WO2010140618A1 - 金属電解コンデンサ、並びに金属電解コンデンサ用吸収材及び漏洩防止材 - Google Patents
金属電解コンデンサ、並びに金属電解コンデンサ用吸収材及び漏洩防止材 Download PDFInfo
- Publication number
- WO2010140618A1 WO2010140618A1 PCT/JP2010/059342 JP2010059342W WO2010140618A1 WO 2010140618 A1 WO2010140618 A1 WO 2010140618A1 JP 2010059342 W JP2010059342 W JP 2010059342W WO 2010140618 A1 WO2010140618 A1 WO 2010140618A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- capacitor
- electrolytic capacitor
- absorbent
- explosion
- driving electrolyte
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 236
- 239000002250 absorbent Substances 0.000 title claims abstract description 94
- 230000002745 absorbent Effects 0.000 title claims abstract description 94
- 239000000463 material Substances 0.000 title claims description 80
- 230000002265 prevention Effects 0.000 title description 9
- 150000001875 compounds Chemical class 0.000 claims abstract description 54
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 53
- 239000000126 substance Substances 0.000 claims abstract description 42
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 26
- 239000003792 electrolyte Substances 0.000 claims description 125
- 229910052751 metal Inorganic materials 0.000 claims description 87
- 239000002184 metal Substances 0.000 claims description 87
- 230000005856 abnormality Effects 0.000 claims description 8
- 239000006096 absorbing agent Substances 0.000 claims description 7
- 239000011358 absorbing material Substances 0.000 claims description 6
- 230000003449 preventive effect Effects 0.000 claims description 5
- 239000011148 porous material Substances 0.000 claims description 4
- 229910003471 inorganic composite material Inorganic materials 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 abstract description 18
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract description 18
- 239000002657 fibrous material Substances 0.000 abstract description 4
- 239000004745 nonwoven fabric Substances 0.000 abstract description 3
- 239000000203 mixture Substances 0.000 abstract 1
- 230000002829 reductive effect Effects 0.000 description 73
- 239000007789 gas Substances 0.000 description 32
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 22
- 230000005611 electricity Effects 0.000 description 21
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 15
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 12
- 239000000377 silicon dioxide Substances 0.000 description 11
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 9
- 229940021013 electrolyte solution Drugs 0.000 description 9
- 239000000395 magnesium oxide Substances 0.000 description 9
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 9
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 9
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 8
- 239000000378 calcium silicate Substances 0.000 description 8
- 229910052918 calcium silicate Inorganic materials 0.000 description 8
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 8
- FSBVERYRVPGNGG-UHFFFAOYSA-N dimagnesium dioxido-bis[[oxido(oxo)silyl]oxy]silane hydrate Chemical compound O.[Mg+2].[Mg+2].[O-][Si](=O)O[Si]([O-])([O-])O[Si]([O-])=O FSBVERYRVPGNGG-UHFFFAOYSA-N 0.000 description 8
- 239000000391 magnesium silicate Substances 0.000 description 8
- 229910052919 magnesium silicate Inorganic materials 0.000 description 8
- 235000019792 magnesium silicate Nutrition 0.000 description 8
- WMGSQTMJHBYJMQ-UHFFFAOYSA-N aluminum;magnesium;silicate Chemical compound [Mg+2].[Al+3].[O-][Si]([O-])([O-])[O-] WMGSQTMJHBYJMQ-UHFFFAOYSA-N 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 238000009834 vaporization Methods 0.000 description 7
- 230000008016 vaporization Effects 0.000 description 7
- SDDLEVPIDBLVHC-UHFFFAOYSA-N Bisphenol Z Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)CCCCC1 SDDLEVPIDBLVHC-UHFFFAOYSA-N 0.000 description 6
- -1 acetylene alcohols Chemical class 0.000 description 6
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 6
- 235000019341 magnesium sulphate Nutrition 0.000 description 6
- 229920001450 Alpha-Cyclodextrin Polymers 0.000 description 5
- HFHDHCJBZVLPGP-RWMJIURBSA-N alpha-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO HFHDHCJBZVLPGP-RWMJIURBSA-N 0.000 description 5
- 229940043377 alpha-cyclodextrin Drugs 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 150000004677 hydrates Chemical class 0.000 description 5
- 230000000717 retained effect Effects 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- KXGVEGMKQFWNSR-UHFFFAOYSA-N deoxycholic acid Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)C(O)C2 KXGVEGMKQFWNSR-UHFFFAOYSA-N 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- HDPBBNNDDQOWPJ-UHFFFAOYSA-N 4-[1,2,2-tris(4-hydroxyphenyl)ethyl]phenol Chemical compound C1=CC(O)=CC=C1C(C=1C=CC(O)=CC=1)C(C=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 HDPBBNNDDQOWPJ-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 229920000858 Cyclodextrin Polymers 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 229910021536 Zeolite Inorganic materials 0.000 description 3
- 235000011126 aluminium potassium sulphate Nutrition 0.000 description 3
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 3
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 3
- KXGVEGMKQFWNSR-LLQZFEROSA-N deoxycholic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 KXGVEGMKQFWNSR-LLQZFEROSA-N 0.000 description 3
- 229960003964 deoxycholic acid Drugs 0.000 description 3
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 3
- 238000003487 electrochemical reaction Methods 0.000 description 3
- 238000004880 explosion Methods 0.000 description 3
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 3
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 3
- 229940099596 manganese sulfate Drugs 0.000 description 3
- 239000011702 manganese sulphate Substances 0.000 description 3
- 235000007079 manganese sulphate Nutrition 0.000 description 3
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 3
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 3
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 3
- 229940050271 potassium alum Drugs 0.000 description 3
- GNHOJBNSNUXZQA-UHFFFAOYSA-J potassium aluminium sulfate dodecahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.O.O.[Al+3].[K+].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O GNHOJBNSNUXZQA-UHFFFAOYSA-J 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000010457 zeolite Substances 0.000 description 3
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 2
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- 229930185605 Bisphenol Natural products 0.000 description 2
- 229920002101 Chitin Polymers 0.000 description 2
- 229920001661 Chitosan Polymers 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- ATHHXGZTWNVVOU-UHFFFAOYSA-N N-methylformamide Chemical compound CNC=O ATHHXGZTWNVVOU-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- VTJUKNSKBAOEHE-UHFFFAOYSA-N calixarene Chemical class COC(=O)COC1=C(CC=2C(=C(CC=3C(=C(C4)C=C(C=3)C(C)(C)C)OCC(=O)OC)C=C(C=2)C(C)(C)C)OCC(=O)OC)C=C(C(C)(C)C)C=C1CC1=C(OCC(=O)OC)C4=CC(C(C)(C)C)=C1 VTJUKNSKBAOEHE-UHFFFAOYSA-N 0.000 description 2
- 235000013877 carbamide Nutrition 0.000 description 2
- 235000019416 cholic acid Nutrition 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 description 2
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 description 2
- 229910000360 iron(III) sulfate Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 150000004780 naphthols Chemical class 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 150000002902 organometallic compounds Chemical class 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- HJIAMFHSAAEUKR-UHFFFAOYSA-N (2-hydroxyphenyl)-phenylmethanone Chemical class OC1=CC=CC=C1C(=O)C1=CC=CC=C1 HJIAMFHSAAEUKR-UHFFFAOYSA-N 0.000 description 1
- BHQCQFFYRZLCQQ-UHFFFAOYSA-N (3alpha,5alpha,7alpha,12alpha)-3,7,12-trihydroxy-cholan-24-oic acid Natural products OC1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)C(O)C2 BHQCQFFYRZLCQQ-UHFFFAOYSA-N 0.000 description 1
- PPTXVXKCQZKFBN-UHFFFAOYSA-N (S)-(-)-1,1'-Bi-2-naphthol Chemical compound C1=CC=C2C(C3=C4C=CC=CC4=CC=C3O)=C(O)C=CC2=C1 PPTXVXKCQZKFBN-UHFFFAOYSA-N 0.000 description 1
- ICPSWZFVWAPUKF-UHFFFAOYSA-N 1,1'-spirobi[fluorene] Chemical class C1=CC=C2C=C3C4(C=5C(C6=CC=CC=C6C=5)=CC=C4)C=CC=C3C2=C1 ICPSWZFVWAPUKF-UHFFFAOYSA-N 0.000 description 1
- WXTPRAZNOXQAFY-UHFFFAOYSA-N 1,1,6,6-tetraphenylhexa-2,4-diyne-1,6-diol Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(O)C#CC#CC(O)(C=1C=CC=CC=1)C1=CC=CC=C1 WXTPRAZNOXQAFY-UHFFFAOYSA-N 0.000 description 1
- RUGHUJBHQWALKM-UHFFFAOYSA-N 1,2,2-triphenylethylbenzene Chemical compound C1=CC=CC=C1C(C=1C=CC=CC=1)C(C=1C=CC=CC=1)C1=CC=CC=C1 RUGHUJBHQWALKM-UHFFFAOYSA-N 0.000 description 1
- GSCVIAUUCUEVEH-UHFFFAOYSA-N 1,2,3,4,4a,4b,5,6,7,8,8a,8b,9,10,11,12,12a,12b-octadecahydrotriphenylene Chemical class C12CCCCC2C2CCCCC2C2C1CCCC2 GSCVIAUUCUEVEH-UHFFFAOYSA-N 0.000 description 1
- 150000005208 1,4-dihydroxybenzenes Chemical class 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- JZODKRWQWUWGCD-UHFFFAOYSA-N 2,5-di-tert-butylbenzene-1,4-diol Chemical compound CC(C)(C)C1=CC(O)=C(C(C)(C)C)C=C1O JZODKRWQWUWGCD-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004380 Cholic acid Substances 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 239000001116 FEMA 4028 Substances 0.000 description 1
- ARJATTBJXUUROE-UHFFFAOYSA-N OC(C1=CC=CC=C1C1=CC=CC=C1C(O)=O)=O.C(CC1)CCC1NC1CCCCC1.C(CC1)CCC1NC1CCCCC1 Chemical compound OC(C1=CC=CC=C1C1=CC=CC=C1C(O)=O)=O.C(CC1)CCC1NC1CCCCC1.C(CC1)CCC1NC1CCCCC1 ARJATTBJXUUROE-UHFFFAOYSA-N 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- WHGYBXFWUBPSRW-FOUAGVGXSA-N beta-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO WHGYBXFWUBPSRW-FOUAGVGXSA-N 0.000 description 1
- 235000011175 beta-cyclodextrine Nutrition 0.000 description 1
- 229960004853 betadex Drugs 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- BHQCQFFYRZLCQQ-OELDTZBJSA-N cholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 BHQCQFFYRZLCQQ-OELDTZBJSA-N 0.000 description 1
- 229960002471 cholic acid Drugs 0.000 description 1
- 239000002812 cholic acid derivative Substances 0.000 description 1
- 150000001842 cholic acids Chemical class 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 150000003983 crown ethers Chemical class 0.000 description 1
- 239000002739 cryptand Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 229940097362 cyclodextrins Drugs 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- QILSFLSDHQAZET-UHFFFAOYSA-N diphenylmethanol Chemical class C=1C=CC=CC=1C(O)C1=CC=CC=C1 QILSFLSDHQAZET-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 239000003349 gelling agent Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910000398 iron phosphate Inorganic materials 0.000 description 1
- HZZOEADXZLYIHG-UHFFFAOYSA-N magnesiomagnesium Chemical compound [Mg][Mg] HZZOEADXZLYIHG-UHFFFAOYSA-N 0.000 description 1
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 1
- 239000011654 magnesium acetate Substances 0.000 description 1
- 235000011285 magnesium acetate Nutrition 0.000 description 1
- 229940069446 magnesium acetate Drugs 0.000 description 1
- 229960005336 magnesium citrate Drugs 0.000 description 1
- 235000002538 magnesium citrate Nutrition 0.000 description 1
- 239000004337 magnesium citrate Substances 0.000 description 1
- 150000002681 magnesium compounds Chemical class 0.000 description 1
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 description 1
- 239000004137 magnesium phosphate Substances 0.000 description 1
- 229960002261 magnesium phosphate Drugs 0.000 description 1
- 229910000157 magnesium phosphate Inorganic materials 0.000 description 1
- 235000010994 magnesium phosphates Nutrition 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 150000002903 organophosphorus compounds Chemical class 0.000 description 1
- 150000003961 organosilicon compounds Chemical class 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000008442 polyphenolic compounds Chemical class 0.000 description 1
- 235000013824 polyphenols Nutrition 0.000 description 1
- 239000005373 porous glass Substances 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 235000011127 sodium aluminium sulphate Nutrition 0.000 description 1
- GGCZERPQGJTIQP-UHFFFAOYSA-N sodium;9,10-dioxoanthracene-2-sulfonic acid Chemical compound [Na+].C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 GGCZERPQGJTIQP-UHFFFAOYSA-N 0.000 description 1
- 239000012453 solvate Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 150000003556 thioamides Chemical class 0.000 description 1
- 150000003585 thioureas Chemical class 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- BYMUNNMMXKDFEZ-UHFFFAOYSA-K trifluorolanthanum Chemical compound F[La](F)F BYMUNNMMXKDFEZ-UHFFFAOYSA-K 0.000 description 1
- PLSARIKBYIPYPF-UHFFFAOYSA-H trimagnesium dicitrate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O PLSARIKBYIPYPF-UHFFFAOYSA-H 0.000 description 1
- 229940045136 urea Drugs 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 150000003755 zirconium compounds Chemical class 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/0003—Protection against electric or thermal overload; cooling arrangements; means for avoiding the formation of cathode films
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/08—Housing; Encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/08—Housing; Encapsulation
- H01G9/10—Sealing, e.g. of lead-in wires
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/145—Liquid electrolytic capacitors
Definitions
- the present invention relates to a metal electrolytic capacitor used for electronic equipment and the like, and more particularly, to a metal electrolytic capacitor including an explosion-proof valve that prevents explosion due to an increase in internal pressure.
