[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007148660A1 - 複素環含有アリールアミン誘導体を用いた有機エレクトロルミネッセンス素子 - Google Patents

複素環含有アリールアミン誘導体を用いた有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2007148660A1
WO2007148660A1 PCT/JP2007/062258 JP2007062258W WO2007148660A1 WO 2007148660 A1 WO2007148660 A1 WO 2007148660A1 JP 2007062258 W JP2007062258 W JP 2007062258W WO 2007148660 A1 WO2007148660 A1 WO 2007148660A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
carbon atoms
ring
Prior art date
Application number
PCT/JP2007/062258
Other languages
English (en)
French (fr)
Inventor
Masahiro Kawamura
Emiko Kambe
Akifumi Nakamura
Yasunori Kijima
Tadahiko Yoshinaga
Shigeyuki Matsunami
Original Assignee
Idemitsu Kosan Co., Ltd.
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd., Sony Corporation filed Critical Idemitsu Kosan Co., Ltd.
Priority to EP07767148.5A priority Critical patent/EP2031670B1/en
Priority to JP2008522454A priority patent/JP5616582B2/ja
Priority to CN200780022945.1A priority patent/CN101473464B/zh
Priority to KR1020087030995A priority patent/KR101422864B1/ko
Publication of WO2007148660A1 publication Critical patent/WO2007148660A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/611Charge transfer complexes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom

Definitions

  • the present invention relates to an organic electoluminescence device using a heterocyclic ring-containing arylamine derivative.
  • An organic electroluminescence device (hereinafter, electroluminescence is abbreviated as EL) can apply an electric field to recombine energy of holes injected from an anode and electrons injected from a cathode. It is a self-luminous element that utilizes the principle that a fluorescent substance emits light.
  • Non-Patent Document 1 Since the EL device report (Non-Patent Document 1 etc.) was made, research on organic EL devices using organic materials as constituent materials has been actively conducted.
  • Tang et al. Use tris (8-hydroxyquinolinol aluminum) for the light-emitting layer and triphenyldiamin derivative for the hole transport layer.
  • the advantages of the stacked structure are to increase the efficiency of hole injection into the light-emitting layer, to increase the efficiency of exciton generation by recombination by blocking electrons injected from the cathode, and to generate in the light-emitting layer For example, confinement of excitons.
  • the device structure of an organic EL device includes a hole transport (injection) layer, a two-layer type of an electron transporting light emitting layer, or a hole transport (injection) layer, a light emitting layer, an electron transport ( The three-layer type isotropic of the injection layer is well known.
  • the element structure and the formation method have been devised in order to increase the recombination efficiency between injected holes and electrons.
  • Patent Documents 1 and 2 Conventionally, as a hole injection material used for an organic EL element, a material having a phenylenediamine structure represented by Patent Documents 1 and 2 has been known and widely used.
  • the hole transport material arylene-based materials containing a benzidine skeleton described in Patent Documents 3 and 4 have been used.
  • Patent Documents 5 to 7 disclose arylamine compounds containing strong rubazole. Further, when such a material is used as a hole transport material, it has a feature that the light emission efficiency is improved, but at the same time, there is a drawback that the driving voltage is significantly increased and the device life is extremely shortened.
  • Patent Document 8 discloses a device using two or more hole injection transport layers in which an ionization potential ⁇ I is set in a stepped manner in order to efficiently inject holes from the anode to the light emitting layer.
  • the material system described in Patent Document 8 has insufficient luminous efficiency and lifetime.
  • Patent Document 1 JP-A-8-291115
  • Patent Document 2 JP 2000-309566 Koyuki
  • Patent Document 3 US Patent No. 5, 061, 569
  • Patent Document 4 Japanese Patent Laid-Open No. 2001-273978
  • Patent Document 5 US Patent 6, 242, 115 specification
  • Patent Document 6 JP 2000-302756 A
  • Patent Document 7 Japanese Patent Application Laid-Open No. 11 144873
  • Patent Document 8 JP-A-6-314594
  • Non-Patent Document 1 C. W. Tang, S. A. Vanslyke, Applied Physics Letters, 51, 913 (1987)
  • An object of the present invention is to provide an organic EL device having a low voltage, high efficiency, and long life.
  • the following organic EL device is provided.
  • an anode and a cathode a light emitting layer composed of at least an organic compound between the anode and the cathode, and two or more layers in a hole injection and transport zone between the anode and the light emitting layer,
  • the layer in contact with the light emitting layer in the hole injection 'transport zone described above contains a compound represented by the following formula (1), and the layer in the hole injection' transport zone has the anode and the light emitting layer.
  • An organic electoluminescence device in which a layer located between layers in contact with the layer contains an amine derivative represented by the following formula (2).
  • Z is a substituted or unsubstituted nitrogen-containing heterocyclic group, and is a linking group formed by bonding 1 to 4 divalent aromatic groups which may have a substituent.
  • Ar and Ar are each
  • L is a substituted or unsubstituted arylene group having 10 to 40 nuclear carbon atoms, Ar to Ar
  • 2 3 is a substituted or unsubstituted aromatic hydrocarbon ring group having 6 to 60 nuclear carbon atoms, or
  • Ar to Ar are substituted or unsubstituted aromatic carbon atoms having 6 to 60 nuclear carbon atoms, respectively.
  • It is a hydrogen ring group or a substituted or unsubstituted aromatic heterocyclic group having 6 to 60 nuclear atoms, R is a substituent, and n represents an integer of 2 to 4.
  • R and R are each a substituent, and are connected to each other to form a saturated or unsaturated ring.
  • Ar to Ar are each a substituted or unsubstituted aromatic group having 6 to 60 nuclear carbon atoms.
  • At least one of Ar to Ar in formula (4) is a substituted or unsubstituted biphenyl group 3
  • R to R are each a substituent, and are connected to each other to form a saturated or unsaturated ring.
  • Ar to Ar are substituted or unsubstituted 6 to 60 nuclear carbon atoms, respectively.
  • At least one of Ar to Ar in formula (5) is a substituted or unsubstituted biphenyl group
  • Cz is a substituted or unsubstituted carbazolyl group, and L may have a substituent.
  • R represents a cyclic group or an aromatic heterocyclic group, and R to R each independently represent a hydrogen atom, a halogen atom,
  • Atom alkyl group, aralkyl group, alkenyl group, cyano group, amino group, acyl group, alkoxycarbonyl group, carboxyl group, alkoxy group, aryloxy group, alkylsulfonyl group, hydroxyl group, amide group, aromatic hydrocarbon ring Represents a group or an aromatic heterocyclic group
  • R to R are adjacent to each other
  • L is an optionally substituted divalent aromatic group
  • R represents a cyclic group or an aromatic heterocyclic group, and R to R each independently represent a hydrogen atom, a halogen atom,
  • Atom alkyl group, aralkyl group, alkenyl group, cyano group, amino group, acyl group, alkoxycarbonyl group, carboxyl group, alkoxy group, aryloxy group, alkylsulfonyl group, hydroxyl group, amide group, aromatic hydrocarbon ring Represents a group or an aromatic heterocyclic group
  • R to R are adjacent to each other
  • an organic EL element having a low voltage, high efficiency, and long life can be realized by using a material having a special structure.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of an organic EL device of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing another embodiment of the organic EL device of the present invention.
  • the organic EL device of the present invention has a light emitting layer composed of at least an organic compound between an anode and a cathode. It has two or more layers in the hole injection / transport zone between the anode and the light emitting layer.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of the organic EL device of the present invention.
  • an anode 10 a hole injection layer 20, a hole transport layer 30, a light emitting layer 40, an electron transport layer 50, an electron injection layer 60, and a cathode 70 are laminated in this order on a substrate (not shown).
  • the hole injection layer 20 and the hole transport layer 30 which are layers in the hole injection / transport zone satisfy the following conditions (A) and (B).
  • the layer in contact with the light emitting layer contains a compound represented by the following formula (1)
  • the layer (hole injection layer 20) between the anode and the layer in contact with the light emitting layer contains an amine derivative represented by the following formula (2).
  • the driving voltage of the device is not increased, and the device has high luminous efficiency and long life.
  • the compound of the above formula (1) and the amine derivative of the formula (2) in combination, the property of improving the efficiency of the device, which is unique to the compound of the formula (1), is maintained. This is probably because holes easily flow and the number of holes injected into the light-emitting layer increases dramatically. It is also thought that the layer of the compound of formula (1) prevents electrons from reaching the layer of the derivative of formula (2).
  • Z is a substituted or unsubstituted nitrogen-containing heterocyclic group.
  • pyrrole, imidazole, pyrazole, triazole, oxadiazole, pyridine, pyrazine, triazine, pyrimidine, carbazole, azacarbazole, diazacarbazole, indole, benzimidazole, imidazopyridine, indolizine and the like can be mentioned. More preferred are imidazole, carbazole, indole, indolizine, imidazopyridine, pyridine, pyrimidine and triazine.
  • the substituent of Z includes a hydrogen atom, a halogen atom (a fluorine atom, a chlorine atom, a bromine atom or an iodine atom), an alkyl group (for example, a methyl group, an ethyl group, etc .; straight chain having!
  • a branched alkyl group a cycloalkyl group having 5 to 8 carbon atoms such as a cyclopentyl group or a cyclohexyl group
  • an aralkyl group for example, a aralkyl group having 7 to 13 carbon atoms such as a benzyl group or a phenethyl group
  • An alkenyl group eg, a straight chain or branched alkenyl group having 2 to 7 carbon atoms such as a bur group or an aryl group
  • a cyan group an amino group, particularly a tertiary amino group (such as a jetyl amino group, a diisopropylamino group, etc.)
  • Straight chain, branched or cyclic carbon atoms of! -20 carbons such as arylenorequinoleamino groups having 7 to 20 carbon atoms, acyl groups (eg acetyl, propionyl, benzoyl, naphthoyl, etc.)
  • a hydrogen group-containing acyl group such as a linear or branched alkoxycarbonyl group having 2 to 7 carbon atoms such as a methoxycarbonyl group or an ethoxycarbonyl group), a carboxyl group, an alkoxy group ( For example, methoxy group, ethoxy group, etc., straight chain or branched alkoxy group having carbon number of 6 to 6), aryloxy group (for example, phenoxy group, benzyloxy group, etc., carbon number of 6 to 10; aryloxy group), alkylsulfonyl Groups (for example, methylsulfonyl group,
  • a substituent for Z more preferably a hydrogen atom, a halogen atom, an alkyl group, or an alkoxy Group, an aromatic hydrocarbon ring group, and an aromatic heterocyclic group.
  • substituents may further have a substituent.
  • substituents include a halogen atom (a fluorine atom, a chlorine atom, a bromine atom or an iodine atom), an alkyl group (for example, a methyl group, an ethyl group).
  • haloalkyl group for example, trifluoromethyl group or the like! Haloalkyl group
  • cyan group a halogen atom, an alkoxy group, and an aromatic hydrocarbon ring group are more preferable.
  • L represents a linking group formed by bonding 1 to 4 divalent aromatic groups which may have a substituent.
  • L is
  • Ar 1 ′, Ar 2 ′, Ar 3 ′, Ar 4 ′, Ar 6 ′, Ar 7 ′ and Ar 10 ′ may be substituted, and each of the aromatic rings having 5 to 6 members may be substituted.
  • Ar 1, Ar 2 ', Ar 3', Ar 4 ', Ar. , Ar 7 and Ar 10 ′ specifically, a divalent aromatic hydrocarbon ring group such as a phenylene group, a naphthylene group, an anthrylene group, a phenanthrylene group, a pyrenylene group, a perylene group, a pyridylene group, and a triadylene group
  • divalent aromatic heterocyclic groups such as pyrazilene group, quinoxalylene group, chainylene group, and oxaziazolylene group.
  • Ar 8 'and Ar 9 ' are forces that are divalent aromatic groups represented by the groups described above as Ar 1 'or the like, or NAr 11 '-(where Ar 11 'is And a divalent arylamino group represented by a monovalent aromatic hydrocarbon ring group or an aromatic heterocyclic group which may have a substituent.
  • Ar 11 ′ includes, for example, a 5- or 6-membered aromatic group such as a phenyl group, a naphthyl group, an anthryl group, a phenanthyl group, a chenyl group, a pyridyl group, a carbazolyl group, and the like. You may have.
  • Ar 1 ' which is the smallest linking group as L, is preferably 3 or more condensed rings in order to improve the rigidity of the compound and the heat resistance resulting therefrom.
  • a monocyclic ring or a 2-3 condensed ring is preferable, and a monocyclic ring or a 2-condensed ring is more preferable.
  • A, Ar 8 'and Ar 9' from the viewpoint of improving the amorphous of Shi preferred that an aromatic ring ingredients of compound is, A, Ar 8 'And Ar 9 ' are preferably one NAr 11 '—.
  • Ar 5 ′, Ar 8 ′ and Ar 9 ′ are preferably one NAr 11 ′ —.
  • the emission wavelength of the compound can be slightly increased, and a desired emission wavelength can be easily obtained.
  • the other is preferably an aromatic group.
  • Examples of the substituent that Ar 1 ′ to Ar 1Q ′ may have include the same groups as those exemplified as the substituent for Z. Among these, an alkyl group, an alkoxy group, an aromatic hydrocarbon ring group, or an aromatic heterocyclic group is particularly preferable.
  • substituent Ar 11 ' which may have, for example, include the same groups as those exemplified as the substituent of Z. Particularly preferred among these are an arylamino group, a phenyl group, and a naphthyl group. Or an aromatic heterocyclic group such as a carbazolyl group.
  • Ar 1 and Ar 2 each independently represents an aromatic hydrocarbon ring group or an aromatic heterocyclic group which may have a substituent.
  • Examples of the aromatic hydrocarbon ring group of Ar 1 and Ar 2 include a benzene ring monocyclic group or a group consisting of 2 to 5 condensed rings, and specifically include a phenyl group, a naphthyl group, an anthryl group, a phenyl group. Examples include an enanthryl group, a pyrenyl group, and a perylenyl group.
  • Examples of the aromatic heterocyclic group include a 5- or 6-membered monocyclic ring or a 2-5 condensed ring, and specific examples include a pyridyl group, a triazinyl group, a birazinyl group, a quinoxalinyl group, and a chenyl group. .
  • Examples of the substituent that the aromatic hydrocarbon ring group and the aromatic heterocyclic group may have include, for example, an alkyl group (for example, a linear or branched alkyl group having 1 to 6 carbon atoms such as a methyl group or an ethyl group).
  • an alkyl group for example, a linear or branched alkyl group having 1 to 6 carbon atoms such as a methyl group or an ethyl group.
  • an alkenyl group for example, a linear or branched alkenyl group having from 6 to 6 carbon atoms such as a vinyl group or an aryl group
  • an alkoxycarbonyl group for example, a methoxycarbonyl group, an ethoxycarbonyl group, etc. 6 straight-chain or branched alkoxycarbonyl groups
  • alkoxy groups for example, methoxy groups, ethoxy groups, etc .; C-6 linear or branched alkoxy groups
  • aryloxy groups for example, phenoxy groups, naphthoxy groups.
  • aryloxy group having 6 to 10 carbon atoms Such as aryloxy group having 6 to 10 carbon atoms), aralkyloxy group (for example, allyloxy group having 7 to 13 carbon atoms such as benzyloxy group), secondary or tertiary amino group (for example, For example, a dialkylamino group having a linear or branched alkyl group having 2 to 20 carbon atoms such as a jetylamino group or a diisopropylamino group; a diarylamino group such as a diphenylamino group or a phenylnaphthylamino group; a methylphenylamino group; Carbon atoms having 7 to 20 carbon atoms, halogen atoms (fluorine atoms, chlorine atoms, bromine atoms or iodine atoms), aromatic hydrocarbon ring groups (for example, phenyl groups, naphthyl groups, etc.) , Aromatic hydro
  • alkyl groups alkoxy groups, anolenoreamino groups, arenoreamino groups, arylalkylamino groups, halogen atoms, aromatic hydrocarbon ring groups, and aromatic heterocyclic groups are preferred alkyl groups, Alkoxy groups and arylamino groups are particularly preferred.
  • Ar 1 and Ar 2 are connected via two or more direct bonds, such as a terphenyl group. If the structure contains 3 or more aromatic groups, the hole transport ability of the arylamino group represented by NA ⁇ Ar 2 may be reduced, and the Tg of the compound may be reduced. it is conceivable that.
  • Ar 1 and Ar 2 both have three or more aromatic groups connected in series via a direct bond or a short chain linking group. It is important that the bond is a V, a radical group.
  • the nitrogen-containing heterocyclic derivative represented by the formula (1) is preferably a force rubazole derivative represented by the following formula (6).
  • Cz is a substituted or unsubstituted carbazolyl group.
  • Examples of the carbazolyl group represented by Cz include a 1-strength rubazolyl group, a 2-strength rubazolyl group, a 3-carbazolyl group, a 4-strength rubazolyl group, and an N-strand rubazolyl group.
  • Preferred are a 2-canolebasolinole group, a 3-canolebasolinole group, and an N 2 rubazolyl group.
  • These strong rubazolyl groups may have a substituent.
  • substituents include the same substituents as Z in formula (1).
  • L represents 1 to 4 divalent aromatic groups which may have a substituent.
  • a linking group formed by bonding is represented.
  • Preferred groups as L are the same as L in formula (1).
  • Ar and Ar may each independently have a substituent.
  • An aromatic hydrocarbon ring group or an aromatic heterocyclic group An aromatic hydrocarbon ring group or an aromatic heterocyclic group.
  • Preferred groups for Ar and Ar are
  • the force rubazole derivative of the formula (6) is preferably a compound containing an N force rubazolyl group represented by the following formula (7).
  • Ar 1 and Ar 2 are each independently an aromatic hydrocarbon which may have a substituent.
  • R represents a cyclic group or an aromatic heterocyclic group, and R to R each independently represent a hydrogen atom, a halogen atom,
  • Atom alkyl group, aralkyl group, alkenyl group, cyano group, amino group, acyl group, alkoxycarbonyl group, carboxyl group, alkoxy group, aryloxy group, alkylsulfonyl group, hydroxyl group, amide group, aromatic hydrocarbon ring Represents a group or an aromatic heterocyclic group
  • R to R are adjacent to each other
  • L is an optionally substituted divalent aromatic group
  • V represents a linking group formed by four bonds.
  • R 6 to R 13 may be bonded together to form a ring condensed with an N-carbazolyl group.
  • the ring formed by bonding of adjacent groups is usually a 5- to 8-membered ring, preferably a 5- or 6-membered ring, more preferably a 6-membered ring.
  • this ring may be an aromatic ring or a non-aromatic ring, but is preferably an aromatic ring.
  • it may be an aromatic hydrocarbon ring or an aromatic heterocyclic ring, but is preferably an aromatic hydrocarbon ring.
  • N-force rubazolyl group of the formula (7) in which any of R 6 to R 13 are bonded to form a condensed ring bonded to the N-force rubazolyl group include the following: Can be mentioned.
  • R 6 to R 13 are particularly preferably all hydrogen atoms (that is, the N-force rubazolyl group is unsubstituted), or one or more carboxylic groups, phenyl groups, or methoxy groups. This is the case where the rest are hydrogen atoms.
  • the compound represented by the formula (7) is particularly preferably a compound represented by the following formula (8).
  • examples of each group of R 6 to R 15 are the same as the above substituent of Z. They may be linked together to form a saturated or unsaturated ring.
  • Ar and Ar each independently represent a substituent.
  • An aromatic hydrocarbon ring group or an aromatic heterocyclic group which may be present is shown, and examples thereof are the same as Ar described above.
  • a fluorene compound represented by the following formula (9) can also be preferably used.
  • X is unsubstituted or substituted with a halogen atom, an alkyl having 1 to 10 carbon atoms; N-streptyl group, unsubstituted or substituted, which may be mono- or poly-substituted with an alkoxy group having 1 to 10 carbon atoms, or an aryl group having 6 to 10 carbon atoms, or a halogen as a substituent.
  • a halogen atom an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 10 to 10 carbon atoms, an alkoxy group having 10 to 10 carbon atoms, or an aryl group having 6 to 10 carbon atoms may be mono- or polysubstituted.
  • halogen A mono- or poly-substituted mono- or poly-substituted by a thiol, an alkyl group, an alkoxy group, or an aryl group may be a carbocyclic aromatic group having 6 to 20 carbon atoms in total or a heterocyclic ring having
  • B and B are a hydrogen atom, a linear, branched or cyclic alkyl group, unsubstituted, or
  • a halogen atom, an alkyl group, an alkoxy group, or an aryl group is substituted or polysubstituted, and may be a carbocyclic aromatic group having 6 to 20 carbon atoms or 3 carbon atoms.
  • Z is a hydrogen atom, halogen atom, straight chain, minute
  • Bi- or cyclic alkyl groups linear, branched or cyclic alkoxy groups, or unsubstituted or substituted as mono- or poly-substituted with halogen atoms, alkyl groups, alkoxy groups, or aryl groups.
  • represents a substituted or unsubstituted N force rubazoyl group, a substituted or unsubstituted N phenoxazyl group, or a substituted or unsubstituted N phenothiazyl group, preferably As an unsubstituted or substituted group, for example, a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 10 to 10 carbon atoms, or an aryl group having 6 to 10 carbon atoms may be mono-substituted or poly-substituted.
  • N force rubazyl group N phenoxazyl group, or N phenothiazyl group, more preferably unsubstituted, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms.
  • a group having 6 to 10 carbon atoms, which is monosubstituted, is polysubstituted may be, N is a rubazol group N phenoxazyl group, or N An enothiazyl group, more preferably an unsubstituted N 6 rubazoyl group, an unsubstituted N phenoxazyl group, or an unsubstituted N phenothiazyl group.
  • substituted or unsubstituted N force rubazoyl group, the substituted or unsubstituted N phenoxyl group, or the substituted or unsubstituted N phenothiazyl group of X include, for example, an N force rubazoyl group, 2-methyl-N Forced rubazyl group, 3-methyl-N—forced rubazol group, 4-methyl-N forced rubazol group, 3-n-butyl-N forced rubazoyl group, 3-n hexylou N forced rubazyl group, 3—n-octylu-N-forced rubazol group, 3— n Decyl-N force rubazoyl group, 3,6 dimethyl-N force rubazoyl group, 2-methoxy-1-N force rubazoyl group, 3-methoxy-1-N-force rubazoyl group, 3-ethoxy-1-N-force rubazoyl group, 3-isopropoxy N force rubazoyl group 3-, n-but
  • Norevazol group substituted or unsubstituted N phenoxazyl group, substituted or unsubstituted N-phenothiazyl group, or NAr 21 Ar 22 '(where Ar 21 ' and Ar 22 'are substituted or unsubstituted aryl groups) Represents).
  • X substituted or unsubstituted N 6 rubazoyl group, substituted or unsubstituted N phenoxy Specific examples of the sadyl group and the substituted or unsubstituted N phenothiazyl group include, for example, the substituted or unsubstituted N force rubazoyl group, substituted or unsubstituted N phenoxazyl group, substituted or unsubstituted N Refers to the power to illustrate the phenothiazyl group.
  • Ar 21 ′ and Ar 22 ′ represent a substituted or unsubstituted aryl group.
  • the aryl group represents a carbocyclic aromatic group such as a phenyl group, a naphthyl group, and an anthryl group, for example, a heterocyclic aromatic group such as a furyl group, a chenyl group, and a pyridyl group.
  • Ar 21 ′ and Ar 22 ′ are preferably unsubstituted or monosubstituted or polysubstituted by a substituent such as a halogen atom, an alkyl group, an alkoxy group, or an aryl group.
  • Ar 21 'and Ar 22 include, for example, a phenyl group, a 1 naphthyl group, a 2 naphthyl group, a 2 anthryl group, a 9 anthryl group, a 4-quinolinole group, a 4 pyridinole group, a 3 pyridinole group, 2 pyridinole group, 3 frinole group, 2 frinole group, 3 cheninole group, 2 cheninole group, 2-oxazolyl group, 2-thiazolyl group, 2-benzoxazolyl group, 2-benzothiazolyl group, 2-benen Zoimidazolyl group, 4 methylphenyl group, 3 methylphenyl group, 2 methylphenyl group, 4 ethenylphenyl group, 3 ethenylphenyl group, 2 ethenylphenyl group, 4-n propylphenyl group, 4 isopropylphen
  • B and B are a hydrogen atom, a straight chain, a branched chain or a ring.
  • carbon number represents a substituted or unsubstituted aryl group having 4 to 16 or a substituted or unsubstituted aralkyl group having 5 to 16 carbon atoms, more preferably a hydrogen atom, a carbon number;!
  • B and B are carbon atoms;! -8 to linear, branched or cyclic alkyl groups, carbon atoms
  • substituted or unsubstituted aryl group of B and B include, for example, Ar
  • linear, branched or cyclic alkyl group for B and B include, for example,
  • Methyl group, ethyl group, n propyl group, isopropyl group, n butyl group, isobutyl group, sec butyl group, tert butyl group, n pentyl group, isopentyl group, neopentinole group, tert pentyl group, cyclopentyl group, n hexyl group, 2-ethylbutyl group, 3,3-dimethylbutyl group, cyclohexyl group, n-heptyl group, cyclohexylmethyl group, n-octyl group, tert-octyl group, 2-ethylhexyl group, n-nonyl group, n-decyl group , N-dodecyl group, n-tetradecyl group, n-hexadecyl group, and the like are not limited thereto.
