[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018034098A1 - 回転コネクタ装置 - Google Patents

回転コネクタ装置 Download PDF

Info

Publication number
WO2018034098A1
WO2018034098A1 PCT/JP2017/025927 JP2017025927W WO2018034098A1 WO 2018034098 A1 WO2018034098 A1 WO 2018034098A1 JP 2017025927 W JP2017025927 W JP 2017025927W WO 2018034098 A1 WO2018034098 A1 WO 2018034098A1
Authority
WO
WIPO (PCT)
Prior art keywords
flat cable
conductor
mass
connector device
rotary connector
Prior art date
Application number
PCT/JP2017/025927
Other languages
English (en)
French (fr)
Inventor
亮佑 松尾
賢悟 水戸瀬
Original Assignee
古河電気工業株式会社
古河As株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社, 古河As株式会社 filed Critical 古河電気工業株式会社
Priority to JP2017564136A priority Critical patent/JP6932650B2/ja
Priority to EP17841326.6A priority patent/EP3503314A4/en
Priority to KR1020187000008A priority patent/KR102423790B1/ko
Priority to CN201780002639.5A priority patent/CN107960140B/zh
Publication of WO2018034098A1 publication Critical patent/WO2018034098A1/ja
Priority to US15/957,500 priority patent/US10574012B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R35/00Flexible or turnable line connectors, i.e. the rotation angle being limited
    • H01R35/04Turnable line connectors with limited rotation angle with frictional contact members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/023Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
    • B60R16/027Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems between relatively movable parts of the vehicle, e.g. between steering wheel and column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/017Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including arrangements for providing electric power to safety arrangements or their actuating means, e.g. to pyrotechnic fuses or electro-mechanic valves
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0016Apparatus or processes specially adapted for manufacturing conductors or cables for heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0036Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/08Flat or ribbon cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/08Flat or ribbon cables
    • H01B7/0823Parallel wires, incorporated in a flat insulating profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/08Flat or ribbon cables
    • H01B7/0838Parallel wires, sandwiched between two insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R2201/00Connectors or connections adapted for particular applications
    • H01R2201/26Connectors or connections adapted for particular applications for vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R35/00Flexible or turnable line connectors, i.e. the rotation angle being limited
    • H01R35/02Flexible line connectors without frictional contact members
    • H01R35/025Flexible line connectors without frictional contact members having a flexible conductor wound around a rotation axis
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0277Bendability or stretchability details
    • H05K1/028Bending or folding regions of flexible printed circuits

