬車両200に排土してもよいし、搭乗操作の積込機械100が無人運転の運搬車両200に排土してもよい。なお、運搬車両200が無人運転によって動作する場合においても、第2の実施形態のように積込機械100が検出装置127に基づいて運搬車両200の位置情報および方位情報を取得してもよい。また、運搬車両200が搭乗操作によって動作する場合においても、第1の実施形態のように管理装置300が運搬車両200の位置情報および方位情報を管理し、積込機械100が管理装置300からこれらの情報を取得してもよい。
 第1の実施形態に係る作業システム1では、遠隔運転室500の制御装置540が管理装置300から受信した運搬車両200の位置情報および方位情報に基づいて自動排土処理の計算を行うが、これに限られない。例えば、他の実施形態に係る作業システム1は、積込機械100の制御装置126が管理装置300から受信した運搬車両200の位置情報および方位情報に基づいて自動排土処理の計算を行ってもよい。すなわち、第2の実施形態に係る制御装置126の検出情報取得部1102が、管理装置300から運搬車両200の位置情報および方位情報を取得するものであってもよい。
 また、第1実施形態では、積込機械100は管理装置300を介して運搬車両200の位置および方位を取得するが、これに限られない。例えば、他の実施形態に係る積込機械100は、車車間通信により運搬車両200から運搬車両200の位置および方位を取得してもよい。
 上述した実施形態に係る作業システム1では、運搬車両200が積込点P3で停止したときの位置情報および方位情報に基づいて、排土位置P13を特定するが、これに限られない。例えば、他の実施形態においては、排土位置P13が運搬車両200の位置情報および方位情報ではなく積込点P3の位置に基づいて特定されてもよい。この場合、作業システム1は、運搬車両200が停止する前に積込点P3を特定することができる。
 上述した実施形態では、被積込機械が有人または無人の運搬車両200であるが、これに限られない。被積込機械の他の例としては、ホッパとベルトコンベアとを備えるインピットクラッシャや、ホッパと走行体とを備える自走式クラッシャなどが挙げられる。この場合、排土位置特定部5106および排土位置特定部1105は、被積込機械のホッパ位置に基づいて排土位置を特定することができる。
 上述した実施形態において、排土位置など自動排土制御をショベル座標系で取り扱ったが、現場座標系で取り扱ってもよい。
 なお、上述した実施形態に係る作業システム1では、積込機械100が土砂を積み込むが、他の実施形態においてはこれに限られない。例えば、他の実施形態に係る積込対象は、鉱石、砕石、石炭などであってもよい。
 上述した実施形態に係る制御装置126、管理装置300および制御装置540においては、プログラムがストレージに格納される場合について説明したが、これに限られない。例えば、他の実施形態においては、プログラムが通信回線によって制御装置に配信されるものであってもよい。この場合、配信を受けた制御装置が当該プログラムをメインメモリに展開し、上記処理を実行する。
 また、プログラムp1およびプログラムp5は、上述した機能の一部を実現するためのものであってもよい。例えば、プログラムp1およびプログラムp5は、上述した機能をストレージに既に記憶されている他のプログラムとの組み合わせ、または他の装置に実装された他のプログラムとの組み合わせで実現するものであってもよい。
 また、制御装置126、管理装置300、および制御装置540は、上記構成に加えて、または上記構成に代えてPLD(Programmable Logic Device)を備えてもよい。PLDの例としては、PAL(Programmable Array Logic)、GAL(Generic Array Logic)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array)が挙げられる。この場合、プロセッサによって実現される機能の一部が当該PLDによって実現されてよい。
 本発明に係る積込機械制御装置は、排土位置の指定なしに積込機械を自動運転させることができる。
1…作業システム 100…積込機械 126…制御装置 1101…車両情報取得部 1102…検出情報取得部 1103…操作信号入力部 1104…バケット位置特定部 1105…排土位置特定部 1106…回避位置特定部 1107…旋回タイミング特定部 1108…操作信号生成部 1109…駆動制御部 1110…指示信号出力部 200…運搬車両(被積込機械) 300…管理装置 3101…位置方位収集部 3102…走行コース生成部 3103…転送部 3301…走行経路記憶部 3302…位置方位記憶部 500…遠隔運転室 510…運転席 520…表示装置 530…第1操作装置 531…第2操作装置 540…制御装置 5101…積込車両情報取得部 5102…表示制御部 5103…運搬車両情報取得部(被積込機械情報取得部) 5104…操作信号入力部 5105…バケット位置特定部 5106…排土位置特定部 5107…回避位置特定部 5108…旋回タイミング特定部 5109…操作信号生成部 5110…操作信号出力部

Claims (6)