  • substituted or unsubstituted aralkyl group of B and B include, for example,
  • Benzyl group phenethyl group, ⁇ methylbenzyl group, ⁇ , a-dimethylbenzyl group, 1 naphthylmethyl group, 2 naphthylmethyl group, furfuryl group, 2 methylbenzyl group, 3 methylbenzyl group, 4 methylbenzyl group, 4 ethenylbenzyl group , 4 isopropylenovenenore group, 4 tert butinoleveninore group, 4-n hexenolevendinole group, 4-noni Norebendyl group, 3,4-dimethylbenzyl group, 3-methoxybenzyl group, 4-methoxybenzenole group, 4 ethoxybenzyl group, 4-n-butoxybenzyl group, 4-n hexyloxybenzyl group, 4-noeroxy Forces that can include aralkyl groups such as benzyl group, 4-fluorobenzyl group, 3-fluorobenzyl group,
  • Z and Z are a hydrogen atom, a halogen atom, a linear, branched or cyclic alkyl group, a straight
  • linear, branched or cyclic alkyl group of Z and Z include, for example,
  • the force S can be used to indicate the substituted or unsubstituted aryl groups listed as specific examples of Ar 21 ′ and Ar 22 ′.
  • a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom, such as a methoxy group, an ethoxy group, a ⁇ propoxy group, an isopropoxy group, a ⁇ butoxy group, an isobutoxy group, a sec butoxy group, an n pentyloxy group, or an isopentyl group.
  • nitrogen-containing heterocyclic derivatives that can be used in the present invention are shown below.
  • L is a substituted or unsubstituted arylene group having 10 to 40 carbon atoms.
  • Ar to Ar in the formula (2) are each substituted or unsubstituted aromatic carbon having 6 to 60 nuclear carbon atoms.
  • the cyclic group is the same as Ar and Ar in formula (1).
  • Examples of the substituted or unsubstituted aromatic heterocyclic group having 6 to 60 nuclear atoms include, for example, a 5- or 6-membered monocyclic ring or a 2 to 5 condensed ring. Specific examples include a pyridyl group and a triazinyl group. Group, birazinyl group, quinoxalinyl group and chenyl group.
  • the amine derivative of the formula (2) is preferably a compound represented by the following formula (3).
  • Ar to Ar are the same as Ar to Ar in Formula (2).
  • R represents a substituent. Specific examples of R are the same as the above-described substituents such as Z in the formula (1).
  • n an integer of 2 to 4. 2 and 3 are preferred.
  • the amine derivative represented by the formula (2) is more preferably a compound represented by the following formula (4) or (5).
  • R to R are substituents, and specific examples are the same as R in the formula (3).
  • R to R may combine with each other to form a saturated or unsaturated ring.
  • Ar to Ar are each a substituted or unsubstituted aromatic group having 6 to 60 nuclear carbon atoms.
  • Ar to Ar include those similar to Ar and Ar in formula (1).
  • R to R are preferably the same as the substituents such as Z in formula (1) Is mentioned. R and R are bonded together to form a substituted or unsubstituted ring.
  • One is preferably a substituted or unsubstituted biphenyl group.
  • the arylamine group may be substituted at the end of this substituted or unsubstituted biphenyl group.
  • the layer in contact with the anode of the layer in the hole injection / transport zone is preferably a layer containing an acceptor material.
  • FIG. 2 is a schematic cross-sectional view showing another embodiment of the organic EL device of the present invention.
  • the organic EL element in FIG. 2 is the same as the organic EL element in FIG. 1 except that an acceptor-containing layer 80 is provided between the anode 10 and the hole injection layer 20.
  • the voltage can be reduced.
  • the acceptor is an easily reducible organic compound.
  • the reduction potential using a saturated calomel (SCE) electrode as a reference electrode is preferably 0.8 V or more, particularly preferably a value greater than the reduction potential (about 0 V) of tetracyanoquinodimethane (TCNQ).
  • SCE saturated calomel
  • TCNQ tetracyanoquinodimethane
  • the easily reducible organic compound is preferably an organic compound having an electron-withdrawing substituent.
  • Specific examples include quinoid derivatives, pyrazine derivatives, arylborane derivatives, imide derivatives, and the like.
  • the quinoid derivatives include quinodimethane derivatives, thiopyran dioxide derivatives, thioxanthene dioxide derivatives, quinone derivatives, and the like.
  • the quinoid derivative preferably includes compounds represented by the following formulas (la) to (; li). More preferred are compounds represented by (la) and (lb).
  • Fluorine and chlorine are preferred as halogens for I ⁇ R 48 .
  • a trifluoromethyl group and a pentafluoroethyl group are preferable.
  • the aryl group of I ⁇ R 48 is preferably a phenyl group or a naphthyl group.
  • X is an electron withdrawing group, and has one of the structures of the following formulas (1) to (p). Preferably, it is the structure of (1), (k), (1).
  • R 49 to 2 are each hydrogen, a fluoroalkyl group, an alkyl group, an aryl group, or a heterocyclic ring, and R 5 ° and R 51 may form a ring.
  • the fluoroalkyl group, alkyl group, and aryl group of R 49 to R 52 are the same as I ⁇ R 48.
  • heterocyclic ring R 49 to R 52 preferably a substituted group represented by the following formula.
  • X is preferably a substituent represented by the following formula.
  • R 1 and R 2 are a methyl group, an ethyl group, a propyl group, and a tert butyl group, respectively.
  • quinoid derivative include the following compounds.
  • Examples of the arylporane derivative include compounds represented by the following formula (2).
  • Ar 1 to Ar 3 are each an aryl group having an electron withdrawing group or
  • pentafluorophenol As an aryl group having an electron-withdrawing group represented by Ar to Ar, pentafluorophenol is used.
  • the ru group heptafluoronaphthyl group and the pentafluorophenyl group are preferred.
  • a heterocyclic ring having an electron-withdrawing group represented by Ar to Ar a quinoline ring or a quinoxaline ring
  • a pyridine ring, a pyrazine ring and the like are preferable.
  • arylborane derivatives include the following compounds.
  • aryl borane derivative a compound having at least one fluorine as a substituent to the aryl is preferable, and tris ⁇ (pentafluoronaphthyl) borane ( ⁇ ) is particularly preferable.
  • Examples of the thiopyran dioxide derivative include a compound represented by the following formula (3a), and examples of the thioxanthene dioxide derivative include a compound represented by the following formula (3b).
  • R 1 to R 5 are each hydrogen, halogen, a fluoroalkyl group, a cyano group, an alkyl group, or an aryl group. Of these, hydrogen and cyano group are preferable.
  • X represents an electron withdrawing group and is the same as X in the formulas (la) to (; li).
  • the structures (i), (1) and (k) are preferred.
  • ⁇ 1 is the same as that of the ⁇ R 48.
  • Specific examples of the thiopyran dioxide derivative represented by the formula (3a) and the thioxanthene dioxide derivative represented by the formula (3b) are shown below.
  • tBu is a t-ptel group.
  • the imide derivative is preferably a naphthalene tetracarboxylic acid diimide compound or a pyromellitic acid diimide compound.
  • each of R 121 to R 12b represents a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, or a substituted or unsubstituted heterocyclic group.
  • R 121 to R 126 may be the same or different, R 121 and R 122 , R 123 and R 124 , R 125 and R 126 , R 121 and R 126 , R 122 and R 123 , R 124 and R 125 may form a condensed ring.
  • R 131 to R 136 are substituents, and preferably an electron-withdrawing group such as cyan group, nitro group, sulfonyl group, force sulfonyl group, trifluoromethyl group, and halogen.
  • 1 to are hydrogen, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic ring, a halogen, a cyano group, a nitro group, an ester group, It is selected from the group consisting of an amide group, an alkoxy group, a substituted or unsubstituted phenoxy group and an amino group, which may be the same or different.
  • adjacent ones of R 81 to R 88 may be bonded to each other to form a ring structure.
  • X 81 to x 84 are each independently a carbon atom or a nitrogen atom, and n is an integer of 0 or more.
  • FIG. 2 Anode / acceptor containing layer / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (FIG. 2)
  • the light emitted from the light-emitting layer is measured by the force of taking out from one side or both sides of the anode side and the cathode side.
  • the organic EL element may have a cavity structure between the anode and the cathode, that is, a structure in which light emitted from the light emitting layer is reflected between the anode and the cathode.
  • the cathode is configured using a semi-transmissive / semi-reflective material and has a light reflecting surface of the anode. In this case, light emitted by multiple interference between the light reflecting surface on the anode side and the light reflecting surface on the cathode side is extracted from the cathode side.
  • the optical distance between the light reflecting surface on the anode side and the light reflecting surface on the cathode side is defined by the wavelength of light to be extracted, and the film thickness of each layer is set so as to satisfy this optical distance.
  • the active use of this cavity structure improves the light extraction efficiency to the outside and the emission spectrum. It is possible to perform control.
  • the organic EL device of the present invention is manufactured on a light-transmitting substrate.
  • the light-transmitting substrate is a substrate that supports the organic EL element, and is preferably a smooth substrate having a light transmittance in the visible region of 400 to 700 nm of 50% or more.
  • a glass plate, a polymer plate, etc. are mentioned.
  • the glass plate include soda-lime glass, norlium strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, norium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyethersulfide, and polysulfone.
  • the substrate does not necessarily need to be translucent.
  • the anode of the organic thin film EL element plays a role of injecting holes into the hole transport layer or light emitting layer. It is effective to have a work function of 4.5 eV or more.
  • Specific examples of anode materials used in the present invention include, for example, aluminum (A1), chromium (Cr), molybdenum (Mo), tungsten (W), copper (Cu), silver (Ag), and gold (Au).
  • ITO indium tin oxide
  • InZnO indium zinc oxide
  • alloys of zinc oxide (Z ⁇ ) and aluminum (A1) and oxides of these metals and alloys alone or mixed Used in
  • the transmittance S of the light emitted from the anode is preferably greater than 10%.
  • the anode when light emitted from the light emitting layer is extracted from the cathode, the anode is preferably a reflective electrode.
  • the anode may have a laminated structure of a first layer having excellent light reflectivity and a second layer having a light transmissivity and a high work function provided on the upper layer.
  • the first layer is made of an alloy containing aluminum as a main component.
  • the subcomponent may include at least one element having a work function relatively smaller than that of aluminum as a main component.
  • a lanthanoid series element is preferable.
  • the work function of lanthanoid series elements is not large, the inclusion of these elements improves the stability of the anode and also satisfies the hole injection property of the anode.
  • elements such as silicon (Si) and copper (Cu) may be included as subcomponents.
  • the content of subcomponents in the aluminum alloy layer constituting the first layer is, for example, about 10 wt% or less in total for Nd, Ni, Ti, or the like that stabilizes aluminum. preferable.
  • the aluminum alloy layer can be stably maintained in the manufacturing process of the organic electroluminescent device, and further, accuracy and chemical stability can be obtained.
  • the conductivity of the anode and the adhesion to the substrate can be improved.
  • the second layer can be exemplified by a layer comprising at least one of an aluminum alloy oxide, a molybdenum oxide, a zirconium oxide, a chromium oxide, and a tantalum oxide.
  • the second layer is an oxide layer (including a natural oxide film) of an aluminum alloy containing a lanthanoid element as a subsidiary component, the transmittance of the oxide of the lanthanoid element is Since it is high, the transmittance of the second layer including this is good. For this reason, it is possible to maintain a high reflectivity on the surface of the first layer.
  • the second layer may be a transparent conductive layer such as ITO or IZO. These conductive layers can improve the electron injection characteristics of the anode.
  • a conductive layer for improving the adhesion between the anode and the substrate may be provided on the side of the anode in contact with the substrate.
  • a conductive layer include transparent conductive layers such as ITO and IZO.
  • the driving method of the display device configured using the organic EL element is the active matrix method
  • the anode is patterned for each pixel and connected to the driving thin film transistor provided on the substrate. It is provided in the state.
  • an insulating film is provided on the anode, and the surface of the anode of each pixel is exposed from the opening of the insulating film.
  • the anode is measured by the force of forming the electrode material described above by forming a thin film by a method such as vapor deposition or sputtering.
  • the sheet resistance of the anode is preferably several hundred ⁇ / mouth or less.
  • the film thickness of the anode depends on the material, it is usually selected in the range of 10 nm to 1 ⁇ m, preferably 10 to 200 nm.
  • the light emitting layer of the organic EL device has the following functions.
  • Injection function A function capable of injecting holes from the anode or hole injection / transport layer when an electric field is applied, and an electron from the cathode or electron injection / transport layer
  • Transport function Function to move injected charges (electrons and holes) by the force of electric field
  • Light-emitting function A function that provides a field for recombination of electrons and holes and connects it to light emission. However, there is a difference between the ease of hole injection and the ease of electron injection.
  • the transport ability expressed by the mobility of electrons may be large or small, but it is preferable to move one of the charges.
  • the light emitting layer for example, a known method such as a vapor deposition method, a spin coating method, or an LB method can be applied.
  • the light emitting layer is particularly preferably a molecular deposited film.
  • the molecular deposition film is a thin film formed by deposition from a material compound in a gas phase state or a film formed by solidification from a material compound in a solution state or a liquid phase state.
  • a film can be classified from a thin film (accumulated film) formed by the LB method by the difference in aggregated structure and higher-order structure and functional differences resulting from it.
  • a binder such as a resin and a material compound are dissolved in a solvent to form a solution, which is then thinned by a spin coating method or the like. By doing so, the light emitting layer can be formed.
  • the material used for the light-emitting layer is a force capable of using a known light-emitting material having a long lifetime, and the material represented by the general formula (I) is preferably used as the light-emitting material.
  • Ar ′ is an aromatic ring having 6 to 50 nuclear carbon atoms or a heteroaromatic ring having 5 to 50 nuclear atoms.
  • Preferred examples include a phenyl ring, a naphthyl ring, an anthracene ring, a acenaphthylene ring, a fluorene ring, a phenanthrene ring, a fluoranthene ring, a triphenylene ring, a pyrene ring, a taricene ring, a benzanthracene ring, and a perylene ring.
  • X ' is a substituent. Specifically, a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted carbon group having 1 to 50 carbon atoms.
  • Alkyl group substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, substituted or unsubstituted aralkyl group having 1 to 50 carbon atoms, substituted or unsubstituted arylenoxy group having 5 to 50 nuclear atoms, substituted or An unsubstituted aryl group having 5 to 50 nuclear atoms, a substituted or unsubstituted carboxyl group having 1 to 50 carbon atoms, a substituted or unsubstituted styryl group, a halogen group, a cyano group, a nitro group, a hydroxyl group, and the like.
  • Examples of the substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms include phenyl group, 1 naphthyl group, 2-naphthyl group, 1 anthrinol group, 2-anthrinol group, 9 anthrinol group, 1 phenanthrinol group.
  • a phenyl group Preferably a phenyl group, a 1 naphthyl group, a 2 naphthyl group, a 9 phenanthryl group, a 1-naphthacenyl group, a 2 naphthacenyl group, a 9 naphthacenyl group, a 1-pyrenyl group, a 2-pyrenyl group, a 4-pyrenyl group, a 2-biphenyl group Ruyl group, 3-biphenylyl group, 4-biphenylolenoreole group, o-trinore group, m-trinole group, p-trinole group, p-t butylphenyl group, 2-phenololenyl group, 9, 9 dimethyl-2-fluorenyl group, 3 full Orantenyl group isotropic force.
  • Examples of the substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms include 1 pyrrolyl group, 2 pyrrolyl group, 3 pyrrolyl group, birazinyl group, 2 pyridinyl group, 3 pyridinyl group.
  • substituted or unsubstituted alkyl groups having 1 to 50 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, and n-pentyl group.
  • a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms is a group represented by OY.
  • Y include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, and isobutyl.
  • substituted or unsubstituted aralkyl groups having 1 to 50 carbon atoms include benzyl group, 1 phenylethyl group, 2-phenylethyl group, 1 phenylisopropyl group, 2-phenylisopropyl group, and phenyl-butyl group.
  • ⁇ -naphthylmethyl group 1 ⁇ -naphthylethyl group, 2- ⁇ -naphthylethyl group, 1-a naphthylisopropyl group, 2- ⁇ -naphthylisopropyl group, ⁇ -naphthylmethyl group, 1; 3-naphthylethyl group, 2 ⁇ -naphthylethyl group, 1 — ⁇ naphthyl isopropyl group, 2— ⁇ naphthyl isopropyl group, 1 pyrrolylmethyl group, 2 (1 pyrrolyl) ethyl group, ⁇ methylbenzyl group, m-methinolevendinore group, o methinolevendinore group, p-clonal benzoinole group , M-black benzenore group, o black benzyleno group, p bromobenzenole group
  • a substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms is represented as OY ', and examples of Y' include phenyl group, 1 naphthyl group, 2-naphthyl group, 1 anthryl group, 2-anthrinole group, 9 N-trinole group, 1-Phenanthrinol group, 2-Phenanthrinol group, 3-Phenanthrinol group, 4- Phenanthrinol group, 9- Phenanthrinol group, 1-Naphthacenino group, 2-Naphthacenyl group, 9- Naphthenyl group, 1-Pyrenyl group, 4-Pyrenyl group Group, 2-biphenylyl group, 3-biphenylyl group, 4-biphenylyl group, ⁇ -terfeninore 4-inole group, ⁇ terfeninole 3-inole group, ⁇
  • a substituted or unsubstituted arylylthio group having 5 to 50 nuclear atoms is represented by SY ", and examples of Y" include phenyl, 1 naphthyl, 2-naphthyl, 1 anthryl, 2-antholinole, 9 Ntrinole group, 1 Phenanthrinol group, 2 Phenanthrinol group, 3 Phenanthryl group, 4 Phenanthrinol group, 9 Phenanthrinol group, 1 Naphthalcenyl group, 2 Naphthacin binole group, 9 Naphthenyl group, 1-pyrenyl group, 2-pyrenyl group, 4-pyrenyl group , 2-biphenylyl group, 3-biphenylyl group, 4-biphenylyl group, p-terferyl group
  • a substituted or unsubstituted carboxyl group having 1 to 50 carbon atoms is represented as COOZ ′, and examples of Z ′ include methyl group, ethyl group, propyl group, isopropyl group, n butyl group, s butynole group, isobutyl group, t butyl group, n pentyl group, n hexyl group, n heptyl group, n octyl group, hydroxymethyl group, 1-hydroxyethyl group, 2-hydroxyethyl group, 2-hydroxyisobutyl group, 1,2-dihydroxy Ethyl group, 1,3-dihydroxyisopropyl group, 2,3 dihydroxy-t butyl group, 1,2,3 trihydroxypropyl group, chloromethyl group, 1 chloroethyl group, 2 chloroethyl group, 2— Black and white isobutyl group, 1,2 Dichlorodiethyl group, 1,3 Dichlorodie
  • substituted or unsubstituted styryl groups include 2 phenyl 1-bule group, 2, 2 diphenyl 1-bule group, 1, 2, 2-triphenyl 2 1-bule group, etc. Is mentioned.
  • nitrogen and rogen groups examples include fluorine, chlorine, bromine, iodine and the like.
  • n is an integer of 0 to 6.
  • n is preferably 0-4.
  • Ar 'in () may be the same or different.
  • X 'in () may be the same or different.
  • the material used for the light emitting layer is more preferably an anthracene derivative shown below.
  • A1 and A2 each represent a substituted or unsubstituted monophenylanthryl group or a substituted or unsubstituted diphenylanthryl group, and they may be the same or different. Represents a bond or a divalent linking group.
  • An represents a substituted or unsubstituted divalent anthracene residue
  • A3 and A4 each represent a substituted or unsubstituted monovalent fused aromatic ring group or a substituted or unsubstituted carbon group having 12 or more carbon atoms.
  • Non-fused ring system aryl groups which may be the same or different from each other.
  • Examples of the anthracene derivative represented by the formula (II) include an anthracene derivative represented by the following formula (II a),
  • R 91 to R 1Q ° each independently represents a hydrogen atom, an alkyl group, a cycloalkyl group, an optionally substituted aryl group, an alkoxyl group, an aryloxy group, an anolequinolamino group, an arylamine group
  • a and b each represent an integer of;!
  • R 91s or R 92s may be the same in each case R 91 and R 92 may be combined to form a ring, and R 93 and R 94 , R 95 and R 96 , R 97 and R 98 , R 99 and R 1Q ° may be bonded to each other to form a ring L 1Q is a single bond or —O—, —S—, —N (R) — (where R is an alkyl group or a substituted group) Or an arylene group.)
  • R to R each independently represent a hydrogen atom, an alkyl group, or a cycloalkyl group.
  • a substituted or unsubstituted aryl group, alkoxyl group, aryloxy group, alkylamino group, aryl group, or substituted or unsubstituted heterocyclic group, c, d, e and f are each an integer of 1 to 5 shown, when they are 2 or more, each other R 1Q1, among R 1Q2, R 1Q6 the mechanic or R 1 () 7 each other, in each Yogumata R 1Q1 together be the same or different, R 1Q2 together, R 1Q6 or R 1Q7 may be bonded together to form a ring, or R 1Q3 and R " 3 4 , R 1QS and R 1Q9 may be bonded together to form a ring.
  • 11 represents a single bond or —O—, —S—, —N (R) — (wherein R represents an alkyl group or
  • alkyl group represented by R in 1 N (R) — of L 1Q and L 11 is preferably an alkyl group having! To 6 carbon atoms, and the aryl group having 5 to 18 carbon atoms is preferable.
  • Ar is a substituted or unsubstituted condensed aromatic group having 10 to 50 nuclear carbon atoms.
  • Ar ′ is a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms.
  • ⁇ To ⁇ 3 Are independent In addition, there is no substitution or non-substitutional nuclear aromatic carbon group having a carbon number of 66 to 5500, no substitution, or no substitution.
  • Substituting nuclear proatomic atoms 55--5500 aromatic-aromatic polyheterocyclic ring radicals, substitutional or non-substitutional carbons An aralkyloxyl group having a prime number of 11 to 5500, an unsubstituted or unsubstituted aralkyloxy group having a carbon number of 11 to 5500, and a substitution group. Possibly or non-substituted carbon atoms with 66 to 5500 carbon atoms, a non-substituted nuclear nucleus.
  • R′-R 10 independently of each other, a hydrogen atom, a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, substituted Or an unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted C 6-50 carbon atomolequinole; Group, substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, substituted or unsubstituted Substituted silyl group, carboxy Group, hal
  • Ar and Ar ′ each represent a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms.
  • L and L ′ are each a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthalenylene group, a substituted or unsubstituted fluorenylene group, or a substituted or unsubstituted dibenzosilolylene group.
  • n is an integer from 1 to 4
  • s is an integer from 0 to 2
  • t is an integer from 0 to 4.
  • L or Ar is bonded to any one of positions 1 to 5 of pyrene, and L ′ or Ar ′ is bonded to pyrene.
  • a 1 and ⁇ ⁇ are each independently a substituted or unsubstituted condensed aromatic ring group having 10 to 20 nuclear carbon atoms.
  • Ar 1 and Ar 2 are each independently a hydrogen atom or a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms.
  • R′-R 10 independently of each other, a hydrogen atom, a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, substituted Or an unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted C 6-50 carbon atomolequinole; Group, substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, substituted or unsubstituted Substituted silyl group, carboxyl group,
  • R 9 and R 1Q may be plural or adjacent to each other to form a saturated or unsaturated cyclic structure.
  • a small amount of a fluorescent compound is added as a dopant to improve the light emitting performance. It is possible to make it.
  • a dopant it is possible to use a known material as a long-life luminescent material, and it is desirable to use a material represented by the following formula (VI) as a dopant material of the luminescent material.
  • Ar 41 to Ar 4 are substituted or unsubstituted aromatic groups having 6 to 50 nuclear carbon atoms, or substituted or unsubstituted styryl groups.
  • Examples of the substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms include phenyl group, 1 naphthyl group, 2 naphthyl group, 1 anthrinol group, 2 anthrinol group, 9 anthrinol group, 1 phenanthrinol group, 2 phenanthrinol groups, 3 phenanthrinol groups, 4 phenanthrinol groups, 9 phenanthryl groups, 1 naphthacenyl groups, 2 naphthacenyl groups, 9 naphthacenyl groups, 1-pyrenyl groups, 2 pyrenyl groups, 4-pyrenyl groups, 2 biphenylolyl groups, 3 biphenylenoyl groups , 4-biphenylenoreino group, p terfeninore 4-inole group, p terfeninore 3 inole group, p terfeninore 2-
  • substituted or non-substituted styryl groups examples include 2-phenol 2-l-bule group, 2, 2-diphenyl 2-bule group, 1, 2, 2-triphenyl 2-l-bule group, etc. Can be mentioned.
  • p is an integer of 1 to 4.
  • Ar 42 and Ar 43 in () may be the same or different.
  • the hole injection / transport layer is a layer that helps to inject holes into the light emitting layer and transports them to the light emitting region.
  • the ionization energy with high hole mobility is usually as low as 5.6 eV or less.
  • a material that transports holes to the light emitting layer with a lower electric field strength is preferable.
  • the mobility of holes is, for example, 10 4 to 10 6 V / cm. Sometimes preferred, if at least 10 _ 4 cm 2 / V ⁇ sec.
  • the hole injection layer and the hole transport layer may each be a plurality of layers.
  • the compounds of the above formulas (1) and (2) used in the device structure of the present invention may form a hole injection layer and a transport layer alone, or may be used by mixing with other materials. Also good.
  • the material for forming the hole injection and transport layer by mixing with the compounds of the formulas (1) and (2) used in the device configuration of the present invention has the above-mentioned preferable properties. If there is no particular limitation, select any one of those conventionally used as a hole charge transport material in a photoconductive material or a known medium force used for a hole injection layer of an EL element. Can be used. In addition to the aromatic amine derivative layer and the nitrogen-containing heterocyclic derivative layer, there may be a layer constituting the hole transport zone, and any material can be selected from the known materials as described above. Can be selected and used. A compound represented by the following formula can be considered as the aromatic amine derivative.