- the present invention also relates to an absorbent and a leakage preventive material for driving electrolytes of metal electrolytic capacitors used in electronic devices and the like, and in particular, when the electrolytic electrolyte of the metal is abnormal, the driving electrolyte is vaporized and the internal pressure is reduced. It is related with the absorber for electrolytic capacitors and the leakage prevention material which can prevent an explosion even if it rises.
- the organic solvent constituting the driving electrolyte impregnated in the capacitor element is vaporized due to a temperature rise or the electrolytic solution
- the gas is pyrolyzed to generate vaporized gas, or the electrolytic solution is decomposed by electrochemical reaction to generate hydrogen gas or vaporized gas, so that the internal pressure of the metal case made of aluminum increases.
- the driving electrolyte since the driving electrolyte is ejected to the outside, the driving electrolyte adheres to the substrate on which the electrolytic capacitor is set and other electronic components, and an electrical abnormality such as a short circuit or tracking occurs. There is a problem that it is caused. Moreover, there is a possibility that the vaporized gas and the off-flavor of the driving electrolyte ejected from the explosion-proof valve may mislead the user as to whether it is due to ignition.
- an electrolytic capacitor with a retractable cap attached has been proposed (see Patent Document 1).
- an aluminum electrolytic capacitor has been proposed in which an absorbent material having a property of absorbing a driving electrolyte and air permeability and subjected to a flame retardant treatment is disposed above an explosion-proof valve of the electrolytic capacitor (Patent Document 2). reference).
- an aluminum electrolytic capacitor has also been proposed in which a granular gelling agent having a property of gelling the driving electrolyte is disposed above the explosion-proof valve (see Patent Document 3).
- JP 2006-286969 A Japanese Patent Laid-Open No. 6-89835 JP-A-5-13289
- the electrolytic capacitor described in Patent Document 1 is simply provided with a space capable of absorbing the vaporized gas and hydrogen gas of the driving electrolyte by providing an expandable / contractible cap, it accommodates a sufficient amount of gas.
- the internal pressure in the cap increases and breaks, and the driving electrolyte returns to liquid after cooling, which may cause leakage.
- the absorbent material for the electrolytic solution for driving the electrolytic capacitor described in Patent Document 2 and Patent Document 3 is to be fixed by absorbing the vaporized gas of the electrolytic solution for driving or gelling. Since the absorption rate or gelation rate of the vaporized gas is not sufficiently high, depending on the amount of gas to be ejected, there is a case in which gas absorption may not be in time, and there is a problem that it is not suitable for absorption of hydrogen gas or the like.
- the present invention can rapidly reduce the leakage of the driving electrolyte and the like by quickly absorbing and fixing the vaporized gas and the like of the driving electrolyte that is ejected when the explosion-proof valve is operated.
- An object is to provide a possible metal electrolytic capacitor.
- the present invention is a metal capable of greatly reducing the leakage of the driving electrolyte and the like by quickly absorbing and fixing the vaporized gas and the like of the driving electrolyte that is ejected when the explosion-proof valve is operated. It aims at providing the absorber for electrolytic capacitors, and the leakage prevention material.
- a metal comprising a capacitor element impregnated with a driving electrolyte, a bottomed cylindrical metal case containing the capacitor element, and a pair of lead wires led out from the capacitor element Absorbing material that absorbs the driving electrolyte when an electrical abnormality occurs in the electrolytic capacitor, wherein the absorbing material forms a molecular compound with the driving electrolyte to reduce the amount of ejection of the driving electrolyte, etc.
- An absorbent for metal electrolytic capacitors is provided (Invention 1).
- the organic solvent constituting the driving electrolyte impregnated in the capacitor element is vaporized due to a temperature rise or the electrolyte.
- the internal pressure of the metal case rises due to the thermal decomposition of the metal case and the generation of vaporized gas, or the electrolytic solution is decomposed by an electrochemical reaction to generate hydrogen gas or vaporized gas.
- the provided explosion-proof valve operates, and a large amount of driving electrolyte and a large amount of gas such as hydrogen are ejected from the explosion-proof valve.
- the absorbent is used for driving.
- the vaporized gas in the driving electrolytic solution can be quickly fixed. Therefore, by disposing this absorbent material above the explosion-proof valve provided on the top plate of the metal case, the driving electrolyte and the like are quickly absorbed and retained by the absorbent material, and the vaporized drive The outflow of the electrolytic solution to the outside can be greatly reduced.
- the absorbent is preferably an organic, inorganic, or organic / inorganic composite material (Invention 2).
- the absorbent material is preferably an inorganic porous material (Invention 3).
- the present invention also provides a metal electrolytic capacitor comprising a capacitor element impregnated with a driving electrolyte, a bottomed cylindrical metal case containing the capacitor element, and a pair of lead wires led out from the capacitor element
- a leakage preventive material for a metal electrolytic capacitor that absorbs a driving electrolyte in the event of an electrical abnormality, wherein the leakage preventive material includes the absorbent according to the inventions (Inventions 1 to 3) and a substance containing water.
- a leakage preventing material for metal electrolytic capacitors is provided (Invention 4).
- the leakage preventing material comprises the absorbent material according to the inventions (inventions 1 to 3) and a substance containing water, and the reaction for forming the molecular compound of the absorbent is Since it is quick, the vaporized gas of the driving electrolyte can be quickly absorbed and held in the absorbent material. Furthermore, although the vaporized driving electrolyte solution has a temperature of 150 ° C. or higher, it contains a substance that encloses water together with the absorbent material. Therefore, the heat entrained from the vaporized driving electrolyte solution contains the substance that encloses the water.
- the ejected matter temperature can be lowered and liquefied, whereby the volume of ejected matter can be reduced. Therefore, by disposing this leakage prevention material above the explosion-proof valve provided on the top plate portion of the metal case, the driving electrolyte and the like are quickly absorbed and retained by the absorbent material, and are vaporized. The outflow of the driving electrolyte to the outside can be greatly reduced.
- the substance enclosing water is preferably a water molecule compound (Invention 5).
- a water molecule compound such as a hydrate as a substance that encloses water
- the moisture can be disposed as a solid together with the absorbent, and the capacitor takes away heat of vaporization due to the moisture.
- the amount of ejected matter can be reduced by lowering the ejected matter temperature from.
- the present invention further includes a capacitor element impregnated with a driving electrolyte, a bottomed cylindrical metal case containing the capacitor element, and a pair of lead wires led out from the capacitor element,
- a metal electrolytic capacitor in which an explosion-proof valve is formed on the top plate portion of the case and the explosion-proof valve is opened when an electrical abnormality occurs and the drive electrolyte is ejected, the drive electrolyte is absorbed above the explosion-proof valve
- a metal electrolytic capacitor in which an absorbent material is disposed (Invention 6).
- the absorbent material which can absorb drive electrolyte etc. is arrange
- the absorbent material is contained in a casing attached above the explosion-proof valve (Invention 7).
- the outflow of the evaporated driving electrolyte to the outside is further reduced by enclosing the gas such as gas or hydrogen of the driving electrolyte discharged from the explosion-proof valve in the casing. Can do.
- invention 8 when gas such as vaporized gas or hydrogen of the driving electrolyte ejected from the explosion-proof valve is sealed in the casing, if the inside of the casing exceeds a predetermined internal pressure, Since it is discharged little by little, it is possible to prevent the inside of the casing from being damaged due to excessive pressure or coming off the metal case.
- the absorbent material is preferably an absorbent material according to the above inventions (Inventions 1 to 3) (Invention 9).
- the reaction for forming the molecular compound with the driving electrolyte is rapid, the vaporized gas in the driving electrolyte is quickly fixed, and the outflow to the outside is suitably suppressed. be able to.
- a substance containing water is further disposed above the explosion-proof valve (Invention 10).
- the absorbent material such as the driving electrolyte
- the vaporized driving electrolyte has a temperature of 150 ° C. or more, since a substance that encloses water together with the absorbent material is disposed, heat of vaporization is generated from the evaporating driving electrolyte.
- the ejected matter temperature can be lowered and liquefied, whereby the volume of ejected matter can be reduced.
- the outflow amount of the evaporated driving electrolyte solution to the outside can be greatly reduced.