  1.  旋回体と、前記旋回体に取り付けられバケットを含む作業機とを備える積込機械を制御する積込機械制御装置であって、
     被積込機械の位置情報および方位情報を取得する被積込機械情報取得部と、
     前記位置情報および前記方位情報に基づいて、積込対象を前記被積込機械に積み込むための排土位置を特定する排土位置特定部と、
     前記バケットを前記排土位置まで移動させる排土指示信号が入力されたときの前記バケットの位置を特定するバケット位置特定部と、
     前記バケットを、前記特定した位置から前記排土位置まで移動させるための操作信号を生成する操作信号生成部と、
     を備える積込機械制御装置。
  2.  高さが前記排土位置と等しく、かつ前記旋回体の旋回中心からの距離が前記旋回中心から前記排土位置までの距離と等しく、かつ前記バケットの下方に前記被積込機械が存在しない位置である干渉回避位置を特定する回避位置特定部を備え、
     前記操作信号生成部は、前記バケットが前記干渉回避位置に到達した後、前記旋回体のみを駆動させるように前記操作信号を生成する
     請求項1に記載の積込機械制御装置。
  3.  前記操作信号生成部は、前記バケットが前記干渉回避位置に到達するまで、前記旋回体および前記作業機を駆動させる前記操作信号を生成する
     請求項2に記載の積込機械制御装置。
  4.  前記被積込機械情報取得部は、前記被積込機械が検出した前記位置情報および前記方位情報を取得する
     請求項1から請求項3のいずれか1項に記載の積込機械制御装置。
  5.  前記積込機械は、検出方向に存在する対象物の空間位置を検出する検出装置を備え、
     前記被積込機械情報取得部は、前記検出装置の検出結果に基づいて前記位置情報および前記方位情報を取得する
     請求項1から請求項3のいずれか1項に記載の積込機械制御装置。
  6.  旋回体と、前記旋回体に取り付けられバケットを含む作業機とを備える積込機械の制御方法であって、
     被積込機械の位置情報および方位情報を取得するステップと、
     前記位置情報および前記方位情報に基づいて、積込対象を前記被積込機械に積み込むための排土位置へ前記バケットを移動させるための操作信号を出力するステップと
     を備える制御方法。
PCT/JP2018/036939 2017-10-04 2018-10-02 積込機械制御装置および制御方法 WO2019069947A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112018004146.8T DE112018004146T5 (de) 2017-10-04 2018-10-02 Steuerungsvorrichtung und Steuerungsverfahren für eine Lademaschine
AU2018345153A AU2018345153B2 (en) 2017-10-04 2018-10-02 Loading machine control device and control method
US16/644,265 US11661725B2 (en) 2017-10-04 2018-10-02 Loading machine control device and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-194678 2017-10-04
JP2017194678A JP7216472B2 (ja) 2017-10-04 2017-10-04 作業システムおよび制御方法

Publications (1)

Publication Number Publication Date
WO2019069947A1 true WO2019069947A1 (ja) 2019-04-11

Family

ID=65995383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036939 WO2019069947A1 (ja) 2017-10-04 2018-10-02 積込機械制御装置および制御方法

Country Status (5)

Country Link
US (1) US11661725B2 (ja)
JP (1) JP7216472B2 (ja)
AU (1) AU2018345153B2 (ja)
DE (1) DE112018004146T5 (ja)
WO (1) WO2019069947A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115380144A (zh) * 2020-04-17 2022-11-22 株式会社小松制作所 控制系统以及控制方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7088691B2 (ja) * 2018-02-28 2022-06-21 株式会社小松製作所 積込機械の制御装置、制御方法および遠隔操作システム
JP7197310B2 (ja) * 2018-08-31 2022-12-27 株式会社小松製作所 積込機械の制御装置および制御方法
US20230313491A1 (en) 2020-09-11 2023-10-05 Jdc Corporation Construction Machine
US20230358014A1 (en) 2021-03-02 2023-11-09 Hitachi Construction Machinery Co., Ltd. Work machine
CN116981811A (zh) 2021-04-09 2023-10-31 日立建机株式会社 作业机械及作业机械系统
CN113463719B (zh) * 2021-06-30 2023-05-09 广西柳工机械股份有限公司 装载机自主作业控制系统和方法
CN113776433A (zh) * 2021-10-12 2021-12-10 北京京诚瑞达电气工程技术有限公司 冲渣池抓料范围确定方法及系统
CN113944207A (zh) * 2021-10-13 2022-01-18 上海三一重机股份有限公司 电子围墙设置方法、装置及作业机械
WO2023085005A1 (ja) * 2021-11-10 2023-05-19 コベルコ建機株式会社 管理システム
US12110660B2 (en) 2022-02-24 2024-10-08 Caterpillar Inc. Work machine 3D exclusion zone
US20230272595A1 (en) * 2022-02-28 2023-08-31 Caterpillar Inc. Remote control operation of a machine using a light beam for depth perception
JP7569351B2 (ja) 2022-03-31 2024-10-17 日立建機株式会社 作業機械

