WO2010084989A1 - 配線用電線導体、配線用電線導体の製造方法、配線用電線および銅合金素線 - Google Patents
配線用電線導体、配線用電線導体の製造方法、配線用電線および銅合金素線 Download PDFInfo
- Publication number
- WO2010084989A1 WO2010084989A1 PCT/JP2010/050993 JP2010050993W WO2010084989A1 WO 2010084989 A1 WO2010084989 A1 WO 2010084989A1 JP 2010050993 W JP2010050993 W JP 2010050993W WO 2010084989 A1 WO2010084989 A1 WO 2010084989A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wiring
- wire
- mass
- copper alloy
- conductor
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/02—Alloys based on copper with tin as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/04—Alloys based on copper with zinc as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/02—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/08—Several wires or the like stranded in the form of a rope
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
Definitions
- the present invention relates to a wire conductor for wiring such as an electric / electronic device and a wiring wire using the same.
- stranded wires are mainly twisted together with an electrical soft copper wire stipulated in JIS C 3102 or a plated wire with tin plating applied thereto.
- an electric wire (covered electric wire) in which an insulator such as vinyl chloride or crosslinked polyethylene is coated on the stranded wire has been used.
- crimp terminals When connecting these wires to equipment, usually, terminals called crimp terminals are crimped to the wires, and crimp terminals connected to the wires are connected to the equipment.
- the crimping connection is a method in which an electric wire is wrapped (or sandwiched) with a terminal material and caulked to be connected.
- the crimped section has a conductor cross-sectional area that is 20-30% smaller than that before caulking (hereinafter referred to as the ratio of reduction in the cross-sectional area of the conductor due to caulking). The absolute value of intensity is decreasing. For this reason, the fracture usually occurs at the caulked portion.
- JP 2008-016284 A Japanese Patent Laid-Open No. 3-162539 JP 2008-266664 A JP 2008-088549 A
- the wire conductor of an aging precipitation type copper alloy (Corson alloy) described in Patent Document 2 has a high elongation rate and excellent crimp strength and impact strength, and can be used for a signal circuit wire, but a fuse circuit is used. There is a problem that the electrical conductivity is low when used for electric power cables.
- Patent Document 3 describes quenching at a high temperature when obtaining a copper alloy rough drawn wire by a continuous casting rolling method, and Patent Document 4 describes aging heat treatment of the copper alloy wire. In order to further improve the characteristics of the electric wire conductor, detailed examinations are required for technical matters other than those described in Patent Documents 3 to 4.
- the present invention relates to a wire conductor for wiring having high conductivity that can be used for, for example, power wires in automobiles, high strength and elongation, and excellent terminal crimp strength, impact breaking strength, and flexibility, and wiring thereof It is an object of the present invention to provide a method for manufacturing a wire conductor for a vehicle.
- an aging precipitation type copper alloy having a specific composition can be used to produce a copper alloy wire that solves the above-described problems, and further, as a wire conductor for wiring in which this is twisted together
- the ratio of 0.2% proof stress to tensile strength is 0.7 to 0.95
- the work hardening index is 0.03 to 0.17
- the processing rate after solution treatment is set to an appropriate condition.
- the above-described wiring conductor can be obtained with good reproducibility by aging annealing (heat treatment) performed in the final step.
- a wire conductor for wiring comprising 0.3 to 1.5% by mass of Cr, the balance being a plurality of copper alloy wires having a composition consisting of Cu and inevitable impurities, and having a tensile strength 400 MPa or more and 650 MPa or less, elongation at break of 7% or more, conductivity of 65% IACS or more, 0.2% proof stress to tensile strength ratio of 0.7 or more and 0.95 or less, and work hardening index is It is 0.03 or more and 0.17 or less,
- the electric wire conductor for wiring characterized by the above-mentioned.
- a plurality of copper alloy wires having a composition of 0.3 to 1.5% by mass of Cr and 0.005 to 0.4% by mass of Zr and the balance of Cu and inevitable impurities are twisted together.
- a wire conductor for wiring having a tensile strength of 400 MPa to 650 MPa, an elongation at break of 7% or more, an electrical conductivity of 65% IACS or more, and a ratio of 0.2% proof stress to tensile strength of 0.7%.
- the composition of the copper alloy wire is 0.1 to 0.6 mass% of Sn, 0.005 to 0.3 mass% of Ag, 0.05 to 0.4 mass% of Mg, and 0 of In. (1) or (2), further comprising at least one selected from the group consisting of 1 to 0.8% by mass and Si to 0.01 to 0.15% by mass. Wire conductor for wiring.
- the composition of the copper alloy wire is 0.1 to 0.6% by mass of Sn, 0.005 to 0.3% by mass of Ag, 0.05 to 0.4% by mass of Mg, and In. 0.15 to 0.8% by mass, and at least one selected from the group consisting of Si and 0.01 to 0.15% by mass is contained in a total amount of 0.005 to 0.8% by mass.
- the wire conductor for wiring of the present invention is formed by twisting a plurality of copper alloy wires having a composition containing 0.3 to 1.5% by mass of Cr, having a tensile strength of 400 MPa to 650 MPa, and an elongation at break of 7 %, Conductivity is 65% IACS or more, the ratio of 0.2% proof stress to tensile strength is 0.7 or more and 0.95 or less, and the work hardening index is 0.03 or more and 0.17 or less. Further, the diameter of the wire can be reduced and the conductivity is excellent, and further, the terminal crimping strength, the impact breaking strength, and the flexibility are excellent.
- the electric wire conductor for wiring which has the above-mentioned outstanding physical property can be manufactured.
- the wiring wire of the present invention can reduce the weight of the wire by reducing the diameter of the conductor, and is suitable as other wires for automobiles and robots.
- a preferred embodiment of the copper (Cu) alloy wire used for the wiring conductor of the present invention will be described in detail. First, the effect of each alloy element and the range of its content will be described.
- Chromium (Cr) is an element contained in order to improve the strength of the copper alloy by forming precipitates in the matrix.
- the Cr content is 0.3 to 1.5% by mass, and preferably 0.5 to 1.4% by mass. If the amount of Cr is too small, the precipitation hardening amount is small and the strength is insufficient. If the amount is too large, the effect is saturated, and the strength cannot be improved.
- Zirconium is an element that is contained to improve the strength of the copper alloy by forming precipitates in the matrix, like chromium (Cr).
- the content of Zr is 0.005 to 0.4 mass%, preferably 0.01 to 0.3 mass%. If the amount of Zr is too small, the amount of precipitation hardening is small and no contribution to strength improvement is observed. If the amount is too large, the effect is saturated and no further improvement in strength can be expected.
- the copper alloy wire used for the wire conductor for wiring of this embodiment contains at least one of tin (Sn), silver (Ag), magnesium (Mg), indium (In), and silicon (Si), respectively. It is preferable to contain by quantity. These elements have similar functions in terms of improving strength. When contained, it is preferable to contain 0.005 to 0.8 mass% of at least one selected from Sn, Ag, Mg, In and Si as a total amount, and 0.01 to 0.7 It is more preferable to make it contain by mass%.
- the preferable content range when Sn is added is 0.1 to 0.6% by mass, and more preferably 0.2 to 0.5% by mass.
- Ag improves the strength. If the Ag content is too small, the effect cannot be sufficiently obtained. If the Ag content is too large, the effect is saturated, but the effect is saturated, and the cost is increased. From these viewpoints, the content when Ag is contained is preferably 0.005 to 0.3% by mass, and more preferably 0.01 to 0.2% by mass.
- Mg dissolves in copper and can improve the strength by distorting the lattice, and also has the effect of preventing embrittlement during heating and improving hot workability.