- the absorber and the substance containing water are contained in a casing attached above the explosion-proof valve (Invention 11).
- gas such as gas for driving electrolyte or hydrogen ejected from the explosion-proof valve is sealed in the casing, and the heat of vaporization is deprived by the moisture of the substance containing water and liquefied.
- the amount of outflow of the driving electrolyte to the outside can be further reduced by retaining the driving electrolyte in the casing.
- invention 12 when a gas such as a vaporized gas or hydrogen of the driving electrolyte ejected from the explosion-proof valve is enclosed in the casing, if the inside of the casing exceeds a predetermined internal pressure, Since it is discharged little by little, it is possible to prevent the inside of the casing from being damaged due to excessive pressure or coming off the metal case.
- a gas such as a vaporized gas or hydrogen of the driving electrolyte ejected from the explosion-proof valve
- the absorbent material is preferably an absorbent material according to the above inventions (Inventions 1 to 3) (Invention 13).
- the reaction for forming the molecular compound with the driving electrolyte is rapid, the vaporized gas of the driving electrolyte is quickly fixed, and the outflow to the outside is suitably suppressed. be able to.
- the substance containing water is preferably a water molecule compound (Invention 14).
- a water molecule compound such as a hydrate as a substance that encloses water
- the moisture can be disposed as a solid together with the absorbent, and the capacitor takes away heat of vaporization due to the moisture.
- the amount of ejected matter can be reduced by lowering the ejected matter temperature from.
- the absorbent material for a metal electrolytic capacitor of the present invention forms a molecular compound with the driving electrolyte solution, and the reaction for forming this molecular compound is rapid. Gas can be immobilized quickly. Therefore, by disposing this absorbent material above the explosion-proof valve provided on the top plate of the metal case, the driving electrolyte and the like are quickly absorbed and retained by the absorbent material, and the vaporized drive The outflow of the electrolytic solution to the outside can be greatly reduced.
- a metal electrolytic capacitor suitable for various electric devices and electronic devices can be obtained without contaminating the circuit board.
- the leakage preventing material for a metal electrolytic capacitor of the present invention is formed by forming a molecular compound with the driving electrolytic solution to reduce the amount of ejection of the driving electrolytic solution and water. Since this absorbent material forms a molecular compound quickly with the driving electrolyte, it can quickly absorb and retain the vaporized gas of the driving electrolyte. Furthermore, although the vaporized driving electrolyte has a temperature of 150 ° C. or more, since the substance that contains water is disposed together with the absorbent, the ejected material temperature is reduced by taking the heat of vaporization from the vaporized driving electrolyte.
- the absorbent for absorbing the driving electrolyte or the like is disposed above the explosion-proof valve provided on the top plate portion of the metal case. Even if the constituent organic solvent is vaporized or hydrogen gas is generated due to electrochemical reaction, it can be quickly absorbed and retained by the absorbent, and the vaporized drive electrolyte can be discharged to the outside. Can be greatly reduced. Furthermore, the vaporized driving electrolyte has a temperature of 150 ° C. or higher. However, by arranging a substance that encloses water together with the absorbent, the ejected liquid temperature can be reduced by removing the heat of vaporization from the vaporized driving electrolyte. It can be lowered and liquefied, whereby the volume of ejected matter can be reduced. Such a metal electrolytic capacitor of the present invention can be suitably used for various electric devices and electronic devices without polluting the circuit board.
- the metal electrolytic capacitor absorbent of the present invention forms a molecular compound with a driving electrolyte, hydrogen gas, or the like.
- a driving electrolyte hydrogen gas
- two or more kinds of compounds that can exist stably alone are bonded by a relatively weak interaction other than a covalent bond, such as a hydrogen bond or van der Waals force.
- Such a molecular compound can be formed by a contact reaction between the compound forming the molecular compound and the ejected matter from the aluminum electrolytic capacitor, and the ejected matter can be changed into a solid compound.
- Examples of the molecular compound as described above include an inclusion compound formed by inclusion of a host compound as a guest compound by a contact reaction between the host compound and an ejected substance such as a driving electrolyte from the capacitor body. .
- the host compound that forms the clathrate compound that clathrates the ejected matter such as the driving electrolyte those composed of organic compounds, inorganic compounds, and organic / inorganic composite compounds are known.
- organic compounds monomolecular, polymolecular, and polymeric hosts are known.
- Examples of monomolecular hosts include cyclodextrins, crown ethers, cryptands, cyclophanes, azacyclophanes, calixarenes, cyclotriveratrilens, spherands, and cyclic oligopeptides.
- Multimolecular hosts include ureas, thioureas, deoxycholic acids, cholic acids, perhydrotriphenylenes, tri-o-thymotides, bianthrils, spirobifluorenes, cyclophosphazenes, mono Alcohols, diols, hydroxybenzophenones, acetylene alcohols, phenols, bisphenols, trisphenols, tetrakisphenols, polyphenols, naphthols, bisnaphthols, diphenylmethanols, carboxylic acid amides, thioamides, Examples include bixanthenes, carboxylic acids, imidazoles, and hydroquinones.
- polymeric hosts chitins, chitosans, polyethylene glycol arm type polymers having 1,1,2,2-tetrakisphenylethane as a core, ⁇ , ⁇ , ⁇ ′, ⁇ ′-tetrakisphenylxylene And polyethylene glycol arm-type polymers having a core.
- organophosphorus compounds and organosilicon compounds.
- Inorganic host compounds include titanium oxide, graphite, alumina, transition metal dicargogenite, lanthanum fluoride, clay mineral (montmorillonite, etc.), silver salt, silicate, phosphate, zeolite, magnesium oxide, silica, porous glass
- inorganic porous materials that are porous are effective, such as silica, calcium silicate, magnesium aluminate metasilicate, alumina, zeolite, magnesium oxide, magnesium silicate, aluminum silicate, etc.
- the porous material is preferable.
- organometallic compounds exhibit properties as host compounds.
- examples thereof include compounds, organic zirconium compounds, and organic magnesium compounds.
- These host compounds may be used alone or in combination of two or more as an absorbent material.
- a solvent for the driving electrolyte ethylene glycol, methyl cellosolve (ethylene glycol monomethyl ether), ⁇ -butyrolactone, N-methylformamide, N-methyl-2-pyrrolidone, acetonitrile, dimethyl sulfoxide, propylene carbonate Therefore, as the absorbent, it is preferable to use various absorbents in which one absorbent can include a plurality of solvents.
- cyclohexane such as ⁇ -cyclodextrin and ⁇ -cyclodextrin is used.
- the leakage preventing material for a metal electrolytic capacitor of the present invention is composed of an absorbent material and a substance containing water.
- the absorbent constituting the leakage preventing material forms a molecular compound with the driving electrolyte, hydrogen gas, or the like, and may be the same as the above-described metal electrolytic capacitor absorbent.
- a porous substance containing water magnesium sulfate, 7H 2 O, iron (II) sulfate, 7H 2 O, iron (III), nH 2 O, potassium alum 12H 2 O, sodium alum 12H 2 O, aluminum sulfate 16H 2 O, nickel sulfate 6H 2 O, manganese sulfate 5H 2 O, magnesium phosphate 8H 2 O, iron phosphate (II) ⁇
- Inorganic hydrates such as 8H 2 O
- water molecular compounds such as organic hydrates such as magnesium acetate ⁇ 4H 2 O and magnesium citrate ⁇ 9H 2 O
- water is encapsulated in a host compound such as cyclodextrin
- the contacted water clathrate compound or the like can be used.
- inorganic hydrates and organic hydrates are particularly preferable.
- the mixing ratio of both of the absorbent material and the substance containing water is 10 to 500 parts by mass with respect to 10 to 500 parts by mass of the absorbent material. Good.
- metal electrolytic capacitor absorbent material of the present invention will be described with reference to the accompanying drawings based on an example of a metal electrolytic capacitor to which the metal electrolytic capacitor absorbent material can be suitably applied.
- 1 to 3 show a metal electrolytic capacitor according to an embodiment of the present invention.
- reference numeral 1 denotes an aluminum electrolytic capacitor body.
- the capacitor body 1 has a capacitor element built in a bottomed cylindrical metal case 2 made of aluminum.
- the capacitor element is formed by forming a dielectric oxide film on the surface of an anode foil made of a roughened aluminum foil, and winding the anode foil and the cathode foil together with a separator. The electrolyte is impregnated. A pair of lead wires 3a and 3b are led out from this capacitor element.
- the top plate portion 2a of the metal case 2 is formed with an explosion-proof valve 4 made of a substantially cross-shaped thin portion.
- the explosion-proof valve 4 has a substantially K-shape and a substantially Y-shape. You may form by the thin part of various shapes, such as character shape, a substantially X shape, a substantially T shape, and a substantially V shape.
- a bottomed cylindrical cap 6 is attached to the capacitor body 1 as a casing from above.
- the cap 6 is not particularly limited as long as it does not decompose at a temperature at which the driving electrolyte that is the content of the capacitor body 1 is ejected in the event of an electrical abnormality.
- the same aluminum alloy as the metal case 2 or the like Can be used.
- a plurality of small holes 7, 7... are formed in the top plate portion (bottomed portion) 6 a of the cap 6, and in the space S between the cap 6 and the top plate portion 2 a of the capacitor body 1.
- the above absorbent material or leakage preventing material 9 wrapped with a permeable fiber material 8 such as a nonwoven fabric or filter paper is disposed.
- the capacitor itself becomes too large and the commercial value in terms of specifications and design is reduced. It depends on the amount of 9 (absorption amount) or the amount of the leakage prevention material 9.
- the amount of the necessary absorbent 9 or the amount of the necessary absorbent and the water molecule compound is calculated from the ejection amount of the driving electrolyte ejected from the capacitor body 1 and the absorbent capacity of the absorbent 9,
- the amount of the absorbing material 9 or the leakage preventing material 9 may be determined on the basis of it.
- the absorbing material 9 may be 10 to 500 parts by mass and the leakage preventing material 9 may be 10 to 500 parts by mass with respect to 100 parts by mass of the driving electrolyte ejected from the capacitor body 1.
- illustration is abbreviate
- the operation of the metal electrolytic capacitor having the above-described configuration will be described.
- the capacitor element in the capacitor body 1 generates heat. Due to this heat generation, the driving electrolyte is vaporized and gas such as hydrogen is generated. The internal pressure of the metal case 2 is increased.
- the explosion-proof valve 4 formed on the top plate portion 2a of the metal case 2 is activated, and a large amount of vaporized driving electrolyte and hydrogen gas are generated in the space S from the explosion-proof valve 4. To erupt. Then, most of the vaporized driving electrolyte is absorbed and fixed by the absorbent material 9 or the absorbent material in the leakage preventing material 9.
- the vaporized driving electrolyte solution has a temperature of 150 ° C. or higher.
- the leakage preventing material 9 is disposed in the space S of the cap 6, the driving in which the water molecule compound in the leakage preventing material 9 is vaporized.
- the ejected matter temperature can be lowered and liquefied, whereby the volume of ejected matter can be reduced.
- the drive that is vaporized as much as the internal pressure of the cap 6 becomes excessively large. It has a structure in which the electrolytic solution is slightly ejected.