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11247231A (ja) * 1997-12-19 1999-09-14 Carnegie Mellon Univ 土工機械の自律制御のためのソフトウェア・アーキテクチュア
JP2012022611A (ja) * 2010-07-16 2012-02-02 Komatsu Ltd 無人車両の走行システムおよびその走行制御方法
JP2012113429A (ja) * 2010-11-22 2012-06-14 Komatsu Ltd 無人車両の走行システムおよび走行経路生成方法
WO2013058247A1 (ja) * 2011-10-17 2013-04-25 日立建機株式会社 ダンプトラック停車位置方向指示システムおよび運搬システム
US20140046540A1 (en) * 2012-08-10 2014-02-13 Caterpillar, Inc. Mining truck spotting under a shovel
WO2015025369A1 (ja) * 2013-08-20 2015-02-26 株式会社小松製作所 管理システム及び管理方法
WO2015087382A1 (ja) * 2013-12-09 2015-06-18 日立建機株式会社 行動指示システム及び方法
WO2015087430A1 (ja) * 2013-12-12 2015-06-18 日立建機株式会社 車両走行システム及び車両走行制御方法
WO2017131194A1 (ja) * 2016-01-29 2017-08-03 住友建機株式会社 ショベル及びショベルの周囲を飛行する自律式飛行体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59655B2 (ja) * 1975-11-25 1984-01-07 株式会社小松製作所 パワ−シヨベル ノ ジドウクツサクセイギヨソウチ
JP3364419B2 (ja) * 1997-10-29 2003-01-08 新キャタピラー三菱株式会社 遠隔無線操縦システム並びに遠隔操縦装置,移動式中継局及び無線移動式作業機械
JPH11296229A (ja) * 1998-02-13 1999-10-29 Komatsu Ltd 車両の誘導装置
US6377872B1 (en) * 1999-07-02 2002-04-23 Bae Systems Information And Electronic Systems Integration Inc Apparatus and method for microwave imaging and excavation of objects
JP2002115271A (ja) 2000-10-11 2002-04-19 Hitachi Constr Mach Co Ltd 自動運転ショベル
US6691010B1 (en) 2000-11-15 2004-02-10 Caterpillar Inc Method for developing an algorithm to efficiently control an autonomous excavating linkage
US8615110B2 (en) * 2012-03-01 2013-12-24 Herzog Railroad Services, Inc. Automated track surveying and ditching
EP2927422A4 (en) * 2012-11-26 2016-08-17 Suhua Liu METHOD FOR THE PARALLEL ARRANGEMENT OF ROLLING-BASED EXPANDABLE AND RETRACTABLE ROLL HUB CIRCUITS OF A ROCKER LEVER, EXCAVATOR OR LOADER WITH PARALLEL-ORIENTED ROLL HUB CIRCUITS OF A ROCKER LEVER
DE112014000075B4 (de) * 2014-06-03 2020-09-24 Komatsu Ltd. Steuersystem für Erdbewegungsmaschine und Erdbewegungsmaschine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11247231A (ja) * 1997-12-19 1999-09-14 Carnegie Mellon Univ 土工機械の自律制御のためのソフトウェア・アーキテクチュア
JP2012022611A (ja) * 2010-07-16 2012-02-02 Komatsu Ltd 無人車両の走行システムおよびその走行制御方法
JP2012113429A (ja) * 2010-11-22 2012-06-14 Komatsu Ltd 無人車両の走行システムおよび走行経路生成方法
WO2013058247A1 (ja) * 2011-10-17 2013-04-25 日立建機株式会社 ダンプトラック停車位置方向指示システムおよび運搬システム
US20140046540A1 (en) * 2012-08-10 2014-02-13 Caterpillar, Inc. Mining truck spotting under a shovel
WO2015025369A1 (ja) * 2013-08-20 2015-02-26 株式会社小松製作所 管理システム及び管理方法
WO2015087382A1 (ja) * 2013-12-09 2015-06-18 日立建機株式会社 行動指示システム及び方法
WO2015087430A1 (ja) * 2013-12-12 2015-06-18 日立建機株式会社 車両走行システム及び車両走行制御方法
WO2017131194A1 (ja) * 2016-01-29 2017-08-03 住友建機株式会社 ショベル及びショベルの周囲を飛行する自律式飛行体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115380144A (zh) * 2020-04-17 2022-11-22 株式会社小松制作所 控制系统以及控制方法

Also Published As

Publication number Publication date
JP7216472B2 (ja) 2023-02-01
AU2018345153A1 (en) 2020-03-26
AU2018345153B2 (en) 2021-07-29
JP2019065661A (ja) 2019-04-25
US20200199853A1 (en) 2020-06-25
DE112018004146T5 (de) 2020-04-23
US11661725B2 (en) 2023-05-30

Similar Documents

Publication Publication Date Title
AU2018345153B2 (en) Loading machine control device and control method
JP7404414B2 (ja) 作業機械制御装置および制御方法
WO2020054418A1 (ja) 積込機械の制御装置および制御方法
JP2019065657A (ja) 作業システム、作業機械および制御方法
US20230074375A1 (en) Control system and control method
CN110651087B (zh) 控制装置及控制方法
CN115298393B (zh) 作业系统及控制方法
JP7175680B2 (ja) 表示制御装置、表示制御システム、および表示制御方法
JP7311667B2 (ja) 作業システムおよび制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863874

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018345153

Country of ref document: AU

Date of ref document: 20181002

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18863874

Country of ref document: EP

Kind code of ref document: A1