- the preferable content range is 0.05 to 0.4% by mass, and more preferably 0.1 to 0.3% by mass. In can be improved in strength by dissolving in copper and distorting the lattice. However, if the In content is too large, the electrical conductivity is lowered. Therefore, a preferable content range when adding In is 0.1 to 0.8% by mass, and more preferably 0.2 to 0.7% by mass. Si can be dissolved in copper and the strength can be improved by distorting the lattice.
- the preferable content range when Si is added is 0.01 to 0.15% by mass, and more preferably 0.05 to 0.1% by mass.
- the copper alloy wire used for the wire conductor for wiring of this embodiment contains zinc (Zn).
- Zn has an effect of preventing a decrease in adhesion between the copper alloy wire and the solder due to heating.
- the inclusion of Zn significantly improves the embrittlement of the interface when the copper alloy wire is soldered to another conductor or the like.
- the Zn content is preferably 0.1 to 1.5% by mass, and more preferably 0.2 to 1.3% by mass. If the Zn content is too low, the above effect cannot be seen, and if the Zn content is too high, the conductivity may decrease.
- the copper alloy wire used for the wire conductor for wiring of this embodiment is composed of an aging precipitation type alloy.
- a copper alloy wire is obtained as follows, for example. First, an alloy raw material is melt-cast to form an ingot or billet, and the ingot or billet is hot worked (or the alloy raw material is continuously cast and rolled) to obtain a copper alloy strand. Next, this copper alloy wire is subjected to cold working, and after forming a solution, it is drawn to a predetermined diameter (wire diameter) to obtain a copper alloy wire, and a plurality of the obtained copper alloy wires are twisted together If necessary, an aging heat treatment is performed after compression to a predetermined twisted wire diameter.
- a copper alloy wire refers to a state after wire drawing
- a copper alloy wire refers to a state before wire drawing.
- the diameter of the copper alloy wire is preferably 1 mm to 20 mm.
- the solution treatment can be performed simultaneously with hot working or continuous casting and rolling, and the process can be omitted. Also, cold working can be omitted.
- the wire diameter of the copper alloy wire should be 0.05 to 0.3 mm from the viewpoint of easily satisfying the above-mentioned characteristics (conductivity, strength, elongation, terminal crimping strength, impact breaking strength, flexibility, etc.).
- the thickness is preferably 0.1 to 0.2 mm.
- the wire conductor for wiring of the present invention is a stranded wire obtained by twisting a plurality of copper alloy wires, but the number of copper alloy wires to be twisted is not particularly limited, and usually 3 to 50 copper alloy wires are used. Twist together.
- the aging heat treatment In the aging heat treatment, precipitation due to Cr and Zr occurs, and an improvement in strength and an improvement in conductivity are observed, but at the same time, the strain introduced in the wire drawing process is released, so that the tensile strength (T) is 0.2.
- the percentage of yield strength (Y) (this is called the Y / T ratio) decreases.
- the aging heat treatment conditions for reducing the Y / T ratio vary depending on the degree of wire drawing. For example, a copper alloy wire having an appropriate Y / T ratio can be obtained by holding at 300 to 550 ° C. for 1 minute to 5 hours.
- the aging heat treatment may be performed by a short time aging heat treatment (for example, 1 to 30 minutes, 400 ° C.
- batch aging heat treatment for example, 1 to 5 hours, 300 ° C. to 500 ° C.
- the aging heat treatment conditions may be adjusted so as to achieve the predetermined Y / T ratio.
- the strength is lowered due to overaging, and it is not suitable for use as an electric wire.
- the Y / T ratio is 0.7 to 0.95, preferably 0.72 to 0.93
- the conductor itself has a large work-curing at the time of terminal crimping, so that the strength reduction of the crimped portion is small.
- the strain release is insufficient under the condition where the Y / T ratio exceeds 0.95, the work and the manufacturing process are such that the work hardening of the conductor itself at the time of crimping is small and the strength after aging heat treatment is low. In such a case, the strength reduction of the crimping part becomes large.
- the cross-sectional reduction rate at the time of pressure bonding is preferably 40% or less, more preferably 30% or less, because if the value is too large, the decrease in absolute strength tends to increase regardless of the Y / T ratio. On the other hand, if it is too small, the conductor part tends to come out from the caulking part of the terminal, and the electrical connection that is the original purpose becomes insufficient, so it is preferably 5% or more, more preferably 10% or more.
- the wire conductor for wiring according to the present embodiment is basically a material in which a material (copper alloy wire) is drawn and then subjected to a stranded wire process, but aging heat treatment is performed either before or after the stranded wire process. You may do it. Moreover, you may add a compression process after a stranded wire process. In this case, the aging heat treatment may be performed either before or after the compression process, but when it is performed before the compression process, the cross-section reduction rate of the crimping should be 40% or less including the cross-section reduction in compression. It ’s fine.
- C C is a coefficient
- the wire drawing degree ⁇ in the wire drawing is used, and the cross-sectional area of the material immediately after solution forming is A 0.
- the value of ⁇ is preferably 5 or more. More preferably, the value of ⁇ is 6 or more and 11 or less.
- the value of ⁇ is 3 or less, conductivity, elongation, and impact breaking load tend to decrease.
- the material (copper alloy strand) needs to be fully solutionized, but in general, the temperature required for complete solution treatment is close to the melting point of the material (copper alloy strand). It is difficult to do completely.
- the wire diameter of the material (copper alloy wire) during the solution heat treatment is large, precipitation occurs due to a delay in cooling of the center of the material during cooling after solution heat treatment, resulting in incomplete solution heat treatment. Become. Therefore, in the present invention, the degree of solution should be as follows.
- the value of ⁇ / ⁇ FULL (this is called the solution rate) is 0.7. Above, preferably 0.75 or more. If the solution rate is too small, sufficient precipitation does not occur in the subsequent aging heat treatment, and the strength cannot be obtained. In addition, even if it performs said wire drawing after that, the electrical resistivity at the time of solution forming hardly changes.
- the material of the present invention is, for example, a copper alloy strand having a diameter of 5 mm, 2.6 mm, 1 mm, etc.
- the electrical resistance of the copper alloy strand when it is completely solutionized If the ratio is 0.7 times or more, the above-mentioned characteristics can be obtained by performing an aging heat treatment after wire-drawing the copper alloy wire so as to become a copper alloy wire having a predetermined diameter.
- the wire drawing process is not necessary to carry out the wire drawing process a plurality of times continuously.
- the wire is processed after being drawn at the shipping source, and further drawn at the shipping destination to obtain a copper alloy wire, which is then subjected to aging heat treatment. It may be.
- the wire conductor for wiring of the present invention can be manufactured by any of manufacturing methods such as hot extrusion of billets, hot forging of ingots, or continuous casting.
- the electric wire conductor for wiring of the present invention is not only suitable as an electric wire conductor but also suitable as an electric wire for wiring provided with an insulating coating.
- olefin resins such as polyethylene and polypropylene, or polyvinyl chloride (PVC) resins are preferable.
- PVC polyvinyl chloride
- a flame retardant, a cross-linking agent, or the like may be added to these to improve flame retardancy, mechanical strength, or the like.
- Example 1 An alloy having the composition shown in Table 1 was melted in a high-frequency melting furnace, and each billet having a diameter of 200 mm was cast. Next, in order to perform hot working which also serves as a solution treatment, the billet was hot extruded at 950 ° C. and immediately quenched in water to obtain a copper alloy strand having a diameter of 20 mm. Next, the copper alloy wire was drawn in the cold to obtain a copper alloy wire having a diameter of 0.175 mm. Seven wires were twisted and further compressed to obtain a stranded wire (wire conductor for wiring) having a cross-sectional area of 0.13 mm 2 . The stranded wire was subjected to an aging heat treatment at 400 to 450 ° C. for 2 hours, and further covered with an insulator (polyethylene) to produce a wiring wire having a length of 1 km.