- a pressure valve is provided in each of the small holes 7, 7... So that when the internal pressure of the cap 6 becomes larger than a predetermined pressure, the pressure valve is opened and the small holes 7, 7. Also good.
- the metal electrolytic capacitor described above can be mounted on a circuit board because it can greatly reduce the outflow of vaporized driving electrolyte to the outside. Thereby, it is possible to obtain a highly safe circuit board free from dirt and fire. Moreover, the said circuit board can be used suitably as a circuit board for various electric equipments and electronic devices.
- the cap 6 is mounted on the top of the capacitor body 1 as in the present embodiment and fixed with tape, adhesive, caulking, or the like. You may fix it at least.
- the absorbent material or the leakage preventing material 9 may be put as powder in the space S of the cap 6 without being wrapped in the permeable fiber material 8 such as nonwoven fabric or filter paper, or the powder is tableted. You can put it in.
- a filter paper or the like may be provided facing the small hole 7.
- Example 1 The aluminum electrolytic capacitor of Reference Example 1 was used as a capacitor body 1, and a cap 6 having a height about 1.4 times that of the metal case 2 of the capacitor body 1 was fixedly attached to the capacitor body 1 with a tape. At this time, the cap 6 was filled with 1.03 g of ⁇ -cyclodextrin as the absorbent 9.
- Example 1 In Example 1, a capacitor was prepared in the same manner except that the cap 6 was not filled with ⁇ -cyclodextrin, and electricity was applied to the capacitor from the power supply device at 100 V and 1 A in the reverse direction. Vigorous ejection of the driving electrolyte etc. vaporized from the small holes 7 was observed, and it was found that the cap 6 alone cannot prevent the driving electrolyte etc. from flowing out.
- Example 2 In Example 1, a capacitor was prepared in the same manner except that the cap 6 was filled with 1.21 g of deoxycholic acid, and electricity was reversely applied to the capacitor from the power supply device at 100 V and 1 A. Although the explosion-proof valve 4 was opened, it was found that the ejection amount of the driving electrolyte or the like was reduced to a slight extent.
- Example 3 In Example 1, a capacitor was prepared in the same manner except that cap 1 was filled with 1.12 g of 1,1-bis (4-hydroxyphenyl) cyclohexane. As a result, it was found that the explosion-proof valve 4 of the capacitor body 1 was opened, but the ejection amount of the driving electrolyte and the like was reduced to a slight extent.
- Example 4 In Example 1, a capacitor was produced in the same manner except that the cap 6 was filled with 1.01, g of 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane. Was reversely applied at 100 V and 1 A, the explosion-proof valve 4 of the capacitor body 1 was opened, but it was found that the ejection amount of the driving electrolyte and the like was reduced to a slight extent.
- Example 5 In Example 1, a capacitor was produced in the same manner except that the cap 6 was filled with 0.52 g of porous silica, and electricity was applied back to the capacitor from a power supply device at 100 V and 1 A. The capacitor body 1 Although the explosion-proof valve 4 was opened, it was found that the ejection amount of the driving electrolyte or the like was reduced to a slight extent.
- Example 6 In Example 1, a capacitor was prepared in the same manner except that the cap 6 was filled with 0.25 g of porous calcium silicate, and electricity was reversely applied to the capacitor from a power supply device at 100 V and 1 A. Although the explosion-proof valve 4 of the main body 1 was opened, it was found that the ejection amount of the driving electrolyte and the like was reduced to a slight extent.
- Example 7 In Example 1, a capacitor was prepared in the same manner except that the cap 6 was filled with 1.03 g of porous magnesium magnesium aluminate metasilicate, and electricity was reversely applied to the capacitor from a power supply device at 100 V and 1 A. Although the explosion-proof valve 4 of the capacitor body 1 was opened, it was found that the amount of ejection of the driving electrolyte or the like was reduced to a slight extent.
- Example 8 In Example 1, a capacitor was produced in the same manner except that the cap 6 was filled with 1.43 g of porous alumina, and electricity was applied back to the capacitor from a power supply device at 100 V and 1 A. The capacitor body 1 Although the explosion-proof valve 4 was opened, it was found that the ejection amount of the driving electrolyte or the like was reduced to a slight extent.
- Example 9 In Example 1, a capacitor was produced in the same manner except that the cap 6 was filled with 0.67 g of porous magnesium oxide, and electricity was reversely applied to the capacitor from a power supply device at 100 V and 1 A. Although one explosion-proof valve 4 was opened, it was found that the amount of ejection of the driving electrolyte or the like was reduced to a slight extent.
- Example 10 A capacitor was prepared in the same manner as in Example 1 except that the cap 6 was filled with 1.12 g of porous magnesium silicate, and electricity was reversely applied to the capacitor from a power supply device at 100 V and 1 A. Although the explosion-proof valve 4 of the main body 1 was opened, it was found that the ejection amount of the driving electrolyte and the like was reduced to a slight extent.
- Example 11 In Example 1, a capacitor was prepared in the same manner except that cap 6 was filled with 1.32 g of porous aluminum silicate, and electricity was reversely applied to this capacitor from a power supply device at 100 V and 1 A. Although the explosion-proof valve 4 of the main body 1 was opened, it was found that the ejection amount of the driving electrolyte and the like was reduced to a slight extent.
- Example 12 In Example 1, a capacitor was prepared in the same manner except that the cap 6 was filled with 1.03 g of ⁇ -cyclodextrin, and an overvoltage of 600 V and 2 A was applied to the capacitor from the power supply device. Although the explosion-proof valve 4 was opened, it was found that the ejection amount of the driving electrolyte or the like was reduced to a slight extent.
- Example 12 a capacitor was prepared in the same manner except that the cap 6 was not filled with ⁇ -cyclodextrin, and an overvoltage of 600 V and 2 A was applied to the capacitor from the power supply device. Vigorous ejection of the driving electrolyte etc. vaporized from the hole 7 was observed, and it was found that the cap 6 alone could not prevent the driving electrolyte etc. from flowing out.
- Example 13 In Example 12, a capacitor was prepared in the same manner except that cap 6 was filled with 1.21 g of deoxycholic acid, and an overvoltage of 600 V and 2 A was applied to the capacitor from the power supply device. Although the explosion-proof valve 4 was opened, it was found that the ejection amount of the driving electrolyte and the like was reduced to a slight extent.
- Example 14 In Example 12, a capacitor was produced in the same manner except that cap 1 was filled with 1.12 g of 1,1-bis (4-hydroxyphenyl) cyclohexane, and an overvoltage of 600 V and 2 A was applied to this capacitor from the power supply device. As a result, it was found that the explosion-proof valve 4 of the capacitor body 1 was opened, but the amount of ejection of the driving electrolyte or the like was reduced to a slight extent.
- Example 15 In Example 12, a capacitor was produced in the same manner except that the cap 6 was filled with 1.06 g of 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane. When an overvoltage of 2 A was applied, the explosion-proof valve 4 of the capacitor body 1 was opened, but it was found that the ejection amount of the driving electrolyte and the like was reduced to a slight extent.
- Example 16 In Example 12, a capacitor was prepared in the same manner except that the cap 6 was filled with 0.52 g of porous silica, and an overvoltage of 600 V and 2 A was applied to the capacitor from the power supply device. Although the explosion-proof valve 4 was opened, it was found that the ejection amount of the driving electrolyte and the like was reduced to a slight extent.
- Example 17 In Example 12, a capacitor was prepared in the same manner except that the cap 6 was filled with 0.25 g of porous calcium silicate, and an overvoltage of 600 V and 2 A was applied to the capacitor from the power supply device. Although one explosion-proof valve 4 was opened, it was found that the amount of ejection of the driving electrolyte or the like was reduced to a slight extent.
- Example 18 In Example 12, a capacitor was prepared in the same manner except that the cap 6 was filled with 1.03 g of porous magnesium aluminate metasilicate, and an overvoltage of 600 V and 2 A was applied to the capacitor from the power supply device. Although the explosion-proof valve 4 of the capacitor body 1 was opened, it was found that the ejection amount of the driving electrolyte and the like was reduced to a slight extent.
- Example 19 In Example 12, a capacitor was prepared in the same manner except that the cap 6 was filled with 1.43 g of porous alumina, and an overvoltage of 600 V and 2 A was applied to the capacitor from the power supply device. Although the explosion-proof valve 4 was opened, it was found that the ejection amount of the driving electrolyte and the like was reduced to a slight extent.
- Example 20 In Example 12, a capacitor was produced in the same manner except that the cap 6 was filled with 0.67 g of porous magnesium oxide, and an overvoltage of 600 V and 2 A was applied to the capacitor from the power supply device. Although the explosion-proof valve 4 was opened, it was found that the ejection amount of the driving electrolyte or the like was reduced to a slight extent.
- Example 21 In Example 12, a capacitor was prepared in the same manner except that the cap 6 was filled with 1.12 g of porous magnesium silicate, and an overvoltage of 600 V and 2 A was applied to the capacitor from the power supply device. Although one explosion-proof valve 4 was opened, it was found that the amount of ejection of the driving electrolyte or the like was reduced to a slight extent.
- Example 22 In Example 12, a capacitor was prepared in the same manner except that the cap 6 was filled with 1.32 g of porous aluminum silicate, and an overvoltage of 600 V and 2 A was applied to the capacitor from the power supply device. Although one explosion-proof valve 4 was opened, it was found that the amount of ejection of the driving electrolyte or the like was reduced to a slight extent.
- Example 23 The aluminum electrolytic capacitor of Reference Example 1 was used as a capacitor body 1, and a cap 6 having a height about 1.4 times that of the metal case 2 of the capacitor body 1 was fixedly attached to the capacitor body 1 with a tape. At this time, the cap 6 was filled with 0.42 g of porous silica as an absorbent and 0.51 g of magnesium sulfate ⁇ 7H 2 O as a substance containing water so that the volume ratio was 8: 2.
- Example 23 a capacitor was prepared in the same manner except that the cap 6 was not filled with porous silica and magnesium sulfate ⁇ 7H 2 O, and electricity was reversely applied to the capacitor at 100 V and 1 A from the power supply device. As a result, it was found that intense ejection of the driving electrolyte etc. vaporized from the small hole 7 of the cap 6 was observed, and it was not possible to prevent the driving electrolyte etc. from flowing out only by providing the cap 6. It was.
- Example 23 a capacitor was produced in the same manner except that only 0.52 g of porous silica was filled, and electricity was applied back to the capacitor from the power supply device at 100 V and 1 A. 7 showed a slight evaporation of the driving electrolyte and the like. The amount is obviously lower than that of Comparative Example 3 described above, and even if porous silica is used as an absorbent material, a certain degree of effect can be obtained. It turned out to be inferior in terms.