  • Ar to Ar b , Ar bl to Ar, Ar to Ar each represents a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms or a heteroaromatic group having 5 to 50 nuclear atoms, a to c and p to r are integers of 0 to 3, respectively, Ar 57 and Ar 58 , Ar 59 and Ar 6 °, Ar 61 and Ar 62 are connected to each other to form a saturated or unsaturated ring. May be.
  • Ar to Ar 74 represent a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms or a heteroaromatic group having 5 to 50 nuclear atoms
  • L 12 is a linking group, a single bond, or a substituted group.
  • it represents a substituted aromatic group having 6 to 50 nuclear carbon atoms or a heteroaromatic group having 5 to 50 nuclear atoms
  • X is an integer of 0 to 5
  • Ar 72 and Ar 73 are linked to each other. To form a saturated or unsaturated ring.
  • the material of the hole injection layer As the material of the hole injection layer, the above can be used, the porphyrin compound (Disclosed in JP-A-63-295695 etc.), aromatic tertiary amine compounds and styrylamine compounds (US Pat. No. 4,127,412, JP-A-53-27033) No. 54-58445, No. 55-79450, No. 55-144250, No. 56 119132, No. 61-295558, No. 61-98353, No. 63-2956 95, etc. In particular, it is preferable to use an aromatic tertiary amine compound.
  • US Pat. No. 5,061,569 has two condensed aromatic rings in the molecule, for example, 4,4,1bis (N— (1-naphthyl) N phenylamino) biphenyl ( (Hereinafter abbreviated as NPD) and three, 4-, 4-, 4-"-tris (N- (3— Methyl phenyl) N phenylamino) triphenylamine (hereinafter abbreviated as MTDATA).
  • R ll to R 1 b are each a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, or a substituted or unsubstituted heterocyclic group.
  • R 121 to R 126 may be the same or different, and R 121 and R 122 , R 123 and R 124 , R 125 and R 126 , R 121 and R 126 , R 122 and R 123 R 124 and R 125 may form a condensed ring.
  • R 1dl R is a substituent, preferably an electron-withdrawing group such as a cyano group, a nitro group, a sulfonyl group, a force sulfonyl group, a trifluoromethyl group, or a halogen.
  • acceptor materials can also be used as hole injection materials. Specific examples of these are as described above.
  • inorganic compounds such as p-type Si p-type SiC can also be used as the material for the hole injection layer.
  • the hole injection and transport layer can be formed by thinning the above-described compound by a known method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method.
  • the thickness of the hole injection / transport layer is not particularly limited, but is usually 5 nm 5 / im.
  • this hole injection / transport layer contains the compound of the present invention in the hole transport zone, it may be composed of one or more of the above-mentioned materials, or the hole injection.
  • a hole injection and transport layer made of a compound different from the transport layer may be laminated.
  • An organic semiconductor layer may be further formed.
  • This layer is a layer for helping the injection of holes or electron injection into the light emitting layer, is preferably one having a conductivity of more than 10_ 1Q S / cm.
  • Examples of the material for such an organic semiconductor layer include thiophene oligomers, conductive oligomers such as allylamin oligomers disclosed in JP-A-8-193191, and arylamine amine dendrimers. A conductive dendrimer or the like can be used.
  • the electron injection layer is a layer that assists the injection of electrons into the light emitting layer and has a high electron mobility.
  • the adhesion improving layer is a layer made of a material having a particularly good adhesion to the cathode in the electron injection layer.
  • a metal complex of 8-hydroxyquinoline or a derivative thereof is suitable.
  • metal complexes of the above 8-hydroxyquinoline or its derivatives include oxine.
  • metal chelate oxinoid compounds containing a chelate generally 8-quinolinol or 8-hydroxyquinoline.
  • Alq described in the section of the light emitting material can be used as the electron injection layer.
  • examples of the oxadiazole derivative include an electron transfer compound represented by the following general formula.
  • a 1 , Ar 1 , Ar 1 , Ar 2, Ar 3, and ⁇ each represent a substituted or unsubstituted aryl group, and may be the same or different from each other.
  • Ar 84 , Ar 87 , and Ar 88 are A substituted or unsubstituted arylene group, each of which may be the same or different)
  • Examples of the aryl group include a phenyl group, a biphenyl group, an anthranyl group, a perylenyl group, and a pyrenyl group.
  • Examples of the arylene group include a phenylene group, a naphthylene group, a biphenylene group, an anthranylene group, a peryleneylene group, and a pyrenylene group.
  • Examples of the substituent include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 10 to 10 carbon atoms, and a cyan group.
  • This electron transfer compound is preferably a film-forming compound.
  • electron transfer compound examples include the following.
  • nitrogen-containing heterocyclic derivatives represented by the following formulas (A) and (B) can be used as materials used for the electron injection layer.
  • a 1 to A each independently represents a nitrogen atom or a carbon atom.
  • Ar 21 is a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms or a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms
  • Ar 22 is a hydrogen atom, substituted or unsubstituted Aryl group having 6 to 60 nuclear carbon atoms, substituted or unsubstituted nuclear carbon having 3 to 60 carbon atoms
  • a teloaryl group a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, or a divalent group thereof.
  • any one of Ar 21 and Ar 22 is a substituted or unsubstituted condensed ring group having 10 to 60 nuclear carbon atoms, a substituted or unsubstituted monoheterocondensed ring group having 3 to 60 nuclear carbon atoms, or These are divalent groups.
  • Ar 23 is a substituted or unsubstituted arylene group having 6 to 60 carbon atoms, or a substituted or unsubstituted heteroarylene group having 3 to 60 carbon atoms.
  • L u , L 12 and L 13 are each independently a single bond, a substituted or unsubstituted arylene group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroarylene group having 3 to 60 nuclear carbon atoms, or A substituted or unsubstituted fluorenylene group.
  • R 81 is a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms, a substituted or unsubstituted carbon number of 1 to 2
  • R 82 represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms, a substituted or unsubstituted carbon number of 1 to 2
  • HAr is substituted a nitrogen-containing heterocyclic ring which may having 3 to 40 carbon atoms
  • L 1 4 is a single bond
  • a good number of carbon atoms from 6 may have a substituent 60 Ariren group, Les substituted, also good Le
  • Re has a heteroarylene group or substituent to the 3 to 60 carbon atoms, it may also be a full Oreniren group
  • Ar 24 Is a divalent aromatic hydrocarbon group having 6 to 60 carbon atoms which may have a substituent
  • Ar 25 is an aryl group having 6 to 60 carbon atoms which may have a substituent or A heteroaryl group having 3 to 60 carbon atoms which may have a substituent.
  • X 11 and Y 11 are each independently a saturated or unsaturated hydrocarbon group having 1 to 6 carbon atoms, an alkoxy group, an alkenyloxy group, an alkynyloxy group, a hydroxy group, Or an unsubstituted aryl group, a substituted or unsubstituted hetero ring, or a structure in which X 11 and ⁇ 11 are combined to form a saturated or unsaturated ring, and R 85 to R 88 are each independently a water group.
  • Atoms halogen atoms, substituted or unsubstituted alkyl groups having 1 to 6 carbon atoms, alkoxy groups, aryloxy groups, perfluoroalkyl groups, perfluoroalkoxy groups, amino groups, alkylcarbonyl groups, alkyl groups.
  • R 91 to R 98 and Z 2 are each independently a hydrogen atom, a saturated or unsaturated hydrocarbon group, an aromatic group, a heterocyclic group, a substituted amino group, a substituted boryl group, an alkoxy group.
  • Group or Ali ⁇ 12 , Y 12 and Z 1 each independently represents a saturated or unsaturated hydrocarbon group, aromatic group, heterocyclic group, substituted amino group, alkoxy group or aryloxy group; Z 1 and Z 2 substituents may be bonded to each other to form a condensed ring.
  • N represents an integer of !! to 3; when n is 2 or more, Z 1 may be different.
  • n includes 1, X 12 , Y 12 and R 92 are methyl groups, and R 98 is a hydrogen atom or a substituted boryl group, and n is 3 and a Z force S methyl group. Absent.
  • Q 1 and Q 2 each independently represent a ligand represented by the following formula (G), and L 15 represents a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted group Substituted cycloalkyl group, substituted or unsubstituted aryl group, substituted or unsubstituted heterocyclic group, -OR (where R is a hydrogen atom, substituted or unsubstituted alkyl group, substituted or unsubstituted cycloalkyl group, substituted Or an unsubstituted aryl group or a substituted or unsubstituted heterocyclic group.) Or —O—Ga—Q 3 (Q 4 ) (Q 3 and Q 4 are the same as Q 1 and Q 2 ) Represents a ligand. ]
  • rings A 4 and A b are 6-membered aryl structures fused to each other which may have a substituent.
  • This metal complex is strong as an n-type semiconductor and has a high electron injection capability. Furthermore, since the generation energy at the time of complex formation is low, the bond between the metal and the ligand of the formed metal complex is strengthened, and the fluorescence quantum efficiency as a light emitting material is also increasing.
  • substituents of the rings A and A 25 forming the ligand of the formula (G) include chlorine, bromine, iodine, halogen atoms of fluorine, methyl group, ethyl group, propyl group, butyl group S butyl group t butyl group pentyl group hexyl group heptyl group octyl group stearyl group trichloromethyl group substituted or unsubstituted alkyl group phenyl group naphthyl group 3-methylphenyl group Substituted or unsubstituted aryl groups such as 3-methoxyphenyl group, 3-fluorophenyl group, 3 trichloromethylphenyl group, 3-trifluoromethylphenyl group, 3-nitrophenyl group, methoxy group , N-butoxy group, t-butoxy group, trichloromethoxy group, trifnoreo mouth ethoxy group, pent
  • a 6-membered aryl ring or a heterocyclic ring may be formed.
  • it may be a polymer compound containing the nitrogen-containing heterocyclic group or the nitrogen-containing heterocyclic derivative.
  • a preferable embodiment of the present invention is an element containing a reducing dopant in an electron transporting region or an interface region between a cathode and an organic layer.
  • the reducing dopant is defined as a substance capable of reducing an electron transporting compound. Accordingly, various materials can be used as long as they have a certain reducibility, such as alkali metals, alkaline earth metals, rare earth metals, alkali metal oxides, alkali metal halides, alkaline earth metals.
  • One substance can be preferably used.
  • preferable reducing dopants include Na (work function: 2.36 eV), K (work function: 2.28 eV), Rb (work function: 2.16 eV), and Cs (work Function: 1. 95 eV)
  • At least one alkali metal selected from the group of forces, Ca (work function: 2.9 eV), Sr (work function: 2.0 to 2.5 eV), and Ba (work function: 2. 52 eV) force at least one alkaline earth metal selected from the group consisting of those having a work function of 2.9 eV or less is particularly preferred.
  • a more preferable reducing dopant is at least one alkali metal selected from the group consisting of K, Rb and Cs, more preferably Rb or Cs, and most preferably Cs. is there.
  • alkali metals can improve emission brightness and extend the lifetime of organic EL devices by adding a relatively small amount to the electron injection region, which has a particularly high reducing ability.
  • a reducing dopant having a work function of 2.9 eV or less a combination of two or more alkali metals is also preferable.
  • a combination containing Cs for example, Cs and Na, Cs and K , Cs and Rb or a combination of Cs, Na and ⁇ It is preferable.
  • an electron injection layer made of an insulator or a semiconductor may be further provided between the cathode and the organic layer.
  • an insulator it is preferable to use at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkali earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides. . If the electron injection layer is composed of these alkali metal chalcogenides or the like, it is preferable in that the electron injection property can be further improved.
  • alkali metal chalcogenides include, for example, Li 0, LiO, Na
  • alkaline earth metal chalcogenides include
  • alkali metal halides include, for example, LiF, NaF, KF, LiCl, KCl, and NaCl.
  • preferred alkaline earth metal halides include fluorides such as CaF, BaF, SrF, MgF and BeF, and halogens other than fluorides.
  • the electron transport layer As a semiconductor constituting the electron transport layer, at least one element of Ba, Ca, Sr, Yb, Al, Ga, In, Li, Na, Cd, Mg, Si, Ta, Sb, and Zn is used. One kind or a combination of two or more kinds of oxides, nitrides, oxynitrides and the like are included.
  • the inorganic compound constituting the electron transport layer is preferably a microcrystalline or amorphous insulating thin film. If the electron transport layer is composed of these insulating thin films, a more uniform thin film is formed, and pixel defects such as dark spots can be reduced. Examples of such an inorganic compound include the above-mentioned alkali metal chalcogenides, alkaline earth metal lucogenides, alkali metal halides, and alkaline earth metal halides.
  • a cathode As a cathode, a metal, an alloy, an electrically conductive compound and a low work function (4 eV or less) What uses these mixtures as an electrode material is used.
  • electrode materials include sodium, sodium potassium alloy, magnesium, lithium, magnesium'silver alloy, aluminum / aluminum oxide, aluminum'lithium alloy, indium, rare earth metal, and the like.
  • This cathode can be produced by forming these electrode materials by forming a thin film by a method such as vapor deposition or sputtering.
  • the transmittance with respect to the light emitted from the cathode is greater than 10%.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / mouth or less.
  • the film thickness is usually 5 nm to 1 ⁇ m, preferably 5 to 200 nm.
  • the film thickness of the above material may be adjusted.
  • organic EL applies an electric field to an ultra-thin film, pixel defects are likely to occur due to leaks and shorts. In order to prevent this, it is preferable to insert an insulating thin film layer between the pair of electrodes.
  • Examples of materials used for the insulating layer include aluminum oxide, lithium fluoride, lithium oxide, cesium fluoride, cesium oxide, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, cesium fluoride, cesium carbonate, Examples include aluminum nitride, titanium oxide, silicon oxide, germanium oxide, silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, and vanadium oxide.
  • an organic EL device by forming an anode, a light emitting layer, a hole injection layer as necessary, and an electron injection layer as necessary by the materials and methods exemplified above, and further forming a cathode. . It is also possible to fabricate organic EL elements from the cathode to the anode in the reverse order.
  • a thin film made of an anode material on a suitable translucent substrate is 1 ⁇ m or less, preferably 10 to
  • An anode is formed by a method such as vapor deposition or sputtering so that the film thickness is in the range of 200 nm.
  • a hole injection layer made of the compound of the above formula (2) is provided on the anode.
  • the hole injection layer can be formed by using a vacuum deposition method, a spin coating method, a casting method, an LB method, or the like. It is preferable to form by vacuum evaporation from the point of view.
  • the deposition conditions vary depending on the compound used (the material of the hole injection layer), the crystal structure and recombination structure of the target hole injection layer, etc. deposition source temperature 50 to 450 ° C, vacuum degree of 10- 7 ⁇ ; 10- 3 torr, vapor deposition rate 0. 0;! ⁇ 50nm / sec, a substrate temperature of over 50 to 300 ° C, the thickness 5nm ⁇ 5 / im It is preferable to select appropriately within the range.
  • a hole transport layer made of the compound of the formula (1) is formed on the hole injection layer.
  • the formation method and conditions are the same as those for forming the hole injection layer.
  • the light-emitting layer can also be formed by thinning the organic light-emitting material using a desired organic light-emitting material by a method such as vacuum deposition, sputtering, spin coating, or casting, but a homogeneous film can be obtained. It is preferable to form it by vacuum evaporation because it is easy and pinhole is not easily generated.
  • the deposition conditions vary depending on the compound used, but can generally be selected from the same condition range as the hole transport layer.
  • an electron transport layer is provided on the light emitting layer.
  • the hole transport layer and light-emitting layer it is preferable to form the film by vacuum evaporation because it is necessary to obtain a homogeneous film.
  • the vapor deposition conditions can be selected from the same condition ranges as those for the hole transport layer and the light emitting layer.
  • a cathode can be stacked to obtain an organic EL device.
  • the cathode is made of metal, and vapor deposition or sputtering can be used. In order to protect the underlying organic layer from damage during film formation, vacuum deposition is preferred.
  • the organic EL devices described so far are preferably manufactured from the anode to the cathode in a single vacuum.
  • the method for forming each layer of the organic EL device of the present invention is not particularly limited. Conventionally known methods such as vacuum deposition and spin coating can be used.
  • the organic thin film layer containing the compound represented by the above formula (1) used in the organic EL device of the present invention can be prepared by vacuum evaporation, molecular beam evaporation (MBE), or solution dating in a solvent. Further, it can be formed by a known method using a coating method such as a spin coating method, a casting method, a bar coating method, or a roll coating method.
  • each organic layer of the organic EL device of the present invention is not particularly limited, but in general, if the film thickness is too thin, defects such as pinholes occur, and conversely, if it is too thick, a high applied voltage is required. Usually, the range of several nm to 1 ⁇ m is preferable.
  • the anode is set to + and the cathode is set to one polarity.
  • Luminescence can be observed when a voltage of 5 to 40 V is applied. In addition, no current flows even when a voltage is applied with the opposite polarity, and no light emission occurs. In addition, when AC voltage is applied, uniform light emission is observed only when the anode is + and the cathode is of the same polarity.
  • the AC waveform to be applied may be arbitrary.
  • a glass substrate with 25 mm X 75 mm X l. 1 mm thick ITO transparent electrode (anode) (Zomatic) was ultrasonically cleaned in isopropyl alcohol for 5 minutes, followed by UV ozone cleaning for 30 minutes. Mount the glass substrate with the transparent electrode line after cleaning on the substrate holder of the vacuum evaporation system, and first cover the transparent electrode as a hole injection layer on the surface where the transparent electrode line is formed.
  • a compound B-1 having a thickness of 60 nm and represented by the following formula was formed. Subsequent to the formation of the B-1 film, A-10 having a thickness of 20 nm and represented by the following formula was formed on the B-1 film as a hole transport layer.
  • an anthracene derivative AN 1 and a styrylamine derivative D-1 represented by the following formula were formed at a film thickness ratio of 40: 2 on the A-10 film at a film thickness of 40 nm to form a blue light emitting layer.
  • Alq shown in the following formula as an electron transport layer was formed by vapor deposition at a thickness of 20 nm. Filmed. Thereafter, LiF was deposited to a thickness of 1 nm as an electron injection layer.
  • metal A1 was deposited by 150 nm to form a metal cathode to form an organic EL light emitting device.
  • An organic EL device was produced in the same manner as in Example 1 except that Compound A-2 represented by the following formula was used instead of Compound A-10 as the hole transport layer in Example 1.
  • Example 1 an organic EL device was produced in the same manner as in Example 1 except that Compound A-6 represented by the following formula was used instead of Compound A-10 as the hole transport layer.
  • Example 1 an organic EL device was produced in the same manner as in Example 1 except that Compound A-9 represented by the following formula was used instead of Compound A-10 as the hole transport layer.
  • Example 1 an organic EL device was produced in the same manner as in Example 1 except that Compound A-11 represented by the following formula was used instead of Compound A-10 as the hole transport layer.
  • Example 1 an organic EL device was produced in the same manner as in Example 1 except that Compound A-15 represented by the following formula was used instead of Compound A-10 as the hole transport layer.
  • Example 1 an organic EL device was produced in the same manner as in Example 1 except that Compound A-25 represented by the following formula was used instead of Compound A-10 as the hole transport layer.
  • Example 1 an organic EL device was produced in the same manner as in Example 1 except that Compound A-26 represented by the following formula was used in place of Compound A-10 as the hole transport layer.
  • Example 1 an organic EL device was produced in the same manner as in Example 1, except that Compound A-28 represented by the following formula was used instead of Compound A-10 as the hole transport layer.
  • An organic EL device was produced in the same manner as in Example 1 except that Compound A-29 represented by the following formula was used in place of Compound A-10 as the hole transport layer in Example 1.
  • Example 1 an organic EL device was produced in the same manner as in Example 1 except that Compound B-5 represented by the following formula was used instead of Compound B-1 as the hole injection layer.
  • Example 1 an organic EL device was produced in the same manner as in Example 1 except that Compound B-7 represented by the following formula was used instead of Compound B-1 as the hole injection layer.
  • Example 1 an organic EL device was produced in the same manner as in Example 1 except that Compound B-8 represented by the following formula was used instead of Compound B-1 as the hole injection layer.
  • An organic EL device was produced in the same manner as in Example 1 except that Compound B12 represented by the following formula was used instead of Compound B-1 as the hole injection layer in Example 1.
  • Example 1 an organic EL device was produced in the same manner as in Example 1 except that Compound B-25 represented by the following formula was used instead of Compound B-1 as the hole injection layer. [Chem 69]
  • An organic EL device was produced in the same manner as in Example 1 except that Compound B-27 represented by the following formula was used instead of Compound B-1 as the hole injection layer in Example 1.
  • Example 1 an organic EL device was produced in the same manner as in Example 1 except that Compound B33 represented by the following formula was used instead of Compound B-1 as the hole injection layer.
  • Example 1 an organic EL device was produced in the same manner as in Example 1 except that Compound B39 represented by the following formula was used instead of Compound B-1 as the hole injection layer. [Chemical 72]
  • Example 1 an organic EL device was produced in the same manner as in Example 1 except that the compound (E-1) represented by the following formula was used in place of Compound A-10 as the hole transport layer.
  • Example 1 E-2 shown in the following formula was used instead of Compound B-1 as the hole injection layer, and Compound B-1 was used instead of Compound A-10 as the hole transport layer.
  • An organic EL device was fabricated in the same manner as in Example 1.
  • Comparative Example 3 An organic EL device was produced in the same manner as in Example 1 except that Compound E-2 was used in place of Compound B-1 as the hole injection layer in Example 1.
  • Example 1 an organic EL device was produced in the same manner as in Example 1 except that the compound (E-3) represented by the following formula was used instead of the compound B-1 as the hole injection layer.
  • Example 1 an organic EL light emitting device was formed in the same manner as in Example 1 except that the thickness of the hole injection layer made of Compound B-1 was 80 nm and the hole transport layer was not formed.
  • Comparative Example 5 an organic EL device was produced in the same manner as in Comparative Example 5, except that Compound A-10 was used instead of Compound B-1 as the hole injection layer.
  • Comparative Example 5 an organic EL device was produced in the same manner as in Comparative Example 5, except that Compound B-39 was used instead of Compound B-1 as the hole injection layer.
  • Table 1 shows the device performance results of Examples;! To 18 and Comparative Examples 1 to 7.
  • a 1 mm thick glass substrate with ITO transparent electrode (anode) (Zomatic) was ultrasonically cleaned in isopropyl alcohol for 5 minutes, followed by UV ozone cleaning for 30 minutes.
  • a glass substrate with a transparent electrode line after cleaning is mounted on a substrate holder of a vacuum evaporation apparatus, and a film is first formed on the surface where the transparent electrode line is formed so as to cover the transparent electrode as a hole injection layer.
  • An acceptor compound C 1 having a thickness of lOnm and having the following formula was formed.
  • B 1 having a thickness of 50 nm was formed as a hole transport layer (1) on the C-1 film.
  • an A-10 film having a thickness of 20 nm was formed as a hole transport layer (2) on the B-1 film.
  • AN-1 and D-1 were deposited at a film thickness ratio of 40: 2 at a film thickness of 40 nm to form a blue light emitting layer.
  • Alq was deposited as an electron transport layer with a thickness of 20 nm by vapor deposition. Thereafter, LiF was deposited to a thickness of 1 nm as an electron injection layer. On this LiF film, 150 nm of metal A1 was deposited to form a metal cathode to form an organic EL light emitting device.
  • Example 19 an organic EL device was produced in the same manner as in Example 19 except that the compound C 2 represented by the following formula was used instead of the compound C 1 as the hole injection layer.
  • An organic EL device was produced in the same manner as in Example 19 except that Compound A-2 was used instead of Compound A-10 as the hole transport layer (2) in Example 19.
  • Example 23 An organic EL device was produced in the same manner as in Example 19 except that Compound A-6 was used in place of Compound A-10 as the hole transport layer (2) in Example 19. [0223] Example 23
  • An organic EL device was produced in the same manner as in Example 19 except that Compound A-9 was used instead of Compound A-10 as the hole transport layer (2) in Example 19.
  • An organic EL device was produced in the same manner as in Example 19 except that Compound A-11 was used in place of Compound A-10 as the hole transport layer (2) in Example 19.
  • Example 19 an organic EL device was produced in the same manner as in Example 19 except that Compound A-15 was used instead of Compound A-10 as the hole transport layer (2).
  • An organic EL device was produced in the same manner as in Example 19 except that Compound A-25 was used instead of Compound A-10 as the hole transport layer (2) in Example 19.
  • An organic EL device was produced in the same manner as in Example 19 except that Compound A-26 was used instead of Compound A-10 as the hole transport layer (2) in Example 19.
  • An organic EL device was produced in the same manner as in Example 19 except that Compound A- 28 was used instead of Compound A-10 as the hole transport layer (2) in Example 19.
  • An organic EL device was produced in the same manner as in Example 19 except that Compound A-29 was used instead of Compound A-10 as the hole transport layer (2) in Example 19.
  • Example 19 an organic EL device was produced in the same manner as in Example 19 except that compound (B-2) of the following formula was used instead of compound B-1 as the hole transport layer (1). .
  • An organic EL device was produced in the same manner as in Example 19 except that Compound B-5 was used instead of Compound B-1 as the hole transport layer (1) in Example 19.
  • An organic EL device was produced in the same manner as in Example 19 except that Compound B-7 was used instead of Compound B-1 as the hole transport layer (1) in Example 19.
  • An organic EL device was produced in the same manner as in Example 19 except that Compound B-8 was used instead of Compound B-1 as the hole transport layer (1) in Example 19.