- insulator polyethylene
- Flexibility (number of repeated bending breaks) Flexibility is evaluated by pinching the electric wire with a mandrel, hanging a weight at the lower end to apply a load to suppress the deflection of the wire, and bending the wire 90 degrees left and right in this state until it breaks. It was measured. The number of times of bending back at 90 degrees was counted as one time. Flexibility was evaluated using two types of weights: 400 g, and mandrel diameters of ⁇ 25 mm (for applying low strain) and ⁇ 5 mm (for applying high strain).
- Inventive Examples 1 to 48 in Table 1 all satisfy tensile strength, elongation, and conductivity, Y / T ratio is 0.7 or more and 0.95 or less, and n value is 0.03 or more and 0.17. In the following, values that do not interfere with practical use are obtained for all of flexibility, impact rupture strength, and compression strength.
- Example 2 In Table 1, Invention Example 5, Invention Example 14, Invention Example 20, Invention Example 23, Invention Example 29, and Invention Example 42, the cross-sectional reduction rate of crimping was set to 10, 20, 30, 40%. Table 2 shows the compression strength at that time.
- Example 3 For Table 14 of the present invention, Example 23 of the present invention, Example 36 of the present invention, Example 42 of the present invention and Example 47 of the present invention, by changing the dimensions of the material to be solutionized (diameter of the copper alloy wire), Electric wires having a cross-sectional area of 0.13 mm 2 were manufactured by changing the processing degree ⁇ to 1, 3, 5, 7, 9, and 11. The procedure was the same as Example 1 except that the dimensions of the material to be solutionized were changed. Table 3 shows the characteristics of the obtained electric wire.
- Example 4 Inventive Example 14, Inventive Example 20, Inventive Example 23, Inventive Example 29, and Inventive Example 42 in Table 1 were subjected to a solution heat treatment at 750 to 950 ° C. for a wire having a diameter of 10 mm, An electric wire having a cross-sectional area of 0.13 mm 2 was manufactured by changing the conversion ratio ⁇ / ⁇ FULL from 0.5 to 0.9. The procedure was the same as in Example 1 except that the solution rate was changed. Table 4 shows the characteristics of the obtained electric wire.
- the solution rate was 0.7 or more (Invention Examples 14C-1 to 14C-4, 20C-1 to 20C-4, 23C-1 to 23C-4, 29C-1 to 29C-4, 42C-1 to 42C-4) satisfy all the characteristics, but when the solution rate is less than 0.7 (Comparative Examples Y1 to Y10), strength such as tensile strength and impact breaking load, and repeated bending The number of breaks and the terminal crimping strength after wire crimping are reduced and inferior.
- Table 5 shows comparative examples and reference examples.
- the configuration of each comparative example and reference example is as follows.
- Comparative Examples 1 to 7 are examples whose alloy compositions are outside the scope of the present invention.
- Comparative Examples 8 to 15 with respect to Invention Examples 5 and 14 in Table 1, the Y / T ratio is larger than the range of the present invention by changing the aging heat treatment condition after twisting to hold at a temperature of 500 ° C. for 30 seconds.
- the value n is 0.96, which is 0.02, which is smaller than the range of the present invention
- the cross-sectional reduction rate during crimping is 10, 20, 30, 40%.
- Comparative Examples 16 to 23 the inventive examples 20 and 29 in Table 1 were obtained by changing the aging heat treatment conditions after twisting to 570 ° C. for 8 hours, so that the Y / T ratio was within the range of the present invention.
- This is an example when 0.69 and 0.65 are set to be small, n values are set to 0.19 and 0.21 that are larger than the range of the present invention, respectively, and the cross-sectional reduction rate of crimping is set to 10, 20, 30, and 40%.
- Reference Examples 1 to 8 are examples of the inventive examples 5, 14, 20 and 29 shown in Table 1 when the cross-section reduction rate of the crimping is increased to 50% and 60%.
- Comparative Examples 1 to 7 the alloy composition is outside the range of the present invention, and satisfactory characteristics are not obtained in any of the evaluated points.
- Comparative Examples 8 to 15 are inferior in elongation, the number of repeated bending fractures, and impact fracture load compared to Invention Examples 5 and 14, and the terminal crimping strength is less than 50 N at a cross-section reduction rate of 40%.
- Comparative Examples 16 to 23 are inferior in tensile strength, number of repeated bending breaks, and terminal crimping strength as compared with Inventive Example 20 and Inventive Example 29.
- Reference Examples 1 to 8 are inferior in terminal crimping strength and lower than 50 N as compared with Invention Example 5, Invention Example 14, Invention Example 20 and Invention Example 29.
- Table 6 shows a conventional example.
- the conventional example was manufactured by the following steps. That is, about the alloy of the composition shown by the alloy component of Table 6, rough-drawing wire (corresponding to a copper alloy strand) having a diameter of 20 mm by a continuous casting and rolling apparatus by the method described in paragraph 0032 of the aforementioned Patent Document 1. Was then drawn cold to obtain a strand having a diameter of 0.175 mm. Seven strands were twisted and further compressed to obtain a stranded wire having a cross-sectional area of 0.13 mm 2 and further covered with an insulator (polyethylene) to obtain a wiring electric wire.
- an insulator polyethylene
- Conventional wires 1 and 3 were obtained by annealing the twisted wire with an electric heating device (heat treatment at an arrival temperature of 700 ° C. and an arrival time of 0.5 seconds), and conventional wires 2 and 4 were not annealed. Each characteristic was measured in the same manner as [1] to [8] described above.
- Example 5 No. 5 described in Tables 5 and 6 of the aforementioned Patent Document 3.
- the copper alloys 66, 70, and 79 were produced by the methods of Example 5 and Example 6 described in paragraphs 0045 and 0048 of Patent Document 3, respectively, to obtain copper alloy strands having a diameter of 6 mm.
- the copper alloy wire was drawn in the cold to obtain a copper alloy wire having a diameter of 0.175 mm. Seven wires were twisted and further compressed into a stranded wire having a cross-sectional area of 0.13 mm 2 .
- the wire drawing degree ⁇ at this time is 7.
- the stranded wire was subjected to an aging heat treatment at 400 to 450 ° C.
- the stranded wire is subjected to an aging heat treatment at 500 ° C. for 30 seconds or at 570 ° C. for 8 hours to obtain a wire conductor for wiring in which the Y / T ratio and the n value are out of the ranges specified in the present invention. It was. Also, after drawing the copper alloy strand having a diameter of 6 mm to a diameter of 0.07, 0.5, or 1.3 mm, each of the seven strands is twisted to form a stranded wire and subjected to aging heat treatment in the same manner as described above.
- the wire conductor for wiring was obtained by changing the value of the wire drawing degree ⁇ to 9, 5 and 3.
- the obtained wire conductor was coated with an insulator in the same manner as in Example 1 described in this specification to obtain an electric wire for wiring, and the characteristics were evaluated.
- the results are shown in Table 7.
- the numbers shown in parentheses in the sample numbers in Table 7 are alloy Nos. Described in the examples of Patent Document 3. It is.
- the present invention example 49 (66) means that it has the same alloy composition as that of the present invention example 49 and the same alloy composition as the alloy number 66 of Patent Document 3.
- Table 7 shows the following.
- the Y / T ratio, the n value, and the pre-aging degree of processing specified in the present invention (Examples 49, 49D-1, 49D-2 of the present invention) , 50, 50D-1, 50D-2, 51, 51D-1, 51D-2) showed excellent results for each characteristic, while the Y / T ratio and n value were specified in the present invention.
- any of tensile strength, elongation, number of repeated bending fractures, impact fracture strength, and terminal crimp strength is inferior.
- Comparative Example 2 Next, another comparative example is shown. No. 1 described in Table 1 of the aforementioned Patent Document 4.
- the copper alloys of Nos. 19 and 23 were each subjected to aging treatment by running heating at 350 ° C. for 30 seconds or 600 ° C. for 1200 seconds (20 minutes) according to the method described in claim 3 of Patent Document 4.