- Example 24 In Example 23, 0.91 g of 1,1-bis (4-hydroxyphenyl) cyclohexane as an absorbent in the cap 6 and 0.51 g of magnesium sulfate ⁇ 7H 2 O as a substance enclosing water in a volume ratio of 8 :
- a capacitor was prepared in the same manner except that it was filled to 2 and when the electricity was reversely applied to the capacitor from the power supply device at 100 V and 1 A, the explosion-proof valve 4 of the capacitor body 1 was opened. It was found that the amount of ejection of the driving electrolyte and the like was reduced to a very small amount. It was found that the ejection at this time was reduced as compared with the case where the cap 6 was filled with only 1.12 g of 1,1-bis (4-hydroxyphenyl) cyclohexane.
- Example 25 the cap 6 was filled with 0.20 g of porous calcium silicate as an absorbent material and 0.51 g of potassium alum 12H 2 O as a substance containing water so that the volume ratio was 8: 2. Except for the above, a capacitor was produced in the same manner, and when electricity was reversely applied to the capacitor from the power supply device at 100 V and 1 A, the explosion-proof valve 4 of the capacitor body 1 was opened, but the discharge of driving electrolyte etc. The amount was found to be reduced to a very small amount. It was found that the ejection at this time was reduced as compared with the case where the cap 6 was filled with only 0.25 g of porous calcium silicate.
- Example 26 In Example 23, 0.84 g of porous magnesium aluminate metasilicate as an absorbent material in the cap 6 and aluminum sulfate ⁇ 16H 2 O 0.36 g as a substance containing water so that the volume ratio is 8: 2.
- a capacitor was produced in the same manner except that the capacitor was filled in, and when electricity was reversely applied to the capacitor from a power supply device at 100 V and 1 A, the explosion-proof valve 4 of the capacitor body 1 was opened, but the driving electrolyte, etc. It was found that the amount of squirting was reduced to a very small amount. It was found that the eruption at this time is reduced as compared with the case where the cap 6 is filled with only 1.03 g of porous magnesium aluminate metasilicate.
- Example 27 In Example 23, except that cap 14 was filled with 1.14 g of porous alumina as an absorbent and nickel sulfate ⁇ 6H 2 O 0.63 g as a substance containing water so that the volume ratio was 8: 2.
- a capacitor was produced, and when electricity was reversely applied to the capacitor from a power supply device at 100 V and 1 A, the explosion-proof valve 4 of the capacitor body 1 was opened, but the amount of ejection of the driving electrolyte etc. was It was found that the amount was reduced to a very small amount. It was found that the ejection at this time was reduced as compared with the case where the cap 6 was filled with only 1.43 g of porous alumina.
- Example 28 In Example 23, the cap 6 was filled with 0.54 g of porous magnesium oxide as an absorbent and 0.92 g of manganese sulfate ⁇ 5H 2 O as a substance containing water so that the volume ratio was 8: 2. Except for the above, a capacitor was produced in the same manner, and when electricity was reversely applied to the capacitor from the power supply device at 100 V and 1 A, the explosion-proof valve 4 of the capacitor body 1 was opened, but the amount of ejection of the driving electrolyte or the like was found to be reduced to a very small amount. It was found that the ejection at this time was reduced as compared with the case where the cap 6 was filled with only 0.67 g of porous magnesium oxide.
- Example 29 In Example 23, 0.96 g of porous magnesium silicate as an absorbent in the cap 6 and 0.61 g of iron (II) sulfate ⁇ 7H 2 O as a substance containing water are 8: 2 in volume ratio.
- a capacitor was produced in the same manner except that it was charged as described above, and when electricity was reversely applied to the capacitor from a power supply device at 100 V and 1 A, the explosion-proof valve 4 of the capacitor body 1 was opened, but the driving electrolyte solution It was found that the amount of squirting and the like was reduced to a very small amount. It was found that the ejection at this time was reduced as compared with the case where the cap 6 was filled with only 1.12 g of porous magnesium silicate.
- Example 30 In Example 23, 1.01 g of porous aluminum silicate as an absorbent material in the cap 6 and 0.81 g of iron (III) sulfate / nH 2 O as a substance enclosing water are in a volume ratio of 8: 2.
- a capacitor was produced in the same manner except that it was charged as described above, and when electricity was reversely applied to the capacitor from a power supply device at 100 V and 1 A, the explosion-proof valve 4 of the capacitor body 1 was opened, but the driving electrolyte solution It was found that the amount of squirting and the like was reduced to a very small amount. It was found that the ejection at this time was reduced as compared with the case where the cap 6 was filled with only 1.32 g of porous aluminum silicate.
- Example 31 In Example 23, except that cap 6 was filled with 0.42 g of porous silica as an absorbent and magnesium sulfate ⁇ 7H 2 O 0.75 g as a substance containing water so that the volume ratio was 7: 3.
- the explosion-proof valve 4 of the capacitor body 1 was opened, but the amount of ejection of the driving electrolyte etc. was extremely high It was found that the amount was reduced to a small amount. It was found that the ejection at this time was reduced as compared with the case where the cap 6 was filled with only 0.52 g of porous silica.
- Example 32 In Example 31, 0.91 g of 1,1-bis (4-hydroxyphenyl) cyclohexane as an absorbent in the cap 6 and 0.51 g of magnesium sulfate ⁇ 7H 2 O as a substance enclosing water in a volume ratio of 8 : A capacitor was prepared in the same manner except that it was filled to 2 and an overvoltage of 600 V and 2 A was applied to the capacitor from the power supply device. As a result, the explosion-proof valve 4 of the capacitor body 1 was opened, but driven. It was found that the amount of the electrolyte solution for spraying and the like was reduced to such an extent that a very small amount was ejected. It was found that the ejection at this time was reduced as compared with the case where the cap 6 was filled with only 1.12 g of 1,1-bis (4-hydroxyphenyl) cyclohexane.
- Example 33 In Example 31, the cap 6 was filled with 0.20 g of porous calcium silicate as an absorbent and 0.51 g of potassium alum 12H 2 O as a substance containing water so that the volume ratio was 8: 2. Except for the above, a capacitor was produced in the same manner, and when an overvoltage of 600 V and 2 A was applied to the capacitor from the power supply device, the explosion-proof valve 4 of the capacitor body 1 was opened, but the ejection amount of the driving electrolyte etc. was found to be reduced to a very small amount. It was found that the ejection at this time was reduced as compared with the case where the cap 6 was filled with only 0.25 g of porous calcium silicate.
- Example 34 In Example 31, 0.84 g of porous magnesium aluminate metasilicate as an absorbent in the cap 6 and aluminum sulfate ⁇ 16H 2 O 0.36 g as a substance enclosing water so that the volume ratio is 8: 2.
- a capacitor was produced in the same manner except that the capacitor was charged, and when an overvoltage of 600 V and 2 A was applied to the capacitor from the power supply device, the explosion-proof valve 4 of the capacitor body 1 was opened. It was found that the amount of eruption was reduced to a very small amount. It was found that the eruption at this time is reduced as compared with the case where the cap 6 is filled with only 1.03 g of porous magnesium aluminate metasilicate.
- Example 35 In Example 31, the cap 6 was filled with 1.14 g of porous alumina as an absorbent and nickel sulfate.6H 2 O 0.63 g as a substance containing water so that the volume ratio was 8: 2.
- the explosion-proof valve 4 of the capacitor body 1 was opened, but the amount of ejection of the driving electrolyte etc. was extremely high It was found that the amount was reduced to a small amount. It was found that the ejection at this time was reduced as compared with the case where the cap 6 was filled with only 1.43 g of porous alumina.
- Example 36 In Example 31, the cap 6 was filled with 0.54 g of porous magnesium oxide as an absorbent and 0.92 g of manganese sulfate ⁇ 5H 2 O as a substance containing water so that the volume ratio was 8: 2. Except for the above, a capacitor was produced in the same manner, and an overvoltage of 600 V and 2 A was applied to the capacitor from the power supply device. As a result, the explosion-proof valve 4 of the capacitor body 1 was opened, but the ejection amount of the driving electrolyte etc. It was found that the amount was reduced to a very small amount. It was found that the ejection at this time was reduced as compared with the case where the cap 6 was filled with only 0.67 g of porous magnesium oxide.
- Example 37 In Example 31, a volume ratio of 0.90 g of porous magnesium silicate as an absorbent material in the cap 6 and 0.61 g of iron (II) sulfate ⁇ 7H 2 O as a substance containing water is 8: 2.
- a capacitor was produced in the same manner except that the capacitor was charged as described above, and when an overvoltage of 600 V and 2 A was applied to the capacitor from the power supply device, the explosion-proof valve 4 of the capacitor body 1 was opened, but the driving electrolyte, etc. It was found that the amount of squirting was reduced to a very small amount. It was found that the ejection at this time was reduced as compared with the case where the cap 6 was filled with only 1.12 g of porous magnesium silicate.
- Example 38 In Example 31, a volume ratio of 1.01 g of porous aluminum silicate as an absorbent in the cap 6 and 0.81 g of iron (III) sulfate / nH 2 O as a substance enclosing water is 8: 2.