  • An organic EL device was produced in the same manner as in Example 19 except that Compound B-12 was used instead of Compound B-1 as the hole transport layer (1) in Example 19.
  • An organic EL device was produced in the same manner as in Example 19 except that Compound B-25 was used instead of Compound B-1 as the hole transport layer (1) in Example 19.
  • An organic EL device was produced in the same manner as in Example 19 except that Compound B-33 was used instead of Compound B-1 as the hole transport layer (1) in Example 19.
  • An organic EL device was produced in the same manner as in Example 19 except that Compound B-39 was used instead of Compound B-1 as the hole transport layer (1) in Example 19.
  • An organic EL device was produced in the same manner as in Example 19 except that Compound E-2 was used instead of Compound B-1 as the hole transport layer (1) in Example 19.
  • An organic EL device was produced in the same manner as in Example 19 except that Compound E-3 was used instead of Compound B-1 as the hole transport layer (1) in Example 19.
  • Example 19 Comparative Example 10 In Example 19, except that Compound E-3 was used instead of Compound B-1 as the hole transport layer (1) and B-1 was used instead of A-10 as the hole transport layer (2). An organic EL device was fabricated in the same manner as in Example 19.
  • a glass substrate with 25 mm X 75 mm X l. 1 mm thick ITO transparent electrode (anode) (Zomatic) was ultrasonically cleaned in isopropyl alcohol for 5 minutes, followed by UV ozone cleaning for 30 minutes. Mount the glass substrate with the transparent electrode line after cleaning on the substrate holder of the vacuum evaporation system, and first cover the transparent electrode as a hole injection layer on the surface where the transparent electrode line is formed. An acceptor compound C 1 having a film thickness of 60 nm was formed. Following the formation of the C-1 film, an A-10 film having a thickness of 20 nm was formed as a hole transport layer on the C-1 film.
  • AN-1 and D-1 were deposited at a film thickness ratio of 40: 2 at a film thickness of 40 nm to form a blue light emitting layer.
  • Alq was deposited as an electron transport layer with a thickness of 20 nm by vapor deposition. Thereafter, LiF was deposited to a thickness of 1 nm as an electron injection layer. On this LiF film, 150 nm of metal A1 was deposited to form a metal cathode to form an organic EL light emitting device.
  • An organic EL device was produced in the same manner as in Comparative Example 11 except that Compound B-1 was used instead of Compound A-10 in Comparative Example 11 instead of Compound A-10.
  • An organic EL device was produced in the same manner as in Comparative Example 11 except that Compound B-39 was used instead of Compound A-10 as the hole transport layer in Comparative Example 11.
  • Table 2 shows the device performance results of Examples 19 to 37 and Comparative Examples 8 to 13;
  • Example 19 C-1 B-1 A- 10 6.4 8.2 Blue 8000
  • Example 20 C-2 B 1 A-10 6.4 8.2 Blue 8000
  • Example 21 C-1 B-1 A-2 6.6 8.3 Blue 7000
  • Example 22 C-1 B-1 A- 6 6.5 8.3 7000
  • Example 23 C-1 B-1 A-9 6.4 8, 3 Blue 8000
  • Example 24 C-1 B 1 A-11 6.4 8.2 Blue 8000
  • Example 25 C- 1 B-1 A-15 6.4 8.3 Blue 8000
  • Example 26 C- 1 B-1 A-25 6.6 8.3 Blue 8000
  • Example 27 C-1 B-1 A-26 6.5 8.2 Blue 8000
  • Example 30 C-1 B-2 A-10 6.4 8.3 Blue 8000
  • Example 31 C-1 B-5 A -10 6.4 8.3 Blue 8000
  • Example 32 C-1 B-7 A-10 6.4 8, 3 Blue 8000
  • the element structure of the organic EL element of the present invention has a structure in which holes are likely to flow specifically by using a specific material system, and the number of holes injected into the light emitting layer is remarkably increased. .
  • the electron can be prevented from reaching the hole transport layer, thereby extending the life.
  • the high efficiency characteristic peculiar to A-10 is maintained, and further low voltage and long life can be realized.
  • the above-described tendency is considered to be the same even when each peripheral compound is used. Further, the same tendency can be obtained by using an acceptor material at the anode interface. By using an acceptor material, we were able to achieve even lower voltage.
  • the organic EL device of the present invention can be used as a material for various colors of organic EL including blue, and can be applied to various display devices, displays, backlights, illumination light sources, signs, signs, interiors, and the like. Particularly, it is suitable as a display element for a color display.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

明 細 書
複素環含有ァリールァミン誘導体を用いた有機エレクト口ルミネッセンス素 子
技術分野
[0001] 本発明は、複素環含有ァリールァミン誘導体を用いた有機エレクト口ルミネッセンス 素子に関する。
背景技術
[0002] 有機エレクト口ルミネッセンス素子(以下エレクト口ルミネッセンスを ELと略記すること 力 る)は、電界を印可することにより、陽極より注入された正孔と陰極より注入された 電子の再結合エネルギーにより蛍光性物質が発光する原理を利用した自発光素子 である。
[0003] イーストマン 'コダック社の C. W. Tang等による積層型素子による低電圧駆動有機
EL素子の報告 (非特許文献 1等)がなされて以来、有機材料を構成材料とする有機 EL素子に関する研究が盛んに行われている。
Tang等は、トリス(8—ヒドロキシキノリノールアルミニウム)を発光層に、トリフエニル ジァミン誘導体を正孔輸送層に用いている。積層構造の利点としては、発光層への 正孔の注入効率を高めること、陰極より注入された電子をブロックして再結合により生 成する励起子の生成効率を高めること、発光層内で生成した励起子を閉じ込めること 等が挙げられる。
[0004] この例のように有機 EL素子の素子構造としては、正孔輸送(注入)層、電子輸送性 発光層の二層型、又は正孔輸送 (注入)層、発光層、電子輸送 (注入)層の 3層型等 力はく知られている。こうした積層型構造素子では注入された正孔と電子の再結合効 率を高めるため、素子構造や形成方法の工夫がなされている。
[0005] 従来、有機 EL素子に用いられる正孔注入材料として、特許文献 1及び 2で表される フエ二レンジァミン構造を持つ材料が知られており、広く用いられてきた。また、正孔 輸送材料では、特許文献 3及び 4に記載のベンジジン骨格を含むァリールアミン系材 料が用いられてきた。 一方、特許文献 5〜7には力ルバゾールを含有するァリールアミン系化合物が開示 されている。また、このような材料を正孔輸送材料に用いると発光効率が向上すると いう特徴があつたが、同時に駆動電圧が大幅に高くなりまた、素子寿命も極端に短く なるという欠点があった。
さらに特許文献 8には、陽極から発光層へ効率よく正孔を注入するために階段状に イオン化ポテンシャル^ Iを設定した 2層以上の正孔注入輸送層を用いる素子が開示 されている。しかし、特許文献 8に記載されている材料系では発光効率、寿命ともに 不十分であった。
特許文献 1:特開平 8— 291115号公報
特許文献 2:特開 2000— 309566号公幸
特許文献 3 :米国特許 5, 061 , 569号明細書
特許文献 4 :特開 2001— 273978号公報
特許文献 5 :米国特許 6, 242, 115号明細書
特許文献 6:特開 2000— 302756号公報
特許文献 7:特開平 11 144873号公報
特許文献 8:特開平 6— 314594号公報
非特許文献 1 : C. W. Tang, S. A. Vanslyke, Applied Physics Letters, 51 , 913 (1987)
[0006] 本発明の目的は、低電圧、高効率、長寿命な有機 EL素子を提供することである。
発明の開示
[0007] 本発明によれば、以下の有機 EL素子が提供される。
1.陽極と陰極と、前記陽極と前記陰極の間に、少なくとも有機化合物からなる発光 層と、前記陽極と前記発光層の間である正孔注入'輸送帯域に 2以上の層を有し、前 記正孔注入 '輸送帯域にある層の発光層に接する層が、下記式( 1 )で表される化合 物を含有し、前記正孔注入'輸送帯域にある層の、陽極と、発光層に接する層の間 にある層が、下記式(2)で表されるァミン誘導体を含有する、有機エレクト口ルミネッ センス素子。
[化 1]
Figure imgf000005_0001
(式中、 Zは置換又は無置換の含窒素複素環基であり、 は置換基を有していてもよ い 2価の芳香族基が、 1ないし 4個結合してなる連結基であり、 Ar及び Arは、各々
1 2
独立して、置換基を有していてもよい、芳香族炭化水素環基又は芳香族複素環基で ある。 )
[化 2]
Figure imgf000005_0002
(式中、 Lは置換もしくは無置換の核炭素数 10〜40のァリーレン基であり、 Ar〜Ar
2 3 は、それぞれ置換もしくは無置換の核炭素数 6〜60の芳香族炭化水素環基、又は
6
置換もしくは無置換の核原子数 6〜60の芳香族複素環基である。 )
2.前記アミン誘導体が下記式(3)で示される化合物である 1記載の有機エレクトロル ミネッセンス素子。
[化 3]
Figure imgf000005_0003
(式中、 Ar〜Arは、それぞれ置換もしくは無置換の核炭素数 6〜60の芳香族炭化
3 6
水素環基、又は置換もしくは無置換の核原子数 6〜60の芳香族複素環基であり、 R は置換基であり、 nは 2〜4の整数を表す。 )
3.前記アミン誘導体が下記式 (4)で示される化合物である 2記載の有機エレクトロル ミネッセンス素子。
Figure imgf000006_0001
(式中、 R及び Rは、それぞれ置換基であり、互いに連結して飽和又は不飽和の環
1 2
を形成してもよい。 Ar〜Ar は、それぞれ置換又は無置換の核炭素数 6〜60の芳
7 10
香族炭化水素環基、又は置換もしくは無置換の核炭素数 6〜60の芳香族複素環基 である。 )
4.式(4)中の Ar〜Ar の少なくとも一つが置換又は無置換のビフエニル基である 3
7 10
記載の有機エレクト口ルミネッセンス素子。
5.前記アミン誘導体が、下記式(5)で示される化合物である 2記載の有機エレクト口 ルミネッセンス素子。
[化 5]
Figure imgf000006_0002
(式中、 R〜Rは、それぞれ置換基であり、互いに連結して飽和又は不飽和の環を
3 5
形成してもよい。 Ar 〜Ar は、それぞれ置換もしくは無置換の核炭素数 6〜60の
11 14
芳香族炭化水素環基、又は置換もしくは無置換の核原子数 6〜 60の芳香族複素環 基を表す。 )
6.式(5)中の Ar 〜Ar の少なくとも一つが置換又は無置換のビフエニル基である
11 14
5記載の有機エレクト口ルミネッセンス素子。
7.前記式(1)で表される化合物が、下記式(6)で表される化合物である 1〜6のいず れかに記載の有機エレクト口ルミネッセンス素子。
Figure imgf000007_0001
(式中、 Czは置換又は無置換のカルバゾリル基であり、 Lは置換基を有していてもよ
3
い 2価の芳香族基力 1ないし 4個結合してなる連結基であり、 Ar 及び Ar は、各
15 16 々独立して、置換基を有していてもよい、芳香族炭化水素環基又は芳香族複素環基 でめる。 )
8.前記式(1)で表される化合物が、下記式(7)で表される化合物である 1〜7のいず れかに記載の有機エレクト口ルミネッセンス素子。
[化 7]
Figure imgf000007_0002
(式中、 Ar 及び Ar は、各々独立して、置換基を有していてもよい、芳香族炭化水
17 18
素環基又は芳香族複素環基を示し、 R〜R は、各々独立して、水素原子、ハロゲ
6 13
ン原子、アルキル基、ァラルキル基、アルケニル基、シァノ基、アミノ基、ァシル基、ァ ルコキシカルボニル基、カルボキシル基、アルコキシ基、ァリールォキシ基、アルキル スルホニル基、水酸基、アミド基、芳香族炭化水素環基又は芳香族複素環基を表し
、これらはいずれも、さらに置換されていてもよい。また、 R〜R は隣り合うもの同士
6 13
で環を形成していてもよい。 Lは、置換基を有していてもよい 2価の芳香族基が、 1な
4
いし 4個結合してなる連結基を表す。)
9.式(7)で表される化合物が下記式(8)で表される化合物である 8記載の有機エレ タトロルミネッセンス素子。
[化 8]
Figure imgf000008_0001
(式中、 Ar 及び Ar は、各々独立して、置換基を有していてもよい、芳香族炭化水
17 18
素環基又は芳香族複素環基を示し、 R〜R は、各々独立して、水素原子、ハロゲ
6 15
ン原子、アルキル基、ァラルキル基、アルケニル基、シァノ基、アミノ基、ァシル基、ァ ルコキシカルボニル基、カルボキシル基、アルコキシ基、ァリールォキシ基、アルキル スルホニル基、水酸基、アミド基、芳香族炭化水素環基又は芳香族複素環基を表し
、これらはいずれも、さらに置換されていてもよい。また、 R〜R は隣り合うもの同士
6 15
で環を形成していてもよい。 )
10.前記正孔注入'輸送帯域にある層の陽極に接する層が、ァクセプター材料を含 有する層である 1〜9のいずれかに記載の有機エレクト口ルミネッセンス素子。
11.青色発光する;!〜 10のレ、ずれかに記載の有機エレクト口ルミネッセンス素子。
[0008] 本発明の技術を用いると、特別な構造を持つ材料を用いることにより、低電圧、高 効率、長寿命な有機 EL素子を実現できる。
図面の簡単な説明
[0009] [図 1]本発明の有機 EL素子の一実施形態を示す概略断面図である。
[図 2]本発明の有機 EL素子の他の実施形態を示す概略断面図である。
発明を実施するための最良の形態
[0010] 本発明の有機 EL素子は、陽極と陰極の間に、少なくとも有機化合物からなる発光 層を有する。そして、陽極と発光層との間である正孔注入 ·輸送帯域に 2以上の層を 有する。
図 1は本発明の有機 EL素子の一実施形態を示す概略断面図である。 有機 EL素子 1では、基板(図示せず)上に陽極 10、正孔注入層 20、正孔輸送層 3 0、発光層 40、電子輸送層 50、電子注入層 60、陰極 70がこの順に積層されている。 本発明においては、正孔注入 ·輸送帯域にある層である正孔注入層 20及び正孔 輸送層 30は、以下の条件 (A)、(B)を満たす。
(A)発光層に接する層(正孔輸送層 30)が下記式(1)で表される化合物を含有す
[化 9]
Ζ—— L,―
Figure imgf000009_0001
[0012] (B)陽極と発光層に接する層との間の層(正孔注入層 20)が、下記式(2)で表され るァミン誘導体を含有する。
[化 10]
Figure imgf000009_0002
[0013] 正孔注入'輸送帯域に、特定の化合物を含む層を所定の位置に設けることにより、 素子の駆動電圧が高電圧化せず、高い発光効率でかつ長寿命な素子となる。これ は、上記式(1)の化合物と式(2)のァミン誘導体と組み合わせて使用することにより、 式(1)の化合物に特有な、素子を高効率化する性質を維持し、また、特異的に正孔 が流れやすくなり、発光層に注入される正孔が格段に増加するためと考えられる。ま た、式(1)の化合物の層により電子が式(2)の誘導体の層に到達することを妨げるた めと考えられる。
[0014] 式(1)において、 Zは、置換又は無置換の含窒素複素環基である。
好ましくは、ピロール、イミダゾール、ピラゾール、トリァゾール、ォキサジァゾール、 ピリジン、ピラジン、トリアジン、ピリミジン、カルバゾール、ァザカルバゾール、ジァザ カルバゾール、インドール、ベンズイミダゾール、イミダゾピリジン、インドリジン等が挙 げられる。 さらに好ましくは、イミダゾール、カルバゾール、インドール、インドリジン、イミダゾピ リジン、ピリジン、ピリミジン、トリアジンである。
[0015] Zの置換基としては、水素原子、ハロゲン原子(フッ素原子、塩素原子、臭素原子又 はヨウ素原子)、アルキル基(例えばメチル基、ェチル基等の炭素数;!〜 6の直鎖又 は分岐のアルキル基;シクロペンチル基、シクロへキシル基等の炭素数 5〜8のシクロ アルキル基)、ァラルキル基(例えばべンジル基、フエネチル基等の、炭素数 7〜; 13 のァラルキル基)、アルケニル基(例えばビュル基、ァリル基等の、炭素数 2〜7の直 鎖又は分岐のアルケニル基)、シァノ基、アミノ基、特に 3級ァミノ基 (例えばジェチル アミノ基、ジイソプロピルアミノ基等の、炭素数 2〜20の直鎖又は分岐のアルキル基 を有するジアルキルアミノ基;ジフエニルァミノ基、フエニルナフチルァミノ基等のジァ リ一ノレアミノ基;メチルフエニルァミノ基等の、炭素数 7〜20のァリーノレアノレキノレアミノ 基など)、ァシル基(例えばァセチル基、プロピオニル基、ベンゾィル基、ナフトイル基 等の、炭素数;!〜 20の直鎖、分岐又は環状の炭化水素基部分を含むァシル基)、ァ ノレコキシカルボニル基(例えばメトキシカルボニル基、エトキシカルボニル基等の、炭 素数 2〜7の直鎖又は分岐のアルコキシカルボニル基)、カルボキシル基、アルコキ シ基(例えばメトキシ基、エトキシ基等の、炭素数;!〜 6の直鎖又は分岐のアルコキシ 基)、ァリールォキシ基(例えばフエノキシ基、ベンジルォキシ基等の、炭素数 6〜; 10 のァリールォキシ基)、アルキルスルホニル基(例えば、メチルスルホニル基、ェチル スノレホニノレ基、プロピノレスノレホニノレ基、ブチノレスノレホニノレ基、へキシノレスノレホニノレ基 等の炭素数 1〜6のアルキルスルホニル基)、水酸基、アミド基(例えば、メチルアミド 基、ジメチルアミド基、ジェチルアミド基等の、炭素数 2〜7のアルキルアミド基;ベン ジルアミド基、ジベンジルアミド基等のァリールアミド基、など)、芳香族炭化水素環基 (例えばフエニル基、ナフチル基、アントリノレ基、フエナントリノレ基、ピレニル基等の、 ベンゼン環の単環又は 2〜4縮合環からなる芳香族炭化水素環基)、又は芳香族複 素環基(例えばカルバゾリル基、ピリジル基、トリアジル基、ビラジル基、キノキサリル 基、チェニル基等の、 5又は 6員環の、単環又は 2〜3縮合環からなる芳香族複素環 基)である。
[0016] Zの置換基として、より好ましくは水素原子、ハロゲン原子、アルキル基、アルコキシ 基、芳香族炭化水素環基、芳香族複素環基が挙げられる。
[0017] 前述した置換基は、さらに置換基を有していてもよぐ該置換基としてはハロゲン原 子(フッ素原子、塩素原子、臭素原子又はヨウ素原子)、アルキル基 (例えばメチル基 、ェチル基等の炭素数 1〜6の直鎖又は分岐のアルキル基)、アルケニル基(例えば ビュル基、ァリル基等の、炭素数 1〜6の直鎖又は分岐のアルケニル基)、アルコキシ カルボニル基(例えばメトキシカルボニル基、エトキシカルボニル基等の、炭素数;!〜 6の直鎖又は分岐のアルコキシカルボニル基)、アルコキシ基(例えばメトキシ基、エト キシ基等の、炭素数 1〜6の直鎖又は分岐のアルコキシ基)、ァリールォキシ基(例え ばフエノキシ基、ナフトキシ基等の、炭素数 6〜; 10のァリールォキシ基)、ジァルキノレ アミノ基(例えばジェチルァミノ基、ジイソプロピルアミノ基等の、炭素数 2〜20の直鎖 又は分岐のアルキル基を有するジアルキルアミノ基)、ジァリールアミノ基(ジフエニル アミノ基、フエニルナフチルァミノ基等のジァリールァミノ基)、芳香族炭化水素環基( 例えばフエニル基等の芳香族炭化水素環基)、や芳香族複素環基 (例えばチェニル 基、ピリジル基等の、 5又は 6員環の単環からなる芳香族複素環基)、ァシル基 (例え ばァセチル基、プロピオニル基等の、炭素数;!〜 6の直鎖、分岐のァシル基)、ハロア ルキル基(例えばトリフルォロメチル基等の、炭素数;!〜 6の直鎖又は分岐のハロア ルキル基)、シァノ基等が挙げられる。これらのうち、ハロゲン原子、アルコキシ基、芳 香族炭化水素環基が、より好ましい。