- the conductor used for the aging treatment was a stranded wire having a cross-sectional area of 0.13 mm 2 manufactured in the same process as in Example 1 described in this specification.
- the results are shown in Table 8.
- the numbers written in parentheses in the sample numbers in Table 8 are alloy Nos. Described in Table 1 of Patent Document 4. It is.
- Comparative Example 24 (19) means having the same alloy composition as Alloy No. 19 of Patent Document 4.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Conductive Materials (AREA)
- Non-Insulated Conductors (AREA)
- Insulated Conductors (AREA)
Abstract
Description
特許文献2に記載された時効析出型銅合金(コルソン合金)の電線導体は、伸び率が高く圧着強度、衝撃強度に優れ、信号回路用の電線には使用できるが、ヒューズ回路を使用する様な電力用の電線に用いるには導電率が低いという問題がある。
また、特許文献3には、連続鋳造圧延法により銅合金の荒引線を得るに際して高温で焼入れすることが記載され、特許文献4には銅合金線を時効熱処理することが記載されているが、電線導体のさらなる特性向上のためには、特許文献3~4に記載された技術以外の技術事項についても詳細な検討が必要となっている。
(1)Crを0.3~1.5質量%含有し、残部がCuと不可避不純物からなる組成を有する銅合金線材を複数本撚り合わせてなる配線用電線導体であって、引張強さが400MPa以上650MPa以下、破断時の伸びが7%以上、導電率が65%IACS以上、0.2%耐力と引張強さの比が0.7以上0.95以下であり、かつ加工硬化指数が0.03以上0.17以下であることを特徴とする、配線用電線導体。
(2)Crを0.3~1.5質量%、Zrを0.005~0.4質量%を含有し、残部がCuと不可避不純物からなる組成を有する銅合金線材を複数本撚り合わせてなる配線用電線導体であって、引張強さが400MPa以上650MPa以下、破断時の伸びが7%以上、導電率が65%IACS以上、0.2%耐力と引張強さの比が0.7以上0.95以下であり、かつ加工硬化指数が0.03以上0.17以下であることを特徴とする、配線用電線導体。
(3)前記銅合金線材の組成が、Snを0.1~0.6質量%、Agを0.005~0.3質量%、Mgを0.05~0.4質量%、Inを0.1~0.8質量%、およびSiを0.01~0.15質量%からなる群から選ばれる少なくとも1種をさらに含有することを特徴とする、前記(1)または(2)に記載の配線用電線導体。
(4)前記銅合金線材の組成が、前記Snを0.1~0.6質量%、Agを0.005~0.3質量%、Mgを0.05~0.4質量%、Inを0.1~0.8質量%、およびSiを0.01~0.15質量%からなる群から選ばれる少なくとも1種をこれらの含有量の合計として0.005~0.8質量%含有することを特徴とする、前記(3)に記載の配線用電線導体。
(5)前記銅合金線材の組成が、さらにZnを0.1~1.5質量%含有することを特徴とする、前記(1)~(4)のいずれか1項に記載の配線用電線導体。
(6)前記(1)~(5)のいずれか1項に記載の配線用電線導体を製造する方法であって、前記組成を有する銅合金に溶体化処理を施し、所定の線径に伸線加工して得た銅合金線材を複数本撚り合わせ、さらに圧縮した後、300~550℃で、1分~5時間時効熱処理を行うことを特徴とする配線用電線導体の製造方法。
(7)前記伸線加工における伸線加工度ηを、前記溶体化直後の材料の断面積をA0、前記時効直前の材料の断面積をA1とし、η=ln(A0/A1)で表したとき、ηの値が5以上であることを特徴とする、前記(6)記載の配線用電線導体の製造方法。
(8)前記(1)~(5)のいずれか1項に記載の配線用電線導体に、絶縁被覆が施されてなることを特徴とする、配線用電線。
(9)前記(1)~(5)のいずれか1項に記載の配線用電線導体の銅合金線材として用いられる銅合金素線であって、前記(1)~(4)のいずれかに記載の組成を有してなり、その電気抵抗率が完全に溶体化を行った時の電気抵抗率の70%以上であることを特徴とする、銅合金素線。
また、本発明の配線用電線導体の製造方法によれば、上述の優れた物性を有する配線用電線導体を製造できる。
本発明の配線用電線は、導体の細径化により電線重量を低減することができ、自動車およびロボット用その他の電線として好適である。
Agは強度を向上させる。Ag含有量が少なすぎるとその効果が充分に得られず、多すぎると特性上に悪影響はないもののその効果が飽和し、コスト高になる。これらの観点から、Agを含有させる場合の含有量は0.005質量%~0.3質量%とすることが好ましく、0.01~0.2質量%とすることがより好ましい。
Mgは銅に固溶し、格子を歪ませることで強度を向上させることができ、また加熱時の脆化を防ぎ熱間加工性を改善する効果もある。Mgを添加する場合の好ましい含有範囲は0.05~0.4質量%であり、0.1~0.3質量%であることがさらに好ましい。
Inは銅に固溶し、格子を歪ませることで強度を向上させることができる。ただし、Inの含有量が多すぎると導電率が低下する。よって、Inを添加する場合の好ましい含有範囲は0.1~0.8質量%であり、0.2~0.7質量%であることがさらに好ましい。
Siは銅に固溶し、格子を歪ませることで強度を向上させることができる。ただし、Siの含有量が多すぎると導電率が低下し、さらにCrと化合物を形成し析出硬化に寄与するCr量が減少する。よって、Siを添加する場合の好ましい含有範囲は0.01~0.15質量%であり、0.05~0.1質量%であることがさらに好ましい。
すなわち、本明細書において、銅合金線材とは伸線加工後の状態を指し、銅合金素線とは伸線加工前の状態を指す。銅合金素線の直径は、1mm~20mmとすることが好ましい。なお、溶体化は、熱間加工または連続鋳造圧延と同時に行い、工程を省略することもできる。また、冷間加工は省略することもできる。
本発明の配線用電線導体は、銅合金線材を複数本撚り合わせた撚線であるが、撚り合わされる銅合金線材の本数には特に制限はなく、通常、3~50本の銅合金線材を撚り合わせる。
時効熱処理では、Cr、Zrによる析出が生じ、強度の向上および導電率の向上が見られるが、同時に伸線加工で導入された歪の開放が生じるために引張強さ(T)に対する0.2%耐力(Y)の割合(これをY/T比と呼ぶ)が低下する。なお、Y/T比が低下する時効熱処理条件は伸線加工度により異なる。例えば、300~550℃で1分~5時間保持することで、Y/T比が適切な値の銅合金線材が得られる。
本発明において時効熱処理は、走間加熱での短時間での時効熱処理(例えば、1分~30分、400℃~550℃)で行なってもよい。あるいは、バッチ式の時効熱処理(例えば、1時間~5時間、300℃~500℃)で行なってもよい。いずれの場合でも、前記所定のY/T比を達成するように時効熱処理条件を調整すればよい。
表1の合金成分で示される組成の合金を高周波溶解炉にて溶解し、直径200mmの各ビレットを鋳造した。次に、溶体化処理を兼ねる熱間加工を施すため、前記ビレットを950℃で熱間押出して、直ちに水中焼入れを行い、直径20mmの銅合金素線を得た。次いで前記銅合金素線を冷間にて伸線し、直径0.175mmの銅合金線材を得た。前記線材を7本撚り合わせ、さらに圧縮して断面積0.13mm2の撚線(配線用の電線導体)とした。前記撚線を400~450℃で2時間時効熱処理を行い、さらに絶縁体(ポリエチレン)で被覆し、長さ1kmの配線用電線を製造した。
[1]引張強度
JIS Z 2241に準じて、各3本測定し、その平均値(MPa)を示した。
[2]0.2%耐力
JIS Z 2241に記載のオフセット法に準じ、0.2%の永久伸びが生じる時の応力を求めた。3本測定し、その平均値(MPa)を示した。
[3]伸び
JIS Z 2241に準じて3本測定し、その平均値(%)を示した。
[4]導電率
四端子法を用いて、20℃(±1℃)に管理された恒温槽中で、各試料について2本ずつ測定し、その平均値(%IACS)を示した。
[5]n値
上記の引張試験で得られた応力-歪線図を真応力-真歪線図に変換し、その傾きからn値を読み取った。
[6]屈曲性(繰返し曲げ破断回数)
屈曲性評価は、電線をマンドレルではさみ、線のたわみを抑えるために下端部におもりを吊るして荷重を掛け、この状態で左右に90度ずつ折り曲げて破断するまでの折り曲げ回数をそれぞれの試料について測定した。なお、回数は90度の曲げ戻しを一回と数えた。おもりは400g、マンドレルの直径はφ25mm(低歪付与用)およびφ5mm(高歪付与用)の2種類を用い、屈曲性を評価した。なお低歪付与において、屈曲回数が3000回を超えても破断しなかった場合は試験を中止し、結果を破断無しとした。また、高歪付与においては屈曲回数が300回を超えても破断しなかった場合は試験を中止し、結果を破断無しとした。いずれも、各試料について3回ずつ測定を行い、その最小値を記録した。