Definitions

  • the present invention relates to a rotary connector device that accommodates a flat cable, and more particularly to a rotary connector device that is attached to a vehicle.
  • a rotating connector device for supplying electric power to an airbag device or the like is attached to a connecting portion between a steering wheel for steering and a steering shaft.
  • the rotary connector device includes a stator, a rotator rotatably assembled to the stator, and a flexible flat cable (FFC) wound and accommodated in an annular internal space formed by the stator and the rotator.
  • the end of the FFC is provided with a connection structure that electrically connects the FFC and the outside.
  • the FFC includes a plurality of conductors arranged in parallel, a pair of insulating films arranged so as to sandwich the plurality of conductors, and an adhesive layer provided between the pair of insulating films.
  • a laminate structure composed of a conductor, a pair of insulating films and an adhesive layer.
  • the conductor is made of, for example, tough pitch copper, oxygen-free copper, or the like.
  • the insulating film has an adhesive layer made of polyester, polyurethane, polyamide, or polystyrene resin, and the plurality of conductors are sandwiched between the pair of insulating films via the adhesive layer. By bonding, the conductors or the conductor and the outside are insulated.
  • one or more of B, Sn, In, and Mg are added in a total amount of 0.005 to 0.045%, and the crystal grain is refined to 7 ⁇ m or less.
  • a flat cable conductor made of Patent Document 2.
  • a copper alloy added with 10 wt% or less of Ag is used as a base material, and a heat treatment is performed on a flat conductor whose surface is plated with Sn.
  • the tensile strength is 350 MPa or more, the elongation is 5% or more, and the conductivity is 70% IACS or more.
  • a flat rectangular conductor has been proposed (Patent Document 3).
  • Patent Document 1 since it is necessary to make the bending radius about 8 mm in order to maintain the bending characteristics of the conductor, it is impossible to reduce the size of the rotary connector device. In the case of downsizing, sufficient elasticity and bending properties cannot be obtained. In particular, in a conventional flat cable using a conductor made of tough pitch copper, it is difficult to wind or unwind the flat cable because sufficient elasticity cannot be obtained when it is downsized. Further, since the bending characteristic is insufficient, the life required for the rotary connector device cannot be satisfied, and the signal transmission by the conductor cannot be sufficiently performed.
  • the bending characteristics of the conductor are insufficient only by controlling the crystal grain size by defining the additive element species and the content of the additive element in the copper alloy. Furthermore, in the technique of Patent Document 3, elongation of 5% or more is essential, and if the elongation is out of the range, the rigidity is strong and bending is difficult, and the conductor may be buckled during bending. However, it has been found that the bending characteristics of the conductor are insufficient even when the elongation is 5% or more. In particular, in recent years, the performance and functionality of automobiles have been improved, and the durability of various devices and equipment mounted on automobiles has been demanded from the viewpoint of improving reliability and safety. There is a need for further improvement in the bending characteristics of the flat cable in the apparatus.
  • An object of the present invention is to provide a rotary connector device including a flat cable capable of realizing sufficient elasticity while realizing high elasticity while maintaining high conductivity and further improving bending characteristics.
  • the present inventor has found a relationship between the bending radius of the flat cable and the 0.2% proof stress of the flat cable when exceeding a predetermined number of bending lives. And by defining the range of the content of each element and providing each strengthening mechanism of solid solution, precipitation, crystal grain refinement and processing, sufficient elasticity can be exhibited, and the bending characteristics can be further improved I found.
  • sufficient elasticity means that it is easy to deform
  • the gist of the present invention is as follows. [1] A fixing member, a rotating member rotatably attached to the fixing member, and a flat cable accommodated in an annular space between the fixing member and the rotating member, One end of the flat cable is connected to a fixed connector fixed to the fixing member, the other end of the flat cable is connected to a rotating connector fixed to the rotating member, and the longitudinal direction of the flat cable A folded portion that is bent and folded is formed in the middle portion of The flat cable has a predetermined number of conductors made of a copper alloy, and is wound or unwound in a state where the bending is maintained at the folded portion, and the bending radius is set to X, 0 within a bending radius of 4 mm to 8 mm.
  • the conductor is 0.1 to 0.8 mass% tin, 0.05 to 0.8 mass% magnesium, 0.01 to 0.5 mass% chromium, 0.1 to 5.0 mass %
  • zinc 0.02 to 0.3% by weight of titanium, 0.01 to 0.2% by weight of zirconium, 0.01 to 3.0% by weight of iron, 0.001 to 0.2% by weight Containing one or more of phosphorous, 0.01-0.3 wt% silicon, 0.01-0.3 wt% silver, and 0.1-1.0 wt% nickel And the remainder consists of copper and an unavoidable impurity
  • the rotation connector apparatus of said [1] characterized by the above-mentioned.
  • the conductor has a width of 0.3 mm to 0.5 mm and a thickness of 0.030 mm to 0.039 mm.
  • the heat treatment step is an aging heat treatment step performed at a heating temperature of 400 to 550 ° C. and a heating time of 1 to 6 hours.
  • the rotary connector device of the present invention sufficient elasticity can be obtained even when the rotary connector device is downsized while maintaining high conductivity.
  • the flat cable is wound with folding while maintaining a bending radius of 4 mm to 8 mm. It can be tightened or rewound.
  • the structure-controlled copper alloy contributes to the improvement of the bending characteristics, and therefore satisfies the fatigue characteristics required for the rotary connector device. Therefore, when the steering wheel is steered in the vehicle and the flat cable repeatedly bends with clockwise or counterclockwise rotation, the bending characteristics of the flat cable can be further improved. It is possible to provide a flat cable with improved bending life, reliability and safety.
  • FIG. 3 is a cross-sectional view in the width direction showing the configuration of the flat cable in FIG. 2.
  • FIG. 1 is a perspective view schematically showing a configuration of a rotary connector device according to an embodiment of the present invention.
  • the rotary connector device 1 includes a stator 11 (fixed member), a rotator 12 (rotary member) attached to the stator 11 so as to be rotatable around an axis x, and a stator 11 and the rotator 12. And the flat cable 13 accommodated in the annular space S1.
  • the stator 11 is fixed to the vehicle body of the vehicle, and the rotator 12 is attached to the steering wheel.
  • the stator 11 forms an annular or substantially annular stator body 11-1 centered on the axis x and a stator side connector housing space S2 having a circular engagement hole (not shown) centered on the axis x. And a stator side connector housing portion 11-2.
  • the engagement hole formed in the stator main body 11-1 accommodates the lower end (in the direction of arrow D in FIG. 1) of a cylindrical portion of the rotator 12 described later, and is formed so as to be engageable with the end. Has been.
  • the rotator 12 communicates the annular rotator main body 12-1 provided around the axis x (the direction of arrows A and B in FIG. 1), the annular space S1, and the outside, and defines the rotator-side connector housing space S3. And a rotator side connector accommodating portion 12-2.
  • the rotator main body 12-1 has a hollow disk-like or substantially hollow disk-shaped top plate portion 12-1a centering on the axis x, and an annular shape along the axis x from the inner peripheral end of the top plate portion 12-1a. And a cylindrical portion 12-1b extending toward the space S1.
  • the top plate portion 12-1a defines a portion facing upward (in the direction of arrow C in FIG. 1) in the rotary connector device 1.
  • the cylindrical portion 12-1b is formed to be engaged with a corresponding portion of the stator 11 so as to be rotatable about the axis x.
  • the annular space S1 is defined by the top plate portion 12-1a and the cylindrical portion 12-1b of the rotator 12 and the stator body 11-1 of the stator 11.
  • the rotator 12 is rotatably engaged with the engaging hole of the stator body 11-1 of the stator 11 at the lower end of the cylindrical portion 12-1b. Is held in.
  • stator-side connector housing space S2 of the stator-side connector housing 11-2 One end of the flat cable 13 drawn out from the annular space S1 is inserted into the stator-side connector housing space S2 of the stator-side connector housing 11-2.
  • a stator side connector fixed side connector
  • a terminal insertion hole is formed.
  • the other end of the flat cable 13 drawn out from the annular space S1 is inserted into the rotator-side connector housing space S3 of the rotator-side connector housing portion 12-2, similarly to the stator-side connector housing space S2. Further, in the rotator side connector housing portion 12-2, a rotation side into which a rotator side connector (rotation side connector) of a cable drawn from an electrical component (for example, a horn switch, an airbag module, etc.) provided in the steering wheel can be inserted. A terminal insertion hole 12-2a is formed. When the stator-side connector is attached to the rotator-side connector housing portion 12-2, the other end of the flat cable 13 is connected to the stator-side connector fixed to the rotator 12.
  • an electrical component for example, a horn switch, an airbag module, etc.
  • the flat cable 13 is wound so as to have a slack of an appropriate length in the annular space S1, and the length of the slack changes as the rotator 12 rotates with respect to the stator 11.
  • a plurality of flat cables 13 can be held in a state where they are always aligned in the annular space S1 so as to follow the change in the slack length.
  • the flat cable 13 is provided with a folded portion 13a that is bent and folded at an intermediate portion in the longitudinal direction of the flat cable in the annular space S1.
  • a plurality of flat cables 13 having the folded portion 13a are arranged around the axis x.
  • the bending radius of the folded portion 13a is 4 mm to 8 mm, preferably 4.0 mm to 6.5 mm, and more preferably 4 mm to 5 mm.
  • the flat cable 13 is wound or unwound in a state where the bent portion 13a maintains the bending.
  • four flat cables 13 are arranged in FIG. 2, the present invention is not limited to this, and a required number of flat cables 13 may be arranged.
  • one or two of the four flat cables shown in FIG. 2 may be dummy cables (resin films having no conductors).
  • the electrical components such as the airbag module on the steering wheel side and the electrical circuit on the vehicle body side are electrically connected via the flat cable 13.
  • the rotary connector device 1 can supply power or transmit signals.
  • the flat cable 13 of the present embodiment includes a predetermined number of conductors 21-1, 21-2, 21-3, 21-4, 21-5, 21-6 made of, for example, a copper alloy, It has a pair of insulating films 22 and 23 disposed so as to sandwich the plurality of conductors, and an adhesive layer 24 provided between the pair of insulating films.
  • the flat cable 1 of this embodiment is a flexible flat cable (FFC), for example.
  • the conductors 21-1 to 21-6 are arranged side by side so that the in-plane directions of the rolling surfaces are substantially the same, and an insulating film 22 is provided on one rolling surface side of these conductors, and the other rolling surface side is provided.
  • the conductors 21-1 to 21-6 have a width of 0.1 mm to 15 mm, preferably a width of 0.3 mm to 15 mm, more preferably a width of 0.3 mm to 0.5 mm, and a thickness of 0.02 mm to 0.05 mm.
  • the thickness is preferably 0.030 mm to 0.039 mm.
  • the cross-sectional area in the width direction of each of the conductors 21-1 to 21-6 is 0.75 mm 2 or less, preferably 0.02 mm 2 or less.
  • the adhesive layer 24 has a thickness sufficient to embed a plurality of conductors 21-1 to 21-6, and is sandwiched between a pair of insulating films 22 and 23.
  • the adhesive layer 24 is made of a known adhesive that matches the pair of insulating films 22 and 23.
  • the pair of insulating films 22 and 23 is made of a resin capable of exhibiting good adhesion to the adhesive layer 24 and / or the plurality of conductors 21-1 to 21-6. Further, as a preferred example, an outermost layer of polyethylene terephthalate which has a melting point of 200 ° C. or more and does not melt when the adhesive layer of the pair of insulating films 22 and 23 is fused, and an adhesive layer of a polyester resin It may be composed of two layers.
  • the pair of insulating films 22 and 23 are, for example, 6 mm to 15 mm wide and 0.01 mm to 0.05 mm thick.
  • the conductor is 0.1 to 0.8% by mass of tin (Sn), 0.05 to 0.8% by mass of magnesium (Mg), 0.01 to 0.5% by mass of chromium (Cr), 0.0. 1 to 5.0 mass% zinc (Zn), 0.02 to 0.3 mass% titanium (Ti), 0.01 to 0.2 mass% zirconium (Zr), 0.01 to 3.0 mass% %
  • the conductor preferably contains 0.06 to 0.14% by mass of magnesium and 0.225 to 0.3% by mass of chromium, with the balance being copper and inevitable impurities.
  • Tin 0.1-0.8% by mass> Tin is an element that has the effect of solid solution and high strength when added to copper. If the tin content is less than 0.1% by mass, the effect is insufficient, and if it exceeds 0.8% by mass, it is difficult to maintain the conductivity at 50% or more. Therefore, in this embodiment, the tin content is 0.1 to 0.8 mass%.
  • Magnesium is an element that has the effect of solid solution and high strength when added to copper. If the magnesium content is less than 0.05% by mass, the effect is insufficient, and if it exceeds 0.8% by mass, it is difficult to keep the conductivity at 50% or more. Therefore, in this embodiment, the magnesium content is 0.05 to 0.8 mass%.
  • the magnesium content is preferably 0.06 to 0.14% by mass. When the magnesium content is in the range of 0.06 to 0.14% by mass, it is possible to enhance the solid solution strengthening ability that provides high flexibility while maintaining high electrical conductivity.
  • Chromium is an element that has the effect of increasing strength by being added to copper and dissolved in solid, and then finely precipitated. If the chromium content is less than 0.01% by mass, precipitation hardening cannot be expected and the proof stress is insufficient. If it exceeds 0.5% by mass, crystallized substances and coarse precipitates appear and cause fatigue characteristics deterioration. It is inappropriate. Therefore, in this embodiment, the chromium content is 0.01 to 0.5 mass%. The chromium content is preferably 0.225 to 0.3% by mass.
  • the precipitation strengthening ability that brings about high flexibility can be improved, and it is formed at the time of casting or hot rolling, and the flexibility is adversely affected. It is possible to reduce crystallized substances and coarse precipitates that affect the effect as much as possible.
  • Zinc is an element that has the effect of solid solution and high strength when added to copper. If the zinc content is less than 0.1% by mass, solid solution hardening cannot be expected and the proof stress is insufficient. If it exceeds 5.0% by mass, it is difficult to maintain the conductivity at 50% or more. . Therefore, in this embodiment, the zinc content is 0.1 to 5.0 mass%.
  • Titanium is an element that has the effect of increasing strength by being added to copper, dissolved in solid, and then finely precipitated.
  • the titanium content is less than 0.02% by mass, precipitation hardening cannot be expected and the proof stress is insufficient, and when it exceeds 0.3% by mass, it is difficult to keep the conductivity at 50% IACS or more.
  • the titanium content is 0.02 to 0.3 mass%.
  • Zirconium is an element that has the effect of increasing strength by being added to copper, dissolved in solid, and then finely precipitated. If the zirconium content is less than 0.01% by mass, precipitation hardening cannot be expected and the proof stress is insufficient, and if it exceeds 0.2% by mass, coarse crystals and precipitates appear and cause fatigue characteristics deterioration. This is because it is unsuitable and the productivity is remarkably deteriorated. Therefore, in this embodiment, the zirconium content is 0.01 to 0.2 mass%.
  • Iron is an element that has the effect of increasing the strength by adding and solid-dissolving it in copper, followed by fine precipitation. If the iron content is less than 0.01% by mass, precipitation hardening cannot be expected and the proof stress is insufficient, and if it exceeds 3.0% by mass, it is difficult to keep the conductivity at 50% IACS or more. . Therefore, in this embodiment, the iron content is 0.01 to 3.0 mass%.
  • Phosphorus is an element that has a deoxidizing action, and is an element that improves productivity, not in terms of characteristics. If the phosphorus content is less than 0.001% by mass, the effect of improving the production is insufficient, and if it exceeds 0.2% by mass, it is difficult to keep the conductivity at 50% IACS or more. Therefore, in the present embodiment, the phosphorus content is 0.001 to 0.2 mass%.
  • Silicon is an element that has a function of forming a compound with an additive element such as chromium or nickel and strengthening precipitation. If the silicon content is less than 0.01% by mass, the effect is insufficient, and if it exceeds 0.3% by mass, it is difficult to keep the conductivity at 50% IACS or more. Therefore, in the present embodiment, the silicon content is set to 0.01 to 0.3% by mass.
  • Silver 0.01 to 0.3% by mass>
  • Silver is an element that has the effect of increasing the strength by adding and solid-solving with copper and then finely precipitating.
  • the silver content is set to 0.01 to 0.3% by mass.
  • Nickel 0.1 to 1.0% by mass>
  • Nickel is an element that has the effect of increasing strength by being added to copper, dissolved in solid, and then finely precipitated.
  • the nickel content is less than 0.1% by mass, precipitation hardening cannot be expected and the proof stress is insufficient, and when it exceeds 1.0% by mass, it is difficult to maintain the conductivity at 50% IACS or more. . Therefore, in this embodiment, the nickel content is 0.1 to 1.0 mass%.