[0018] 式(1)において、 Lは、置換基を有していてもよい 2価の芳香族基が、 1ないし 4個 結合してなる連結基を表す。好ましくは、 Lは、
— Ar1
- T ' -Ar3' - — Ar — Ar — Ar ―
又は
— Ar — Ar8— Ar9— Ar ―
で表され、 Ar1' , Ar2'、 Ar3'、 Ar4'、 Ar6'、 Ar7'及び Ar10'は、置換されていてもよい、 員数 5〜6の芳香族環の単環又は 2〜5縮合環からなる 2価の基を表し、 A 、 Ar8' 及び Ar9 'は、置換されていてもよい、員数 5〜6の芳香族環の単環又は 2〜5縮合環 力、らなる 2価の基を表す力、、あるいは NAr11 '—(但し、 Ar11'は置換基を有していて もよい 1価の、芳香族炭化水素環基又は芳香族複素環基を表す)を表す。
[0019] Ar1、 Ar2'、 Ar3'、 Ar4'、 Ar。、 Ar7及び Ar10'として、具体的にはフエ二レン基、ナ フチレン基、アントリレン基、フエナントリレン基、ピレニレン基、ペリレニレン基などの 2 価の芳香族炭化水素環基、ピリジレン基、トリアジレン基、ピラジレン基、キノキサリレ ン基、チェ二レン基、ォキサジァゾリレン基などの 2価の芳香族複素環基が挙げられ
[0020] A 、 Ar8'及び Ar9'は、 Ar1'等として上述した基に代表される 2価の芳香族基であ る力、、或いは NAr11'—(但し、 Ar11'は置換基を有していてもよい 1価の、芳香族炭 化水素環基又は芳香族複素環基を表す)で表される 2価のァリールアミノ基である。 Ar11'としては、例えば 5又は 6員環の芳香族基、例えば、フエニル基、ナフチル基、 アントリル基、フエナンチル基、チェニル基、ピリジル基、カルバゾリル基等が挙げら れ、これらは置換基を有していてもよい。
[0021] Lとして最も小さな連結基である Ar1'としては、化合物の剛直性、これに起因する 耐熱性を向上させるためには、 3縮合環以上であることが好ましい。
[0022] Ar2'、 Ar3'、 Ar4'、 Ar6'、 Ar7'及び Ar10'としては、単環又は 2〜3縮合環が好ましく 、単環又は 2縮合環がより好ましい。
[0023] 耐熱性向上の点からは、 A 、 Ar8'及び Ar9'は芳香族環であることが好ましぐ化 合物の非晶質性を向上させる点からは、 A 、 Ar8'及び Ar9'は一 NAr11'—であるこ とが好ましい。 Ar5'、 Ar8'及び Ar9 'を一 NAr11'—とすることにより、該化合物の発光 波長を微妙に長波長化させることができ、容易に所望の発光波長を得ることができる 。なお、 Ar8'及び Ar9'は、一方が NAr11' であるとき、他方は芳香族基であること が好ましい。
[0024] Ar1'ないし Ar1Q'が有しうる置換基としては、例えば、 Zの置換基として例示したもの と同様の基が挙げられる。中でも特に好ましくは、アルキル基、アルコキシ基、芳香族 炭化水素環基又は芳香族複素環基である。
[0025] Ar11'が有しうる置換基としても、例えば、 Zの置換基として例示したものと同様の基 が挙げられる。中でも特に好ましくは、ァリールアミノ基又はフエニル基、ナフチル基 などの芳香族炭化水素環基、又はカルバゾリル基などの芳香族複素環基である。
[0026] 式(1)において、 Ar1及び Ar2は、各々独立に、置換基を有していてもよい、芳香族 炭化水素環基又は芳香族複素環基を表す。
Ar1, Ar2の芳香族炭化水素環基としては、例えばベンゼン環の単環又は 2〜5縮 合環からなる基が挙げられ、具体的には、フエニル基、ナフチル基、アントリル基、フ ェナントリル基、ピレニル基、ペリレニル基等が挙げられる。芳香族複素環基としては 、例えば 5又は 6員環の単環又は 2〜5縮合環が挙げられ、具体的にはピリジル基、ト リアジニル基、ビラジニル基、キノキサリニル基、チェニル基などが挙げられる。
[0027] 芳香族炭化水素環基及び芳香族複素環基が有しうる置換基としては、例えば、ァ ルキル基(例えばメチル基、ェチル基等の炭素数 1〜6の直鎖又は分岐のアルキル 基)、アルケニル基(例えばビニル基、ァリル基等の、炭素数;!〜 6の直鎖又は分岐の アルケニル基)、アルコキシカルボニル基(例えばメトキシカルボニル基、エトキシカル ボニル基等の、炭素数 1〜6の直鎖又は分岐のアルコキシカルボニル基)、アルコキ シ基(例えばメトキシ基、エトキシ基等の、炭素数;!〜 6の直鎖又は分岐のアルコキシ 基)、ァリールォキシ基(例えばフエノキシ基、ナフトキシ基等の、炭素数 6〜; 10のァリ ールォキシ基)、ァラルキルォキシ基(例えばベンジルォキシ基等の、炭素数 7〜; 13 のァリールォキシ基)、 2級又は 3級ァミノ基(例えばジェチルァミノ基、ジイソプロピル アミノ基等の、炭素数 2〜20の直鎖又は分岐のアルキル基を有するジアルキルァミノ 基;ジフエニルァミノ基、フエニルナフチルァミノ基等のジァリールァミノ基;メチルフエ ニルァミノ基等の、炭素数 7〜20のァリーノレァノレキノレアミノ基、など)、ハロゲン原子( フッ素原子、塩素原子、臭素原子又はヨウ素原子)、芳香族炭化水素環基 (例えばフ ェニル基、ナフチル基等の、炭素数 6〜; 10の芳香族炭化水素環基)、及び芳香族複 素環基 (例えばチェニル基、ピリジル基等の、 5又は 6員環の単環又は 2縮合環から なる芳香族複素環基)等が挙げられる。
これらのうち、アルキル基、アルコキシ基、ァノレキノレアミノ基、ァリーノレアミノ基、ァリ ールアルキルアミノ基、ハロゲン原子、芳香族炭化水素環基、芳香族複素環基が好 ましぐアルキル基、アルコキシ基、ァリールァミノ基が特に好ましい。
[0028] Ar1及び Ar2が、例えばターフェニル基などのように、 2個以上の直接結合を介して 連なった、 3個以上の芳香族基を含む構造である場合、 NA^Ar2で表されるァリ ールァミノ基が有する正孔輸送能を低下させる虞があり、また化合物の Tgが低下す ると考えられる。
[0029] 従って、本発明に係る化合物の特性を損なわないためには、 Ar1及び Ar2はいずれ も、 3個以上の芳香族基が、直接結合又は短い鎖状連結基を介して直列で結合して V、なレヽ基であることが重要である。
[0030] 式(1)で示される含窒素複素環誘導体は、好ましくは下記式(6)で表される力ルバ ゾール誘導体である。
[化 11]
Figure imgf000014_0001
[0031] 式(6)において、 Czは、置換又は無置換のカルバゾリル基である。
Czで表されるカルバゾリル基として、 1一力ルバゾリル基、 2—力ルバゾリル基、 3— カルバゾリル基、 4一力ルバゾリル基、 N 力ルバゾリル基が挙げられる。好ましくは、 2 カノレバゾリノレ基、 3 カノレバゾリノレ基、 N 力ルバゾリル基である。
これら力ルバゾリル基は置換基を有してもよぐこの置換基としては、式(1)の Z等の 置換基と同様のものが挙げられる。
[0032] 式(6)において、 Lは、置換基を有していてもよい 2価の芳香族基が、 1ないし 4個
3
結合してなる連結基を表す。 Lとして好ましい基は、式(1)の Lと同様である。
3 1
[0033] 式(6)において、 Ar 及び Ar は、各々独立して、置換基を有していてもよい、芳
15 16
香族炭化水素環基又は芳香族複素環基である。 Ar 及び Ar として好ましい基は、
15 16
式(1)の Ar及び Arと同様である。
1 2
[0034] 式(6)の力ルバゾール誘導体は、好ましくは、下記式(7)で表される N 力ルバゾリ ル基を含有する化合物である。
Figure imgf000015_0001
[0035] 式中、 Ar 及び Ar は、各々独立して、置換基を有していてもよい、芳香族炭化水
17 18
素環基又は芳香族複素環基を示し、 R〜R は、各々独立して、水素原子、ハロゲ
6 13
ン原子、アルキル基、ァラルキル基、アルケニル基、シァノ基、アミノ基、ァシル基、ァ ルコキシカルボニル基、カルボキシル基、アルコキシ基、ァリールォキシ基、アルキル スルホニル基、水酸基、アミド基、芳香族炭化水素環基又は芳香族複素環基を表し
、これらはいずれも、さらに置換されていてもよい。また、 R〜R は隣り合うもの同士
6 13
で環を形成していてもよい。 Lは、置換基を有していてもよい 2価の芳香族基が、 1な
4
V、し 4個結合してなる連結基を表す。
[0036] 式 (7)において R6〜R13の各基の例は、上記 Zの置換基と同様である。
[0037] また、 R6〜R13は隣り合うもの同士で結合して、 N—カルバゾリル基に縮合する環を 形成していてもよい。 R6〜R13のうち、隣接する基同士が結合して形成する環は、通 常、 5〜8員環であるが、好ましくは 5又は 6員環、より好ましくは 6員環である。また、こ の環は芳香族環であつても非芳香族環であつてもよいが、好ましくは芳香族環である 。さらに、芳香族炭化水素環であっても芳香族複素環であってもよいが、好ましくは 芳香族炭化水素環である。
[0038] 式(7)の N—力ルバゾリル基において、 R6〜R13のいずれかが結合して N—力ルバ ゾリル基に結合する縮合環を形成した例としては、例えば下記のものが挙げられる。
[化 13]
Figure imgf000016_0001
[0039] R6〜R13は、特に好ましくは、すべて水素原子である(つまり N—力ルバゾリル基は 無置換である)場合力、、或いは 1つ以上カ^チル基、フエニル基又はメトキシ基のいず れかであり、残りが水素原子である場合である。
[0040] 式(7)で表される化合物は下記式(8)で表される化合物であることが特に好ましい
[化 14]
Figure imgf000016_0002
[0041] 式中、 R6〜R15の各基の例は、上記 Zの置換基と同様である。また、互いに連結して 飽和又は不飽和の環を形成してもよい。 Ar 及び Ar は、各々独立して、置換基を
19 20
有していてもよい、芳香族炭化水素環基又は芳香族複素環基を示し、これらの例は 上述した Arと同様である。
[0042] また、下記式(9)で表されるフルオレン系化合物も好ましく使用できる。
[化 15]
Figure imgf000016_0003
[0043] 式中、 Xは未置換、もしくは、置換基として、ハロゲン原子、炭素数 1〜; 10のアルキ ル基、炭素数 1〜; 10のアルコキシ基、あるいは炭素数 6〜; 10のァリール基で単置換 または多置換されていてもよい N—力ルバゾィル基、未置換、もしくは、置換基として 、ハロゲン原子、炭素数 1〜10のアルキル基、炭素数 1〜10のアルコキシ基、あるい は炭素数 6〜; 10のァリール基で単置換または多置換されていてもよい N—フエノキサ ジィル基、あるいは未置換、もしくは、置換基として、ハロゲン原子、炭素数;!〜 10の アルキノレ基、炭素数 1〜10のアルコキシ基、あるいは炭素数 6〜; 10のァリール基で 単置換または多置換されていてもよい N—フエノチアジィル基を表し、 Xは未置換、
2 もしくは、置換基として、ハロゲン原子、炭素数 1〜; 10のアルキル基、炭素数;!〜 10 のアルコキシ基、あるいは炭素数 6〜; 10のァリール基で単置換または多置換されて いてもよい N—力ルバゾィル基、未置換、もしくは、置換基として、ハロゲン原子、炭 素数;!〜 10のァノレキノレ基、炭素数 1〜10のアルコキシ基、あるいは炭素数 6〜10の ァリール基で単置換または多置換されていてもよい N—フエノキサジィル基、未置換 、もしくは、置換基として、ハロゲン原子、炭素数 1〜; 10のアルキル基、炭素数;!〜 10 のアルコキシ基、あるいは炭素数 6〜; 10のァリール基で単置換または多置換されて いてもよい N—フエノチアジィル基、あるいは一 NAr21 Ar22'を表し(但し、 Ar21'およ び Ar22'は未置換、もしくは、置換基として、ハロゲン原子、アルキル基、アルコキシ基 、あるいはァリール基で単置換または多置換されてレ、てもよレ、総炭素数 6〜20の炭 素環式芳香族基または総炭素数 3〜20の複素環式芳香族基を表す)。
Bおよび Bは水素原子、直鎖、分岐または環状のアルキル基、未置換、もしくは、
1 2
置換基として、ハロゲン原子、アルキル基、アルコキシ基、あるいはァリール基で単置 換または多置換されてレ、てもよレ、総炭素数 6〜20の炭素環式芳香族基または総炭 素数 3〜20の複素環式芳香族基、あるいは未置換、もしくは、置換基として、ハロゲ ン原子、アルキル基、アルコキシ基、あるいはァリール基で単置換または多置換され ていてもよいァラルキル基を表し、 Zおよび Zは水素原子、ハロゲン原子、直鎖、分
1 2
岐または環状のアルキル基、直鎖、分岐または環状のアルコキシ基、あるいは未置 換、もしくは、置換基として、ハロゲン原子、アルキル基、アルコキシ基、あるいはァリ ール基で単置換または多置換されてレ、てもよレ、総炭素数 6〜20の炭素環式芳香族 基または総炭素数 3〜20の複素環式芳香族基を表す。 [0045] 式(9)で表される化合物において、 ェは置換または未置換の N 力ルバゾィル基、 置換または未置換の N フエノキサジィル基、あるいは置換または未置換の N フエ ノチアジィル基を表し、好ましくは、未置換、もしくは、置換基として、例えば、ハロゲ ン原子、炭素数 1〜; 10のアルキル基、炭素数 1〜; 10のアルコキシ基、あるいは炭素 数 6〜10のァリール基で単置換または多置換されていてもよい N 力ルバゾィル基、 N フエノキサジィル基、あるいは N フエノチアジィル基であり、より好ましくは、未 置換、もしくは、ハロゲン原子、炭素数 1〜4のアルキル基、炭素数 1〜4のアルコキシ 基、あるいは炭素数 6〜; 10のァリール基で単置換あるレ、は多置換されてレ、てもよレ、N 一力ルバゾィル基 N フエノキサジィル基、あるいは N フエノチアジィル基であり、 更に好ましくは、未置換の N 力ルバゾィル基、未置換の N フエノキサジィル基、あ るいは未置換の N フエノチアジィル基である。
[0046] Xの置換または未置換の N 力ルバゾィル基、置換または未置換の N フエノキ サジィル基、あるいは置換または未置換の N フヱノチアジィル基の具体例としては 、例えば、 N 力ルバゾィル基、 2 メチルー N 力ルバゾィル基、 3 メチルー N— 力ルバゾィル基、 4ーメチルー N 力ルバゾィル基、 3— n ブチルー N 力ルバゾィ ノレ基、 3— n へキシルー N 力ルバゾィル基、 3— n ォクチルー N 力ルバゾィル 基、 3— n デシルー N 力ルバゾィル基、 3, 6 ジメチルー N 力ルバゾィル基、 2 —メトキシ一 N 力ルバゾィル基、 3—メトキシ一 N 力ルバゾィル基、 3—エトキシ一 N 力ルバゾィル基、 3—イソプロポキシ N 力ルバゾィル基、 3— n ブトキシー N 一力ルバゾィル基、 3— n ォクチルォキシー N 力ルバゾィル基、 3— n デシルォ キシ—N 力ルバゾィル基、 3—フエ二ルー N 力ルバゾィル基、 3—(4'ーメチルフ ェニル) N 力ルバゾィル基、 3—クロロー N 力ルバゾィル基、 N—フエノキサジィ ル基、 N フエノチアジィル基、 2—メチルー N フエノチアジィル基などを挙げること 力 Sできる。一般式(1)で表される化合物において、 X は置換または未置換の N 力
2
ノレバゾィル基、置換または未置換の N フエノキサジィル基、置換または未置換の N ーフエノチアジィル基、あるいは NAr21 Ar22' (但し、 Ar21'および Ar22'は置換また は未置換のァリール基を表す)を表す。
[0047] Xの置換または未置換の N 力ルバゾィル基、置換または未置換の N フエノキ サジィル基、置換または未置換の N フエノチアジィル基の具体例としては、例えば 、 Xの具体例として挙げた置換または未置換の N 力ルバゾィル基、置換または未 置換の N フエノキサジィル基、置換または未置換の N フエノチアジィル基を例示 すること力でさる。
[0048] —NAr21 Ar22'において、 Ar21'および Ar22'は置換または未置換のァリール基を表 す。尚、ァリール基とは、例えば、フエニル基、ナフチル基、アントリル基などの炭素環 式芳香族基、例えば、フリル基、チェニル基、ピリジル基などの複素環式芳香族基を 表す。 Ar21'および Ar22'は、好ましくは、未置換、もしくは、置換基として、例えば、ハ ロゲン原子、アルキル基、アルコキシ基、あるいはァリール基で単置換または多置換 されてレ、てもよレ、総炭素数 6〜20の炭素環式芳香族基または総炭素数 3〜20の複 素環式芳香族基であり、より好ましくは、未置換、もしくは、ハロゲン原子、炭素数 1〜 14のァノレキノレ基、炭素数 1〜14のアルコキシ基、あるいは炭素数 6〜10のァリール 基で単置換または多置換されてレ、てもよレ、総炭素数 6〜20の炭素環式芳香族基で あり、更に好ましくは、未置換、もしくは、ハロゲン原子、炭素数;!〜 4のアルキル基、 炭素数 1〜4のアルコキシ基、あるいは炭素数 6〜; 10のァリール基で単置換あるレ、は 多置換されていてもよい総炭素数 6〜; 16の炭素環式芳香族基である。
[0049] Ar21'および Ar22の具体例としては、例えば、フエニル基、 1 ナフチル基、 2 ナ フチル基、 2 アントリル基、 9 アントリル基、 4ーキノリノレ基、 4 ピリジノレ基、 3 ピ リジノレ基、 2 ピリジノレ基、 3 フリノレ基、 2 フリノレ基、 3 チェ二ノレ基、 2 チェ二ノレ 基、 2—ォキサゾリル基、 2—チアゾリル基、 2—べンゾォキサゾリル基、 2—べンゾチ ァゾリル基、 2 べンゾイミダゾリル基、 4 メチルフエニル基、 3 メチルフエニル基、 2 メチルフエニル基、 4 ェチルフエニル基、 3 ェチルフエニル基、 2 ェチルフ ェニノレ基、 4— n プロピルフエニル基、 4 イソプロピルフエニル基、 2 イソプロピル フエ二ノレ基、 4— n ブチノレフエ二ノレ基、 4 イソブチノレフエ二ノレ基、 4— sec—ブチノレ フエニル基、 2 sec ブチルフエニル基、 4 tert ブチルフエニル基、 3 tert ブ チルフエニル基、 2 tert ブチルフエニル基、 4— n—ペンチルフエ二ル基、 4 イソ ペンチルフエ二ル基、 2 ネオペンチルフエ二ル基、 4 tert ペンチルフエ二ル基、 4— n へキシルフェニル基、 4 (2 'ーェチルブチル)フエニル基、 4— n へプチ ルフエ二ル基、 4— n ォクチルフエニル基、 4— (2 '—ェチルへキシノレ)フエニル基、 4— tert ォクチルフエニル基、 4— n デシルフェニル基、 4— n ドデシルフェニル 基、 4— n テトラデシルフェニル基、 4ーシクロペンチルフエ二ル基、 4ーシクロへキ シルフェニル基、 4— (4 '—メチルシクロへキシノレ)フエニル基、 4— (4 '—tert ブチ ルシクロへキシノレ)フエニル基、 3 シクロへキシルフェニル基、 2 シクロへキシルフ ェニノレ基、 4ーェチノレー 1 ナフチノレ基、 6— n ブチノレー 2 ナフチノレ基、 2, 4ージ メチルフエニル基、 2, 5 ジメチルフエニル基、 3, 4ージメチルフエニル基、 3, 5—ジ メチルフエニル基、 2, 6 ジメチルフエニル基、 2, 4ージェチルフエニル基、 2, 3, 5 トリメチルフエニル基、 2, 3, 6 トリメチルフエニル基、 3, 4, 5 トリメチルフエニル 基、 2, 6 ジェチルフエニル基、 2, 5 ジイソプロピルフエニル基、 2, 6 ジイソブチ ノレフエ二ノレ基、 2, 4 ジ一 tert ブチノレフエ二ノレ基、 2, 5 ジ一 tert ブチノレフエ二 ル基、 4, 6 ジー tert ブチルー 2 メチルフエニル基、 5 tert ブチルー 2 メチ ルフエ二ル基、 4 tert ブチルー 2, 6 ジメチルフエニル基、
4ーメトキシフエ二ル基、 3 メトキシフエ二ル基、 2 メトキシフエ二ル基、 4ーェトキ シフエ二ル基、 3 エトキシフエニル基、 2 エトキシフエニル基、 4— n プロポキシフ ェニル基、 3— n プロポキシフエニル基、 4 イソプロポキシフエニル基、 2 イソプロ ポキシフエニル基、 4— n—ブトキシフエニル基、 4 イソブトキシフエニル基、 2 sec ブトキシフエニル基、 4 n ペンチルォキシフエニル基、 4 イソペンチルォキシ フエニル基、 2 イソペンチルォキシフエニル基、 4 ネオペンチルォキシフエニル基 、 2 ネオペンチルォキシフエニル基、 4 n へキシルォキシフエニル基、 2— (2 ' ーェチルブチル)ォキシフエニル基、 4— n ォクチルォキシフエニル基、 4— n デ シルォキシフエニル基、 4— n ドデシルォキシフエニル基、 4— n テトラデシルォキ シフエ二ル基、 4ーシクロへキシル才キシフエニル基、 2 シクロへキシルォキシフエ ニル基、 2 メトキシ 1 ナフチル基、 4ーメトキシ 1 ナフチル基、 4— n ブトキ シー 1 ナフチル基、 5 エトキシー 1 ナフチル基、 6 メトキシー 2 ナフチル基、 6 エトキシー 2 ナフチル基、 6— n ブトキシー 2 ナフチル基、 6— n へキシル ォキシー2 ナフチル基、 7 メトキシー2 ナフチル基、 7— n—ブトキシー2 ナフ チル基、 2 メチルー 4ーメトキシフエ二ル基、 2 メチルー 5 メトキシフエ二ル基、 3 ーメチルー 5 メトキシフエ二ル基、 3 ェチルー 5 メトキシフエ二ル基、 2 メトキシ 4 メチルフエニル基、 3 メトキシー4 メチルフエニル基、 2, 4ージメトキシフエ ニル基、 2, 5 ジメトキシフエ二ル基、 2, 6 ジメトキシフエ二ル基、 3, 4ージメトキシ フエニル基、 3, 5—ジメトキシフエ二ル基、 3, 5—ジエトキシフエニル基、 3, 5—ジ— n—ブトキシフエニル基、 2 メトキシー 4 エトキシフエニル基、 2 メトキシー6 エト キシフエニル基、 3, 4, 5—トリメトキシフエ二ル基、 4—フエニルフエニル基、 3—フエ ニルフエニル基、 2 フエニルフエニル基、 4一(4 ' メチルフエ二ノレ)フエニル基、 4 (3 ' メチルフエ二ノレ)フエニル基、 4一(4 'ーメトキシフエ二ノレ)フエニル基、 4一(4 '—n ブトキシフエ二ノレ)フエニル基、 2— (2 '—メトキシフエ二ノレ)フエニル基、 4— (4 ,一クロ口フエニル)フエニル基、 3—メチル 4—フエエルフェニル基、 3—メトキシ一 4 フエ二ノレフエ二ノレ基、
4 フノレ才ロフエ二ノレ基、 3 フノレ才ロフエ二ノレ基、 2 フノレ才ロフエ二ノレ基、 4 クロ 口フエ二ノレ基、 3 クロ口フエ二ノレ基、 2 クロ口フエ二ノレ基、 4ープ'ロモフエ二ノレ基、 2 —ブロモフエ二ノレ基、 4 クロ口一 1—ナフチノレ基、 4 クロ口一 2 ナフチノレ基、 6 - ブロモー 2 ナフチル基、 2, 3 ジフルオロフェニル基、 2, 4ージフルオロフェニル 基、 2, 5 ジフルオロフェニル基、 2, 6 ジフルオロフェニル基、 3, 4ージフルォロ フエニル基、 3, 5 ジフルオロフェニル基、 2, 3 ジクロロフェニル基、 2, 4 ジクロ 口フエニル基、 2, 5 ジクロロフェニル基、 3, 4 ジクロロフェニル基、 3, 5 ジクロロ フエニル基、 2, 5 ジブロモフエニル基、 2, 4, 6 トリクロ口フエニル基、 2, 4 ジク ロロ 1 ナフチノレ基、 1 , 6—ジクロロー 2—ナフチノレ基、 2—フノレオロー 4ーメチノレ フエニル基、 2 フルオロー 5 メチルフエニル基、 3 フルオロー 2 メチルフエ二ノレ 基、 3 フルオロー 4 メチルフエニル基、 2 メチルー 4 フルオロフェニル基、 2— メチノレ一 5 フノレオロフェニノレ基、 3 メチノレ一 4 フノレオロフェニノレ基、 2 クロ口一 4 メチノレフエ二ノレ基、 2 クロ口一 5 メチノレフエ二ノレ基、 2 クロ口一 6 メチノレフエ 二ノレ基、 2 メチノレ一 3 クロ口フエ二ノレ基、 2 メチノレ一 4 クロ口フエ二ノレ基、 3 メ チノレー 4 クロ口フエ二ノレ基、 2 クロロー 4, 6 ジメチノレフエ二ノレ基、 2 メトキシー 4 —フノレオロフェニノレ基、 2 フノレオロー 4 メトキシフエ二ノレ基、 2 フノレオロー 4 ェ トキシフエ二ル基、 2 フルオロー 6 メトキシフエ二ル基、 3 フルオロー 4 エトキシ フエ二ノレ基、 3 クロ口一 4 メトキシフエ二ノレ基、 2 メトキシ一 5 クロ口フエ二ノレ基、 3 メトキシ一 6 クロ口フエ二ル基、 5 クロ口一 2, 4 ジメトキシフエニル基などを挙 げることができる力 これらに限定されるものではない。