[7]衝撃破断強度
1mの電線の片端を固定、もう片端におもりを取り付け、固定端の位置からおもりを落下させて破断が生じる時のおもりの重量(N)を求めることで衝撃破断強度の比較を行った。試験は破断が生じた時のおもりの重量にて3回繰り返し、いずれも破断する時の荷重を求めた。なお、実用上は、破断荷重が4N未満であると、配索中に断線する恐れがある。
[8]端子圧着強度
電線を圧着端子に接続し、それぞれの両端を掴んで引張試験を行い、破断が生じた時の強度を求めた。圧着の断面減少率は20%とした。なお、実用上、圧着強度が50N未満であると、配線時または配線後に断線が生じる可能性が高くなる。
表1の本発明例5、本発明例14、本発明例20、本発明例23、本発明例29および本発明例42について、圧着の断面減少率を10、20、30、40%とした時の圧着強度を表2に示す。
表1の本発明例14、本発明例23、本発明例36、本発明例42および本発明例47について、溶体化を実施する材料の寸法(銅合金素線の直径)を変えることで、加工度ηを1、3、5、7、9、11と変化させて断面積0.13mm2の電線を製造した。溶体化を実施する材料の寸法を変化させた以外は、実施例1と同様とした。得られた電線の特性を表3に示す。
表1の本発明例14、本発明例20、本発明例23、本発明例29および本発明例42について、直径10mmの素線を750~950℃で溶体化熱処理を実施することで、溶体化率ρ/ρFULLを0.5~0.9に変化させて断面積0.13mm2の電線を製造した。溶体化率を変化させた以外は、実施例1と同様とした。得られた電線の特性を表4に示す。
表5に比較例、参考例を示す。各比較例、参考例の構成は、以下のとおりである。
比較例1~7は、合金組成が本発明の範囲外の例である。
比較例8~15は、表1の本発明例5および14について、撚線加工後の時効熱処理条件を温度500℃で30秒間保持に変えることにより、Y/T比を本発明の範囲より大きい0.96に、n値を本発明の範囲より小さい0.02にし、圧着時の断面減少率を10、20、30、40%とした時の例である。
比較例16~23は、表1の本発明例20および29について、撚線加工後の時効熱処理条件を温度570℃で8時間保持に変えることにより、Y/T比をそれぞれ本発明の範囲より小さい0.69、0.65とし、n値をそれぞれ本発明の範囲より大きい0.19、0.21として、圧着の断面減少率を10、20、30、40%とした時の例である。
参考例1~8は表1の本発明例5、14、20および29について、圧着の断面減少率を50%、60%と大きくしたときの例である。
比較例1~7は、合金組成が本発明の範囲外であり、評価したいずれかの点で満足な特性が得られていない。
比較例8~15は、本発明例5および本発明例14と比較し、伸び、繰返し曲げ破断回数、衝撃破断荷重が劣り、端子圧着強度は断面減少率40%において50Nを下回っている。
比較例16~23は、本発明例20および本発明例29と比較し、引張強さ、繰返し曲げ破断回数、端子圧着強度が劣っている。
参考例1~8は、本発明例5、本発明例14、本発明例20および本発明例29と比較し、いずれも端子圧着強度が劣り、50Nを下回っている。
表6に従来例を示す。従来例は以下の工程で製造した。すなわち、表6の合金成分で示される組成の合金について、前出の特許文献1の段落0032に記載された方法により連続鋳造圧延装置にて直径20mmの荒引き線(銅合金素線に相当)を製造し、次いで冷間にて伸線し、直径0.175mmの素線を得た。前記素線を7本撚り合わせ、さらに圧縮して断面積0.13mm2の撚線を得て、さらに絶縁体(ポリエチレン)で被覆して配線用電線とした。前記撚線を通電加熱装置で焼鈍(到達温度700℃、到達時間0.5秒の熱処理)したものを従来例1および3、焼鈍していないものを従来例2および4とした。各特性の測定は、前述の[1]~[8]と同じ方法とした。
従来例1~4では、引張強さ、伸び、屈曲性、衝撃破断強度、端子圧着強度のうち、少なくとも1つが劣り、実用的ではないことがわかった。
前出の特許文献3の表5および表6に記載のNo.66、70、79の銅合金について、それぞれ特許文献3の段落0045、0048に記載の実施例5および実施例6の方法で製造し、直径φ6mmの銅合金素線を得た。次いで前記銅合金素線を冷間にて伸線し、直径0.175mmの銅合金線材を得た。前記線材を7本撚り合わせ、さらに圧縮して断面積0.13mm2の撚線とした。なお、この時の伸線加工度ηは7である。前記撚線を400~450℃で2時間時効熱処理を行い、Y/T比およびn値を本発明で規定する範囲内となる様な配線用電線導体を得た。また、前記撚線を500℃で30秒間または570℃で8時間の時効熱処理を行うことで、Y/T比およびn値が本発明で規定する範囲外となる様な配線用電線導体を得た。
また、前記直径φ6mmの銅合金素線について、直径0.07、0.5または1.3mmに伸線後、それぞれ7本を撚り合わせて撚線とし、上記と同様に時効熱処理を行うことで、伸線加工度ηの値を9、5および3と変化させた配線用電線導体を得た。
得られた電線導体について、本明細書に記載の前記実施例1と同様に絶縁体被覆を行って配線用電線とし、特性を評価した。結果を表7に示す。表7の試料番号に括弧書きで併記した番号は、特許文献3の実施例に記載の合金No.である。例えば、本発明例49(66)とは、本発明例49と同一の合金組成であって、かつ、特許文献3の合金番号66とも同一の合金組成を有することを意味する。なお、ηが9、5および3の例は、線径が伸線加工度7の例とは異なるため、繰返し曲げ破断回数、衝撃破断荷重、端子圧着強度は直接比較対象とすることができない。よって表7にはこれらの結果は記載していない。
次に別の比較例を示す。前出の特許文献4の表1に記載のNo.19、23の銅合金について、それぞれ特許文献4の請求項3に記載の方法に従い、350℃で30秒間または600℃で1200秒間(20分間)の走間加熱による時効処理を行った。なお、時効処理に供する導体は、本明細書に記載の前記実施例1と同様の工程で製造した断面積0.13mm2の撚線とした。結果を表8に示す。表8の試料番号に括弧書きで併記した番号は、特許文献4の表1に記載の合金No.である。例えば、比較例24(19)とは、特許文献4の合金番号19と同一の合金組成を有することを意味する。
Claims (9)
- Crを0.3~1.5質量%含有し、残部がCuと不可避不純物からなる組成を有する銅合金線材を複数本撚り合わせてなる配線用電線導体であって、引張強さが400MPa以上650MPa以下、破断時の伸びが7%以上、導電率が65%IACS以上、0.2%耐力と引張強さの比が0.7以上0.95以下であり、かつ加工硬化指数が0.03以上0.17以下であることを特徴とする、配線用電線導体。
- Crを0.3~1.5質量%、Zrを0.005~0.4質量%を含有し、残部がCuと不可避不純物からなる組成を有する銅合金線材を複数本撚り合わせてなる配線用電線導体であって、引張強さが400MPa以上650MPa以下、破断時の伸びが7%以上、導電率が65%IACS以上、0.2%耐力と引張強さの比が0.7以上0.95以下であり、かつ加工硬化指数が0.03以上0.17以下であることを特徴とする、配線用電線導体。
- 前記銅合金線材の組成が、Snを0.1~0.6質量%、Agを0.005~0.3質量%、Mgを0.05~0.4質量%、Inを0.1~0.8質量%、およびSiを0.01~0.15質量%からなる群から選ばれる少なくとも1種をさらに含有することを特徴とする、請求項1または請求項2に記載の配線用電線導体。
- 前記銅合金線材の組成が、前記Snを0.1~0.6質量%、Agを0.005~0.3質量%、Mgを0.05~0.4質量%、Inを0.1~0.8質量%、およびSiを0.01~0.15質量%からなる群から選ばれる少なくとも1種をこれらの含有量の合計として0.005~0.8質量%含有することを特徴とする、請求項3に記載の配線用電線導体。
- 前記銅合金線材の組成が、さらにZnを0.1~1.5質量%含有することを特徴とする、請求項1~請求項4のいずれか1項に記載の配線用電線導体。
- 請求項1~請求項5のいずれか1項に記載の配線用電線導体を製造する方法であって、前記組成を有する銅合金に溶体化処理を施し、所定の線径に伸線加工して得た銅合金線材を複数本撚り合わせ、さらに圧縮した後、300~550℃で、1分~5時間時効熱処理を行うことを特徴とする配線用電線導体の製造方法。
- 前記伸線加工における伸線加工度ηを、前記溶体化直後の材料の断面積をA0、前記時効直前の材料の断面積をA1とし、η=ln(A0/A1)で表したとき、ηの値が5以上であることを特徴とする、請求項6記載の配線用電線導体の製造方法。
- 請求項1~請求項5のいずれか1項に記載の配線用電線導体に、絶縁被覆が施されていることを特徴とする、配線用電線。
- 請求項1~請求項5のいずれか1項に記載の配線用電線導体の銅合金線材として用いられる銅合金素線であって、請求項1~請求項4のいずれかに記載の組成を有してなり、その電気抵抗率が完全に溶体化を行った時の電気抵抗率の70%以上であることを特徴とする、銅合金素線。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010800121129A CN102356435B (zh) | 2009-01-26 | 2010-01-26 | 布线用电线导体、布线用电线导体的制造方法、布线用电线及铜合金线料 |