  • the balance other than the components described above is copper and inevitable impurities.
  • the inevitable impurities referred to here mean impurities in a content level that can be unavoidably included in the manufacturing process. Depending on the content of the inevitable impurities, it may be a factor for reducing the electrical conductivity. Therefore, it is preferable to suppress the content of the inevitable impurities to some extent in consideration of the decrease in the electrical conductivity.
  • the conductor is manufactured through the steps of [1] melting and casting, [2] hot working, [3] cold working, [4] heat treatment, and [5] finishing.
  • the conductor is manufactured through the steps of [1] melting and casting, [2] hot working, [3] cold working, [4] heat treatment, and [5] finishing.
  • each of [1-1] melting and casting, [2-1] hot rolling, [3-1] cold rolling, [4-1] heat treatment, [5-1] finish rolling A conductor is manufactured through a process, and if this is a manufacturing process of a strip, a slit is cut to a desired width, and a plurality of conductors preferably having a cross-sectional area of 0.75 mm 2 or less, preferably 0.02 mm 2 or less are prepared. .
  • the conductor is heat treated under heat treatment conditions of 250 to 600 ° C. and 10 minutes to 5 hours.
  • the purpose of this heat treatment varies depending on the composition, and is a recrystallization heat treatment if it is a solid solution type alloy, or an aging heat treatment that is performed to precipitate a predetermined compound if it is a precipitation type alloy.
  • the copper alloy is a Cu—Cr—Mg alloy containing 0.06 to 0.14% by mass of magnesium and 0.225 to 0.3% by mass of chromium, with the balance being copper and inevitable impurities
  • the heat treatment step is preferably an aging heat treatment step performed at a heating temperature of 400 to 550 ° C. and a heating time of 1 hour to 6 hours.
  • the heating temperature is in the range of 400 to 550 ° C.
  • a preferable precipitation distribution state can be obtained, and when the heating time is in the range of 1 to 6 hours, the precipitation is not insufficient due to a short time, In addition, it is possible to prevent a decrease in mass productivity due to a long time.
  • the rolling reduction (thickness reduction rate) of finish rolling is 20 to 97%.
  • the rolling reduction (thickness reduction rate) of finish rolling is preferably 50 to 97%.
  • the Cu—Cr—Mg alloy having the above components can achieve a 0.2% proof stress of 600 MPa or more and a conductivity of 70% IACS or more. it can.
  • the above-described conductor can be manufactured by a manufacturing method other than the above-described slit manufacturing method.
  • the hot rolling in the steps [1-1] to [5-1] is changed to hot drawing, and the cold rolling is changed to cold drawing.
  • the hot rolling in the steps [1-1] to [5-1] is changed to hot drawing, and the cold rolling is changed to cold drawing.
  • -2] Manufacture conductors through the steps of melting and casting, [2-2] hot wire drawing, [3-2] cold wire drawing, [4-2] heat treatment, and [5-2] finish rolling.
  • the final slit becomes unnecessary.
  • cold rolling is added between cold drawing and heat treatment, [1-3] melting and casting, [2-3] hot drawing, [3-3] cold drawing, cold rolling.
  • the conductor has an applied bending radius in the range of 4 mm to 8 mm, where the bending radius is X (mm) and the 0.2% proof stress is Y (MPa), Y ⁇ 14. 175X 2 ⁇ 249.35X + 1406.9 is satisfied, and the electrical conductivity is 50% IACS or more.
  • the 0.2% proof stress of the conductor satisfies 319.3 MPa or more.
  • the conductor has an elongation of less than 5%. By setting the elongation within the above range, the bending characteristics can be improved, and the life can be extended even with a smaller radius.
  • the quadratic inequality relationship between the 0.2% proof stress (Y) and the bend radius (X) of the conductor is 0.035 mm thick, for any specified bend radius X, any test temperature in the range of room temperature to 150 ° C. This is because it has been found that numerical values exceeding 300,000 flex lifespans can be summarized with 0.2% proof stress.
  • the lower limit of the range of 0.2% proof stress in the present invention is 319.3 MPa assuming a bending radius of 8 mm. Therefore, the 0.2% proof stress in the present invention is 319.3 MPa or more, preferably 600 MPa or more. Furthermore, in the copper alloy of the present invention in which the composition range is limited, it is assumed that the 0.2% yield strength does not exceed 750 MPa even if each strengthening mechanism contributes to the maximum extent. Therefore, the 0.2% proof stress in the present invention is 750 MPa or less. However, if these problems can be cleared or not required, the upper limit value of the 0.2% proof stress range is not limited.
  • the conductor is required to have high conductivity because the cross-sectional area is small.
  • the standard is not constant. For example, if the movable range of the steering wheel is widened, the total length of the cable is long and the electric resistance is increased. If the bending radius is small, the total length is short and the electric resistance is lowered.
  • the conductor is thinned to extend the life or the width is reduced to increase the number of channels, the cross-sectional area decreases and the electrical resistance increases. Since the resistance of copper and other metals increases as the temperature rises, the required level for conductivity increases as the endurance temperature requirement increases. Thus, the desired conductivity will vary depending on the design.
  • the electrical conductivity of the conductor is required to be 50% IACS or more, and preferably 70% IACS or more.
  • 70% IACS or more When the preferable range of conductivity 70% IACS or more is satisfied, it is considered that the conductor is a suitable conductor with a higher degree of design freedom.
  • the outer diameter of the rotary connector device can be reduced by 4 mm, and the outer diameter of the rotary connector device can be reduced by four times the bending radius.
  • the outer diameter of the steering column that accommodates the rotary connector device can be reduced without changing the connector inner diameter, and the visual field in the depth direction when the driver is seated in the driver's seat of the vehicle can be expanded.
  • driving comfort can be improved by widening the space above the driver's lap.
  • the width of the conductor since it has good bending characteristics while maintaining high conductivity, it becomes possible to reduce the width of the conductor that could not be realized with conventional tough pitch copper.
  • the number of arrangements that is, the number of channels can be increased.
  • the width of the flat cable can be made smaller than that of the conventional one, and the rotary connector device can be made thinner and lower in height.
  • the number of channels of the flat cable is the same as before, it is possible to provide a highly convenient flat cable corresponding to the multi-functionality of the vehicle. Further, when a plurality of flat cables are provided in the rotary connector device, the number of channels per flat cable increases, so that the number of flat cables accommodated in the rotary connector device can be reduced.
  • tin, magnesium, chromium, zinc, titanium, zirconium, iron, phosphorus, silicon, silver and nickel were prepared so as to have the contents shown in Table 1, and using a casting machine, a copper alloy having each alloy composition An ingot having a thickness of 150 mm to 180 mm made of (Alloy Nos. 1 to 20) was produced. Next, a plate material having a thickness of 20 mm was produced by hot rolling at 600 to 1000 ° C., and then cold rolled.
  • process A the plate material was subjected to aging heat treatment at a treatment temperature of 400 ° C., 425 ° C., or 450 ° C. for a treatment time of 30 minutes or 2 hours, and then reduced. Finish rolling was performed at a rate of 19% to obtain a conductor having a thickness of 0.035 mm.
  • Process B as shown in Table 3, the plate material was subjected to an aging heat treatment at a treatment temperature of 400 ° C., 425 ° C., 450, or 500 ° C. for a treatment time of 30 minutes or 2 hours, and then a reduction rate of 90 % Or 77% to give a conductor having a thickness of 0.035 mm.
  • the thickness of the final conductor was the same. Furthermore, in the process C as a comparison, as shown in Table 4, a 20 mm thick sheet material after hot rolling was cold-rolled to obtain a 0.035 mm thick conductor, and then a processing temperature of 200 ° C., The conductor was subjected to an aging heat treatment at any one of 350 ° C., 375 ° C., 400 ° C., 450 ° C., 700 ° C., 750 ° C., 800 ° C., and 900 ° C., at a treatment temperature of 15 seconds, 30 minutes, or 2 hours.
  • the strip that had undergone the heat treatment and rolling process was cut into a desired width with a slit.
  • cracks occur in the conductor, which progresses and reaches the end of its life, so the wider the conductor width, the longer the life.
  • the test was performed using a conductor having a width of 0.3 mm, which is the shortest life, and conductors having a width of 0.5 mm and 0.8 mm wider than that. In this range, the life change for each conductor width is small, and the judgment result of the life test is not different due to the difference in the width dimension. Therefore, the result of 0.8 mm width is shown as a representative.
  • the produced conductors were each measured for 0.2% proof stress, conductivity (EC), elongation and bending life characteristics, and crystal grain size before finish rolling by the methods described below.
  • the process A and the process B in the present embodiment have different finish rolling amounts, so that the process B is slightly deteriorated in conductivity.
  • the electrical resistance of the material in each example is very good “ ⁇ ” to play a sufficient role in the assumed environment or a considerable range of design if it is 70% IACS or more, and if it is 50 to 70% IACS, the usage environment Depending on the SRC structure, it was judged that the product characteristics were sufficient, “good”, and if it was less than 50% IACS, the conductor was judged unsuitable and judged as “bad”.
  • (D) Crystal grain size before finish rolling About the two-way cross section of width and thickness, the test sample is mirror-filled by resin filling and polishing, and intergranular corrosion with an etching solution such as chromic acid, optical microscope and electron microscope The crystal grain size was measured in accordance with the cutting method of JIS H 0501 after making the crystal grain size sufficiently discriminable when observed by. The number of measurements was 30 to 100, and the average value of the diameter per crystal grain was determined.
  • test temperature 20 to 85 ° C.
  • bending radius X radius 4 mm to 8 mm (7.5 mm, 6.3 m, 5.5 mm, 4.7 mm)
  • stroke ⁇ 13 mm
  • rotation speed 180 rpm.
  • the case where the number of bendings when the voltage becomes impossible to measure is 300,000 times or more is good when satisfying the fatigue characteristics required for the rotary connector, “ ⁇ ”, and the case where it is less than 300,000 times is bad “ ⁇ ” It was.
  • the results measured and evaluated by the above methods are shown in Tables 2 to 4.
  • alloy no. 1-No. In No. 17 the alloy components were within the scope of the present invention, and both 0.2% proof stress and electrical conductivity were good through the process A.
  • the fatigue characteristics (bending life) required for the flat cable of the rotary connector device are sufficiently satisfied with the bending radius of at least 6.3 mm and 7.5 mm in the range of 4 mm to 8 mm, It can be seen that the bending characteristics are good.
  • the limit bending radius in the table is a calculated value calculated from 0.2% proof stress using the following equation (1).
  • X (249.35- (249.35 2 -4 ⁇ 14.175 ⁇ (1406.9-Y)) 0.5 ) / (2 ⁇ 14.175)
  • X is a limit bending radius (unit: mm)
  • Y is a 0.2% yield strength (unit: MPa).
  • the limit bending radius calculated using the above equation (1) is an index that shows that the bending life of the flat cable is sufficient. Can be confirmed. Therefore, when a stricter bending radius is required within the bending radius range of 4 mm to 8 mm, the limit bending radius is calculated from the 0.2% proof stress using the above equation (1), and based on the calculated limiting bending radius. It is possible to select an appropriate alloy and process. Further, if the bending radius is equal to or greater than the calculated value obtained from the above equation (1), the bending life of the flat cable becomes better.
  • the above equation (1) can be rearranged by Y and converted into the following equation.
  • Y 14.175X 2 -249.35X + 1406.9 (2) That is, if the value of the minimum bend radius assumed based on the specified bend radius according to the specification or the like is known, the above-described equation (2) is used to set the minimum bend radius as the limit bend radius and the limit bend radius. The value of 0.2% proof stress at which sufficient fatigue characteristics (bending life) can be obtained can be determined. Further, if the flat cable has a 0.2% yield strength equal to or greater than the calculated value obtained from the above equation (2), a better bending life can be obtained.
  • the final rolling rate is increased (process B: 0.35 mm thickness or 0.15 mm thickness to 0.035 mm thickness) compared to the test in Table 2, and the critical bending radius is reduced by increasing the proof stress.
  • process B 0.35 mm thickness or 0.15 mm thickness to 0.035 mm thickness
  • the critical bending radius is reduced by increasing the proof stress.
  • the range of the bending radius with a sufficient bending life is widened, while the conductivity is less than 70% IACS, so there is a trade-off relationship. If alloy types having such a trade-off relationship are used, there may be cases where the conductor becomes an appropriate conductor in consideration of the design surface, or it may become inappropriate. Since the connector can be designed to have a smaller diameter, its usefulness is high.
  • the results in Table 4 are the results of prototype materials that have undergone inappropriate process C.
  • alloy no. 1-No. No. 17 while the alloy component is within the scope of the present invention, the finish rolling is not performed and the 0.2% proof stress is not sufficient, or the precipitation type alloy is not subjected to aging treatment, Moreover, it turns out that electrical conductivity is inadequate because the process is inadequate temperature. Therefore, in the process of the present invention, it is important to refine the crystal grains as much as possible during the heat treatment for the solid solution type alloy and finish rolling, and for the precipitation type alloy, the conductivity is appropriate. It is important to perform aging heat treatment and finish rolling as well. There are cases where the heat treatment of precipitation-type alloys is not suitable for overaging because of the balance between 0.2% proof stress and electrical conductivity that the alloy develops, and the connector design, not until the peak of aging. .
  • the Ag content is 2 wt%, which is outside the scope of the present invention.
  • the alloy No. of Table 2 and Table 3 of the present Example which has the closest component to the Example of Patent Document 3. It can be said that it is more suitable to use as a high strength material which becomes less than 5% rather than setting elongation to 5% or more so that 1 may be compared.
  • the 0.2% proof stress reduction range is small before and after the rotation test, the proof stress threshold reduction range when plastic deformation occurs is small, and conversely if the 0.2% proof stress decrease range is large, permanent deformation occurs. It becomes easy and the elasticity is thought to be lost. Therefore, after the rotation test, the resin and adhesive are dissolved in a solution such as cresol, and the conductor is taken out and then a tensile test is performed. If the 0.2% proof stress is 80% or more before use, sufficient strength is maintained. As good enough in terms of its elasticity, “Good”, 0.2% proof stress is 60% or more and less than 80% before use. The case of less than 60% of the previous case was judged as “Poor” because the elasticity was not good. The evaluation results are shown in Table 5.
  • alloy no. 1-No In all cases, when the bending life was sufficient at the bending radii of at least 6.3 mm and 7.5 mm in the range of 4 mm to 8 mm, the elasticity was also good. Further, when the bending life was insufficient in Process A (Alloy No. 18 in Table 2), the elasticity was poor.
  • alloy No. 1 in Table 1 As a Cu—Cr—Mg alloy, alloy No. 1 in Table 1 was used. In addition to 5, magnesium and chromium were prepared so as to have the contents shown in Table 6, and using a casting machine, a thickness of 150 mm made of a copper alloy (alloys No. 21 to No. 23) having each alloy composition An ingot of ⁇ 180 mm was produced. Next, a plate material having a thickness of 20 mm was produced by hot rolling at 600 to 1000 ° C., and then cold rolled. And as shown in Table 7, in process D, after subjecting the plate material to an aging heat treatment at a treatment temperature of 450 ° C.
  • the degree of freedom can be improved.
  • the electrical conductivity is relatively small, but the limit bending radius is small. Therefore, when the required level for the electrical conductivity is not so high, it is within the range of 3.0 mm to 4.0 mm. It was found that the bending characteristics can be improved with a smaller bending radius.
  • alloy no. 21-No Each conductor made of 23 copper alloys was prepared, and each conductor was sandwiched between a composite material of PET resin and an adhesive (manufactured by Riken Technos Co., Ltd., flexible flat cable (insulating film) for airbag, resin thickness 25 ⁇ m, adhesive thickness 20 ⁇ m). The laminate was pressed from both sides to produce a flat cable. The laminating conditions were alloy no. 1-No. The rotary connector device as shown in FIG. Each device was evaluated for elasticity in the same manner as described above. The results are shown in Table 8.
  • Rotation connector apparatus 11 Stator 11-1 Stator main body 11-2 Stator side connector accommodating part 12 Rotator 12-1 Rotator main body 12-1a Top plate part 12-1b Cylindrical part 12-2 Rotator side connector accommodating part 12-2a Rotation side Terminal insertion hole 13 Flat cable 13a Folded portion 21-1, 21-2, 21-3 Conductor 21-4, 21-5, 21-6 Conductor 22, 23 Pair of insulating films 24 Adhesive layer S1 Annular space S2 Stator side Connector housing space S3 Rotator side connector housing space x axis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Insulated Conductors (AREA)
  • Conductive Materials (AREA)