[0052] 式(9)で表される化合物において、 Bおよび Bは水素原子、直鎖、分岐または環
1 2
状のアルキル基、置換または未置換のァリール基、あるいは置換または未置換のァ ラルキル基を表し、好ましくは、水素原子、炭素数;!〜 16の直鎖、分岐または環状の アルキル基、炭素数 4〜; 16の置換または未置換のァリール基、あるいは炭素数 5〜1 6の置換または未置換のァラルキル基を表し、より好ましくは、水素原子、炭素数;!〜 8の直鎖、分岐または環状のアルキル基、炭素数 6〜; 12の置換または未置換のァリ ール基、あるいは炭素数 7〜; 12の置換または未置換のァラルキル基を表す。更に好 ましくは、 Bおよび Bは炭素数;!〜 8の直鎖、分岐または環状のアルキル基、炭素数
1 2
6〜; 10の炭素環式芳香族基、あるいは炭素数 7〜; 10の炭素環式ァラルキル基を表 す。
[0053] 尚、 Bおよび Bの置換または未置換のァリール基の具体例としては、例えば、 Ar
1 2 1 および Arの具体例として挙げた置換または未置換のァリール基を例示することがで
2
きる。 Bおよび Bの直鎖、分岐または環状のアルキル基の具体例としては、例えば、
1 2
メチル基、ェチル基、 n プロピル基、イソプロピル基、 n ブチル基、イソブチル基、 sec ブチル基、 tert ブチル基、 n ペンチル基、イソペンチル基、ネオペンチノレ 基、 tert ペンチル基、シクロペンチル基、 n へキシル基、 2 ェチルブチル基、 3 , 3—ジメチルブチル基、シクロへキシル基、 n へプチル基、シクロへキシルメチル 基、 n ォクチル基、 tert ォクチル基、 2—ェチルへキシル基、 n ノニル基、 n デ シル基、 n ドデシル基、 n テトラデシル基、 n へキサデシル基などを挙げることが できる力 これらに限定されるものではない。
[0054] また、 Bおよび Bの置換または未置換のァラルキル基の具体例としては、例えば、
1 2
ベンジル基、フエネチル基、 α メチルベンジル基、 α, aージメチルベンジル基、 1 ナフチルメチル基、 2 ナフチルメチル基、フルフリル基、 2 メチルベンジル基、 3 メチルベンジル基、 4 メチルベンジル基、 4 ェチルベンジル基、 4 イソプロピ ノレべンジノレ基、 4 tert ブチノレべンジノレ基、 4— n へキシノレべンジノレ基、 4ーノニ ノレべンジル基、 3, 4ージメチルベンジル基、 3—メトキシベンジル基、 4ーメトキシベン ジノレ基、 4 エトキシベンジル基、 4— n—ブトキシベンジル基、 4— n へキシルォキ シベンジル基、 4—ノエルォキシベンジル基、 4—フルォロベンジル基、 3—フルォロ ベンジル基、 2 クロ口べンジル基、 4 クロ口べンジル基などのァラルキル基などを 挙げることができる力 これらに限定されるものではない。
[0055] Zおよび Zは水素原子、ハロゲン原子、直鎖、分岐または環状のアルキル基、直
1 2
鎖、分岐または環状のアルコキシ基、あるいは置換または未置換のァリール基を表し 、好ましくは、水素原子、ハロゲン原子、炭素数;!〜 16の直鎖、分岐または環状のァ ルキル基、炭素数;!〜 16の直鎖、分岐または環状のアルコキシ基、あるいは炭素数 4〜20の置換または未置換のァリール基を表し、より好ましくは、水素原子、ハロゲン 原子、炭素数;!〜 8の直鎖、分岐または環状のアルキル基、炭素数;!〜 8の直鎖、分 岐または環状のアルコキシ基、あるいは炭素数 6〜; 12の置換または未置換のァリー ル基を表し、更に好ましくは、水素原子である。
[0056] 尚、 Zおよび Zの直鎖、分岐または環状のアルキル基の具体例としては、例えば、
1 2
Bおよび Bの具体例として挙げた直鎖、分岐または環状のアルキル基を例示するこ
1 2
と力 sできる。また、 Z および Z の置換または未置換のァリール基の具体例としては、
1 2
例えば、 Ar21'および Ar22'の具体例として挙げた置換または未置換のァリール基を ί列示すること力 Sでさる。
[0057] Ζおよび Ζのハロゲン原子、直鎖、分岐または環状のアルコキシ基の具体例として
1 2
は、例えば、フッ素原子、塩素原子、臭素原子などのハロゲン原子、例えば、メトキシ 基、エトキシ基、 η プロポキシ基、イソプロポキシ基、 η ブトキシ基、イソブトキシ基 、 sec ブトキシ基、 n ペンチルォキシ基、イソペンチルォキシ基、ネオペンチルォ キシ基、シクロペンチルォキシ基、 n へキシルォキシ基、 2 ェチルブトキシ基、 3, 3—ジメチルブトキシ基、シクロへキシルォキシ基、 n へプチルォキシ基、シクロへキ シルメチルォキシ基、 n ォクチルォキシ基、 2—ェチルへキシルォキシ基、 n ノニ ルォキシ基、 n デシルォキシ基、 n ドデシルォキシ基、 n テトラデシルォキシ基 、n へキサデシルォキシ基などのアルコキシ基を挙げることができる。
[0058] 上記式(9)で表される化合物の具体例としては、例えば、以下の化合物(番号;!〜 100)を挙げることができる力、本発明はこれらに限定されるものではない。
•例示化合物
I . 7- (Ν'—カルバゾィル) Ν, Ν ジフエニル一 9Η フルオレン一 2 ァミン
2. 7- (Ν'—カルバゾィル) Ν フエ二ノレ一 Ν— (4'—メチルフエ二ル) 9 メチ ルー 9Η—フルオレンー2 ァミン
3. 7— (Ν' カルバゾィル) Ν, Ν ジフエ二ノレ一 9, 9—ジメチル一 9Η—フルォ レン 2—ァミン
4. 7—(Ν'—力ルバゾィル)一 N—フエニノレー N- (3'—メチルフエニル) 9, 9- ジメチルー 9Η—フルオレン- - 2—ァミン
5. 7—(Ν'—力ルバゾィル)一 N—フエニノレー N- (4,一メチルフエニル) 9, 9- ジメチルー 9Η—フルオレン- - 2—ァミン
6. 7—(Ν'—力ルバゾィル)一 N—フエニノレー N- (4, 9, 9- ジメチルー 9Η—フルオレン- - 2—ァミン
7. 7—(Ν'—力ルバゾィル)一 N—フエニノレー N- (4' tert ブチノレフェニノレ) 9 , 9 ジメチルー 9Η フルオレン一 2 ァミン
8. 7— (Ν,—カルバゾィル)— Ν フエニル— Ν- (3,, 4,ージメチルフエニル) 9 , 9 ジメチルー 9Η フルオレン一 2 ァミン
9. 7— (Ν,—カルバゾィル)— Ν フエニル— Ν- (3,, 5,ージメチルフエニル) 9 , 9 ジメチルー 9Η フルオレン一 2 ァミン
10. 7- (Ν'—カルバゾィル) Ν, Ν ジ(3, - - 9, 9ージメチル 9Η フノレ才レン 2 ァミン
I I . 7- (Ν'—カルバゾィル) Ν, Ν ジ(4, - - 9, 9ージメチル 9Η フノレ才レン 2 ァミン
12. 7- (Ν'—カルバゾィル) Ν, Ν ジ(4, - - 9, 9ージメチル 9Η フノレ才レン 2 ァミン
13. 7- (Ν'—カルバゾィル) Ν フエ二ノレ一 Ν— (3,一メトキシフエニル) 9, 9 ジメチルー 9Η—フルオレンー2 ァミン
14. 7- (Ν'—カルバゾィル) Ν フエ二ノレ一 Ν— (4,一メトキシフエニル) 9, 9 ジメチルー 9H—フルオレンー2 ァミン
15. 7- (Ν'—カルバゾィル) Ν フエ二ノレ一 Ν— (4, 一エトキシフエニル) 9, 9 ジメチルー 9Η—フルオレンー2 ァミン
16. 7- (Ν'—カルバゾィル)一 Ν フエ二ノレ一 Ν— (4, 一 η - 9, 9 ジメチルー 9Η フルオレン一 2 ァミン
17. 7- (Ν'—カルバゾィル) Ν, Ν ジ(4'—メトキシフ - 9, 9—ジメチ ルー 9Η—フルオレンー2 ァミン
18. 7- (Ν'—カルバゾィル) Ν— (3,一メチルフエ二 -Ν- (4"ーメトキシフ: 二ル)一 9, 9 ジメチルー 9Η フルオレン一 2 ァミン
19. 7- (Ν'—カルバゾィル) Ν— (4'—メチルフエ二 -Ν- (4"ーメトキシフ:
- 9, 9 ジメチル一 9Η フルオレン一 2 ァミン
20. 7- (Ν'—カルバゾィル) Ν フエ二ノレ一 Ν— (3,一フルオロフェニル) 9, 9 ジメチルー 9Η—フルオレンー2 ァミン
21. 7- (Ν'—カルバゾィル) Ν フエ二ノレ一 Ν— (4,一クロ口フエニル) 9, 9— ジメチルー 9Η—フルオレンー2 ァミン
22. 7- (Ν'—カルバゾィル) Ν フエ二ノレ一 Ν— (4,一フエニルフエニル) 9, 9 ジメチルー 9Η—フルオレンー2 ァミン
23. 7— (Ν' カルバゾィル)— Ν フエニル— Ν— (1,—ナフチル) 9, 9- チル 9Η フルオレン 2 ァミン
24. 7- (Ν'—カルバゾィル) Ν フエ二ノレ一 Ν— (2,一ナフチル) 9, 9- チル 9Η フルオレン 2 ァミン
25. 7- (Ν'一力ルバゾィル) Ν— (4' メチルフエニル) Ν— (2 "—ナフチル) —9, 9 ジメチル一 9Η フルオレン一 2 ァミン
26. 7- (Ν'—カルバゾィル) Ν フエ二ノレ一 Ν- (2, - 9, 9ージメチル 9Η フノレ才レン 2 ァミン
27. 7- (Ν'—カルバゾィル) Ν フエ二ノレ一 Ν- (2'—チェ二 9, 9- チル 9Η フルオレン 2 ァミン
28. 7- (Ν'—カルバゾィル) Ν, Ν ジフエ二ノレ一 4- -フノレオロー 9, 9 ジメチ ルー 9H—フルオレンー2 ァミン
29. 7— (Ν' カルバゾィル) N, N ジフエ二ル一 3 メトキシ一 9, 9 ジメチル 9H フノレ才レン 2 ァミン
30. 7— (N,一カルバゾィル) N, N ジフエ二ノレ一 4 フエ二ノレ一 9, 9 ジメチ ルー 9H—フルオレンー2 ァミン
31. 7- (3'—メチル一 N'—カルバゾィル) N, N ジフエ二ノレ一 9, 9 ジメチル 9H フノレ才レン 2 ァミン
32. 7— (3' メトキシ一 N,一カルバゾィル) N, N ジフエ二ノレ一 9, 9 ジメチ ルー 9H—フルオレンー2 ァミン
33. 7- (3'—クロ口 N,一カルバゾィル) N, N ジフエ二ノレ一 9, 9—ジメチル 9H フノレ才レン 2 ァミン
34. 2, 7 ジ(N 力ルバゾィル)—9 9 ジメチノレ 9H—フノレオレン
35. 7—(Ν'—フエノキサジィル) N N ジフエニノレー 9, 9 ジメチルー 9H—フ ノレ才レン 2—ァミン
36. 7—(Ν'—フエノキサジィル) Ν Ν ジ(4, 一メチルフエニル)ー9, 9- チル 9Η フルオレン 2 ァミン
37. 2, 7 ジ(Ν フエノキサジィル) - 9, 9 ジメチルー 9Η—フルオレン
38. 7— (Ν'—フエノチアジィル) Ν Ν—ジフエニノレー 9, 9 ジメチルー 9Η—フ ノレ才レン 2—ァミン
39. 7— (Ν'—フエノチアジィル) Ν -フエ二ノレ一 Ν— (3,一メチルフエ二ル) 9, 9 ジメチルー 9Η—フルオレン 2 ァミン
40. 7— (Ν' フエノチアジィル) Ν フエニル ■Ν- (4' メチルフエニル)ー9 9 ジメチルー 9Η—フルオレン 2 ァミン
41. 7— (Ν' フエノチアジィル) Ν, Ν ジ(4 9, 9- チル 9Η フルオレン 2 ァミン
42. 7— (Ν' フエノチアジィル) Ν フエニル ■Ν- (4'ーメトキシフエ二ノレ) - 9 , 9 ジメチルー 9Η フルオレン一 2 ァミン
43. 7— (Ν' フエノチアジィル) Ν フエニル ■Ν- (2' ナフチル) 9, 9ージ メチル 9H フルオレン一 2 ァミン
44. 2, 7 ジ(N フエノチアジィル) 9, 9 ジメチル一 9H フルオレン
45. 7— (N,一カルバゾィル) N, N ジフエ二ノレ一 9, 9—ジェチル一 9H—フル オレンー2—ァミン
46. 7- (Ν'—カルバゾィル) Ν フエ二ノレ一 Ν— (4,一メチルフエ二ル) 9, 9 ジェチルー 9Η—フルオレンー2 ァミン
47. 7- (Ν'一力ルバゾィル) Ν, Ν ジ(4' メチルフエニル)ー9, 9ージェチル 9Η フノレ才レン 2 ァミン
48. 7- (Ν'—カルバゾィル) Ν フエ二ノレ一 Ν— (3,一メトキシフエニル) 9, 9 ジェチルー 9Η—フルオレンー2 ァミン
49. 7— (Ν,一カルバゾィル) Ν, Ν ジフエ二ル一 4—メチル 9, 9—ジェチノレ 9Η フノレ才レン 2 ァミン
50. 7— (Ν,一カルバゾィル) Ν, Ν ジフエ二ノレ一 9 イソプロピノレ一 9Η フノレ オレンー2—ァミン
51. 7— (Ν,一カルバゾィル) Ν, Ν ジフエ二ノレ一 9, 9 ジ一 η プロピノレ一 9Η ーフノレ才レン 2—ァミン
52. 7- (Ν'—カルバゾィル) Ν フエ二ノレ一 Ν— (4,一メチルフエ二ル) 9, 9 —ジ一 η プロピノレー 9Η フノレオレン一 2 ァミン
53. 7- (Ν'—カルバゾィル) Ν フエ二ノレ一 Ν— (4,一メトキシフエニル) 9, 9 —ジ一 η プロピノレー 9Η フノレオレン一 2 ァミン
54. 2, 7 ジ(Ν 力ルバゾィル) 9, 9 ジ一 η プロピノレ一 9Η フルオレン
55. 2, 7 ジ(Ν フエノキサジィル) 9, 9 ジ一 η プロピノレー 9Η フルオレン
56. 7— (Ν,一カルバゾィル) Ν, Ν ジフエ二ノレ一 9, 9 ジ一 η ブチル 9Η ーフノレ才レン 2—ァミン
57. 7- (Ν'—カルバゾィル) Ν, Ν ジ(4'—メチルフエ二ル) 9, 9—ジ一 η— ブチルー 9Η—フルオレンー2 ァミン
58. 2, 7 ジ(Ν'—力ルバゾィル)ー9, 9ージ—η ブチルー 9Η—フルオレン
59. 7- (Ν'—カルバゾィル) Ν フエ二ノレ一 Ν— (4,一メトキシフエ二ル) 9, 9 —ジ一 n ペンチルー 9H フルオレン一 2 ァミン
60. 7- (Ν' フエノキサジィノレ) Ν フエニノレー Ν—(3,ーメトキシフエ二ノレ) 9 , 9 ジ一 η ペンチルー 9Η フルオレン一 2 ァミン
61. 7- (Ν'—カルバゾィル) Ν, Ν ジ(4"—メトキシフエニル) 9, 9 ジ一 η —ペンチルー 9Η フルオレン一 2 ァミン
62. 2, 7 ジ(Ν' 力ルバゾィル) 9, 9 ジ一 η ペンチル一 9Η フルオレン
63. 7— (Ν,一カルバゾィル) Ν, Ν ジフエ二ノレ一 9, 9 ジ一 η へキシノレ一 9 Η—フルオレンー2—ァミン
64. 7- (Ν'—カルバゾィル) Ν, Ν ジ(4'—メチルフエ二ル) 9, 9 ジ一 η— へキシルー 9Η—フルオレンー2 ァミン
65. 7— (Ν,一カルバゾィル) Ν, Ν ジフエ二ノレ一 9 シクロへキシノレ一 9Η フ ノレ才レン 2—ァミン
66. 7— (Ν,一カルバゾィル) Ν, Ν ジフエ二ノレ一 9, 9—ジ一 η ォクチル一 9Η ーフノレ才レン 2—ァミン
67. 7— (Ν'—フエノキサジィル) - Ν, Ν ジ(4'—メチルフエ二ル)一 9, 9—ジ一 η —ォクチノレ一 9Η フノレオレン一 2- ァミン
68. 7— (Ν' カルバゾィル)— Ν Ν -ジフエニル 9—メチノレ一 9—ェチル 9Η ーフノレ才レン 2—ァミン
69. 7— (Ν,一カルバゾィル) Ν, Ν ジフエ二ノレ一 9 メチノレ一 9— η プロピノレ 9Η フノレ才レン 2 ァミン
70. 7— (Ν'—フエノチアシィル) Ν, Ν ジフエ二ノレ一 9—メチノレ一 9— η プロピ ルー 9Η—フルオレンー2 ァミン
71. 7— (Ν' カルバゾィル)— Ν Ν -ジフエ二ル 9—ェチル 9— η へキシル 9Η フノレ才レン 2 ァミン
72. 7— (Ν' カルバゾィル)— Ν Ν -ジフエニル 9—ェチル 9—シクロへキシ ルー 9Η—フルオレンー2 ァミン
73. 7— (Ν' カルバゾィル)— Ν Ν ジフエ二ノレ 9 ベンジノレ - 9Η-フノレォレ ンー 2—ァミン 74. 7— (N,一カルバゾィル) N, N ジフエ二ノレ一 9, 9—ジベンジル一 9H—フ ノレ才レン 2—ァミン
75. 7- (Ν'—カルバゾィル) Ν, Ν ジフエ二ノレ一 9, 9—ジ(4'—メチルベンジ ノレ) 9Η フノレ才レンー2 ァミン
76. 7- (Ν'—カルバゾィル) Ν, Ν ジフエ二ノレ一 9, 9 ジ(4'—メトキシベンジ ノレ) 9Η フノレ才レンー2 ァミン
77. 7- (Ν'—カルバゾィル) Ν フエ二ノレ一 Ν— (4,一メチルフエ二ル) 9, 9 —ジベンジル一 9Η フルオレン一 2 ァミン
78. 7- (Ν'—カルバゾィル) Ν, Ν ジ(4' -? 9, 9ージ' ルー 9Η—フルオレンー2 ァミン
79. 7— (Ν' カルバゾィル)— Ν フエニル— Ν (4,ーメトキシフエ二ノレ) 9, 9 —ジベンジル一 9Η フルオレン一 2 ァミン
80. 7— (Ν' カルバゾィル)— Ν フエニル— Ν (4, 一フエ二ノレフエ二ノレ) - 9, 9 —ジベンジル一 9Η フルオレン一 2 ァミン
81. 7— (Ν' カルバゾィル)— Ν フエニル— Ν (2' ナフチル) 9, 9ージ ンジル 9Η フルオレン 2 ァミン
82. 7- (Ν'—フエノキサジィル) Ν フエ二ノレ一 Ν— (4,一メチルフエ二ル) 9, 9 ジベンジル一 9Η フルオレン一 2 ァミン
83. 7- (Ν'—フエノチアジィル) -Ν, Ν ジ(4'—メチルフエ二ル) 9, 9 ジべ ンジル 9Η フルオレン 2 ァミン
84. 2, 7 ジ(Ν 力ルバゾィル)ー9, 9ージベンジルー 9Η—フルオレン
85. 2, 7 ジ(Ν 力ルバゾィル)ー9, 9ージ(4' メチルベンジル) 9Η—フルォ レン
86. 2- (Ν 力ルバゾィル) 7— (Ν'—フエノチアジィル) 9, 9 ジベンジル一 9Η—フルオレン
87. 7— (Ν' カルバゾィル) Ν, Ν ジフエ二ル一 9 メチル 9 ベンジル一 9 Η—フルオレンー2—ァミン
88. 7- (Ν'—フエノキサジィル) -Ν, Ν ジフエ二ル一 9—ェチル 9—ベンジル 9H フノレ才レン 2 ァミン
89. 7— (N,一カルバゾィル) N, N ジフエ二ノレ一 9, 9 ジフエ二ノレ一 9H フ ノレ才レン 2—ァミン
90. 7- (Ν'—カルバゾィル) Ν フエ二ノレ一 Ν— (4,一メチルフエ二ル) 9, 9 ージフエニノレー 9Η フノレオレン 2 ァミン
91. 7- (Ν'—カルバゾィル) Ν, Ν ジ(4'—メチルフエ二ル) 9, 9 ジフエ二 ルー 9Η—フルオレンー2 ァミン
92. 7- (Ν'—カルバゾィル) Ν フエ二ノレ一 Ν— (3,一メチルフエ二ル) 9, 9 —ジ(4"—メチルフエニル) 9Η—フルオレン
2—ァミン
93. 7- (Ν'—カルバゾィル) Ν フエ二ノレ一 Ν— (3,一メチルフエ二ル) 9, 9 —ジ(4" メトキシフエニル) 9Η フルオレン一 2 ァミン
94. 7- (Ν'—フエノキサジィル) -Ν, Ν ジ(4'—メチルフエ二ル) 9, 9—ジフ ェニル 9Η フルオレン一 2 ァミン
95. 7— (Ν,一フエノチアジィル) Ν, Ν ジフエ二ノレ一 9, 9—ジフエ二ノレ一 9Η— フルオレンー2—ァミン
96. 2, 7 ジ(Ν' 力ルバゾィル) 9, 9 ジ(4' メチルフエ二ル)一 9Η フル
97. 2- (Ν 力ルバゾィル) 7— (Ν'—フエノキサジィル) 9, 9 ジフエ二ノレ一 9 Η フノレ才レン
98. 2- (Ν フエノキサジィノレ) 7— (Ν'ーフエノチアジィノレ) 9, 9ージフエ二ノレ 9Η—フノレ才レン
99. 7- (Ν'—カルバゾィル) Ν フエ二ノレ一 Ν— (4,一メチルフエ二ル) 9—メ チル一 9 フエニル一 9Η フルオレン一 2 ァミン
100. 7— (Ν,一カルバゾィル) Ν, Ν ジフエ二ノレ一 9 ェチノレ一 9 フエ二ノレ一 9Η—フルオレンー2 ァミン
以下に本発明で用いることができる含窒素複素環誘導体の具体例を示す。
[化 16]
Figure imgf000031_0001
61
^1190/ LOOZdT/lDd 0998 / 00Z OAV
Figure imgf000032_0001
Figure imgf000032_0002
SZl90/Z.00Zdf/I3d I ΐ' -V
Figure imgf000033_0001
Figure imgf000033_0002
8^1190/ LOOZdT/lDd 0998 / 00Z OAV z s -v 9 S— V 9 S -V
Figure imgf000034_0001
9一 V 09 -V 6 V -V
Figure imgf000034_0002
SZZ90/.00Zdf/X3d 0998 / 00Z OAV
Figure imgf000035_0001
Figure imgf000035_0002
[0064] 式(2)において、 Lは、置換又は無置換の炭素数 10〜40のァリーレン基である。
2
好ましくは、ビフエ二レン基、ターフェ二レン基、クォーターフエ二レン基、ナフチレン 基、アントラセニレン基、フエナントリレン基、クリセ二レン基、ピレニレン基、フノレォレ 二レン基、 2, 6 ジフエニノレナフタレン 4', 4' 'ーェン基、 2 フエ二ノレナフタレ ンー2, 4'ーェン基、 1 フエニノレナフタレン 1, 4'ーェン基、 2, 7 ジフエニノレフ ノレオレニレンー4, , 4, 'ーェン基、フルォレニレン基、 9, 10 ジフエ二ルアントラセ 二レン 4', 4',ーェン基、 6, 12 ジフエニルクリセ二レン 4', 4', 一ェン基等が 挙げられる。
より好ましくは、ビフエ二レン基、ターフェ二レン基、フノレ才レニレン基、 2—フエ二ノレ ナフタレンー2, 4'ーェン基、 1 フエニノレナフタレン 1, 4'ーェン基、 6, 12 ジフ ェエルクリセ二レン 4', 4' 'ーェン基である。
[0065] 式(2)の Ar〜Arはそれぞれ置換もしくは無置換の核炭素数 6〜60の芳香族炭
3 6
化水素環基、又は置換もしくは無置換の核原子数 6〜60の芳香族複素環基を示す 式(2)の Ar〜Arにおいて、置換又は無置換の核炭素数 6〜60の芳香族炭化水
3 6
素環基は式(1)の Ar及び Arと例の同様である。
1 2
また、置換又は無置換の核原子数 6〜60の芳香族複素環基としては、例えば 5又 は 6員環の単環又は 2〜5縮合環が挙げられ、具体的にはピリジル基、トリアジニル基 、ビラジニル基、キノキサリニル基、チェニル基が挙げられる。
式(2)のァミン誘導体は、好ましくは、下記式(3)で示される化合物である。
[化 17]
Figure imgf000036_0001
式(3)において、 Ar〜Arは、式(2)の Ar〜Arと同様である。
3 6 3 6
式(3)において、 Rは置換基を表す。 Rの具体例は、上述した式(1)の Z等の置換 基と同様である。
nは 2〜4の整数を表す。好ましくは 2及び 3である。
[0067] 式(2)で表されるァミン誘導体は、さらに好ましくは、下記式 (4)又は(5)で表される 化合物である。
[化 18]
Figure imgf000036_0002
[0068] 式において R〜Rは置換基であり、具体例は式(3)の Rと同じである。 Rと R及び
1 5 a 1 2
R〜Rは、互いに連結して飽和又は不飽和の環を形成してもよい。
3 5
[0069] 式において、 Ar〜Ar は、それぞれ置換もしくは無置換の核炭素数 6〜60の芳
7 14
香族炭化水素環基、又は置換もしくは無置換の核原子数 6〜60の芳香族複素環基 を示す。 Ar〜Ar の具体例は、式(1)の Ar, Arと同様のものが挙げられる。
7 14 1 2
[0070] Ar〜Ar の置換基、 R〜Rとして好ましくは、式(1)の Z等の置換基と同様のもの が挙げられる。また、 R、 R同士が結合して置換又は無置換の環を形成したものとし
1 2
て、以下の構造が挙げられる。尚、 R〜Rが結合して環を形成する場合も同様であ
3 5
[化 19]
Figure imgf000038_0001
Figure imgf000038_0002
好ましくは、下記構造である。
[化 20]
Figure imgf000039_0001
[0072] さらに、式(4)の Ar〜Ar の少なくとも一つ、及び式(5)の Ar 〜Ar の少なくとも
7 10 11 14
一つは、好ましくは、置換又は無置換のビフエニル基である。
[0073] 置換又は無置換のビフエニル基として、 2 ビフエニル基、 3 ビフエニル基、 4ービ フエニル基、 p ターフェニル基、 m ターフェニル基、 o ターフェニル基、 4 '—メチ ルーピフエ二ルー 4ーィル基、 4 '—tーブチルーピフエ二ルー 4ーィル基、 4 '一(1— ナフチノレ)ービフエニノレー 4ーィノレ基、 4,一(2 ナフチノレ)ービフエニノレー 4ーィノレ基 、 2 フルォレニル基、 9, 9 ジメチルー 2 フルォレニル基等が挙げられる。