EP10733595.2A EP2385530A4 (en) | 2009-01-26 | 2010-01-26 | ELECTRIC WIRING GUIDE, METHOD FOR PRODUCING AN ELECTRIC WIRING GUIDE, ELECTRIC WIRING WIRE AND COPPER ALLOY WIRE |
KR1020147031697A KR101521408B1 (ko) | 2009-01-26 | 2010-01-26 | 배선용 전선 도체, 배선용 전선 도체의 제조방법, 배선용 전선 및 구리합금 소선 |
JP2010547546A JP4845069B2 (ja) | 2009-01-26 | 2010-01-26 | 配線用電線導体、配線用電線導体の製造方法、配線用電線および銅合金素線 |
US13/190,081 US8624119B2 (en) | 2009-01-26 | 2011-07-25 | Conductor of an electrical wire for wiring, method of producing a conductor of an electrical wire for wiring, electrical wire for wiring, and copper alloy solid wire |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009014420 | 2009-01-26 | ||
JP2009-014420 | 2009-01-26 | ||
JP2009-292071 | 2009-12-24 | ||
JP2009292071 | 2009-12-24 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/190,081 Continuation US8624119B2 (en) | 2009-01-26 | 2011-07-25 | Conductor of an electrical wire for wiring, method of producing a conductor of an electrical wire for wiring, electrical wire for wiring, and copper alloy solid wire |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010084989A1 true WO2010084989A1 (ja) | 2010-07-29 |
Family
ID=42356039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/050993 WO2010084989A1 (ja) | 2009-01-26 | 2010-01-26 | 配線用電線導体、配線用電線導体の製造方法、配線用電線および銅合金素線 |
Country Status (6)
Country | Link |
---|---|
US (1) | US8624119B2 (ja) |
EP (1) | EP2385530A4 (ja) |
JP (2) | JP4845069B2 (ja) |
KR (2) | KR101521408B1 (ja) |
CN (1) | CN102356435B (ja) |
WO (1) | WO2010084989A1 (ja) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012028057A (ja) * | 2010-07-21 | 2012-02-09 | Yazaki Corp | 電線及び端子付電線 |
WO2012074572A1 (en) * | 2010-12-02 | 2012-06-07 | Fisk Alloy, Inc | High strength, high conductivity copper alloys and electrical conductors made therefrom |
WO2012153756A1 (ja) * | 2011-05-11 | 2012-11-15 | 住友電気工業株式会社 | ケーブル及びその製造方法 |
WO2013014904A3 (en) * | 2011-07-28 | 2013-04-04 | Yazaki Corporation | Conductor for electric wire |
KR20140049591A (ko) * | 2011-09-29 | 2014-04-25 | 엔지케이 인슐레이터 엘티디 | 구리 합금 선재 및 그 제조 방법 |
WO2014103750A1 (ja) * | 2012-12-26 | 2014-07-03 | 矢崎総業株式会社 | 絶縁電線 |
WO2015129457A1 (ja) * | 2014-02-28 | 2015-09-03 | 株式会社オートネットワーク技術研究所 | 銅合金撚線およびその製造方法、自動車用電線 |
WO2015159671A1 (ja) * | 2014-04-14 | 2015-10-22 | 株式会社オートネットワーク技術研究所 | 銅合金素線、銅合金撚線および自動車用電線 |
CN105483582A (zh) * | 2016-01-27 | 2016-04-13 | 西安交通大学 | 一种高速铁路电网接触线用高强高导铬锆铜合金的制备方法 |
WO2016170992A1 (ja) * | 2015-04-21 | 2016-10-27 | 株式会社オートネットワーク技術研究所 | 銅合金線、銅合金撚線、被覆電線およびワイヤーハーネス |
US11545277B2 (en) | 2018-08-30 | 2023-01-03 | Hitachi Metals, Ltd. | Copper alloy wire, cable, and method of manufacturing copper alloy wire |
WO2024116240A1 (ja) * | 2022-11-28 | 2024-06-06 | Swcc株式会社 | 銅合金線、絶縁電線、端子付き絶縁電線および銅合金線の製造方法 |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102392154B (zh) * | 2011-11-25 | 2014-04-02 | 汕头华兴冶金设备股份有限公司 | 一种高强高导铜合金材料 |
JP6140555B2 (ja) * | 2013-07-08 | 2017-05-31 | Jx金属株式会社 | Cu−Zr−Ti系銅合金条 |
JP5632063B1 (ja) * | 2013-11-19 | 2014-11-26 | Jx日鉱日石金属株式会社 | 銅合金板、並びに、それを備える大電流用電子部品及び放熱用電子部品 |
JP6207539B2 (ja) * | 2015-02-04 | 2017-10-04 | Jx金属株式会社 | 銅合金条およびそれを備える大電流用電子部品及び放熱用電子部品 |
JP6593778B2 (ja) * | 2016-02-05 | 2019-10-23 | 住友電気工業株式会社 | 被覆電線、端子付き電線、銅合金線、及び銅合金撚線 |
JP2017199457A (ja) * | 2016-04-25 | 2017-11-02 | 矢崎総業株式会社 | 高屈曲絶縁電線及びワイヤーハーネス |
WO2018034098A1 (ja) * | 2016-08-16 | 2018-02-22 | 古河電気工業株式会社 | 回転コネクタ装置 |
KR102367066B1 (ko) * | 2016-09-20 | 2022-02-24 | 후루카와 덴끼고교 가부시키가이샤 | 플랫 케이블, 플랫 케이블의 제조 방법, 및 플랫 케이블을 구비한 회전 커넥터 장치 |
CN109923224A (zh) * | 2016-11-07 | 2019-06-21 | 住友电气工业株式会社 | 连接器端子用线材 |
JP2018077942A (ja) * | 2016-11-07 | 2018-05-17 | 住友電気工業株式会社 | 被覆電線、端子付き電線、銅合金線、及び銅合金撚線 |
JP6172368B1 (ja) * | 2016-11-07 | 2017-08-02 | 住友電気工業株式会社 | 被覆電線、端子付き電線、銅合金線、及び銅合金撚線 |
CN108118179A (zh) * | 2017-12-25 | 2018-06-05 | 浙江力博实业股份有限公司 | 一种高性能铜铬银合金带材的制备方法 |
CN108179305A (zh) * | 2017-12-25 | 2018-06-19 | 浙江力博实业股份有限公司 | 一种连续挤压制备铜铬锆合金棒材的方法 |
CN108118180A (zh) * | 2017-12-25 | 2018-06-05 | 浙江力博实业股份有限公司 | 一种引线框架用铜铬锆合金带材的制备方法 |
CN108018440A (zh) * | 2017-12-25 | 2018-05-11 | 浙江力博实业股份有限公司 | 一种高强高导铜合金丝材的制备方法 |
CN108018441A (zh) * | 2017-12-25 | 2018-05-11 | 浙江力博实业股份有限公司 | 一种高性能铜合金丝材的制备方法 |
CN108004428A (zh) * | 2017-12-25 | 2018-05-08 | 浙江力博实业股份有限公司 | 一种连续挤压制备铜铬银合金棒材的方法 |