Abstract

高導電性を維持しつつ、十分な弾発性を発揮して、屈曲特性の更なる向上を実現することができるフラットケーブルを備える回転コネクタ装置を提供する。 回転コネクタ装置(1)は、ステータ(11)とロテータ(12)との間の環状空間(S1)に収容されたフラットケーブル(13)とを備える。フラットケーブル(13)は、環状空間(S1)において、該フラットケーブルの長手方向の中間部分に、湾曲して折り返された折り返し部(13a)が設けられている。フラットケーブル(13)は、ロテータ(12)が時計回り或いは半時計回りに回転したときに、折り返し部(13a)にて屈曲を維持した状態で巻き締め又は巻き戻しされる。フラットケーブル(13)は、屈曲半径が4mm~8mmの範囲で、屈曲半径をX(mm)、0.2%耐力をY(MPa)としたとき、Y≧ 14.175X2 - 249.35X + 1406.9を満たし、且つ導電率が50%IACS以上である。

Description

回転コネクタ装置
 本発明は、フラットケーブルを収容する回転コネクタ装置に関し、特に車両に取り付けられる回転コネクタ装置に関する。
 従来、四輪自動車などの車両において、操舵用のステアリングホイールとステアリングシャフトの連結部に、エアバッグ装置等に電力を供給するための回転コネクタ装置(SRC)が装着されている。回転コネクタ装置は、ステータと、該ステータに回転自在に組み付けられたロテータと、ステータとロテータとによって形成される環状の内部空間に巻かれて収容されたフレキシブルフラットケーブル(FFC)とを備えており、FFCの端部には、当該FFCと外部とを電気的に接続する接続構造体を備えている。
 FFCは、並列配置された複数本の導体と、該複数本の導体を挟み込むように配置された一対の絶縁フィルムと、該一対の絶縁フィルム間に設けられた接着剤層とを備え、上記複数の導体、一対の絶縁フィルム及び接着剤層で構成されるラミネート構造を有している。導体は、例えば、タフピッチ銅、無酸素銅等からなる。また、絶縁フィルムはポリエステル系、ポリウレタン系、ポリアミド系、ポリスチレン系の樹脂からなる接着剤層を有し、複数の導体が挟み込まれた状態で、上記一対の絶縁フィルムを、接着剤層を介して接着することにより、導体同士、或いは導体と外部とが絶縁される。
 上記導体としては、例えば、タフピッチ銅等からなり、屈曲半径8mm程度で繰返し屈曲変形が加えられた場合にもクラックの発生が抑制されるフラットケーブル用導体が提案されている(特許文献1)。
 また、他の導体として、B,Sn,In,Mgのうちの1種若しくは複数種が合計で0.005~0.045%添加され、結晶粒が7μm以下にまで微細化された、銅合金からなるフラットケーブル用導体が提案されている(特許文献2)。
 また、無酸素銅(99.999wt%Cu)に、0.3wt%以下のSnと0.3wt%以下のIn或いはMgを添加した銅合金、又は、無酸素銅(99.999wt%Cu)に、10wt%以下のAgを添加した銅合金を母材とし、その表面にSnをめっきした平板状の導体に熱処理を行い、引張り強さ350MPa以上、伸び5%以上、導電率70%IACS以上である平角導体が提案されている(特許文献3)。
特許第5342712号公報 特許第3633302号公報 特許第4734695号公報
 しかしながら、特許文献1の技術では、導体の屈曲特性を維持するためには屈曲半径を8mm程度にせざるを得ないため、回転コネクタ装置の小型化を実現することができず、一方、回転コネクタ装置を小型化する場合には、十分な弾発性及び屈曲特性を得ることができない。特に、従来のタフピッチ銅からなる導体を用いたフラットケーブルでは、小型化した際に十分な弾発性が得られないため、フラットケーブルを巻き締め或いは巻き戻しすることが困難である。また、屈曲特性不足であるため、回転コネクタ装置に要求される寿命を満たせず、導体による信号伝送を十分に果たすことができない。
 また、特許文献2の技術では、銅合金における添加元素種及びその含有量の規定による結晶粒径制御のみでは、導体の屈曲特性が不十分である。
 更に、特許文献3の技術では、伸び5%以上を必須とし、伸びがその範囲外であると剛性が強く、折り曲げが困難であること、また、折り曲げ時に導体を座屈させてしまう虞があることが開示されているものの、伸び5%以上であっても導体の屈曲特性が不十分であることが分かってきた。特に近年、自動車の高性能化・高機能化が進められると共に、信頼性、安全性等の向上の観点から自動車に搭載される各種装置、機器の耐久性の向上が要求されており、回転コネクタ装置におけるフラットケーブルの屈曲特性の更なる向上が求められている。
 本発明の目的は、高導電性を維持しつつ、十分な弾発性を発揮して、屈曲特性の更なる向上を実現することができるフラットケーブルを備える回転コネクタ装置を提供することにある。
 本発明者は、鋭意研究を重ねた結果、フラットケーブルの屈曲半径と、所定の屈曲寿命回数を超える場合の当該フラットケーブルの0.2%耐力との関係を見出すと共に、銅合金における添加元素種及び各元素の含有量の範囲を規定し、固溶、析出、結晶粒微細化及び加工の各強化機構を付与することで十分な弾発性を発揮することができ、屈曲特性を更に向上できることを見出した。
 ここで、十分な弾発性とは、適度に変形しやすく、その変形からの復元性が良いことをいう。例えば、100万回の屈曲を行っても0.2%耐力が80%未満とならないことを、十分な弾発性があるとする。
 すなわち、本発明の要旨構成は以下の通りである。
[1]固定部材と、前記固定部材に回転可能に取り付けられた回転部材と、前記固定部材と前記回転部材との間の環状空間に収容されたフラットケーブルとを備え、
 前記フラットケーブルの一端が、前記固定部材に固定される固定側コネクタに接続され、前記フラットケーブルの他端が、前記回転部材に固定される回転側コネクタに接続され、且つ前記フラットケーブルの長手方向の中間部分に、湾曲して折り返された折り返し部が形成され、
 前記フラットケーブルは、銅合金からなる所定数の導体を有し、前記折り返し部にて屈曲を維持した状態で巻き締め又は巻き戻しされ、屈曲半径が4mm~8mmの範囲で屈曲半径をX、0.2%耐力をYとしたとき、Y≧14.175X2 - 249.35X + 1406.9を満たし、且つ導電率が50%IACS以上である、
 ことを特徴とする、回転コネクタ装置。
[2]前記導体は、0.1~0.8質量%のスズ、0.05~0.8質量%のマグネシウム、0.01~0.5質量%のクロム、0.1~5.0質量%の亜鉛、0.02~0.3質量%のチタン、0.01~0.2質量%のジルコニウム、0.01~3.0質量%の鉄、0.001~0.2質量%のリン、0.01~0.3質量%のシリコン、0.01~0.3質量%の銀、及び0.1~1.0質量%のニッケルのうちの1種又は2種以上を含有し、残部が銅及び不可避不純物からなることを特徴とする、上記[1]記載の回転コネクタ装置。
[3]前記導体の伸びが5%未満であることを特徴とする、上記[1]記載の回転コネクタ装置。
[4]前記導体は、幅0.3mm~15mm、厚さ0.02mm~0.05mmであることを特徴とする、上記[1]記載の回転コネクタ装置。
[5]前記導体は、0.06~0.14質量%のマグネシウム、及び0.225~0.3質量%のクロムを含有し、残部が銅及び不可避不純物からなり、
 前記フラットケーブルは、0.2%耐力が600MPa以上、導電率が70%IACS以上であることを特徴とする、上記[1]記載の回転コネクタ装置。
[6]前記導体は、幅0.3mm~0.5mm、厚さ0.030mm~0.039mmであり、
 前記フラットケーブルの屈曲半径が4mm~5mmであることを特徴とする、上記[5]記載の回転コネクタ装置。
[7]上記[1]~[6]のいずれかに記載の回転コネクタ装置のフラットケーブルを構成する導体の製造方法であって、
 溶解及び鋳造工程、熱間加工工程、冷間加工工程、熱処理工程及び仕上加工工程をこの順に有し、
 前記熱処理工程は、加熱温度250~600℃、加熱時間10分間~5時間で行うことを特徴とする、フラットケーブルを構成する導体の製造方法。
[8]前記熱処理工程は、加熱温度400~550℃、加熱時間1時間~6時間で行う時効熱処理工程であり、
 前記仕上加工工程は、圧下率が50~97%以下であることを特徴とする、上記[7]記載のフラットケーブルを構成する導体の製造方法。
 本発明の回転コネクタ装置によれば、高導電性を維持しつつ、回転コネクタ装置を小型化した場合にも十分な弾発性を得ることができる。また、湾曲して折り返された折り返し部が設けられることで、回転部材が時計回り或いは反時計回りに回転したときに、フラットケーブルを、屈曲半径4mm~8mmを維持した状態で折り返しを伴って巻き締め又は巻き戻しすることができる。
 また、組織制御した銅合金は屈曲特性の向上にも寄与するため、回転コネクタ装置に要求される疲労特性を満足する。よって、車両においてステアリングホイールの操舵がなされ、時計回り或いは反時計回りの回転に伴ってフラットケーブルが繰り返して屈曲運動する場合に、フラットケーブルの屈曲特性を更に向上することができ、また、フラットケーブルの破断を防止することができ、屈曲寿命、ひいては信頼性、安全性を向上したフラットケーブルを提供することが可能となる。
 更に、従来のタフピッチ銅とは異なる銅合金を回転コネクタ装置に用いることで、フラットケーブルの導体幅を狭くし、且つ小径の屈曲半径でも要求される屈曲寿命を満足することが可能であり、従来組成の銅合金では達成できなかった回転コネクタ装置の小型化することが出来、また優れた屈曲特性を生かして導体を狭幅化することで回転コネクタ装置の薄型化および多チャンネル化を実現することが可能となる。
本発明の実施形態に係る回転コネクタ装置の構成を概略的に示す斜視図である。 図1におけるフラットケーブルが回転コネクタ装置の環状空間に収容された状態を示す模式図である。 図2におけるフラットケーブルの構成を示す幅方向断面図である。
 以下、本発明の実施形態を図面を参照しながら詳細に説明する。
[回転コネクタ装置の構成]
 図1は、本発明の実施形態に係る回転コネクタ装置の構成を概略的に示す斜視図である。
 同図に示すように、回転コネクタ装置1は、ステータ11(固定部材)と、ステータ11に軸線x周りに回転可能に取り付けられたロテータ12(回転部材)と、ステータ11とロテータ12との間の環状空間S1に収容されたフラットケーブル13とを備えている。車両において、ステータ11は車両の車体に固定されており、ロテータ12はステアリングホイールに取り付けられている。
 ステータ11は、軸線xを中心とする不図示の円形の係合穴を有する、軸線xを中心とする円環状又は略円環状のステータ本体11-1と、ステータ側コネクタ収容空間S2を形成するステータ側コネクタ収容部11-2とを有している。
 ステータ本体11-1に形成されている係合穴は、後述するロテータ12の円筒部の下側(図1の矢印D方向)の端部を収容して、この端部と係合可能に形成されている。
 ロテータ12は、軸線x周り(図1の矢印A方向及び矢印B方向)に設けられた環状のロテータ本体12-1と、環状空間S1と外部とを連通し且つロテータ側コネクタ収容空間S3を画定するロテータ側コネクタ収容部12-2とを有している。
 ロテータ本体12-1は、軸線xを中心とする中空円盤状又は略中空円盤状の天板部12-1aと、天板部12-1aの内周側の端部から軸線xに沿って環状空間S1側に向かって延びる円筒部12-1bとを有している。天板部12-1aは、回転コネクタ装置1において、上側(図1の矢印C方向)に面する部分を画成している。円筒部12-1bは、ステータ11の対応する部分に軸線xについて回動可能に係合されるように形成されている。