- a capacitor was produced in the same manner except that the capacitor was charged as described above, and when an overvoltage of 600 V and 2 A was applied to the capacitor from the power supply device, the explosion-proof valve 4 of the capacitor body 1 was opened, but the driving electrolyte, etc. It was found that the amount of squirting was reduced to a very small amount. It was found that the ejection at this time was reduced as compared with the case where the cap 6 was filled with only 1.32 g of porous aluminum silicate.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
本発明の金属電解コンデンサ用吸収材は、駆動用電解液や水素ガス等と分子化合物を形成するものである。ここで、分子化合物とは、単独で安定に存在することのできる化合物の2種類以上の化合物が水素結合やファンデルワールス力等に代表される、共有結合以外の比較的弱い相互作用によって結合した化合物であり、水和物、溶媒化物、付加化合物、包接化合物等が含まれる。このような分子化合物は、分子化合物を形成する化合物とアルミ電解コンデンサからの噴出物との接触反応により形成することができ、噴出物を固体状の化合物に変化させることができる。
本発明の金属電解コンデンサ用漏洩防止材は、吸収材と水を内包する物質とからなるものである。かかる漏洩防止材を構成する吸収材は、駆動用電解液や水素ガス等と分子化合物を形成するものであって、上述した金属電解コンデンサ用吸収材と同様のものを用いればよい。
次に本発明の金属電解コンデンサ用吸収材について、この金属電解コンデンサ用吸収材を好適に適用可能な金属電解コンデンサの一例に基づいて添付図面を参照して説明する。図1~図3は、本発明の一実施形態における金属電解コンデンサを示している。
φ16mm×31.5mm、400V、33μFの規格の市販のアルミ電解コンデンサを使用し、このアルミ電解コンデンサに電源装置から電気を100V、1Aで逆印加したところ、コンデンサ本体1の防爆弁4が開成し、駆動用電解液等の激しい噴出が見られた。
参考例1のアルミ電解コンデンサをコンデンサ本体1として、このコンデンサ本体1に該コンデンサ本体1の金属ケース2の約1.4倍の高さのキャップ6をテープで固定装着してコンデンサとした。このときキャップ6には、吸収材9として、α-シクロデキストリン1.03gを充填した。
実施例1において、キャップ6にα-シクロデキストリンを充填しなかった以外は、同様にしてコンデンサを作製し、このコンデンサに対し、電源装置から電気を100V、1Aで逆印加したところ、キャップ6の小孔7から気化した駆動用電解液等の激しい噴出が激しい噴出が見られ、キャップ6だけでは駆動用電解液等の流出を防止することができないことがわかった。
実施例1において、キャップ6にデオキシコール酸1.21gを充填した以外は、同様にしてコンデンサを作製し、このコンデンサに対し、電源装置から電気を100V、1Aで逆印加したところ、コンデンサ本体1の防爆弁4は開成したが、駆動用電解液等の噴出量はわずかに噴出する程度に低減されることがわかった。
実施例1において、キャップ6に1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン1.12gを充填した以外は、同様にしてコンデンサを作製し、このコンデンサに対し、電源装置から電気を100V、1Aで逆印加したところ、コンデンサ本体1の防爆弁4は開成したが、駆動用電解液等の噴出量はわずかに噴出する程度に低減されることがわかった。
実施例1において、キャップ6に1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン1.06gを充填した以外は、同様にしてコンデンサを作製し、このコンデンサに対し、電源装置から電気を100V、1Aで逆印加したところ、コンデンサ本体1の防爆弁4は開成したが、駆動用電解液等の噴出量はわずかに噴出する程度に低減されることがわかった。
実施例1において、キャップ6に多孔質シリカ0.52gを充填した以外は、同様にしてコンデンサを作製し、このコンデンサに対し、電源装置から電気を100V、1Aで逆印加したところ、コンデンサ本体1の防爆弁4は開成したが、駆動用電解液等の噴出量はわずかに噴出する程度に低減されることがわかった。
実施例1において、キャップ6に多孔質ケイ酸カルシウム0.25gを充填した以外は、同様にしてコンデンサを作製し、このコンデンサに対し、電源装置から電気を100V、1Aで逆印加したところ、コンデンサ本体1の防爆弁4は開成したが、駆動用電解液等の噴出量はわずかに噴出する程度に低減されることがわかった。
実施例1において、キャップ6に多孔質メタケイ酸アルミン酸マグネシウム1.03gを充填した以外は、同様にしてコンデンサを作製し、このコンデンサに対し、電源装置から電気を100V、1Aで逆印加したところ、コンデンサ本体1の防爆弁4は開成したが、駆動用電解液等の噴出量はわずかに噴出する程度に低減されることがわかった。
実施例1において、キャップ6に多孔質アルミナ1.43gを充填した以外は、同様にしてコンデンサを作製し、このコンデンサに対し、電源装置から電気を100V、1Aで逆印加したところ、コンデンサ本体1の防爆弁4は開成したが、駆動用電解液等の噴出量はわずかに噴出する程度に低減されることがわかった。
実施例1において、キャップ6に多孔質酸化マグネシウム0.67gを充填した以外は、同様にしてコンデンサを作製し、このコンデンサに対し、電源装置から電気を100V、1Aで逆印加したところ、コンデンサ本体1の防爆弁4は開成したが、駆動用電解液等の噴出量はわずかに噴出する程度に低減されることがわかった。
実施例1において、キャップ6に多孔質ケイ酸マグネシウム1.12gを充填した以外は、同様にしてコンデンサを作製し、このコンデンサに対し、電源装置から電気を100V、1Aで逆印加したところ、コンデンサ本体1の防爆弁4は開成したが、駆動用電解液等の噴出量はわずかに噴出する程度に低減されることがわかった。
実施例1において、キャップ6に多孔質ケイ酸アルミニウム1.32gを充填した以外は、同様にしてコンデンサを作製し、このコンデンサに対し、電源装置から電気を100V、1Aで逆印加したところ、コンデンサ本体1の防爆弁4は開成したが、駆動用電解液等の噴出量はわずかに噴出する程度に低減されることがわかった。
参考例1のアルミ電解コンデンサに、電源装置から600V、2Aの過電圧を印加したところ、コンデンサ本体1の防爆弁4が開成し、駆動用電解液等の激しい噴出が見られた。
実施例1において、キャップ6にα-シクロデキストリン1.03gを充填した以外は、同様にしてコンデンサを作製し、このコンデンサに対し、電源装置から600V、2Aの過電圧を印加したところ、コンデンサ本体1の防爆弁4は開成したが、駆動用電解液等の噴出量はわずかに噴出する程度に低減されることがわかった。
実施例12において、キャップ6にα-シクロデキストリンを充填しなかった以外は、同様にしてコンデンサを作製し、このコンデンサに対し、電源装置から600V、2Aの過電圧を印加したところ、キャップ6の小孔7から気化した駆動用電解液等の激しい噴出が激しい噴出が見られ、キャップ6だけでは駆動用電解液等の流出を防止することができないことがわかった。
実施例12において、キャップ6にデオキシコール酸1.21gを充填した以外は、同様にしてコンデンサを作製し、このコンデンサに対し、電源装置から600V、2Aの過電圧を印加したところ、コンデンサ本体1の防爆弁4は開成したが、駆動用電解液等の噴出量はわずかに噴出する程度に低減されることがわかった。
実施例12において、キャップ6に1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン1.12gを充填した以外は、同様にしてコンデンサを作製し、このコンデンサに対し、電源装置から600V、2Aの過電圧を印加したところ、コンデンサ本体1の防爆弁4は開成したが、駆動用電解液等の噴出量はわずかに噴出する程度に低減されることがわかった。
実施例12において、キャップ6に1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン1.06gを充填した以外は、同様にしてコンデンサを作製し、このコンデンサに対し、電源装置から600V、2Aの過電圧を印加したところ、コンデンサ本体1の防爆弁4は開成したが、駆動用電解液等の噴出量はわずかに噴出する程度に低減されることがわかった。
実施例12において、キャップ6に多孔質シリカ0.52gを充填した以外は、同様にしてコンデンサを作製し、このコンデンサに対し、電源装置から600V、2Aの過電圧を印加したところ、コンデンサ本体1の防爆弁4は開成したが、駆動用電解液等の噴出量はわずかに噴出する程度に低減されることがわかった。
実施例12において、キャップ6に多孔質ケイ酸カルシウム0.25gを充填した以外は、同様にしてコンデンサを作製し、このコンデンサに対し、電源装置から600V、2Aの過電圧を印加したところ、コンデンサ本体1の防爆弁4は開成したが、駆動用電解液等の噴出量はわずかに噴出する程度に低減されることがわかった。
実施例12において、キャップ6に多孔質メタケイ酸アルミン酸マグネシウム1.03gを充填した以外は、同様にしてコンデンサを作製し、このコンデンサに対し、電源装置から600V、2Aの過電圧を印加したところ、コンデンサ本体1の防爆弁4は開成したが、駆動用電解液等の噴出量はわずかに噴出する程度に低減されることがわかった。
実施例12において、キャップ6に多孔質アルミナ1.43gを充填した以外は、同様にしてコンデンサを作製し、このコンデンサに対し、電源装置から600V、2Aの過電圧を印加したところ、コンデンサ本体1の防爆弁4は開成したが、駆動用電解液等の噴出量はわずかに噴出する程度に低減されることがわかった。
実施例12において、キャップ6に多孔質酸化マグネシウム0.67gを充填した以外は、同様にしてコンデンサを作製し、このコンデンサに対し、電源装置から600V、2Aの過電圧を印加したところ、コンデンサ本体1の防爆弁4は開成したが、駆動用電解液等の噴出量はわずかに噴出する程度に低減されることがわかった。
実施例12において、キャップ6に多孔質ケイ酸マグネシウム1.12gを充填した以外は、同様にしてコンデンサを作製し、このコンデンサに対し、電源装置から600V、2Aの過電圧を印加したところ、コンデンサ本体1の防爆弁4は開成したが、駆動用電解液等の噴出量はわずかに噴出する程度に低減されることがわかった。
実施例12において、キャップ6に多孔質ケイ酸アルミニウム1.32gを充填した以外は、同様にしてコンデンサを作製し、このコンデンサに対し、電源装置から600V、2Aの過電圧を印加したところ、コンデンサ本体1の防爆弁4は開成したが、駆動用電解液等の噴出量はわずかに噴出する程度に低減されることがわかった。
参考例1のアルミ電解コンデンサをコンデンサ本体1として、このコンデンサ本体1に該コンデンサ本体1の金属ケース2の約1.4倍の高さのキャップ6をテープで固定装着してコンデンサとした。このとき、キャップ6には、吸収材としての多孔質シリカ0.42gと、水を内包した物質としての硫酸マグネシウム・7H2O0.51gとを体積比で8:2となるように充填した。
実施例23において、キャップ6に多孔質シリカ及び硫酸マグネシウム・7H2Oを充填しなかった以外は、同様にしてコンデンサを作製し、このコンデンサに対し、電源装置から電気を100V、1Aで逆印加したところ、キャップ6の小孔7から気化した駆動用電解液等の激しい噴出が激しい噴出が見られ、キャップ6を設けただけでは駆動用電解液等の流出を防止することができないことがわかった。
実施例23において、多孔質シリカ0.52gのみを充填した以外は、同様にしてコンデンサを作製し、このコンデンサに対し、電源装置から電気を100V、1Aで逆印加したところ、キャップ6の小孔7からわずかに気化した駆動用電解液等の噴出が認められた。その量は、前述した比較例3よりは明らかに低減しており吸収材として多孔質シリカを用いただけでもある程度の効果が得られるが、実施例23よりは駆動用電解液等の漏洩防止能の点で劣ることがわかった。
実施例23において、キャップ6に吸収材としての1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン0.90gと、水を内包した物質としての硫酸マグネシウム・7H2O0.51gとを体積比で8:2となるように充填した以外は、同様にしてコンデンサを作製し、このコンデンサに対し、電源装置から電気を100V、1Aで逆印加したところ、コンデンサ本体1の防爆弁4は開成したが、駆動用電解液等の噴出量は極めて少量噴出する程度に低減されることがわかった。このときの噴出は、キャップ6に1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン1.12gのみを充填した場合よりも低減されることがわかった。
実施例23において、キャップ6に吸収材としての多孔質ケイ酸カルシウム0.20gと、水を内包した物質としてのカリウムミョウバン・12H2O0.51gとを体積比で8:2となるように充填した以外は、同様にしてコンデンサを作製し、このコンデンサに対し、電源装置から電気を100V、1Aで逆印加したところ、コンデンサ本体1の防爆弁4は開成したが、駆動用電解液等の噴出量は極めて少量噴出する程度に低減されることがわかった。このときの噴出は、キャップ6に多孔質ケイ酸カルシウム0.25gのみを充填した場合よりも低減されることがわかった。