FR3078078B1 (fr) * | 2018-02-21 | 2021-02-12 | Lebronze Alloys | Procede de fabrication d'un fil fin conducteur ou d'un fil de contact catenaire |
CN109022892A (zh) * | 2018-07-10 | 2018-12-18 | 浙江力博实业股份有限公司 | 一种电极材料用铜铬铝镁合金的制备方法 |
CN108893646A (zh) * | 2018-07-10 | 2018-11-27 | 浙江力博实业股份有限公司 | 一种电极材料用铜铬锆铌合金的制备方法 |
CN113299421B (zh) * | 2020-02-06 | 2023-10-31 | 株式会社博迈立铖 | 铜合金线、镀敷线、电线和电缆 |
CN114765081A (zh) * | 2021-01-14 | 2022-07-19 | 日立金属株式会社 | 铜合金线、镀线、电线及电缆 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03162539A (ja) | 1989-11-20 | 1991-07-12 | Yazaki Corp | 耐屈曲性に優れた導電用高力銅合金 |
JPH0649592A (ja) * | 1992-06-04 | 1994-02-22 | Sumitomo Metal Ind Ltd | 高強度・高延性鋼線用高炭素鋼線材 |
JPH0689620A (ja) * | 1992-09-09 | 1994-03-29 | Furukawa Electric Co Ltd:The | 高導電性高強度撚り線の製造法 |
JPH06316735A (ja) * | 1993-04-28 | 1994-11-15 | Mitsubishi Materials Corp | 吊架線 |
JPH0967629A (ja) * | 1995-08-28 | 1997-03-11 | Hitachi Cable Ltd | 銅合金線 |
JPH09190718A (ja) * | 1996-01-11 | 1997-07-22 | Mitsubishi Cable Ind Ltd | き電吊架線 |
JP2000073153A (ja) * | 1998-08-27 | 2000-03-07 | Hitachi Cable Ltd | 銅合金線及びその製造方法 |
JP2001234309A (ja) * | 2000-02-16 | 2001-08-31 | Hitachi Cable Ltd | 極細銅合金撚線の製造方法 |
JP2008016284A (ja) | 2006-07-05 | 2008-01-24 | Auto Network Gijutsu Kenkyusho:Kk | 自動車用電線導体 |
JP2008088549A (ja) | 2006-09-05 | 2008-04-17 | Furukawa Electric Co Ltd:The | 線材の製造方法、線材の製造装置および銅合金線 |
JP2008266764A (ja) | 2006-06-01 | 2008-11-06 | Furukawa Electric Co Ltd:The | 銅合金線材の製造方法および銅合金線材 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5705125A (en) * | 1992-05-08 | 1998-01-06 | Mitsubishi Materials Corporation | Wire for electric railways |
JP2732490B2 (ja) * | 1994-03-25 | 1998-03-30 | 日鉱金属株式会社 | 電子機器用高力高導電性銅合金の製造方法 |
US6053994A (en) * | 1997-09-12 | 2000-04-25 | Fisk Alloy Wire, Inc. | Copper alloy wire and cable and method for preparing same |
CN100466109C (zh) * | 2003-09-02 | 2009-03-04 | 住友电工钢铁电缆株式会社 | 包线及机动车用束线 |
US7491891B2 (en) * | 2004-05-19 | 2009-02-17 | Sumitomo (Sei) Steel Wire Corp. | Composite wire for wire-harness and process for producing the same |
JP4171735B2 (ja) * | 2005-03-31 | 2008-10-29 | 日鉱金属株式会社 | クロム含有銅合金の製造方法、クロム含有銅合金および伸銅品 |
JP4885016B2 (ja) * | 2007-03-02 | 2012-02-29 | 古河電気工業株式会社 | 半導体収容金属容器用銅合金線材 |
-
2010
- 2010-01-26 WO PCT/JP2010/050993 patent/WO2010084989A1/ja active Application Filing
- 2010-01-26 CN CN2010800121129A patent/CN102356435B/zh not_active Expired - Fee Related
- 2010-01-26 KR KR1020147031697A patent/KR101521408B1/ko active IP Right Grant
- 2010-01-26 JP JP2010547546A patent/JP4845069B2/ja active Active
- 2010-01-26 KR KR1020117019618A patent/KR20110111502A/ko active Application Filing
- 2010-01-26 EP EP10733595.2A patent/EP2385530A4/en not_active Withdrawn
-
2011
- 2011-05-02 JP JP2011103154A patent/JP5367759B2/ja active Active
- 2011-07-25 US US13/190,081 patent/US8624119B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03162539A (ja) | 1989-11-20 | 1991-07-12 | Yazaki Corp | 耐屈曲性に優れた導電用高力銅合金 |
JPH0649592A (ja) * | 1992-06-04 | 1994-02-22 | Sumitomo Metal Ind Ltd | 高強度・高延性鋼線用高炭素鋼線材 |
JPH0689620A (ja) * | 1992-09-09 | 1994-03-29 | Furukawa Electric Co Ltd:The | 高導電性高強度撚り線の製造法 |
JPH06316735A (ja) * | 1993-04-28 | 1994-11-15 | Mitsubishi Materials Corp | 吊架線 |
JPH0967629A (ja) * | 1995-08-28 | 1997-03-11 | Hitachi Cable Ltd | 銅合金線 |
JPH09190718A (ja) * | 1996-01-11 | 1997-07-22 | Mitsubishi Cable Ind Ltd | き電吊架線 |
JP2000073153A (ja) * | 1998-08-27 | 2000-03-07 | Hitachi Cable Ltd | 銅合金線及びその製造方法 |
JP2001234309A (ja) * | 2000-02-16 | 2001-08-31 | Hitachi Cable Ltd | 極細銅合金撚線の製造方法 |
JP2008266764A (ja) | 2006-06-01 | 2008-11-06 | Furukawa Electric Co Ltd:The | 銅合金線材の製造方法および銅合金線材 |
JP2008016284A (ja) | 2006-07-05 | 2008-01-24 | Auto Network Gijutsu Kenkyusho:Kk | 自動車用電線導体 |
JP2008088549A (ja) | 2006-09-05 | 2008-04-17 | Furukawa Electric Co Ltd:The | 線材の製造方法、線材の製造装置および銅合金線 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2385530A4 |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9263165B2 (en) | 2010-07-21 | 2016-02-16 | Yazaki Corporation | Electrical wire and electrical wire with terminal |
DE112011102402B4 (de) | 2010-07-21 | 2020-07-30 | Yazaki Corporation | Draht mit Anschluss |
US9786403B2 (en) | 2010-07-21 | 2017-10-10 | Yazaki Corporation | Electrical wire and electrical wire with terminal |