 上記のロテータ12がステータ11に取り付けられることにより、ロテータ12の天板部12-1a及び円筒部12-1b並びにステータ11のステータ本体11-1によって、環状空間S1が画定される。そして、ロテータ12は、円筒部12-1bの下側の端部において、ステータ11のステータ本体11-1の係合穴に回動可能に係合しており、これによりステータ11に回動可能に保持されている。
 ステータ側コネクタ収容部11-2のステータ側コネクタ収容空間S2には、環状空間S1から引き出されたフラットケーブル13の一端が挿入される。また、このステータ側コネクタ収容部11-2には、車体側の電気回路を構成しているワイヤハーネスに接続された所定形状のステータ側コネクタ(固定側コネクタ)を挿入可能な不図示の固定側端子挿入孔が形成されている。ステータ側コネクタ収容部11-2にステータ側コネクタが装着されると、フラットケーブル13の一端が、ステータ11に固定されるステータ側コネクタに接続される。
 ロテータ側コネクタ収容部12-2のロテータ側コネクタ収容空間S3には、上記のステータ側コネクタ収容空間S2と同様、環状空間S1から引き出されたフラットケーブル13の他端が挿入される。また、ロテータ側コネクタ収容部12-2には、ステアリングホイールが備える電気部品(例えば、ホーンスイッチ、エアバッグモジュール等)から引き出されたケーブルのロテータ側コネクタ(回転側コネクタ)を挿入可能な回転側端子挿入孔12-2aが形成されている。ロテータ側コネクタ収容部12-2にステータ側コネクタが装着されると、フラットケーブル13の他端が、ロテータ12に固定されるステータ側コネクタに接続される。
 フラットケーブル13は、環状空間S1において、適宜の長さの弛みを有するように巻かれており、この弛みの長さは、ロテータ12がステータ11に対して回転することにより変化する。この弛み長さの変化に追従するように、複数枚のフラットケーブル13を環状空間S1内で常に整列させた状態で保持可能となっている。
 このフラットケーブル13は、図2に示すように、環状空間S1において、該フラットケーブルの長手方向の中間部分に、湾曲して折り返された折り返し部13aが設けられている。そして、軸線x周りに、上記の折り返し部13aを有するフラットケーブル13が複数配置されている。折り返し部13aの屈曲半径は4mm~8mmであり、好ましくは4.0mm~6.5mm、更に好ましくは4mm~5mmである。フラットケーブル13は、ロテータ12が時計回り或いは半時計回りに回転したときに、折り返し部13aにて屈曲を維持した状態で巻き締め又は巻き戻しされる。図2ではフラットケーブル13が4枚配置されているが、これに限らず、所要数のフラットケーブル13が配置されてもよい。また、図2に示す4枚のフラットケーブルのうち、1枚或いは2枚がダミーケーブル(導体を有さない樹脂フィルム)であってもよい。
 上記構成により、ステアリングホイール側のエアバッグモジュール等の電気部品と、車体側の電気回路とが、フラットケーブル13を介して電気的に接続される。これにより、回転コネクタ装置1において電源供給或いは信号伝送が可能となっている。
[フラットケーブルの構成]
 本実施形態のフラットケーブル13は、図3に示すように、例えば銅合金からなる所定数の導体21-1,21-2,21-3,21-4,21-5,21-6と、該複数の導体を挟み込むように配置された一対の絶縁フィルム22,23と、前記一対の絶縁フィルム間に設けられた接着剤層24とを有する。本実施形態のフラットケーブル1は、例えばフレキシブルフラットケーブル(FFC)である。
 導体21-1~21-6は、圧延面の面内方向がほぼ同一となるように並べて配置されており、これら導体の一方の圧延面側に絶縁フィルム22が設けられ、他方の圧延面側に絶縁フィルム23が設けられている。導体21-1~21-6は、幅0.1mm~15mm、好ましくは幅0.3mm~15mm、更に好ましくは幅0.3mm~0.5mmであり、厚さ0.02mm~0.05mm、好ましくは厚さ0.030mm~0.039mmである。導体21-1~21-6の各々の幅方向断面積は、0.75mm以下、好ましくは0.02mm以下である。
 接着剤層24は、複数の導体21-1~21-6を埋設するのに十分な厚みを有しており、一対の絶縁フィルム22,23によって挟持されている。接着剤層24は、一対の絶縁フィルム22,23に適合する周知の接着剤で構成されている。
 一対の絶縁フィルム22,23は、接着剤層24及び/又は複数の導体21-1~21-6との良好な密着性を発現することができる樹脂で構成されている。また、好適な例として、一対の絶縁フィルム22,23の接着剤層が融着される際に融点が200℃以上であり溶融しないポリエチレンテレフタレートの最外層と、ポリエステル系樹脂の接着剤層との2層で構成されてもよい。一対の絶縁フィルム22,23は、例えば幅6mm~15mm、厚さ0.01mm~0.05mmである。
[導体の化学組成]
 導体は、0.1~0.8質量%のスズ(Sn)、0.05~0.8質量%のマグネシウム(Mg)、0.01~0.5質量%のクロム(Cr)、0.1~5.0質量%の亜鉛(Zn)、0.02~0.3質量%のチタン(Ti)、0.01~0.2質量%のジルコニウム(Zr)、0.01~3.0質量%の鉄(Fe)、0.001~0.2質量%のリン(P)、0.01~0.3質量%のシリコン(Si)、0.01~0.3質量%の銀(Ag)、0.1~1.0質量%のニッケル(Ni)のうちの1種又は2種以上を含有し、残部が銅(Cu)及び不可避不純物からなる。
 また、導体は、好ましくは0.06~0.14質量%のマグネシウム、及び0.225~0.3質量%のクロムを含有し、残部が銅及び不可避不純物からなる。
<スズ:0.1~0.8質量%>
 スズは、銅に添加することで固溶し高強度化する作用を有する元素である。スズの含有量が0.1質量%未満であると、その効果は不十分であり、0.8質量%を超えると、導電率を50%以上に保つことが困難である。したがって本実施形態では、スズの含有量を0.1~0.8質量%とする。
<マグネシウム:0.05~0.8質量%>
 マグネシウムは、銅に添加することで固溶し高強度化する作用を有する元素である。マグネシウムの含有量が0.05質量%未満であると、その効果は不十分であり、0.8質量%を超えると、導電率を50%以上に保つことが困難である。したがって本実施形態では、マグネシウムの含有量を0.05~0.8質量%とする。
 また、マグネシウムの含有量は、0.06~0.14質量%であるのが好ましい。マグネシウムの含有量が0.06~0.14質量%の範囲内であると、高い導電率を維持しながら高屈曲性をもたらす固溶強化能を高めることができる。
<クロム:0.01~0.5質量%>
 クロムは、銅に添加、固溶させ、その後微細析出させることで高強度化する作用を有する元素である。クロムの含有量が0.01質量%未満であると、析出硬化は望めず耐力が不十分であり、0.5質量%を超えると、晶出物や粗大析出物が現れ疲労特性劣化の原因となり不適である。したがって本実施形態では、クロムの含有量を0.01~0.5質量%とする。
 また、クロムの含有量は、0.225~0.3質量%であるのが好ましい。クロムの含有量が0.225~0.3質量%の範囲内であると、高屈曲性をもたらす析出強化能を高めることができ、かつ、鋳造や熱間圧延時に形成されて屈曲性に悪影響を及ぼす晶出物や粗大析出物を、極力低減させることができる。
<亜鉛:0.1~5.0質量%>
 亜鉛は、銅に添加することで固溶し高強度化する作用を有する元素である。亜鉛の含有量が0.1質量%未満であると、固溶硬化は望めず耐力が不十分であり、5.0質量%を超えると、導電率を50%以上に保つことが困難である。したがって本実施形態では、亜鉛の含有量を0.1~5.0質量%とする。
<チタン:0.02~0.3質量%>
 チタンは、銅に添加、固溶させ、その後微細析出させることで高強度化する作用を有する元素である。チタンの含有量が0.02質量%未満であると、析出硬化は望めず耐力が不十分であり、0.3質量%を超えると、導電率を50%IACS以上に保つことが困難であり、また粗大晶出物や析出物が現れ疲労特性劣化の原因となり不適であり、製造性も著しく悪くなるためである。したがって本実施形態では、チタンの含有量を0.02~0.3質量%とする。
<ジルコニウム:0.01~0.2質量%>
 ジルコニウムは、銅に添加、固溶させ、その後微細析出させることで高強度化する作用を有する元素である。ジルコニウムの含有量が0.01質量%未満であると、析出硬化は望めず耐力が不十分であり、0.2質量%を超えると、粗大晶出物や析出物が現れ疲労特性劣化の原因となり不適であり、製造性も著しく悪くなるためである。したがって本実施形態では、ジルコニウムの含有量を0.01~0.2質量%とする。
<鉄:0.01~3.0質量%>
 鉄は、銅に添加、固溶させ、その後微細析出させることで高強度化する作用を有する元素である。鉄の含有量が0.01質量%未満であると、析出硬化は望めず耐力が不十分であり、3.0質量%を超えると、導電率を50%IACS以上に保つことが困難である。したがって本実施形態では、鉄の含有量を0.01~3.0質量%とする。
<リン:0.001~0.2質量%>
 リンは、脱酸する作用を有する元素であり、特性面ではなく製造性を向上する元素である。リンの含有量が0.001質量%未満であると、製造上の改善効果が不十分であり、0.2質量%を超えると、導電率を50%IACS以上に保つことが困難である。したがって本実施形態では、リンの含有量を0.001~0.2質量%とする。
<シリコン:0.01~0.3質量%>
 シリコンは、クロムやニッケル等の添加元素と化合物を形成し、析出強化する作用を有する元素である。シリコンの含有量が0.01質量%未満であると、効果が不十分であり、0.3質量%を超えると、導電率を50%IACS以上に保つことが困難である。したがって本実施形態では、シリコンの含有量を0.01~0.3質量%とする。
<銀:0.01~0.3質量%>
 銀は、銅に添加、固溶させ、その後微細析出させることで高強度化する作用を有する元素である。銀の含有量が0.01質量%未満であると、析出硬化は望めず耐力が不十分であり、0.3質量%を超えると、効果が飽和するだけでなく、コスト増の要因となる。したがって本実施形態では、銀の含有量を0.01~0.3質量%とする。
<ニッケル:0.1~1.0質量%>
 ニッケルは、銅に添加、固溶させ、その後微細析出させることで高強度化する作用を有する元素である。ニッケルの含有量が0.1質量%未満であると、析出硬化は望めず耐力が不十分であり、1.0質量%を超えると、導電率を50%IACS以上に保つことが困難である。したがって本実施形態では、ニッケルの含有量を0.1~1.0質量%とする。
<残部:銅及び不可避不純物>
 上述した成分以外の残部は銅及び不可避不純物である。ここでいう不可避不純物は、製造工程上、不可避的に含まれうる含有レベルの不純物を意味する。不可避不純物は、含有量によっては導電率を低下させる要因にもなりうるため、導電率の低下を加味して不可避不純物の含有量をある程度抑制することが好ましい。
[導体の製造方法]
 上述の導体の製造方法では、[1]溶解及び鋳造、[2]熱間加工、[3]冷間加工、[4]熱処理、[5]仕上加工、の各工程を経て導体を製造する。例えば、スリット製法では、[1-1]溶解及び鋳造、[2-1]熱間圧延、[3-1]冷間圧延、[4-1]熱処理、[5-1]仕上圧延、の各工程を経て導体を製造し、これが条の製造工程であれば所望の幅にスリットを行い、好ましくは断面積が0.75mm以下、好ましくは0.02mm以下である導体を複数個準備する。尚、後述する実施例のプロセスA、B及びDでは、[1-1]溶解及び鋳造、及び[2-1]熱間圧延の2工程を共通条件とし、その後の[3-1]冷間圧延、[4-1]熱処理及び[5-1]仕上圧延の3工程を異なる条件で設定している。