好ましくは、 3—ビフエ二ル基、 4—ビフエ二ル基、 p ターフェニル基、 m ターフェ ニル基、 9, 9 ジメチルー 2 フルォレニル基である。
この置換又は無置換のビフヱニル基の末端にァリールァミノ基が置換されていても よい。
[0074] 以下に本発明で用いることができるァミン誘導体の具体例を示す。
[化 21]
Figure imgf000040_0001
0998Μ/.001 ΟΛ SZZ90/L00Zdt/lDd
Figure imgf000041_0001
6C
SZZ90/.00Zdf/X3d 0998M/.00r OAV
Figure imgf000042_0001
Figure imgf000043_0001
If
0998^ΐ/Ι00Ι ΟΛSlZ90//.00Zdf/X3d
Figure imgf000044_0001
[0075] 本発明の有機 EL素子では、正孔注入'輸送帯域にある層の陽極に接する層が、ァ クセプター材料を含有する層であることが好ましレ、。
図 2は、本発明の有機 EL素子の他の実施形態を示す概略断面図である。 図 2の有機 EL素子は、陽極 10と正孔注入層 20の間にァクセプター含有層 80を有 すること以外は、図 1の有機 EL素子と同様である。
図 2のように、陽極 10と接するようにァクセプター含有層 80を設けることにより低電 圧化が図れる。
[0076] 以下、ァクセプター含有層 80に含有されるァクセプターについて説明する。
ァクセプターは、易還元性の有機化合物である。
化合物の還元しやすさは、還元電位で測定することができる。本発明では飽和カロ メル(SCE)電極を参照電極とした還元電位において、 0. 8V以上が好ましぐ特 に好ましくはテトラシァノキノジメタン (TCNQ)の還元電位 (約 0V)より大きな値を持 つ化合物が好ましい。
[0077] 易還元性の有機化合物として、好ましくは電子吸引性の置換基を有する有機化合 物である。具体的には、キノイド誘導体、ピラジン誘導体、ァリールボラン誘導体、イミ ド誘導体等である。キノイド誘導体には、キノジメタン誘導体、チォピランジオキシド誘 導体、チォキサンテンジォキシド誘導体及びキノン誘導体等が含まれる。
[0078] 例えば、キノイド誘導体として、好ましくは、下記式(la)〜(; li)に示される化合物が 挙げられる。より好ましくは、(la)、(lb)に示される化合物である。
[化 22]
Figure imgf000045_0001
Figure imgf000045_0002
Figure imgf000045_0003
(lh)
[0079] 式(la)〜(; lh)において、 1〜!^48は、それぞれ水素、ハロゲン、フルォロアルキル 基、シァノ基、アルコキシ基、アルキル基又はァリール基である。好ましくは、水素、シ ァノ基である。
[0080] I^ R48のハロゲンとして、フッ素、塩素が好ましレ、。
R1〜: R48のフルォロアルキル基として、トリフルォロメチル基、ペンタフルォロェチル 基が好ましい。
R1〜: R48のアルコキシル基として、メトキシ基、エトキシ基、 iso プロポキシ基、 tert ブトキシ基が好ましい。
R1〜: R48のアルキル基として、メチル基、ェチル基、プロピル基、 iso プロピル基、 t ert ブチル基、シクロへキシル基が好ましい。
I^ R48のァリール基として、フエニル基、ナフチル基が好ましい。 式(la)〜(lh)において、 Xは電子吸引基であり、下記式①〜(p)の構造のいず れかである。好ましくは、①、(k)、(1)の構造である。
[化 23] 52
Figure imgf000046_0001
(式中、 R492は、それぞれ水素、フルォロアルキル基、アルキル基、ァリール基 又は複素環であり、 R5°と R51が環を形成してもよい。 )
[0082] R49〜R52のフルォロアルキル基、アルキル基、ァリール基は、 I^ R48と同様である
[0083] R49〜R52の複素環として、下記式に示す置換基が好ましい。
[化 24]
Figure imgf000046_0002
[0084] R5°と R51が環を形成する場合、 Xは、好ましくは、下記式に示す置換基である。
[化 25]
Figure imgf000046_0003
(式中、 R , R は、それぞれメチル基、ェチル基、プロピル基、 tert ブチル基で ある。 )
[0085] 式(la)〜(; Lh)において、 Yは、 N =、又は CH =である。
[0086] キノイド誘導体の具体例としては、以下の化合物が挙げられる。
[化 26]
Figure imgf000047_0001
ァリ一ルポラン誘導体として、下記式(2)に示される化合物が挙げられる。
[化 27]
Figure imgf000047_0002
式(2)において、 Ar 〜Ar は、それぞれ電子吸引性基を有するァリール基又は
31 33
複素環である。
Ar 〜Ar が示す電子吸引性基を有するァリール基として、ペンタフルオロフエー
31 33
ル基ヘプタフルォロナフチル基、ペンタフルオロフェニル基が好ましレ、。 Ar 〜Ar が示す電子吸引性基を有する複素環として、キノリン環、キノキサリン環
31 33
、ピリジン環、ピラジン環等が好ましい。
ァリールボラン誘導体の具体例としては、以下の化合物が挙げられる。
[化 28]
Figure imgf000048_0001
[0090] ァリールボラン誘導体として、好ましくは、少なくとも一個のフッ素をァリールへの置 換基として有する化合物であり、特に好ましくは、トリス β (ペンタフルォロナフチル )ボラン(ΡΝΒ)である。
[0091] チォピランジオキシド誘導体として、下記式(3a)に示される化合物が、チォキサン テンジォキシド誘導体として、下記式(3b)に示される化合物が、それぞれ挙げられる
[化 29]
Figure imgf000048_0002
(3a) (3b)
[0092] 式(3a)及び式(3b)において、 R 〜R は、それぞれ水素、ハロゲン、フルォロア ルキル基、シァノ基、アルキル基又はァリール基である。好ましくは、水素、シァノ基 である。
式(3a)及び式(3b)において、 Xは電子吸引基を示し式(la)〜(; li)の Xと同じであ る。好ましくは、(i)、①、(k)の構造である。
R53〜R64が示すハロゲン、フルォロアルキル基、アルキル基及びァリール基は!^1〜 R48と同様である。 [0093] 式(3a)に示されるチォピランジオキシド誘導体、式(3b)に示されるチォキサンテン ジォキシド誘導体の具体例を以下に示す。
[化 30]
Figure imgf000049_0001
(式中、 tBuは tープテル基である。)
[0094] イミド誘導体として、好ましくは、ナフタレンテトラカルボン酸ジイミド化合物及びピロ メリット酸ジイミド化合物である。
[0095] この他に特許 3571977号で開示されている下記式 (4a)で表される含窒素複素環 誘導体も用いることができる。
[化 31]
Figure imgf000049_0002
(式中、 R121〜R12bは、それぞれ置換又は無置換のアルキル基、置換又は無置換の ァリール基、置換又は無置換のァラルキル基、置換又は無置換の複素環基のいず れかを示す。但し、 R121〜R126は同じでも異なっていてもよい。また、 R121と R122、 R123 と R124、 R125と R126、 R121と R126、 R122と R123、 R124と R125が縮合環を形成していてもよ い。)
さらに、米国公開 2004/0113547で記載されてレ、る下記式(4b)の化合物も用い ること力でさる。
[化 32]
Figure imgf000050_0001
(式中、 R131〜R136は置換基であり、好ましくはシァノ基、ニトロ基、スルホニル基、力 ルポニル基、トリフルォロメチル基、ハロゲン等の電子吸引基である。 )
式 (4b)の化合物の具体例を以下に示す。尚、下記式において Meはメチル基を、 Phはフエ二ル基を示す。
[化 33]
Figure imgf000051_0001
6t
SZZ90/L00ZdT/lDd
0998n/L00Z OAX 50
Figure imgf000052_0001
Figure imgf000053_0001
[化 34]
Figure imgf000054_0001
[0099] 式中、 1〜 は、水素、置換又は無置換のアルキル基、置換又は無置換のァリ ール基、置換又は無置換の複素環、ハロゲン、シァノ基、ニトロ基、エステル基、アミ ド基、アルコキシ基、置換又は無置換のフエノキシ基及びアミノ基からなる群から選択 され、同一でも異なっていてもよい。また、 R81〜R88のうちで隣接するものは、それぞ れ互いに結合して環構造を形成してもよい。また、 x81〜x84は、それぞれ独立に炭 素もしくは窒素原子であって、 nは、 0以上の整数である。
式(5a)の化合物の具体例を以下に示す。
[0100] [化 35]
Figure imgf000054_0002
[0101] 以下に本発明に用いられる有機 EL素子の代表的な構成例を示す。もちろん、本発 明はこれに限定されるものではない。
(1)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極
(2)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極 節)
(3)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/絶縁層/陰極
(4)陽極/絶縁層/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入 層/絶縁層/陰極
(5)陽極/ァクセプター含有層/正孔注入層/正孔輸送層/発光層/電子輸送層 /電子注入層/陰極(図 2)
[0102] 尚、発光層が発した光は、陽極側及び陰極側の一方から、又は両側から取り出す こと力でさる。
また、有機 EL素子は、陽極—陰極間がキヤビティ構造、即ち、発光層が発した光を 陽極 陰極間で反射させる構造を有していてもよい。例えば、陰極が半透過半反射 材料を用いて構成され、陽極の光反射面を有する構造である。この場合、陽極側の 光反射面と、陰極側の光反射面との間で多重干渉させた発光が陰極側から取り出さ れる。陽極側の光反射面と陰極側の光反射面との間の光学的距離は、取り出したい 光の波長によって規定され、この光学的距離を満たすように各層の膜厚が設定され る。特に、上面発光型 (発光を、支持基板を通さずに素子外部に取り出す)の有機 E L素子においては、このキヤビティ構造を積極的に用いることにより、外部への光取り 出し効率の改善や発光スペクトルの制御を行うことが可能である。
以下、本発明の有機 EL素子を構成する各部材について説明する。
[0103] (基板)
本発明の有機 EL素子は透光性の基板上に作製する。ここでいう透光性基板は有 機 EL素子を支持する基板であり、 400〜700nmの可視領域の光の透過率が 50% 以上で、平滑な基板が好ましい。
具体的には、ガラス板、ポリマー板等が挙げられる。ガラス板としては、特にソーダ 石灰ガラス、ノ リウム 'ストロンチウム含有ガラス、鉛ガラス、アルミノケィ酸ガラス、ホウ ケィ酸ガラス、ノ リウムホウケィ酸ガラス、石英等が挙げられる。またポリマー板として は、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルフアイ ド、ポリサルフォン等を挙げることができる。
尚、光を基板の反対側から取り出すトップェミッション型の素子では、基板は必ずし も透光性である必要はなレ、。
[0104] (陽極)
有機薄膜 EL素子の陽極は、正孔を正孔輸送層又は発光層に注入する役割を担う ものであり、 4. 5eV以上の仕事関数を有することが効果的である。本発明に用いら れる陽極材料の具体例としては、例えばアルミニウム (A1)、クロム(Cr)、モリブテン( Mo)、タングステン (W)、銅(Cu)、銀 (Ag)、金 (Au)の金属およびその合金さらに はこれらの金属や合金の酸化物等、または、酸化スズ(SnO )とアンチモン(Sb)との
2
合金、 ITO (インジウムチンォキシド)、 InZnO (インジゥ亜鉛ォキシド)、酸化亜鉛(Z ηθ)とアルミニウム (A1)との合金、さらにはこれらの金属や合金の酸化物等力 単独 または混在させた状態で用いられる。
[0105] 発光層からの発光を陽極から取り出す場合、陽極の発光に対する透過率は 10%よ り大きくすること力 S好ましい。
一方、発光層からの発光を陰極から取り出す場合、陽極は反射性電極であることが 好ましい。この場合、陽極は光反射性に優れた第 1層と、この上部に設けられた光透 過性を有すると共に仕事関数の大きい第 2層との積層構造であっても良い。
[0106] 例えば、第 1層はアルミニウムを主成分とする合金からなる。その副成分は、主成分 であるアルミニウムよりも相対的に仕事関数が小さい元素を少なくとも一つ含むもの でも良い。このような副成分としては、ランタノイド系列元素が好ましい。ランタノイド系 列元素の仕事関数は、大きくないが、これらの元素を含むことで陽極の安定性が向 上し、かつ陽極のホール注入性も満足する。また副成分として、ランタノイド系列元素 の他に、シリコン(Si)、銅(Cu)などの元素を含んでも良い。
[0107] 第 1層を構成するアルミニウム合金層における副成分の含有量は、例えば、アルミ 二ゥムを安定化させる Ndや Ni、 Ti等であれば、合計で約 10wt%以下であることが 好ましい。これにより、アルミニウム合金層においての反射率を維持しつつ、有機電 界発光素子の製造プロセスにおいてアルミニウム合金層を安定的に保ち、さらに加 ェ精度および化学的安定性も得ることができる。また、陽極の導電性および基板との 密着性も改善することが出来る。
[0108] 第 2層は、アルミニウム合金の酸化物、モリブデンの酸化物、ジルコニウムの酸化物 、クロムの酸化物、およびタンタルの酸化物の少なくとも一つ力、らなる層を例示できる 。ここで、例えば、第 2層が副成分としてランタノイド系元素を含むアルミニウム合金の 酸化物層(自然酸化膜を含む)である場合、ランタノイド系元素の酸化物の透過率が 高いため、これを含む第 2層の透過率が良好となる。このため、第 1層の表面におい て、高反射率を維持することが可能である。さらに、第 2層は、 ITOや IZOなどの透明 導電層であっても良い。これらの導電層は、陽極の電子注入特性を改善することが できる。
[0109] また、陽極の基板と接する側に、陽極と基板との間の密着性を向上させるための導 電層を設けて良い。このような導電層としては、 ITOや IZOなどの透明導電層が挙げ られる。
[0110] 有機 EL素子を用いて構成される表示装置の駆動方式がアクティブマトリックス方式 である場合には、陽極は画素毎にパターニングされ、基板に設けられた駆動用の薄 膜トランジスタに接続された状態で設けられている。また、この場合、陽極の上には、 絶縁膜が設けられ、この絶縁膜の開口部から各画素の陽極の表面が露出されるよう に構成されている。
[0111] 陽極は、上記の電極物質を蒸着法やスパッタリング法等の方法で薄膜を形成させ ることにより作製すること力でさる。
陽極のシート抵抗は、数百 Ω /口以下が好ましい。陽極の膜厚は材料にもよるが、 通常 10nm〜l μ m、好ましくは 10〜200nmの範囲で選択される。
[0112] (発光層)
有機 EL素子の発光層は以下の機能を併せ持つものである。
(1)注入機能;電界印加時に陽極又は正孔注入 ·輸送層より正孔を注入することがで き、陰極又は電子注入 ·輸送層より電子を注入することができる機能
(2)輸送機能;注入した電荷 (電子と正孔)を電界の力で移動させる機能
(3)発光機能;電子と正孔の再結合の場を提供し、これを発光につなげる機能 但し、正孔の注入されやすさと電子の注入されやすさに違いがあってもよぐまた正
?しと電子の移動度で表される輸送能に大小があってもよいが、どちらか一方の電荷 を移動することが好ましい。
[0113] この発光層を形成する方法としては、例えば蒸着法、スピンコート法、 LB法等の公 知の方法を適用することができる。発光層は、特に分子堆積膜であることが好ましい
〇 ここで分子堆積膜とは、気相状態の材料化合物から沈着され形成された薄膜や、 溶液状態又は液相状態の材料化合物から固体化され形成された膜のことであり、通 常この分子堆積膜は、 LB法により形成された薄膜 (分子累積膜)とは凝集構造、高 次構造の相違や、それに起因する機能的な相違により区分することができる。
また、特開昭 57— 51781号公報に開示されているように、樹脂等の結着剤と材料 化合物とを溶剤に溶力、して溶液とした後、これをスピンコート法等により薄膜化するこ とによっても、発光層を形成することができる。
[0114] 発光層に用いられる材料は、長寿命な発光材料として公知のものを用いることが可 能である力、一般式 (I)で示される材料を発光材料として用いることが望ましい。
[0115] [化 36]
Figure imgf000058_0001
式中、 Ar'は核炭素数 6〜50の芳香族環もしくは核原子数 5〜50の複素芳香族環 である。
具体的には、フエニル環、ナフチル環、アントラセン環、ビフエ二レン環、ァズレン環 、ァセナフチレン環、フルオレン環、フエナントレン環、フルオランテン環、ァセフエナ ンスリレン環、トリフエ二レン環、ピレン環、タリセン環、ベンズアントラセン環、ナフタセ ン環、ピセン環、ペリレン環、ペンタフェン環、ペンタセン環、テトラフエ二レン環、へキ サフェン環、へキサセン環、ルビセン環、コロネン環、トリナフチレン環、ピロール環、 インドール環、力ルバゾール環、イミダゾール環、ベンズイミダゾール環、ォキサジァ ゾール環、トリァゾール環、ピリジン環、キノキサリン環、キノリン環、ピリミジン環、トリア ジン環、チォフェン環、ベンゾチォフェン環、チアンスレン環、フラン環、ベンゾフラン 環、ピラゾール環、ピラジン環、ピリダジン環、インドリジン環、キナゾリン環、フエナント 口リン環、シロール環、ベンゾシロール環等が挙げられる。
好ましくはフエニル環、ナフチル環、アントラセン環、ァセナフチレン環、フルオレン 環、フエナントレン環、フルオランテン環、トリフエ二レン環、ピレン環、タリセン環、ベン ズアントラセン環、ペリレン環が挙げられる。
[0116] X'は置換基である。 具体的には、置換もしくは無置換の核炭素数 6〜50の芳香族基、置換もしくは無 置換の核原子数 5〜50の芳香族複素環基、置換もしくは無置換の炭素数 1〜50の アルキル基、置換もしくは無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置 換の炭素数 1〜50のァラルキル基、置換もしくは無置換の核原子数 5〜50のァリー ノレォキシ基、置換もしくは無置換の核原子数 5〜50のァリールチオ基、置換もしくは 無置換の炭素数 1〜50のカルボキシル基、置換又は無置換のスチリル基、ハロゲン 基、シァノ基、ニトロ基、ヒドロキシル基等である。
[0117] 置換もしくは無置換の核炭素数 6〜50の芳香族基の例としては、フエニル基、 1 ナフチル基、 2—ナフチル基、 1 アントリノレ基、 2—アントリノレ基、 9 アントリノレ基、 1 フエナントリノレ基、 2 フエナントリノレ基、 3 フエナントリノレ基、 4 フエナントリノレ基 、 9 フエナントリル基、 1 ナフタセニル基、 2 ナフタセニル基、 9 ナフタセニノレ 基、 1ーピレニル基、 2 ピレニル基、 4ーピレニル基、 2 ビフエ二ルイル基、 3 ビフ ェニノレイノレ基、 4ービフエニノレイノレ基、 p ターフェニノレー 4ーィノレ基、 p ターフェ二 ノレ 3 ィノレ基、 p ターフェニノレー 2 ィノレ基、 m ターフェニノレー 4ーィノレ基、 m ターフェニノレー 3 ィノレ基、 m—ターフェニノレー 2 ィノレ基、 o トリノレ基、 m—トリ ノレ基、 p トリノレ基、 p—t ブチルフエニル基、 p— (2—フエニルプロピノレ)フエニル 基、 3—メチルー 2—ナフチル基、 4ーメチルー 1 ナフチル基、 4ーメチルー 1 アン トリノレ基、 4 'ーメチルビフエ二ルイル基、 4"—tーブチノレー p—ターフェニノレー 4ーィ ノレ基、 2 フルォレニル基、 9, 9 ジメチルー 2 フルォレニル基、 3 フルオランテ ニル基等が挙げられる。
[0118] 好ましくはフエニル基、 1 ナフチル基、 2 ナフチル基、 9 フエナントリル基、 1 - ナフタセニル基、 2 ナフタセニル基、 9 ナフタセニル基、 1ーピレニル基、 2 ピレ 二ノレ基、 4 ピレニル基、 2 ビフエ二ルイル基、 3 ビフエ二ルイル基、 4 ビフエ二 ノレイノレ基、 o トリノレ基、 m—トリノレ基、 p トリノレ基、 p— t ブチルフエニル基、 2—フ ノレオレニル基、 9, 9 ジメチルー 2 フルォレニル基、 3 フルオランテニル基等力 挙げられる。
[0119] 置換もしくは無置換の核原子数 5〜50の芳香族複素環基の例としては、 1 ピロリ ル基、 2 ピロリル基、 3 ピロリル基、ビラジニル基、 2 ピリジニル基、 3 ピリジニ ノレ基、 4 ピリジニノレ基、 1 インドリノレ基、 2 インドリノレ基、 3 インドリノレ基、 4ーィ ンドリル基、 5 インドリノレ基、 6 インドリノレ基、 7 インドリノレ基、 1 イソインドリル基 、 2 イソインドリル基、 3 イソインドリル基、 4 イソインドリル基、 5 イソインドリル 基、 6 イソインドリル基、 7 イソインドリル基、 2 フリノレ基、 3 フリノレ基、 2 べンゾ フラニル基、 3—べンゾフラニル基、 4一べンゾフラニル基、 5—べンゾフラニル基、 6 一べンゾフラニル基、 7—べンゾフラニル基、 1 イソべンゾフラニル基、 3—イソベン ゾフラニル基、 4 イソべンゾフラニル基、 5—イソべンゾフラニル基、 6—イソべンゾフ ラニノレ基、 7—イソべンゾフラニル基、キノリノレ基、 3—キノリノレ基、 4ーキノリノレ基、 5- キノリノレ基、 6 キノリノレ基、 7 キノリノレ基、 8 キノリノレ基、 1 ソキノリノレ基、 3- ソキノリル基、 4 イソキノリル基、 5—イソキノリル基、 6—イソキノリル基、 7—イソキノリ ル基、 8 イソキノリル基、 2 キノキサリニル基、 5 キノキサリニル基、 6 キノキサリ 二ノレ基、 1一力ルバゾリル基、 2 力ルバゾリル基、 3 力ルバゾリル基、 4一力ルバゾ リル基、 9 カノレバゾリノレ基、 1 フエナンスリジニル基、 2 フエナンスリジニル基、 3 フエナンスリジニル基、 4 フエナンスリジニル基、 6—フエナンスリジニル基、 7—フ ェナンスリジニル基、 8 フエナンスリジニル基、 9 フエナンスリジニル基、 10 フエ ナンスリジニル基、 1—アタリジニノレ基、 2—アタリジニノレ基、 3—アタリジニノレ基、 4 アタリジニル基、 9—アタリジニノレ基、 1, 7 フエナンスロリン一 2 ィル基、 1 , 7 フ ェナンスロリン一 3—ィル基、 1, 7—フエナンスロリン一 4—ィル基、 1 , 7—フエナンス 口リンー5 ィノレ基、 1, 7 フエナンスロリンー6 ィノレ基、 1, 7 フエナンスロリンー8 ーィノレ基、 1 , 7 フエナンスロリンー9ーィノレ基、 1 , 7 フエナンスロリン 10 ィノレ 基、 1, 8 フエナンスロリンー2 ィノレ基、 1, 8 フエナンスロリンー3 ィノレ基、 1, 8 フエナンスロリンー4ーィノレ基、 1 , 8—フエナンスロリンー5—ィノレ基、 1 , 8—フエナ ンスロリン一 6 ィル基、 1, 8 フエナンスロリン一 7 ィル基、 1 , 8 フエナンスロリン 9ーィノレ基、 1, 8 フエナンスロリン 10 ィノレ基、 1, 9 フエナンスロリンー2— イノレ基、 1 , 9—フエナンスロリン一 3—イノレ基、 1 , 9—フエナンスロリン一 4—イノレ基、 1 , 9 フエナンスロリンー5—ィノレ基、 1 , 9 フエナンスロリンー6—ィノレ基、 1 , 9ーフ ェナンスロリン一 7—ィル基、 1, 9 フエナンスロリン一 8—ィル基、 1 , 9 フエナンス 口リン一 10—イノレ基、 1, 10—フエナンスロリン一 2—イノレ基、 1, 10—フエナンスロリ ン一 3—イノレ基、 1, 10 フエナンスロリン一 4 イノレ基、 1, 10 フエナンスロリン一 5 —ィル基、 2, 9 フエナンスロリン一 1—ィル基、 2, 9 フエナンスロリン一 3 ィル基 、 2, 9 フエナンスロリン 4ーィノレ基、 2, 9 フエナンスロリン 5 ィノレ基、 2, 9 フエナンスロリンー6 ィノレ基、 2, 9 フエナンスロリンー7 ィノレ基、 2, 9 フエナン スロリン一 8 ィル基、 2, 9 フエナンスロリン一 10 ィル基、 2, 8 フエナンスロリン — 1—ィル基、 2, 8—フエナンスロリン一 3—ィル基、 2, 8—フエナンスロリン一 4—ィ ノレ基、 2, 8 フエナンスロリン 5 ィノレ基、 2, 8 フエナンスロリン 6 ィノレ基、 2, 8 フエナンスロリン 7—ィノレ基、 2, 8 フエナンスロリン 9ーィノレ基、 2, 8 フエ ナンスロリン一 10 ィル基、 2, 7 フエナンスロリン一 1—ィル基、 2, 7 フエナンス 口リン 3 ィノレ基、 2, 7 フエナンスロリン一 4 ィル基、 2, 7 フエナンスロリン一 5 —ィル基、 2, 7 フエナンスロリン一 6 ィル基、 2, 7 フエナンスロリン一 8 ィル基 、 2, 7 フエナンスロリン一 9 ィル基、 2, 7 フエナンスロリン一 10 ィル基、 1—フ ェナジ二ル基、 2—フエナジニル基、 1ーフエノチアジニル基、 2—フエノチアジニル基 、 3—フエノチアジニル基、 4ーフエノチアジニル基、 10—フエノチアジニル基、 1ーフ エノキサジニル基、 2 フエノキサジニル基、 3 フエノキサジニル基、 4 フエノキサ ジニノレ基、 10 フエノキサジニル基、 2 ォキサゾリノレ基、 4ーォキサゾリル基、 5 ォ キサゾリル基、 2 ォキサジァゾリル基、 5 ォキサジァゾリル基、 3 フラザニル基、 2 チェニル基、 3 チェニル基、 2 メチルピロ一ルー 1ーィル基、 2 メチルピロ一 ノレ 3 ィノレ基、 2 メチルピロ一ルー 4ーィル基、 2 メチルピロ一ルー 5 ィル基、 3 メチルピロ一ルー 1ーィル基、 3 メチルピロ一ルー 2 ィル基、 3 メチルピロ一 ノレ 4ーィノレ基、 3 メチルピロ一ルー 5 ィル基、 2— t ブチルピロ一ルー 4ーィル 基、 3—(2—フエニルプロピノレ)ピロ一ルー 1ーィル基、 2—メチルー 1 インドリル基 、 4ーメチルー 1 インドリル基、 2 メチルー 3 インドリル基、 4ーメチノレー 3 インド リル基、 2— tーブチルー 1 インドリル基、 4 tーブチルー 1 インドリル基、 2— t ブチル—3—インドリル基、 4— t ブチル—3—インドリル基等が挙げられる。