JP2012028057A (ja) * | 2010-07-21 | 2012-02-09 | Yazaki Corp | 電線及び端子付電線 |
WO2012074572A1 (en) * | 2010-12-02 | 2012-06-07 | Fisk Alloy, Inc | High strength, high conductivity copper alloys and electrical conductors made therefrom |
CN103429770A (zh) * | 2010-12-02 | 2013-12-04 | 菲斯克合金有限公司 | 高强度、高导电性铜合金以及由其制得的电导体 |
WO2012153756A1 (ja) * | 2011-05-11 | 2012-11-15 | 住友電気工業株式会社 | ケーブル及びその製造方法 |
JP2012238438A (ja) * | 2011-05-11 | 2012-12-06 | Sumitomo Electric Ind Ltd | ケーブル及びその製造方法 |
WO2013014904A3 (en) * | 2011-07-28 | 2013-04-04 | Yazaki Corporation | Conductor for electric wire |
US9754703B2 (en) | 2011-09-29 | 2017-09-05 | Ngk Insulators, Ltd. | Copper alloy wire rod and method for manufacturing the same |
KR101698656B1 (ko) * | 2011-09-29 | 2017-01-20 | 엔지케이 인슐레이터 엘티디 | 구리 합금 선재 및 그 제조 방법 |
KR20140049591A (ko) * | 2011-09-29 | 2014-04-25 | 엔지케이 인슐레이터 엘티디 | 구리 합금 선재 및 그 제조 방법 |
WO2014103750A1 (ja) * | 2012-12-26 | 2014-07-03 | 矢崎総業株式会社 | 絶縁電線 |
CN104885164A (zh) * | 2012-12-26 | 2015-09-02 | 矢崎总业株式会社 | 绝缘电线 |
WO2015129457A1 (ja) * | 2014-02-28 | 2015-09-03 | 株式会社オートネットワーク技術研究所 | 銅合金撚線およびその製造方法、自動車用電線 |
JP2015161013A (ja) * | 2014-02-28 | 2015-09-07 | 株式会社オートネットワーク技術研究所 | 銅合金撚線およびその製造方法、自動車用電線 |
JP2015203136A (ja) * | 2014-04-14 | 2015-11-16 | 株式会社オートネットワーク技術研究所 | 銅合金素線、銅合金撚線および自動車用電線 |
US10074452B2 (en) | 2014-04-14 | 2018-09-11 | Autonetworks Technologies, Ltd. | Copper alloy element wire, copper alloy stranded wire, and automotive electric wire |
WO2015159671A1 (ja) * | 2014-04-14 | 2015-10-22 | 株式会社オートネットワーク技術研究所 | 銅合金素線、銅合金撚線および自動車用電線 |
WO2016170992A1 (ja) * | 2015-04-21 | 2016-10-27 | 株式会社オートネットワーク技術研究所 | 銅合金線、銅合金撚線、被覆電線およびワイヤーハーネス |
JP2016204702A (ja) * | 2015-04-21 | 2016-12-08 | 株式会社オートネットワーク技術研究所 | 銅合金線、銅合金撚線、被覆電線およびワイヤーハーネス |
CN105483582A (zh) * | 2016-01-27 | 2016-04-13 | 西安交通大学 | 一种高速铁路电网接触线用高强高导铬锆铜合金的制备方法 |
US11545277B2 (en) | 2018-08-30 | 2023-01-03 | Hitachi Metals, Ltd. | Copper alloy wire, cable, and method of manufacturing copper alloy wire |
WO2024116240A1 (ja) * | 2022-11-28 | 2024-06-06 | Swcc株式会社 | 銅合金線、絶縁電線、端子付き絶縁電線および銅合金線の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2385530A1 (en) | 2011-11-09 |
EP2385530A4 (en) | 2014-08-06 |
CN102356435A (zh) | 2012-02-15 |
JPWO2010084989A1 (ja) | 2012-07-19 |
KR20150001819A (ko) | 2015-01-06 |
JP5367759B2 (ja) | 2013-12-11 |
KR101521408B1 (ko) | 2015-05-18 |
JP4845069B2 (ja) | 2011-12-28 |
KR20110111502A (ko) | 2011-10-11 |
CN102356435B (zh) | 2013-08-07 |
US20120018192A1 (en) | 2012-01-26 |
US8624119B2 (en) | 2014-01-07 |
JP2011210730A (ja) | 2011-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5367759B2 (ja) | 配線用電線導体、配線用電線導体の製造方法、配線用電線および銅合金素線 | |
JP5751268B2 (ja) | 銅合金線、銅合金撚線、被覆電線、及び端子付き電線 | |
JP5306591B2 (ja) | 配線用電線導体、配線用電線、及びそれらの製造方法 | |
WO2015064357A1 (ja) | 銅合金線、銅合金撚線、被覆電線、ワイヤーハーネス及び銅合金線の製造方法 | |
JP6573172B2 (ja) | 銅合金線、銅合金撚線、電線、端子付き電線、及び銅合金線の製造方法 | |
US20100294534A1 (en) | Conductor wire for electronic apparatus and electrical wire for wiring using the same | |
CN106232843B (zh) | 铜合金线材、铜合金绞线和汽车用电线 | |
WO2018083812A1 (ja) | 被覆電線、端子付き電線、銅合金線、及び銅合金撚線 | |
EP3362581A1 (en) | Aluminum-iron-zirconium alloys | |
WO2011071097A1 (ja) | 送電体及びその製造方法 | |
JP7503240B2 (ja) | 被覆電線、端子付き電線、銅合金線、銅合金撚線、及び銅合金線の製造方法 | |
JP2020037745A (ja) | 被覆電線、端子付き電線、銅合金線、及び銅合金撚線 | |
JP6135949B2 (ja) | 銅合金線、銅合金撚線、被覆電線、及び端子付き電線 | |
JP7054482B2 (ja) | 被覆電線の製造方法、銅合金線の製造方法、及び銅合金撚線の製造方法 | |
WO2009154239A1 (ja) | 配線用電線導体、配線用電線および配線用電線導体の製造方法 | |
WO2018084263A1 (ja) | 被覆電線、端子付き電線、銅合金線、及び銅合金撚線 | |
US20210183532A1 (en) | Covered electrical wire, terminal-equipped electrical wire, copper alloy wire, copper alloy stranded wire, and method for manufacturing copper alloy wire | |
JP6807027B2 (ja) | 被覆電線、端子付き電線、銅合金線、及び銅合金撚線 | |
JP2020037744A (ja) | 被覆電線、端子付き電線、及び銅合金線 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080012112.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10733595 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010547546 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2010733595 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010733595 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20117019618 Country of ref document: KR Kind code of ref document: A |