 [1-1]溶解及び鋳造
 溶解及び鋳造は、上述した同合金組成になるように各成分の分量を調整して溶製し、厚さ150mm~180mmの鋳塊を製造する。
 [2-1]熱間圧延
 次いで、上記で製造された鋳塊を600~1000℃で熱間圧延して、厚さ10mm~20mmの板材を作製する。
 [3-1]冷間圧延
 更に、熱間圧延処理後の板材を冷間圧延して、厚さ0.02mm~1.2mmの導体を作製する。本冷間圧延工程後、後述する熱処理前に、任意の熱処理を行うことができる。
 [4-1]熱処理
 次に、熱処理条件250~600℃、10分~5時間で、導体に熱処理を施す。この熱処理は組成によってその目的は異なり、固溶型合金であれば再結晶熱処理であり、析出型合金であれば所定化合物を析出させるために行う時効熱処理である。
 銅合金が0.06~0.14質量%のマグネシウム及び0.225~0.3質量%のクロムを含有し、残部が銅及び不可避不純物からなるCu-Cr-Mg系合金である場合、上記熱処理工程は、加熱温度400~550℃、加熱時間1時間~6時間で行う時効熱処理工程であるのが好ましい。加熱温度が400~550℃の範囲内であると、好ましい析出分布状態を得ることができ、加熱時間が1時間~6時間の範囲内であると、短時間化による析出不足を招くことなく、かつ長時間化による量産性低下を防止することができる。
 [5-1]仕上圧延
 その後、上記熱処理後の導体を仕上圧延して、幅0.1mm~15mm、厚さ0.02mm~0.05mmの導体を作製する。仕上圧延の圧下率(厚み減少率)は、20~97%である。
 銅合金が、0.06~0.14質量%のマグネシウム及び0.225~0.3質量%のクロムを含有し、残部が銅及び不可避不純物からなるCu-Cr-Mg系合金である場合、仕上圧延の圧下率(厚み減少率)は、50~97%であるのが好ましい。仕上圧延の圧下率が50~97%の範囲内であると、上記成分を有するCu-Cr-Mg系合金において、0.2%耐力600MPa以上、且つ導電率70%IACS以上を達成することができる。
[導体の他の製造方法]
 上記のスリット製法以外の他の製法でも、上述の導体を製造することができる。例えば、丸線圧延製法であれば、上記[1-1]~[5-1]の工程中の熱間圧延が熱間伸線に、冷間圧延が冷間伸線にそれぞれ変わり、[1-2]溶解及び鋳造、[2-2]熱間伸線、[3-2]冷間伸線、[4-2]熱処理、[5-2]仕上圧延、の各工程を経て導体を製造し、最終のスリットは不要となる。また、冷間伸線と熱処理の間に冷間圧延を追加し、[1-3]溶解及び鋳造、[2-3]熱間伸線、[3-3]冷間伸線、冷間圧延、[4-3]熱処理、[5-3]仕上圧延の各工程を経て導体を作製することもできる。また、上記他の製法において、固溶型合金であれば任意の複数回の熱処理を施すことができる。このように、導体の特性等が本発明の範囲を満たしていれば、導体の製法に限定はない。
[フラットケーブルの製造方法]
 本実施形態に係るフラットケーブルの製造方法では、先ず、上記方法で製造された幅方向断面積が0.75mm以下、好ましくは0.02mm以下である導体を所要数準備する。そして、所要数の導体の主面の両側に絶縁フィルムを配置し、これら所要数の導体全体に所定張力を付与しながら、上記所要数の導体を接着剤を介して一対の絶縁フィルムで挟み込む。そして、所要数の導体、接着剤及び一対の絶縁フィルムからなる積層体をプレスしてラミネート処理する。
[フラットケーブル及び導体の特性]
 本実施形態のフラットケーブルにおいて、導体は、付与される屈曲半径が4mm~8mmの範囲で、屈曲半径をX(mm)、0.2%耐力をY(MPa)としたとき、Y≧ 14.175X2 - 249.35X + 1406.9を満たし、且つ導電率が50%IACS以上である。例えば、屈曲半径8mmであるとき、導体の0.2%耐力は、319.3MPa以上を満たす。0.2%耐力及び導電率をそれぞれ上記範囲内の値とすることにより、従来と同等の導電性を製品に影響の出ないレベルで維持すると共に、弾発性を向上することができ、良好な屈曲特性を得ることができる。また、好ましくは、導体の伸びが5%未満である。伸びを上記範囲とすることにより、屈曲特性を改善し、より小半径でも寿命を延ばすことができる。
 導体の0.2%耐力(Y)と屈曲半径(X)との二次不等式の関係は、厚さ0.035mm、指定の屈曲半径Xに対して、室温から150℃の範囲のいかなる試験温度においても屈曲寿命が30万回を超える数値が0.2%耐力にてまとめられることを見出したためである。上記二次不等式の係数a=14.175、b=249.35、c=1406.9は、機械的強度が0.2%耐力の83%以上であると屈曲寿命は大きく延び、30万回の屈曲試験に耐えることが知見として得られたため、その目安を数式化した結果である。なお本不等式は、0.035mmに限らず、0.02mm~0.05mmにおいても成り立つものである。
 本発明における0.2%耐力の範囲の下限値は、屈曲半径8mmのときを想定した319.3MPaである。よって、本発明における0.2%耐力は、319.3MPa以上であり、好ましくは600MPa以上である。更に、組成範囲が限定される本発明の銅合金では、各強化機構が最大限寄与したとしても0.2%耐力が750MPaを上回ることはないと想定される。よって、本発明における0.2%耐力は、750MPa以下である。但し、これらの課題をクリアできるか或いは要求されない場合には、0.2%耐力の範囲の上限値は制限されない。
 本実施形態のフラットケーブルでは、導体は断面積が小さいために高導電性が要求される。その基準は一定ではなく、例えばステアリングホイールの可動範囲が広がればケーブル全長は長くなって電気抵抗は上がり、屈曲半径が小さくなれば全長は短くなり電気抵抗は下がる。また、寿命をより延ばすために導体を薄肉化したり、チャンネル数増加のため狭幅化を実施した場合には、断面積が減少して電気抵抗は上がる。そして、銅をはじめ金属の電気抵抗は温度上昇に伴い抵抗も上がるため、耐久温度要求が上がれば導電率への要求レベルが高まる。このように所望の導電率はその設計により変わることとなる。しかしながら目安として導体の導電率は50%IACS以上であることが要求され、70%IACS以上であることが好ましい。導電率70%IACS以上の好ましい範囲を満たす場合、設計の自由度が高まる好適な導体であると考えられる。
 上記実施形態によれば、製品スペック化が可能なレベルの高導電性を維持しつつ、十分な弾発性を発揮して、屈曲特性の更なる向上を実現することができる。また、屈曲半径を1mm小さくした場合、回転コネクタ装置の外径を4mm小さくすることができ、屈曲半径に対して回転コネクタ装置の外径をその4倍小さくすることができる。これによりコネクタ内径を変えることなく回転コネクタ装置を収容するステアリングコラムの外径を小さくすることが可能となり、ドライバーが車両の運転席に座った際の奥行方向の視野を広げることが可能となる。また、ドライバーの膝上の空間が広がることで、運転の快適性を向上することが可能となる。
 また、高導電性を維持しつつ良好な屈曲特性を有することから、従来のタフピッチ銅では実現できなかった導体狭幅化が可能となるため、従来と同一幅のフラットケーブルを作製する場合、導体配置数、すなわちチャンネル数を増加させることができる。また、フラットケーブルのチャンネル数を従来と同一にする場合には、フラットケーブルの幅を従来よりも小さくすることが可能となり、回転コネクタ装置の薄型化、低背化を実現できる。
 フラットケーブルのチャンネル数を従来と同一にする場合には、車両の多機能化に対応した利便性の高いフラットケーブルを提供することが可能となる。また、回転コネクタ装置にフラットケーブルが複数枚設けられる場合、フラットケーブル1枚当たりのチャンネル数が増加するため、回転コネクタ装置内に収容するフラットケーブルの枚数を減らすことが可能となる。
 以下、本発明の実施例を詳細に説明する。
 先ず、スズ、マグネシウム、クロム、亜鉛、チタン、ジルコニウム、鉄、リン、シリコン、銀及びニッケルを表1に示す含有量となるように調製し、鋳造機を用いて、各合金組成を有する銅合金(合金No.1~No.20)からなる厚さ150mm~180mmの鋳塊を作製した。次いで、600~1000℃の熱間圧延により厚さ20mmの板材を作製し、その後冷間圧延を施した。
 上記共通工程を経た後、表2に示すように、プロセスAでは、処理温度400℃、425℃、450℃のいずれか、処理時間30分間又は2時間で板材に時効熱処理を施した後、圧下率19%で仕上圧延を施し、厚さ0.035mmの導体を得た。
 また、プロセスBでは、表3に示すように、処理温度400℃、425℃、450、500℃のいずれか、処理時間30分間又は2時間で、板材に時効熱処理を施した後、圧下率90%或いは77%で圧延処理を施し、厚さ0.035mmの導体を得た。プロセスA及びBにおいて、最終製品である導体の厚さは同じとした。
 更に、比較としてのプロセスCでは、表4に示すように、熱間圧延後の厚さ20mmの板材に冷間圧延を施して厚さ0.035mmの導体を得て、その後処理温度200℃、350℃、375℃、400℃、450℃、700℃、750℃、800℃、900℃のいずれか、処理温度15秒間、30分間、2時間のいずれかで、導体に時効熱処理を施した。
 熱処理と圧延のプロセスを終えた条について、スリットにて所望の幅に切り出した。フラットケーブルは導体に亀裂が発生し、それが進展して寿命に至る為、導体幅が広いほうが長寿命である。本発明で規定する0.3mm~15mmにおいては、最も短寿命である0.3mm幅の導体と、それより幅広な0.5mm幅及び0.8mm幅の導体とを用い試験を実施したが、この範囲では導体幅毎の寿命変化は小さく、幅寸法の違いに因って寿命試験の判定結果が異なることはなかったため、代表して0.8mm幅の結果を示す。
 作製された導体について、以下に示す方法により、0.2%耐力、導電率(EC)、伸び及び屈曲寿命の各特性、並びに仕上圧延前の結晶粒径をそれぞれ測定した。
(A)0.2%耐力
 試験条件は、JIS Z 2241に準拠し、圧延方向を長手方向として引張試験を行った。
(B)導電率(EC)
 電気抵抗(又は電気伝導度)の基準として、国際的に採択された20℃における焼鈍標準軟銅(体積抵抗率: 1.7241×10-2μΩ・m)の導電率を、100%IACSとして規定している。各材料の導電率は一般的に知られたものであり、純銅(タフピッチ銅、無酸素銅)はEC=100%IACS、Cu-0.15Sn、Cu-0.3Crでは、EC=85%IACS程度である。ここでECは、「Electrical Conductivity」の略称であり、IACSは、「International Annealed Copper Standard」を示す。
 一方、製造プロセスによってその導電性は変化する。例えば本実施例におけるプロセスAとプロセスBでは、仕上圧延量が異なるために、プロセスBの方がやや導電性が劣化する。各実施例における材料の電気抵抗は、70%IACS以上であれば想定される環境若しくは設計の相当範囲において十分な役割を果たすとして極めて良好「◎」とし、50~70%IACSであれば使用環境、SRC構造如何によっては製品特性が十分あると判断して良好「〇」、50%IACS未満であればその導体は不適であると判断して不良「×」とした。
(C)伸び
 試験条件は、JIS Z 2241に準拠し、導体の長手方向にて引張試験を行い、突合せ伸びを測定した。測定結果の伸びが5%未満の場合には寿命を延ばすことが出来、例えば設計範囲を広げることも可能となることから、測定値を明記した。なお、導電率を多少犠牲にして従来よりも多少低い値になることがあっても、伸びの特性をより良好とすることで、屈曲特性を更に向上することが可能となり、その性能バランスに因っては回転コネクタ装置に用いるフラットケーブルに適した導体となる。