実施例23において、キャップ6に吸収材としての多孔質メタケイ酸アルミン酸マグネシウム0.84gと、水を内包した物質としての硫酸アルミニウム・16H2O0.36gとを体積比で8:2となるように充填した以外は、同様にしてコンデンサを作製し、このコンデンサに対し、電源装置から電気を100V、1Aで逆印加したところ、コンデンサ本体1の防爆弁4は開成したが、駆動用電解液等の噴出量は極めて少量噴出する程度に低減されることがわかった。このときの噴出は、キャップ6に多孔質メタケイ酸アルミン酸マグネシウム1.03gのみを充填した場合よりも低減されることがわかった。
実施例23において、キャップ6に吸収材としての多孔質アルミナ1.14gと、水を内包した物質としての硫酸ニッケル・6H2O0.63gとを体積比で8:2となるように充填した以外は、同様にしてコンデンサを作製し、このコンデンサに対し、電源装置から電気を100V、1Aで逆印加したところ、コンデンサ本体1の防爆弁4は開成したが、駆動用電解液等の噴出量は極めて少量噴出する程度に低減されることがわかった。このときの噴出は、キャップ6に多孔質アルミナ1.43gのみを充填した場合よりも低減されることがわかった。
実施例23において、キャップ6に吸収材としての多孔質酸化マグネシウム0.54gと、水を内包した物質としての硫酸マンガン・5H2O0.92gとを体積比で8:2となるように充填した以外は、同様にしてコンデンサを作製し、このコンデンサに対し、電源装置から電気を100V、1Aで逆印加したところ、コンデンサ本体1の防爆弁4は開成したが、駆動用電解液等の噴出量は極めて少量噴出する程度に低減されることがわかった。このときの噴出は、キャップ6に多孔質酸化マグネシウム0.67gのみを充填した場合よりも低減されることがわかった。
実施例23において、キャップ6に吸収材としての多孔質ケイ酸マグネシウム0.90gと、水を内包した物質としての硫酸鉄(II)・7H2O0.61gとを体積比で8:2となるように充填した以外は、同様にしてコンデンサを作製し、このコンデンサに対し、電源装置から電気を100V、1Aで逆印加したところ、コンデンサ本体1の防爆弁4は開成したが、駆動用電解液等の噴出量は極めて少量噴出する程度に低減されることがわかった。このときの噴出は、キャップ6に多孔質ケイ酸マグネシウム1.12gのみを充填した場合よりも低減されることがわかった。
実施例23において、キャップ6に吸収材としての多孔質ケイ酸アルミニウム1.01gと、水を内包した物質としての硫酸鉄(III)・nH2O0.81gとを体積比で8:2となるように充填した以外は、同様にしてコンデンサを作製し、このコンデンサに対し、電源装置から電気を100V、1Aで逆印加したところ、コンデンサ本体1の防爆弁4は開成したが、駆動用電解液等の噴出量は極めて少量噴出する程度に低減されることがわかった。このときの噴出は、キャップ6に多孔質ケイ酸アルミニウム1.32gのみを充填した場合よりも低減されることがわかった。
実施例23において、キャップ6に吸収材としての多孔質シリカ0.42gと、水を内包した物質としての硫酸マグネシウム・7H2O0.75gとを体積比で7:3となるように充填した以外は、同様にしてコンデンサを作製し、このコンデンサに対し、電源装置から600V、2Aの過電圧を印加したところ、コンデンサ本体1の防爆弁4は開成したが、駆動用電解液等の噴出量は極めて少量噴出する程度に低減されることがわかった。このときの噴出は、キャップ6に多孔質シリカ0.52gのみを充填した場合よりも低減されることがわかった。
実施例31において、キャップ6に吸収材としての1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン0.90gと、水を内包した物質としての硫酸マグネシウム・7H2O0.51gとを体積比で8:2となるように充填した以外は、同様にしてコンデンサを作製し、このコンデンサに対し、電源装置から600V、2Aの過電圧を印加したところ、コンデンサ本体1の防爆弁4は開成したが、駆動用電解液等の噴出量は極めて少量噴出する程度に低減されることがわかった。このときの噴出は、キャップ6に1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン1.12gのみを充填した場合よりも低減されることがわかった。
実施例31において、キャップ6に吸収材としての多孔質ケイ酸カルシウム0.20gと、水を内包した物質としてのカリウムミョウバン・12H2O0.51gとを体積比で8:2となるように充填した以外は、同様にしてコンデンサを作製し、このコンデンサに対し、電源装置から600V、2Aの過電圧を印加したところ、コンデンサ本体1の防爆弁4は開成したが、駆動用電解液等の噴出量は極めて少量噴出する程度に低減されることがわかった。このときの噴出は、キャップ6に多孔質ケイ酸カルシウム0.25gのみを充填した場合よりも低減されることがわかった。
実施例31において、キャップ6に吸収材としての多孔質メタケイ酸アルミン酸マグネシウム0.84gと、水を内包した物質としての硫酸アルミニウム・16H2O0.36gとを体積比で8:2となるように充填した以外は、同様にしてコンデンサを作製し、このコンデンサに対し、電源装置から600V、2Aの過電圧を印加したところ、コンデンサ本体1の防爆弁4は開成したが、駆動用電解液等の噴出量は極めて少量噴出する程度に低減されることがわかった。このときの噴出は、キャップ6に多孔質メタケイ酸アルミン酸マグネシウム1.03gのみを充填した場合よりも低減されることがわかった。
実施例31において、キャップ6に吸収材としての多孔質アルミナ1.14gと、水を内包した物質としての硫酸ニッケル・6H2O0.63gとを体積比で8:2となるように充填した以外は、同様にしてコンデンサを作製し、このコンデンサに対し、電源装置から600V、2Aの過電圧を印加したところ、コンデンサ本体1の防爆弁4は開成したが、駆動用電解液等の噴出量は極めて少量噴出する程度に低減されることがわかった。このときの噴出は、キャップ6に多孔質アルミナ1.43gのみを充填した場合よりも低減されることがわかった。
実施例31において、キャップ6に吸収材としての多孔質酸化マグネシウム0.54gと、水を内包した物質としての硫酸マンガン・5H2O0.92gとを体積比で8:2となるように充填した以外は、同様にしてコンデンサを作製し、このコンデンサに対し、電源装置から600V、2Aの過電圧を印加したところ、コンデンサ本体1の防爆弁4は開成したが、駆動用電解液等の噴出量は極めて少量噴出する程度に低減されることがわかった。このときの噴出は、キャップ6に多孔質酸化マグネシウム0.67gのみを充填した場合よりも低減されることがわかった。
実施例31において、キャップ6に吸収材としての多孔質ケイ酸マグネシウム0.90gと、水を内包した物質としての硫酸鉄(II)・7H2O0.61gとを体積比で8:2となるように充填した以外は、同様にしてコンデンサを作製し、このコンデンサに対し、電源装置から600V、2Aの過電圧を印加したところ、コンデンサ本体1の防爆弁4は開成したが、駆動用電解液等の噴出量は極めて少量噴出する程度に低減されることがわかった。このときの噴出は、キャップ6に多孔質ケイ酸マグネシウム1.12gのみを充填した場合よりも低減されることがわかった。
実施例31において、キャップ6に吸収材としての多孔質ケイ酸アルミニウム1.01gと、水を内包した物質としての硫酸鉄(III)・nH2O0.81gとを体積比で8:2となるように充填した以外は、同様にしてコンデンサを作製し、このコンデンサに対し、電源装置から600V、2Aの過電圧を印加したところ、コンデンサ本体1の防爆弁4は開成したが、駆動用電解液等の噴出量は極めて少量噴出する程度に低減されることがわかった。このときの噴出は、キャップ6に多孔質ケイ酸アルミニウム1.32gのみを充填した場合よりも低減されることがわかった。
2…金属ケース
2a…天板部
4…防爆弁
6…キャップ
6a…天板部(有底部)
7…小孔
8…透過性繊維素材
9…吸収材,漏洩防止材
Claims (14)
- 駆動用電解液を含浸させたコンデンサ素子と、前記コンデンサ素子を内蔵する有底筒状の金属ケースと、前記コンデンサ素子より導出された一対のリード線とを備える金属電解コンデンサの電気的異常時に駆動用電解液を吸収する吸収材であって、
前記吸収材が、駆動用電解液と分子化合物を形成することで該駆動用電解液等の噴出量を低減するものであることを特徴とする金属電解コンデンサ用吸収材。 - 前記吸収材が、有機系、無機系、又は有機・無機複合系素材であることを特徴とする請求項1に記載の金属電解コンデンサ用吸収材。
- 前記吸収材が、無機系多孔質素材であることを特徴とする請求項1に記載の金属電解コンデンサ用吸収材。
- 駆動用電解液を含浸させたコンデンサ素子と、前記コンデンサ素子を内蔵する有底筒状の金属ケースと、前記コンデンサ素子より導出された一対のリード線とを備える金属電解コンデンサの電気的異常時に駆動用電解液を吸収する金属電解コンデンサ用漏洩防止材であって、
前記漏洩防止材が、請求項1~3のいずれかに記載の吸収材と、水を内包する物質とからなることを特徴とする金属電解コンデンサ用漏洩防止材。 - 前記水を内包する物質が、水分子化合物であることを特徴とする請求項4に記載の金属電解コンデンサ用漏洩防止材。
- 駆動用電解液を含浸させたコンデンサ素子と、前記コンデンサ素子を内蔵する有底筒状の金属ケースと、前記コンデンサ素子より導出された一対のリード線とを備え、前記金属ケースの天板部に防爆弁が形成され、電気的異常時に前記防爆弁が開成して駆動用電解液等を噴出する金属電解コンデンサにおいて、
前記防爆弁の上方に、前記駆動用電解液を吸収する吸収材を配置したことを特徴とする金属電解コンデンサ。 - 前記吸収材が、前記防爆弁の上方に取り付けられたケーシング内に内在されていることを特徴とする請求項6に記載の金属電解コンデンサ。
- 前記ケーシングに、駆動用電解液等の噴出に伴う内圧上昇を緩和するための小孔が形成されていることを特徴とする請求項7に記載の金属電解コンデンサ。
- 前記吸収材が、請求項1~3のいずれかに記載の吸収材であることを特徴とする請求項6に記載の金属電解コンデンサ。
- 前記防爆弁の上方に、水を内包する物質をさらに配置したことを特徴とする請求項6に記載の金属電解コンデンサ。
- 前記吸収材と水を内包する物質とが、前記防爆弁の上方に取り付けられたケーシング内に内在されていることを特徴とする請求項10に記載の金属電解コンデンサ。
- 前記ケーシングに、駆動用電解液等の噴出に伴う内圧上昇を緩和するための小孔が形成されていることを特徴とする請求項11に記載の金属電解コンデンサ。
- 前記吸収材が、請求項1~3のいずれかに記載の吸収材であることを特徴とする請求項10に記載の金属電解コンデンサ。
- 前記水を内包する物質が、水分子化合物であることを特徴とする請求項10に記載の金属電解コンデンサ。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080023238.6A CN102449716B (zh) | 2009-06-02 | 2010-06-02 | 金属电解电容器以及金属电解电容器用吸收材料和防泄漏材料 |
SG2011087954A SG176278A1 (en) | 2009-06-02 | 2010-06-02 | Metal electrolytic capacitor, and absorbent and leakage prevention material for metal electrolytic capacitor |
EP10783400A EP2439758A1 (en) | 2009-06-02 | 2010-06-02 | Metallic electrolytic capacitor, and absorbent and leakage prevention material for metallic electrolytic capacitor |
KR1020117031048A KR101784017B1 (ko) | 2009-06-02 | 2010-06-02 | 금속 전해 콘덴서, 그리고 금속 전해 콘덴서용 흡수재 및 누설 방지재 |
US13/375,240 US8755170B2 (en) | 2009-06-02 | 2010-06-02 | Metal electrolytic capacitor, and absorbent and leakage prevention material for metal electrolytic capacitor |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009132938A JP5636637B2 (ja) | 2009-06-02 | 2009-06-02 | 金属電解コンデンサ |
JP2009-132939 | 2009-06-02 | ||
JP2009132939A JP5382327B2 (ja) | 2009-06-02 | 2009-06-02 | 金属電解コンデンサ |
JP2009-132938 | 2009-06-02 | ||
JP2009148623A JP5382328B2 (ja) | 2009-06-23 | 2009-06-23 | 金属電解コンデンサ用漏洩防止材 |
JP2009-148622 | 2009-06-23 | ||
JP2009148622A JP5636640B2 (ja) | 2009-06-23 | 2009-06-23 | 金属電解コンデンサ用吸収材 |
JP2009-148623 | 2009-06-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010140618A1 true WO2010140618A1 (ja) | 2010-12-09 |
Family
ID=43297751
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/059342 WO2010140618A1 (ja) | 2009-06-02 | 2010-06-02 | 金属電解コンデンサ、並びに金属電解コンデンサ用吸収材及び漏洩防止材 |
Country Status (7)