(D)仕上圧延前の結晶粒径
 幅と厚さの2方向断面について、試験サンプルを樹脂埋め及び研磨にて鏡面を出し、クロム酸などのエッチング液で粒界腐食させ、光学顕微鏡や電子顕微鏡で観察した際に結晶粒径が十分判断できる状態にしてから、JIS H 0501の切断法に準拠し、結晶粒径の測定を実施した。測定数は30から100とし、1結晶粒当たりの直径の平均値を求めた。
(E)屈曲寿命
 FPC屈曲試験機(上島製作所社製、装置名「FT-2130」)を用い、試料固定板および可動板に、導体 を100mmの長さに切断した後、2本を通電可能な架橋を施して、一端を可動板側に貼り付け、他端を鉛直方向に所望の径で屈曲させ、更にその他端を固定板側に固定し、両自由端を測定器につなげることで屈曲寿命を判定した。2本のうち1本が断線した場合に電圧は測定不能となることから、その時点を寿命と判断した。試験条件は、試験温度:20~85℃、屈曲半径X:半径4mm~8mm(7.5mm、6.3m、5.5mm、4.7mm)、ストローク:±13mm、回転速度:180rpmとした。電圧が測定不能となったときの屈曲回数が30万回以上である場合を、回転コネクタが要求される疲労特性を満足するとして良好「〇」、30万回未満である場合を不良「×」とした。上記の方法にて測定、評価した結果を表2~4に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表2の結果より、合金No.1~No.17は、合金成分が本発明の範囲内にあり、かつプロセスAを経ることで0.2%耐力及び導電率の双方が良好であった。また、プロセスAを経ることで、4mm~8mmの範囲のうち少なくとも6.3mm及び7.5mmの屈曲半径で、回転コネクタ装置のフラットケーブルに要求される疲労特性(屈曲寿命)を十分に満たし、屈曲特性が良好であることが分かる。また、表中の限界屈曲半径とは、下記(1)式を用いて、0.2%耐力から算出される算出値である。
X=(249.35-(249.352-4×14.175×(1406.9-Y))0.5)/(2×14.175) ・・・(1)
 ここで、Xは限界屈曲半径(単位:mm)、Yは0.2%耐力(単位:MPa)である。
 この実験結果と限界屈曲半径の算出値との相関関係によれば、上記(1)式を用いて算出される限界屈曲半径は、フラットケーブルの屈曲寿命が十分となることが分かる指標であることが確認できる。よって、屈曲半径4mm~8mmの範囲内でより厳しい屈曲半径を要求される場合、上記(1)式を用いて0.2%耐力から限界屈曲半径を算出し、算出された限界屈曲半径に基づいて適切な合金およびプロセスを選定することが可能となる。また、上記(1)式から得られる算出値以上の屈曲半径であれば、フラットケーブルの屈曲寿命がより良好になる。
 更に、上記(1)式をYで整理して、以下の式に変換することができる。
Y=14.175X2-249.35X+1406.9 ・・・(2)
 すなわち、仕様等に応じた指定の屈曲半径に基づいて想定される最小の屈曲半径の値が分かれば、上記(2)式を用い、当該最小の屈曲半径を限界屈曲半径とし、その限界屈曲半径において十分な疲労特性(屈曲寿命)が得られる0.2%耐力の値を決定することができる。また、上記(2)式から得られる算出値以上の0.2%耐力を有するフラットケーブルであれば、より良好な屈曲寿命が得られる。
 一方、合金成分が本発明の範囲外である合金No.18~No.20においては、合金No.1~No.17と同様のプロセスを経ても、導電性及び伸びのいずれか又は双方の特性が不十分となり、回転コネクタ装置の導体としては不適当であることが分かる。
 また、表3の結果から、表2の試験よりも仕上圧延率を高め(プロセスB:0.35mm厚或いは0.15mm厚から0.035mm厚)、耐力を上げることで限界屈曲半径を小さくし、伸びを5%未満とすることで、より広範囲の屈曲半径で十分な疲労特性を示すことが分かる。これは合金種によって導体としての性能には差があり、例えば合金No.1ではその導電率が70%IACS以上を維持したまま、屈曲性能が向上し、屈曲寿命が十分な屈曲半径の範囲が広がっている。一方、例えば合金No.4では屈曲寿命が十分な屈曲半径の範囲が広がる一方、導電率が70%IACSを下回るために、トレードオフの関係がある。このようなトレードオフの関係を有する合金種を用いると、設計面との兼合いで適当な導体となる場合もあれば、不適となる場合もあるが、導電率が許容される場合であれば更なるコネクタ小径化設計も可能であるため、その有用性は高い。
 表4の結果は、不適なプロセスCを経た試作材の結果である。特に合金No.1~No.17では、合金成分が本発明の範囲内にある一方で、仕上圧延を施さずに0.2%耐力が十分でないプロセスを経ている場合や、析出型合金においては時効処理を施していなかったり、またその処理が不適切な温度であったりすることで、導電率が不十分であることが分かる。よって本発明のプロセスでは、固溶型合金であれば熱処理時に結晶粒を極力微細化処理し、仕上圧延を施すことが重要であり、また、析出型合金であれば、適度な導電率になるまで時効熱処理を施し、同様に仕上圧延を施すことが重要である。析出型合金の熱処理は、時効ピーク迄ではなく、その合金が発現する0.2%耐力と導電率のバランスと、コネクタ設計の兼合いとから、過時効処理にすることが相応しいケースも存在する。
 特に、先行する公知技術と比較すると、特許文献2のように合金成分と結晶粒径を制御する場合、実施例において少なくともSn、Mg含有量が本発明の範囲外であり、強度域が原因で本明細書中で提示した不等式には則らないと考えられる。また、本実施例における表3及び表4の合金No.1~No.3同士を比較すると明らかなように、結晶粒径制御のみでその組成合金が持つ特性を十分に引き出しているとはいえない。同様に、特許文献3のような成分範囲においては、殆どの実施例及び参考例で引張強さ380MPa前後であることから、屈曲半径4.7mm~7.5mmにおいて0.2%耐力が319.3MPa以上を満たさないと考えられ、唯一引張強さ500MPaである実施例では、Ag含有量が2wt%と本発明の範囲外となっている。また、特許文献3の実施例と最も成分の近い本実施例の表2及び表3の合金No.1同士を比較することで分かるように、伸びを5%以上とするよりも、5%未満になる高耐力材として使用したほうが適当であると言える。
(F)弾発性の評価
 表2に示すプロセスAと同様の製法にて、合金No.1~No.20の銅合金からなる導体をそれぞれ作製し、各導体をPET樹脂及び接着剤の複合材(リケンテクノス社製、エアバッグ用フレキシブルフラットケーブル(絶縁フィルム)、樹脂厚25μm、接着剤厚20μm)で挟み込み、両面からプレスしてラミネート処理を施し、フラットケーブルを作製した。ラミネート処理条件は、プレス温度165℃、プレス時間3分間、プレス圧力0.5MPaとした。作製されたフラットケーブルの屈曲半径が4mm~8mm(7.5mm、6.3m、5.5mm、4.7mm)となるように、図1に示すような回転コネクタ装置を組み立てた。そして各装置について、回転耐久試験機(古河AS社製、摺動屈曲試験機)を用い、85℃で、100万回の回転試験を行った。
 ここで、回転試験前後で0.2%耐力の減少幅が小さければ、塑性変形が起きる際の耐力閾値の減少幅が小さく、逆に0.2%耐力の減少幅が大きければ永久歪みを起こし易くなり、弾発性が失われると考えられる。そこで回転試験後、クレゾール等の溶液で樹脂及び接着剤を溶かし、導体単体を取り出した後に引張試験を実施し、0.2%耐力が使用前の80%以上であれば十分な強度を維持しており、その弾発性においても十分であるとして良好「〇」、0.2%耐力が使用前の60%以上80%未満である場合をほぼ良好「△」、0.2%耐力が使用前の60%未満である場合を、弾発性が良好でないとして不良「×」とした。評価結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5から明らかなように、合金No.1~No.17のいずれも、4mm~8mmの範囲のうち少なくとも6.3mm及び7.5mmの屈曲半径で、屈曲寿命が十分であった場合に、弾発性も良好な結果となった。また、プロセスAにおいて屈曲寿命が不足する場合(表2の合金No.18)、弾発性も不良となった。
 また、Cu-Cr-Mg系合金として、表1の合金No.5の他に、マグネシウム及びクロムを表6に示す含有量となるように調製し、鋳造機を用いて、各合金組成を有する銅合金(合金No.21~No.23)からなる厚さ150mm~180mmの鋳塊を作製した。次いで、600~1000℃の熱間圧延により厚さ20mmの板材を作製し、その後冷間圧延を施した。そして、表7に示すように、プロセスDでは、処理温度450℃、処理時間2時間で板材に時効熱処理を施した後、圧下率75%或いは90%で仕上圧延を施し、厚さ0.035mmの導体を得た。そして、上記と同様にして、0.2%耐力、導電率(EC)、伸び及び屈曲寿命の各特性、並びに仕上圧延前の結晶粒径をそれぞれ測定し、各特性を評価した。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表7の結果から、合金No.21~No.23は、合金成分のMg及びCrの含有量が好ましい範囲内にあり、0.2%耐力及び導電率の双方が非常に良好であった。また、プロセスDを経ることで、4mm~8mmの範囲のうち4.0mm、4.3mm及び4.7mmの屈曲半径で、回転コネクタ装置のフラットケーブルに要求される疲労特性(屈曲寿命)を満たし、屈曲特性が非常に良好であることが分かる。また、合金No.22では、仕上圧延の圧下率を異ならせた場合、圧下率75%では、限界屈曲半径が大きくなるものの、導電率が相対的に大きくなるので、フラットケーブル長を長くすることができ、設計の自由度を向上できることが分かった。また、圧下率90%では、導電率が相対的に小さくなるものの、限界屈曲半径が小さくなるので、導電率への要求レベルがさほど高くない場合に、3.0mm~4.0mmの範囲内のより小さい屈曲半径で屈曲特性を向上できることが分かった。
 また、表7に示すプロセスDと同様の製法にて、合金No.21~No.23の銅合金からなる導体をそれぞれ作製し、各導体をPET樹脂及び接着剤の複合材(リケンテクノス社製、エアバッグ用フレキシブルフラットケーブル(絶縁フィルム)、樹脂厚25μm、接着剤厚20μm)で挟み込み、両面からプレスしてラミネート処理を施し、フラットケーブルを作製した。ラミネート処理条件は合金No.1~No.20と同様とし、図1に示すような回転コネクタ装置を組み立てた。そして各装置について、上記と同様にして、弾発性を評価した。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
 表8の結果から、合金No.21~No.23のいずれも、4mm~8mmの範囲のうち4.0mm、4.3mm及び4.7mmの屈曲半径で、屈曲寿命が十分であった場合に、弾発性も非常に良好な結果となった。
1 回転コネクタ装置
11 ステータ
11-1 ステータ本体
11-2 ステータ側コネクタ収容部
12 ロテータ
12-1 ロテータ本体
12-1a 天板部
12-1b 円筒部
12-2 ロテータ側コネクタ収容部
12-2a 回転側端子挿入孔
13 フラットケーブル
13a 折り返し部
21-1,21-2,21-3 導体
21-4,21-5,21-6 導体
22,23 一対の絶縁フィルム
24 接着剤層
S1 環状空間
S2 ステータ側コネクタ収容空間
S3 ロテータ側コネクタ収容空間
x 軸線

Claims (8)

  1.  固定部材と、前記固定部材に回転可能に取り付けられた回転部材と、前記固定部材と前記回転部材との間の環状空間に収容されたフラットケーブルとを備え、
     前記フラットケーブルの一端が、前記固定部材に固定される固定側コネクタに接続され、前記フラットケーブルの他端が、前記回転部材に固定される回転側コネクタに接続され、且つ前記フラットケーブルの長手方向の中間部分に、湾曲して折り返された折り返し部が設けられ、
     前記フラットケーブルは、銅合金からなる所定数の導体を有し、前記折り返し部にて屈曲を維持した状態で巻き締め又は巻き戻しされ、屈曲半径が4mm~8mmの範囲で、屈曲半径をX、0.2%耐力をYとしたとき、Y≧14.175X2 - 249.35X +1406.9を満たし、且つ導電率が50%IACS以上である、
     ことを特徴とする、回転コネクタ装置。
  2.  前記導体は、0.1~0.8質量%のスズ、及び0.05~0.8質量%のマグネシウム、0.01~0.5質量%のクロム、0.1~5.0質量%の亜鉛、0.02~0.3質量%のチタン、0.01~0.2質量%のジルコニウム、0.01~3.0質量%の鉄、0.001~0.2質量%のリン、0.01~0.3質量%のシリコン、0.01~0.3質量%の銀、及び0.1~1.0質量%のニッケルのうちの1種又は2種以上を含有し、残部が銅及び不可避不純物からなることを特徴とする、請求項1記載の回転コネクタ装置。
  3.  前記導体の伸びが5%未満であることを特徴とする、請求項1記載の回転コネクタ装置。
  4.  前記導体は、幅0.1mm~15mm、厚さ0.02mm~0.05mmであることを特徴とする、請求項1記載の回転コネクタ装置。
  5.  前記導体は、0.06~0.14質量%のマグネシウム、及び0.225~0.3質量%のクロムを含有し、残部が銅及び不可避不純物からなり、
     前記フラットケーブルは、0.2%耐力が600MPa以上、導電率が70%IACS以上であることを特徴とする、請求項1記載の回転コネクタ装置。
  6.  前記導体は、幅0.3mm~0.5mm、厚さ0.030mm~0.039mmであり、
     前記フラットケーブルの屈曲半径が4mm~5mmであることを特徴とする、請求項5記載の回転コネクタ装置。
  7.  請求項1~6のいずれか1項に記載の回転コネクタ装置のフラットケーブルを構成する導体の製造方法であって、
     溶解及び鋳造工程、熱間加工工程、冷間加工工程、熱処理工程及び仕上加工工程をこの順に有し、
     前記熱処理工程は、加熱温度250~600℃、加熱時間10分間~5時間で行うことを特徴とする、フラットケーブルを構成する導体の製造方法。
  8.  前記熱処理工程は、加熱温度400~550℃、加熱時間1時間~6時間で行う時効熱処理工程であり、
     前記仕上加工工程は、圧下率が50~97%以下であることを特徴とする、請求項7記載のフラットケーブルを構成する導体の製造方法。
PCT/JP2017/025927 2016-08-16 2017-07-18 回転コネクタ装置 WO2018034098A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017564136A JP6932650B2 (ja) 2016-08-16 2017-07-18 回転コネクタ装置
EP17841326.6A EP3503314A4 (en) 2016-08-16 2017-07-18 ROTARY CONNECTOR DEVICE
KR1020187000008A KR102423790B1 (ko) 2016-08-16 2017-07-18 회전 커넥터 장치
CN201780002639.5A CN107960140B (zh) 2016-08-16 2017-07-18 旋转连接器装置
US15/957,500 US10574012B2 (en) 2016-08-16 2018-04-19 Rotatable connector device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-159698 2016-08-16
JP2016159698 2016-08-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/957,500 Continuation US10574012B2 (en) 2016-08-16 2018-04-19 Rotatable connector device

Publications (1)

Publication Number Publication Date
WO2018034098A1 true WO2018034098A1 (ja) 2018-02-22

Family

ID=61196580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025927 WO2018034098A1 (ja) 2016-08-16 2017-07-18 回転コネクタ装置

Country Status (6)

Country Link
US (1) US10574012B2 (ja)
EP (1) EP3503314A4 (ja)
JP (1) JP6932650B2 (ja)
KR (1) KR102423790B1 (ja)
CN (1) CN107960140B (ja)
WO (1) WO2018034098A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7212237B1 (ja) * 2021-12-28 2023-01-25 株式会社光明きゃん フラットケーブル
CN118025413A (zh) * 2024-04-10 2024-05-14 青岛海舟科技有限公司 一种波浪滑翔器铠装缆

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11646538B2 (en) * 2018-10-05 2023-05-09 Volvo Construction Equipment Ab Power supply connector with multiple connections for relatively moving parts of a working machine, a use of a power supply connector with multiple connections
JP2020114082A (ja) * 2019-01-10 2020-07-27 矢崎総業株式会社 シート用ワイヤハーネス
JP2020141541A (ja) * 2019-03-01 2020-09-03 株式会社タチエス 給電経路付きの軸受構造
WO2020210444A1 (en) * 2019-04-12 2020-10-15 Materion Corporation Copper alloys with high strength and high conductivity, and processes for making such copper alloys

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11286760A (ja) * 1998-03-31 1999-10-19 Nippon Mining & Metals Co Ltd 圧延銅箔およびその製造方法
JP3633302B2 (ja) * 1998-08-27 2005-03-30 日立電線株式会社 フラットケーブル用導体
JP4193381B2 (ja) * 2001-07-16 2008-12-10 日立電線株式会社 耐屈曲フレキシブルフラットケーブル及びその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4734695Y1 (ja) 1968-03-27 1972-10-20
US3633302A (en) 1970-02-27 1972-01-11 Karl R Lewis Cylinder mechanism for revolver-type firearms
JPS52107980A (en) 1976-03-09 1977-09-10 Seiji Komatsu Device for feather plucking
JPH01312047A (ja) * 1988-06-13 1989-12-15 Yazaki Corp 高力高導電性銅合金の製造方法
JPH0482110A (ja) * 1990-07-25 1992-03-16 Furukawa Electric Co Ltd:The フレキシブルフラットケーブル
FR2770896B1 (fr) * 1997-11-10 2000-01-28 Valeo Thermique Moteur Sa Condenseur de climatisation muni d'un reservoir de fluide a cartouche interchangeable
USH1991H1 (en) * 1999-07-01 2001-09-04 Methode Electronics, Inc. Clockspring using flexible printed wiring
JP4734695B2 (ja) 2000-07-07 2011-07-27 日立電線株式会社 耐屈曲フラットケーブル
US6780032B2 (en) * 2002-10-07 2004-08-24 Tyco Electronics Corporation Loop back clockspring connector having high current capacity
JP5019637B2 (ja) * 2009-01-19 2012-09-05 古河電気工業株式会社 回転コネクタ
KR101521408B1 (ko) * 2009-01-26 2015-05-18 후루카와 덴키 고교 가부시키가이샤 배선용 전선 도체, 배선용 전선 도체의 제조방법, 배선용 전선 및 구리합금 소선
US8821655B1 (en) * 2010-12-02 2014-09-02 Fisk Alloy Inc. High strength, high conductivity copper alloys and electrical conductors made therefrom
JP5342712B1 (ja) 2011-11-11 2013-11-13 古河電気工業株式会社 圧延銅箔
JP2016014165A (ja) * 2014-07-01 2016-01-28 株式会社Shカッパープロダクツ 銅合金材、銅合金材の製造方法、リードフレームおよびコネクタ
JP6249528B2 (ja) * 2014-07-04 2017-12-20 アルプス電気株式会社 回転コネクタ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11286760A (ja) * 1998-03-31 1999-10-19 Nippon Mining & Metals Co Ltd 圧延銅箔およびその製造方法
JP3633302B2 (ja) * 1998-08-27 2005-03-30 日立電線株式会社 フラットケーブル用導体
JP4193381B2 (ja) * 2001-07-16 2008-12-10 日立電線株式会社 耐屈曲フレキシブルフラットケーブル及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3503314A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7212237B1 (ja) * 2021-12-28 2023-01-25 株式会社光明きゃん フラットケーブル
WO2023127114A1 (ja) * 2021-12-28 2023-07-06 株式会社光明きゃん フラットケーブル
CN118025413A (zh) * 2024-04-10 2024-05-14 青岛海舟科技有限公司 一种波浪滑翔器铠装缆

Also Published As

Publication number Publication date
KR102423790B1 (ko) 2022-07-22
CN107960140A (zh) 2018-04-24
US10574012B2 (en) 2020-02-25
JP6932650B2 (ja) 2021-09-08
EP3503314A1 (en) 2019-06-26
JPWO2018034098A1 (ja) 2019-06-13
EP3503314A4 (en) 2020-04-08
CN107960140B (zh) 2020-12-25
KR20190038469A (ko) 2019-04-08
US20180241165A1 (en) 2018-08-23

Similar Documents

Publication Publication Date Title
WO2018034098A1 (ja) 回転コネクタ装置
EP1852875B1 (en) Aluminum conductive wire for automobile wiring
JP3856581B2 (ja) フレキシブルプリント回路基板用圧延銅箔およびその製造方法
EP1973120B1 (en) Electrical wire conductor for wiring, electrical wire for wiring, and their production methods
EP2439063B1 (en) Copper foil composite
EP1997920B1 (en) Copper alloy for electric and electronic equipments
EP2542043A1 (en) Composite for electromagnetic shielding
JPWO2009057697A1 (ja) 電子機器用導体線材およびそれを用いた配線用電線
JPWO2012133634A1 (ja) アルミニウム合金導体
WO2015152261A1 (ja) 圧延銅箔、圧延銅箔の製造方法、フレキシブルフラットケーブル、フレキシブルフラットケーブルの製造方法
JP2009035775A (ja) コネクタ端子
CN108496228B (zh) 扁平电缆、扁平电缆的制造方法以及包括扁平电缆的旋转连接器装置
JP6928831B2 (ja) 回転コネクタ装置のフラットケーブルを構成する導体の製造方法
JP4330003B2 (ja) アルミ導電線
JP4041970B2 (ja) 自動車用導体
JP7145683B2 (ja) フラットケーブル及びその製造方法
JP2012041574A (ja) フレキシブルプリント配線板用銅箔及びその製造方法
JP6809957B2 (ja) フラットケーブル、該フラットケーブルを備える回転コネクタ装置、及びフラットケーブルの製造方法
JP4728599B2 (ja) 自動車配線用アルミ導電線及び自動車配線用電線
JP2017059357A (ja) フレキシブルフラットケーブル用帯板状導体、および複数の帯板状導体を有するフレキシブルフラットケーブル、ならびにフレキシブルフラットケーブルを有するステアリング・ロール・コネクタおよび電子機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017564136

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20187000008

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17841326

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017841326

Country of ref document: EP

Effective date: 20190318