Country | Link |
---|---|
US (1) | US8755170B2 (ja) |
EP (1) | EP2439758A1 (ja) |
KR (1) | KR101784017B1 (ja) |
CN (1) | CN102449716B (ja) |
SG (1) | SG176278A1 (ja) |
TW (1) | TWI480908B (ja) |
WO (1) | WO2010140618A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011122038A1 (ja) * | 2010-03-31 | 2011-10-06 | 日本ケミコン株式会社 | 電解コンデンサ |
US11489411B2 (en) * | 2019-10-07 | 2022-11-01 | Nidec Motor Corporation | Motor controller assembly with containment system for capacitor |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008062657A1 (de) * | 2008-12-04 | 2010-06-10 | Stribel Production Gmbh | Energiespeichereinrichtung |
CN106128762B (zh) * | 2016-09-20 | 2018-07-27 | 常州华威电子有限公司 | 一种耐大纹波抗振型铝电解电容器 |
EP3525221B1 (en) * | 2016-11-11 | 2022-10-12 | NSK Ltd. | Electronic control device and steering device |
KR102067715B1 (ko) * | 2016-12-01 | 2020-01-17 | 주식회사 엘지화학 | 배터리 셀 디가싱 장치 |
KR102581272B1 (ko) * | 2017-02-03 | 2023-09-21 | 삼성전자주식회사 | 방폭 장치 |
CN106876134B (zh) * | 2017-03-30 | 2019-03-08 | 华为技术有限公司 | 电解电容及电子产品 |
CN107342167A (zh) * | 2017-07-27 | 2017-11-10 | 南通新三能电子有限公司 | 一种防止电解液喷溅的铝电解电容器 |
CN109887750B (zh) * | 2019-02-20 | 2020-10-16 | 中国振华(集团)新云电子元器件有限责任公司(国营第四三二六厂) | 一种非固体电解质钽电容器工作电解液及其制备方法和非固体电解质钽电容器 |
CN110911169A (zh) * | 2019-12-02 | 2020-03-24 | 北京小米移动软件有限公司 | 电容防爆装置、电路板和电子装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0433322A (ja) * | 1990-05-29 | 1992-02-04 | Matsushita Electric Ind Co Ltd | アルミ電解コンデンサ |
JPH0513289A (ja) | 1991-07-04 | 1993-01-22 | Matsushita Electric Ind Co Ltd | アルミ電解コンデンサ |
JPH0689835A (ja) | 1991-04-11 | 1994-03-29 | Matsushita Electric Ind Co Ltd | アルミ電解コンデンサ |
JP2004226346A (ja) * | 2003-01-27 | 2004-08-12 | Figaro Eng Inc | プロトン導電体ガスセンサ |
JP2005538052A (ja) * | 2002-05-16 | 2005-12-15 | インターアグ | 注射製剤 |
JP2006286969A (ja) | 2005-03-31 | 2006-10-19 | Seiko Epson Corp | 電子部品及び該電子部品を備えた回路基板、該回路基板を備えた記録装置、電子機器 |
JP2007508229A (ja) * | 2003-10-10 | 2007-04-05 | ダウ グローバル テクノロジーズ インコーポレイティド | 煤中の剥離クレイ複合体及びその製造 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0433323A (ja) * | 1990-05-29 | 1992-02-04 | Matsushita Electric Ind Co Ltd | アルミ電解コンデンサ |
JPH0433320A (ja) * | 1990-05-29 | 1992-02-04 | Matsushita Electric Ind Co Ltd | アルミ電解コンデンサ |
JPH0433318A (ja) * | 1990-05-29 | 1992-02-04 | Matsushita Electric Ind Co Ltd | アルミ電解コンデンサ |
JPH0433319A (ja) * | 1990-05-29 | 1992-02-04 | Matsushita Electric Ind Co Ltd | アルミ電解コンデンサ |
JPH0433321A (ja) | 1990-05-29 | 1992-02-04 | Matsushita Electric Ind Co Ltd | アルミ電解コンデンサ |
JPH04148523A (ja) * | 1990-10-12 | 1992-05-21 | Matsushita Electric Ind Co Ltd | アルミ電解コンデンサ |
JP3145857B2 (ja) | 1994-02-17 | 2001-03-12 | 埼玉第一製薬株式会社 | 水性温感貼付剤 |
JP2001115139A (ja) | 1999-10-22 | 2001-04-24 | Nippon Kayaku Co Ltd | 漏水防止剤及び漏水防止方法 |
US20050153841A1 (en) | 2002-05-16 | 2005-07-14 | Bunt Craig R. | Injection formulation |
AU2003252275A1 (en) | 2002-07-31 | 2004-02-16 | Figaro Engineering Inc. | Proton conductor gas sensor |
-
2010
- 2010-05-31 TW TW099117379A patent/TWI480908B/zh not_active IP Right Cessation
- 2010-06-02 WO PCT/JP2010/059342 patent/WO2010140618A1/ja active Application Filing
- 2010-06-02 SG SG2011087954A patent/SG176278A1/en unknown
- 2010-06-02 CN CN201080023238.6A patent/CN102449716B/zh not_active Expired - Fee Related
- 2010-06-02 US US13/375,240 patent/US8755170B2/en not_active Expired - Fee Related
- 2010-06-02 EP EP10783400A patent/EP2439758A1/en not_active Withdrawn
- 2010-06-02 KR KR1020117031048A patent/KR101784017B1/ko active IP Right Grant
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0433322A (ja) * | 1990-05-29 | 1992-02-04 | Matsushita Electric Ind Co Ltd | アルミ電解コンデンサ |
JPH0689835A (ja) | 1991-04-11 | 1994-03-29 | Matsushita Electric Ind Co Ltd | アルミ電解コンデンサ |
JPH0513289A (ja) | 1991-07-04 | 1993-01-22 | Matsushita Electric Ind Co Ltd | アルミ電解コンデンサ |
JP2005538052A (ja) * | 2002-05-16 | 2005-12-15 | インターアグ | 注射製剤 |
JP2004226346A (ja) * | 2003-01-27 | 2004-08-12 | Figaro Eng Inc | プロトン導電体ガスセンサ |
JP2007508229A (ja) * | 2003-10-10 | 2007-04-05 | ダウ グローバル テクノロジーズ インコーポレイティド | 煤中の剥離クレイ複合体及びその製造 |
JP2006286969A (ja) | 2005-03-31 | 2006-10-19 | Seiko Epson Corp | 電子部品及び該電子部品を備えた回路基板、該回路基板を備えた記録装置、電子機器 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011122038A1 (ja) * | 2010-03-31 | 2011-10-06 | 日本ケミコン株式会社 | 電解コンデンサ |
US11489411B2 (en) * | 2019-10-07 | 2022-11-01 | Nidec Motor Corporation | Motor controller assembly with containment system for capacitor |
Also Published As
Publication number | Publication date |
---|---|
KR101784017B1 (ko) | 2017-10-10 |
EP2439758A1 (en) | 2012-04-11 |
US20120127633A1 (en) | 2012-05-24 |
CN102449716B (zh) | 2014-04-23 |
TWI480908B (zh) | 2015-04-11 |
SG176278A1 (en) | 2012-01-30 |
CN102449716A (zh) | 2012-05-09 |
KR20120024852A (ko) | 2012-03-14 |
TW201108279A (en) | 2011-03-01 |
US8755170B2 (en) | 2014-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010140618A1 (ja) | 金属電解コンデンサ、並びに金属電解コンデンサ用吸収材及び漏洩防止材 | |
JP5987051B2 (ja) | 電池 | |
JP5966457B2 (ja) | 蓄電デバイスの発火防止材、この発火防止材を含む発火防止システム、およびこの発火防止システムを用いた蓄電システム | |
CN102714100B (zh) | 电容器 | |
JP5636637B2 (ja) | 金属電解コンデンサ | |
WO2011070816A1 (ja) | 非水電解液二次電池用材料及びこれを用いた非水電解液二次電池 | |
JP5382328B2 (ja) | 金属電解コンデンサ用漏洩防止材 | |
JP5636640B2 (ja) | 金属電解コンデンサ用吸収材 | |
JP5382327B2 (ja) | 金属電解コンデンサ | |
JP2007073810A (ja) | 電気二重層キャパシタ | |
JP2011124201A (ja) | 非水電解液二次電池 | |
JP2011124156A (ja) | 非水電解液二次電池用材料 | |
JP2011018810A (ja) | 金属電解コンデンサ用吸収材及び金属電解コンデンサ | |
JP5948888B2 (ja) | 電気二重層キャパシタ | |
JP2011124202A (ja) | 非水電解液二次電池 | |
JP2013115078A (ja) | 電解コンデンサの電解液捕集容器、電解コンデンサ、及びこれを用いた電気機器並びに電子機器 | |
JP2012114335A (ja) | 電解コンデンサの電解液捕集容器、電解コンデンサ、及びこれを用いた電気機器及び電子機器 | |
JPH03161918A (ja) | 長寿命型電解コンデンサ | |
JP2011082241A (ja) | コンデンサ | |
JP2014220126A (ja) | リチウムイオン電池、及びこれを用いた電子機器 | |
CN116711043A (zh) | 包括具有通气孔的树脂层的可表面安装的超级电容器设备 | |
JP2014216304A (ja) | 蓄電デバイス用ガス吸収材及びこれを用いた蓄電デバイス、並びに当該蓄電デバイスを用いた電気機器及び電子機器 | |
JP2008097982A (ja) | 直接メタノール形燃料電池システム及び携帯用電子機器 | |
JP2011216611A (ja) | 電解コンデンサ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080023238.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10783400 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010783400 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20117031048 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13375240 Country of ref document: US |