置換もしくは無置換の炭素数 1〜50のアルキル基の例としては、メチル基、ェチル 基、プロピル基、イソプロピル基、 n ブチル基、 s ブチル基、イソブチル基、 tーブ チル基、 n ペンチル基、 n へキシル基、 n へプチル基、 n ォクチル基、ヒドロキ シメチル基、 1ーヒドロキシェチル基、 2—ヒドロキシェチル基、 2—ヒドロキシイソブチ ル基、 1, 2—ジヒドロキシェチル基、 1, 3—ジヒドロキシイソプロピル基、 2, 3—ジヒド 口キシー t ブチル基、 1, 2, 3 トリヒドロキシプロピル基、クロロメチル基、 1 クロ口 ェチル基、 2—クロ口ェチル基、 2—クロ口イソブチル基、 1, 2—ジクロ口ェチル基、 1 , 3 ジクロ口イソプロピル基、 2, 3 ジクロロー t ブチル基、 1, 2, 3 トリクロ口プロ ピノレ基、ブロモメチル基、 1 ブロモェチル基、 2—ブロモェチル基、 2—ブロモイソブ チル基、 1, 2 ジブロモェチル基、 1, 3 ジブロモイソプロピル基、 2, 3 ジブロモ t ブチル基、 1 , 2, 3—トリブロモプロピル基、ョードメチル基、 1ーョードエチル基 、 2 ョードエチル基、 2 ョードイソブチル基、 1, 2 ジョードエチル基、 1, 3 ジョ ードイソプロピノレ基、 2, 3 ジョードー tーフ、、チノレ基、 1 , 2, 3 トリョードプロピノレ基、 ミノメチノレ基、 1 ミノェチノレ基、 2— ミノェチノレ基、 2— ミノイソプ、チノレ基、 1 , 2 ジアミノエチル基、 1, 3 ジァミノイソプロピル基、 2, 3 ジアミノー t ブチル基 、 1 , 2, 3 卜リアミノプロピノレ基、シァノメチノレ基、 1ーシァノエチノレ基、 2 シァノエチ ル基、 2—シァノイソブチル基、 1, 2—ジシァノエチル基、 1, 3—ジシァノイソプロピ ル基、 2, 3 ジシァノー t ブチル基、 1 , 2, 3 トリシアノプロピル基、ニトロメチル基 、 1一二トロェチル基、 2—二トロェチル基、 2—二トロイソブチル基、 1, 2—ジニトロェ チノレ基、 1 , 3 ジニ卜口イソプロピノレ基、 2, 3 ジニ卜ロー tーフ"チノレ基、 1 , 2, 3 卜リ ニトロプロピル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロへキ シル基、 4ーメチルシクロへキシル基、 1ーァダマンチル基、 2 ァダマンチル基、 1 ノルボルニル基、 2 ノルボルニル基等が挙げられる。
置換もしくは無置換の炭素数 1〜50のアルコキシ基は OYで表される基であり、 Yの例としては、メチル基、ェチル基、プロピル基、イソプロピル基、 n ブチル基、 s ブチル基、イソブチル基、 t ブチル基、 n ペンチル基、 n へキシル基、 n へ プチル基、 n ォクチル基、ヒドロキシメチル基、 1ーヒドロキシェチル基、 2—ヒドロキ シェチル基、 2—ヒドロキシイソブチル基、 1, 2—ジヒドロキシェチル基、 1, 3—ジヒド ロキシイソプロピル基、 2, 3 ジヒドロキシ一 t ブチル基、 1, 2, 3 トリヒドロキシプ 口ピル基、クロロメチル基、 1 クロ口ェチル基、 2—クロ口ェチル基、 2—クロロイソブ チル基、 1 , 2—ジクロ口ェチル基、 1, 3—ジクロ口イソプロピル基、 2, 3—ジクロロー t ブチル基、 1 , 2, 3 トリクロ口プロピル基、ブロモメチル基、 1 ブロモェチル基、 2 ーブロモェチノレ基、 2—ブロモイソブチノレ基、 1 , 2—ジブ口モェチノレ基、 1 , 3—ジブ ロモイソプロピル基、 2, 3 ジブ口モー t ブチル基、 1, 2, 3 トリブロモプロピル基 、ョードメチル基、 1ーョードエチル基、 2—ョードエチル基、 2—ョードイソブチル基、 1 , 2 ジョードエチル基、 1, 3 ジョードイソプロピル基、 2, 3 ジョードー tーブチ ノレ基、 1 , 2, 3 トリョードプロピノレ基、アミノメチノレ基、 1 アミノエチノレ基、 2 ァミノ ェチノレ基、 2 ミノイソフ、、チノレ基、 1 , 2 ジ ミノェチノレ基、 1 , 3 ジ ミノイソプロ ピノレ基、 2, 3—ジアミノー tープ、チノレ基、 1 , 2, 3—トリァミノプロピノレ基、シァノメチノレ 基、 1ーシァノエチル基、 2—シァノエチル基、 2—シァノイソブチル基、 1, 2—ジシァ ノエチル基、 1, 3—ジシァノイソプロピル基、 2, 3—ジシァノー t ブチル基、 1 , 2, 3 トリシアノプロピル基、ニトロメチル基、 1一二トロェチノレ基、 2—二トロェチノレ基、 2 一二トロイソフ、、チノレ基、 1 , 2 ジニトロェチノレ基、 1 , 3 ジニトロイソプロピノレ基、 2, 3 ージニトロ t ブチル基、 1, 2, 3 トリニトロプロピル基等が挙げられる。
置換もしくは無置換の炭素数 1〜50のァラルキル基の例としては、ベンジル基、 1 フエニルェチル基、 2—フエニルェチル基、 1 フエニルイソプロピル基、 2—フエ二 ルイソプロピル基、フエ二ルー t ブチル基、 α ナフチルメチル基、 1 α ナフチ ルェチル基、 2— α ナフチルェチル基、 1 - a ナフチルイソプロピル基、 2— α ナフチルイソプロピル基、 β ナフチルメチル基、 1 ;3—ナフチルェチル基、 2 β ナフチルェチル基、 1— β ナフチルイソプロピル基、 2— β ナフチルイソ プロピル基、 1 ピロリルメチル基、 2 (1 ピロリル)ェチル基、 ρ メチルベンジル 基、 m—メチノレべンジノレ基、 o メチノレべンジノレ基、 p—クロ口べンジノレ基、 m—クロ口 ベンジノレ基、 o クロ口べンジノレ基、 p ブロモベンジノレ基、 m ブロモベンジノレ基、 o ブロモベンジル基、 p ョードベンジル基、 m ョードベンジル基、 o ョードベンジ ル基、 p ヒドロキシベンジル基、 m—ヒドロキシベンジル基、 o ヒドロキシベンジル 基、 p ァミノべンジル基、 m—ァミノべンジル基、 o ァミノべンジル基、 p 二トロべ ンジル基、 m 二トロべンジル基、 o 二トロべンジル基、 p シァノベンジル基、 m— シァノベンジル基、 o シァノベンジル基、 1—ヒドロキシ一 2—フエニルイソプロピル 基、 1 クロロー 2—フエニルイソプロピル基等が挙げられる。 置換もしくは無置換の核原子数 5〜50のァリールォキシ基は OY'と表され、 Y' の例としてはフエニル基、 1 ナフチル基、 2—ナフチル基、 1 アントリル基、 2—ァ ントリノレ基、 9 ントリノレ基、 1 フエナントリノレ基、 2—フエナントリノレ基、 3—フエナン トリノレ基、 4 フエナントリノレ基、 9 フエナントリノレ基、 1 ナフタセニノレ基、 2—ナフタ セニル基、 9 ナフタセニル基、 1ーピレニル基、 2 ピレニル基、 4ーピレニル基、 2 ービフエ二ルイル基、 3—ビフエ二ルイル基、 4ービフエ二ルイル基、 ρ—ターフェ二ノレ 4ーィノレ基、 ρ ターフェニノレー 3 ィノレ基、 ρ ターフェニノレー 2 ィノレ基、 m タ 一フエニノレー 4ーィノレ基、 m ターフェニノレー 3 ィノレ基、 m ターフェニノレー 2 ィ ノレ基、 o トリノレ基、 m—トリノレ基、 p トリノレ基、 p— t ブチルフエニル基、 p— (2—フ ェニルプロピル)フエニル基、 3 メチルー 2 ナフチル基、 4ーメチルー 1 ナフチル 基、 4ーメチノレー 1 アントリノレ基、 4 'ーメチルビフエ二ルイル基、 4"—tーブチルー p —ターフェ二ノレ一 4 ィル基、 2 ピロリノレ基、 3 ピロリノレ基、ビラジニル基、 2 ピリ ジニノレ基、 3 ピリジニノレ基、 4 ピリジニノレ基、 2 インドリノレ基、 3 インドリノレ基、 4 —インドリル基、 5 インドリル基、 6—インドリル基、 7 インドリル基、 1—イソインドリ ル基、 3—イソインドリル基、 4 イソインドリル基、 5—イソインドリル基、 6—イソインド リノレ基、 7 イソインドリノレ基、 2 フリノレ基、 3 フリノレ基、 2 べンゾ'フラニノレ基、 3— ベンゾフラニノレ 、 4 ベンゾフラ二ノレ基、 5—ベンゾフラ二ノレ ¾、 6—べンゾフラニノレ 基、 7—べンゾフラニル基、 1 イソべンゾフラニル基、 3—イソべンゾフラニル基、 4 イソべンゾフラニル基、 5—イソべンゾフラニル基、 6—イソべンゾフラニル基、 7—イソ ベンゾフラ二ノレ基、 2 キノリノレ基、 3 キノリノレ基、 4 キノリノレ基、 5 キノリノレ基、 6 ーキノリノレ基、 7—キノリノレ基、 8—キノリノレ基、 1 イソキノリノレ基、 3—イソキノリノレ基、 4 イソキノリノレ基、 5—イソキノリノレ基、 6—イソキノリノレ基、 7—イソキノリノレ基、 8—ィ ソキノリル基、 2 キノキサリニル基、 5 キノキサリニル基、 6 キノキサリニル基、 1 カノレノ ゾリノレ基、 2 力ルバゾリル基、 3 力ルバゾリル基、 4一力ルバゾリル基、 1 フエナンスリジニル基、 2 フエナンスリジニル基、 3 フエナンスリジニル基、 4 フエ ナンスリジニル基、 6—フエナンスリジニル基、 7—フエナンスリジニル基、 8—フエナン スリジニル基、 9 フエナンスリジニル基、 10 フエナンスリジニル基、 1—アタリジニ ル基、 2—アタリジニノレ基、 3—アタリジニノレ基、 4—アタリジニノレ基、 9—アタリジニル 基、 1, 7 フエナンスロリンー2 ィノレ基、 1 , 7 フエナンスロリンー3 ィノレ基、 1 , 7 フエナンスロリンー4ーィノレ基、 1 , 7 フエナンスロリンー5 ィノレ基、 1 , 7 フエナ ンスロリン一 6 ィル基、 1, 7 フエナンスロリン一 8 ィル基、 1 , 7 フエナンスロリン 9ーィノレ基、 1, 7 フエナンスロリン 10 ィノレ基、 1, 8 フエナンスロリンー2— イノレ基、 1 , 8—フエナンスロリン一 3—イノレ基、 1 , 8—フエナンスロリン一 4—イノレ基、 1 , 8—フエナンスロリンー5—ィノレ基、 1, 8—フエナンスロリンー6—ィノレ基、 1, 8—フ ェナンスロリン一 7—ィル基、 1, 8 フエナンスロリン一 9—ィル基、 1 , 8 フエナンス 口リン 10—ィノレ基、 1 , 9 フエナンスロリンー2—ィノレ基、 1 , 9 フエナンスロリン 3—ィノレ基、 1 , 9 フエナンスロリンー4ーィノレ基、 1 , 9 フエナンスロリンー5—ィノレ 基、 1 , 9 フエナンスロリンー6—ィノレ基、 1 , 9 フエナンスロリンー7—ィノレ基、 1 , 9 フエナンスロリンー8 ィノレ基、 1 , 9 フエナンスロリン 10 ィノレ基、 1 , 10 フエ ナンスロリン一 2 ィル基、 1, 10—フエナンスロリン一 3 ィル基、 1, 10—フエナンス 口リン一 4 ィル基、 1, 10 フエナンスロリン一 5 ィル基、 2, 9 フエナンスロリン一 1—ィル基、 2, 9—フエナンスロリン一 3—ィル基、 2, 9—フエナンスロリン一 4—ィノレ 基、 2, 9 フエナンスロリンー5—ィノレ基、 2, 9 フエナンスロリンー6—ィノレ基、 2, 9 フエナンスロリン 7 ィノレ基、 2, 9 フエナンスロリン 8 ィノレ基、 2, 9 フエナ ンスロリン一 10 ィル基、 2, 8 フエナンスロリン一 1—ィル基、 2, 8 フエナンスロリ ン一 3 ィル基、 2, 8 フエナンスロリン一 4 ィル基、 2, 8 フエナンスロリン一 5— イノレ基、 2, 8 フエナンスロリン一 6 イノレ基、 2, 8 フエナンスロリン一 7 イノレ基、 2, 8 フエナンスロリン一 9 ィル基、 2, 8 フエナンスロリン一 10 ィル基、 2, 7— フエナンスロリン 1ーィノレ基、 2, 7 フエナンスロリンー3 ィノレ基、 2, 7 フエナン スロリン一 4 ィル基、 2, 7 フエナンスロリン一 5 ィル基、 2, 7 フエナンスロリン —6 ィル基、 2, 7 フエナンスロリン一 8 ィル基、 2, 7 フエナンスロリン一 9 ィ ル基、 2, 7 フエナンスロリン 10 ィル基、 1 フエナジニル基、 2 フエナジ二ノレ 基、 1ーフエノチアジニル基、 2 フエノチアジニル基、 3 フエノチアジニル基、 4ーフ エノチアジニル基、 1 フエノキサジニル基、 2 フエノキサジニル基、 3 フエノキサ ジニノレ基、 4 フエノキサジニル基、 2 ォキサゾリノレ基、 4ーォキサゾリル基、 5 ォ キサゾリル基、 2 ォキサジァゾリル基、 5 ォキサジァゾリル基、 3 フラザニル基、 2 チェニル基、 3 チェニル基、 2 メチルピロ一ルー 1ーィル基、 2 メチルピロ一 ノレ 3 ィノレ基、 2 メチルピロ一ルー 4ーィル基、 2 メチルピロ一ルー 5 ィル基、
3 メチルピロ一ルー 1ーィル基、 3 メチルピロ一ルー 2 ィル基、 3 メチルピロ一 ノレ 4ーィノレ基、 3 メチルピロ一ルー 5 ィル基、 2— t ブチルピロ一ルー 4ーィル 基、 3—(2 フエニルプロピノレ)ピロ一ルー 1ーィル基、 2 メチルー 1 インドリル基
、 4ーメチルー 1 インドリル基、 2 メチルー 3 インドリル基、 4ーメチルー 3 インド リル基、 2— tーブチルー 1 インドリル基、 4 tーブチルー 1 インドリル基、 2— t ブチル—3—インドリル基、 4— t ブチル—3—インドリル基等が挙げられる。
置換もしくは無置換の核原子数 5〜50のァリールチオ基は SY"と表され、 Y"の 例としてはフエニル基、 1 ナフチル基、 2—ナフチル基、 1 アントリル基、 2—アント リノレ基、 9 ントリノレ基、 1 フエナントリノレ基、 2 フエナントリノレ基、 3 フエナントリ ル基、 4 フエナントリノレ基、 9 フエナントリノレ基、 1 ナフタセニル基、 2 ナフタセ 二ノレ基、 9 ナフタセニル基、 1ーピレニル基、 2—ピレニル基、 4ーピレニル基、 2— ビフエ二ルイル基、 3—ビフエ二ルイル基、 4ービフエ二ルイル基、 p—ターフェ二ルー
4 イノレ基、 p ターフェ二ノレ一 3 イノレ基、 p ターフェ二ノレ一 2 イノレ基、 m ター フエニノレー 4ーィノレ基、 m ターフェニノレー 3 ィノレ基、 m ターフェニノレー 2 ィノレ 基、 o トリノレ基、 m—トリノレ基、 p トリノレ基、 p— t ブチルフエニル基、 p— (2—フエ ニルプロピル)フエニル基、 3—メチルー 2—ナフチル基、 4ーメチルー 1 ナフチル 基、 4ーメチノレー 1 アントリノレ基、 4 'ーメチルビフエ二ルイル基、 4"—tーブチルー p —ターフェ二ノレ一 4 ィル基、 2 ピロリノレ基、 3 ピロリノレ基、ビラジニル基、 2 ピリ ジニノレ基、 3 ピリジニノレ基、 4 ピリジニノレ基、 2 インドリノレ基、 3 インドリノレ基、 4 —インドリル基、 5 インドリル基、 6—インドリル基、 7 インドリル基、 1—イソインドリ ル基、 3—イソインドリル基、 4 イソインドリル基、 5—イソインドリル基、 6—イソインド リノレ基、 7 イソインドリノレ基、 2 フリノレ基、 3 フリノレ基、 2 べンゾ'フラニノレ基、 3— ベンゾフラニノレ 、 4 ベンゾフラ二ノレ基、 5—ベンゾフラ二ノレ ¾、 6—べンゾフラニノレ 基、 7—べンゾフラニル基、 1 イソべンゾフラニル基、 3—イソべンゾフラニル基、 4 イソべンゾフラニル基、 5—イソべンゾフラニル基、 6—イソべンゾフラニル基、 7—イソ ベンゾフラ二ノレ基、 2 キノリノレ基、 3 キノリノレ基、 4 キノリノレ基、 5 キノリノレ基、 6 ーキノリノレ基、 7—キノリノレ基、 8—キノリノレ基、 1 イソキノリノレ基、 3—イソキノリノレ基、 4 イソキノリノレ基、 5—イソキノリノレ基、 6—イソキノリノレ基、 7—イソキノリノレ基、 8—ィ ソキノリル基、 2 キノキサリニル基、 5 キノキサリニル基、 6 キノキサリニル基、 1 カノレノ ゾリノレ基、 2 力ルバゾリル基、 3 力ルバゾリル基、 4一力ルバゾリル基、 1 フエナンスリジニル基、 2 フエナンスリジニル基、 3 フエナンスリジニル基、 4 フエ ナンスリジニル基、 6—フエナンスリジニル基、 7—フエナンスリジニル基、 8—フエナン スリジニル基、 9 フエナンスリジニル基、 10 フエナンスリジニル基、 1—アタリジニ ル基、 2—アタリジニノレ基、 3—アタリジニノレ基、 4—アタリジニノレ基、 9—アタリジニル 基、 1, 7 フエナンスロリンー2 ィノレ基、 1 , 7 フエナンスロリンー3 ィノレ基、 1 , 7 フエナンスロリンー4ーィノレ基、 1 , 7 フエナンスロリンー5 ィノレ基、 1 , 7 フエナ ンスロリン一 6 ィル基、 1, 7 フエナンスロリン一 8 ィル基、 1 , 7 フエナンスロリン 9ーィノレ基、 1, 7 フエナンスロリン 10 ィノレ基、 1, 8 フエナンスロリンー2— イノレ基、 1 , 8—フエナンスロリン一 3—イノレ基、 1 , 8—フエナンスロリン一 4—イノレ基、 1 , 8—フエナンスロリンー5—ィノレ基、 1, 8—フエナンスロリンー6—ィノレ基、 1, 8—フ ェナンスロリン一 7—ィル基、 1, 8 フエナンスロリン一 9—ィル基、 1 , 8 フエナンス 口リン 10—ィノレ基、 1 , 9 フエナンスロリンー2—ィノレ基、 1 , 9 フエナンスロリン 3—ィノレ基、 1 , 9 フエナンスロリンー4ーィノレ基、 1 , 9 フエナンスロリンー5—ィノレ 基、 1 , 9 フエナンスロリンー6—ィノレ基、 1 , 9 フエナンスロリンー7—ィノレ基、 1 , 9 フエナンスロリンー8 ィノレ基、 1 , 9 フエナンスロリン 10 ィノレ基、 1 , 10 フエ ナンスロリン一 2—ィル基、 1, 10—フエナンスロリン一 3—ィル基、 1, 10—フエナンス 口リン一 4 ィル基、 1, 10 フエナンスロリン一 5 ィル基、 2, 9 フエナンスロリン一 1—ィル基、 2, 9 フエナンスロリン一 3 ィル基、 2, 9 フエナンスロリン一 4 ィノレ 基、 2, 9 フエナンスロリンー5—ィノレ基、 2, 9 フエナンスロリンー6—ィノレ基、 2, 9 フエナンスロリン 7 ィノレ基、 2, 9 フエナンスロリン 8 ィノレ基、 2, 9 フエナ ンスロリン一 10 ィル基、 2, 8 フエナンスロリン一 1—ィル基、 2, 8 フエナンスロリ ン一 3 ィル基、 2, 8 フエナンスロリン一 4 ィル基、 2, 8 フエナンスロリン一 5— イノレ基、 2, 8 フエナンスロリン一 6 イノレ基、 2, 8 フエナンスロリン一 7 イノレ基、 2, 8 フエナンスロリン一 9 ィル基、 2, 8 フエナンスロリン一 10 ィル基、 2, 7— フエナンスロリン 1ーィノレ基、 2, 7 フエナンスロリンー3 ィノレ基、 2, 7 フエナン スロリン一 4 ィル基、 2, 7 フエナンスロリン一 5 ィル基、 2, 7 フエナンスロリン —6 ィル基、 2, 7 フエナンスロリン一 8 ィル基、 2, 7 フエナンスロリン一 9 ィ ノレ基、 2, 7 フエナンスロリン一 10 ィル基、 1—フエナジニル基、 2 フエナジ二ノレ 基、 1ーフエノチアジニル基、 2 フエノチアジニル基、 3 フエノチアジニル基、 4ーフ エノチアジニル基、 1 フエノキサジニル基、 2 フエノキサジニル基、 3 フエノキサ ジニノレ基、 4 フエノキサジニル基、 2 ォキサゾリノレ基、 4ーォキサゾリル基、 5 ォ キサゾリル基、 2 ォキサジァゾリル基、 5 ォキサジァゾリル基、 3 フラザニル基、 2 チェニル基、 3—チェニル基、 2—メチルピロ一ルー 1ーィル基、 2—メチルピロ一 ノレ 3 ィノレ基、 2 メチルピロ一ルー 4ーィル基、 2 メチルピロ一ルー 5 ィル基、 3 メチルピロ一ルー 1ーィル基、 3 メチルピロ一ルー 2 ィル基、 3 メチルピロ一 ノレ 4ーィノレ基、 3 メチルピロ一ルー 5 ィル基、 2— t ブチルピロ一ルー 4ーィル 基、 3—(2 フエニルプロピノレ)ピロ一ルー 1ーィル基、 2 メチルー 1 インドリル基 、 4ーメチルー 1 インドリル基、 2 メチルー 3 インドリル基、 4ーメチノレー 3 インド リル基、 2— tーブチルー 1 インドリル基、 4 tーブチルー 1 インドリル基、 2— t ブチル—3—インドリル基、 4— t ブチル—3—インドリル基等が挙げられる。
置換もしくは無置換の炭素数 1〜50のカルボキシル基は COOZ'と表され、 Z'の 例としてはメチル基、ェチル基、プロピル基、イソプロピル基、 n ブチル基、 s ブチ ノレ基、イソブチル基、 t ブチル基、 n ペンチル基、 n へキシル基、 n へプチル 基、 n ォクチル基、ヒドロキシメチル基、 1ーヒドロキシェチル基、 2—ヒドロキシェチ ル基、 2—ヒドロキシイソブチル基、 1, 2—ジヒドロキシェチル基、 1, 3—ジヒドロキシ イソプロピル基、 2, 3 ジヒドロキシー t ブチル基、 1, 2, 3 トリヒドロキシプロピル 基、クロロメチル基、 1 クロ口ェチル基、 2—クロ口ェチル基、 2—クロ口イソブチル基 、 1 , 2 ジクロ口ェチル基、 1, 3 ジクロ口イソプロピル基、 2, 3 ジクロロー tーブチ ノレ基、 1, 2, 3—トリクロ口プロピル基、ブロモメチル基、 1 ブロモェチル基、 2—ブロ モェチル基、 2—ブロモイソブチル基、 1 , 2—ジブロモェチル基、 1, 3—ジブロモイソ プロピル基、 2, 3 ジブ口モー t ブチル基、 1, 2, 3 トリブロモプロピル基、ョード メチノレ基、 1ーョードエチル基、 2—ョードエチル基、 2—ョードイソブチル基、 1, 2— ジョードエチル基、 1 , 3—ジョードイソプロピル基、 2, 3—ジョードー t ブチル基、 1 , 2, 3 トリョードプロピノレ基、アミノメチノレ基、 1 アミノエチノレ基、 2 アミノエチノレ基 、 2 ミノイソフ、、チノレ基、 1 , 2 ジ ミノェチノレ基、 1 , 3 ジ ミノイソプロピノレ基、 2 , 3—ジアミノー tープ、チノレ基、 1 , 2, 3—トリァミノプロピノレ基、シァノメチノレ基、 1ーシ ァノエチル基、 2—シァノエチル基、 2—シァノイソブチル基、 1, 2—ジシァノエチル 基、 1 , 3—ジシァノイソプロピノレ基、 2, 3—ジシァノー tーフ、、チノレ基、 1 , 2, 3—トリシ ァノプロピル基、ニトロメチル基、 1一二トロェチノレ基、 2—二トロェチノレ基、 2—二トロ イソフ、、チノレ基、 1 , 2 ジニトロェチノレ基、 1 , 3 ジニトロイソプロピノレ基、 2, 3 ジニト ロー t ブチル基、 1, 2, 3—トリニトロプロピル基等が挙げられる。
[0126] 置換又は無置換のスチリル基の例としては、 2 フエ二ルー 1—ビュル基、 2, 2 ジ フエ二ルー 1—ビュル基、 1, 2, 2—トリフエ二ルー 1—ビュル基等が挙げられる。
[0127] ノ、ロゲン基の例としては、フッ素、塩素、臭素、ヨウ素等が挙げられる。
[0128] mは 1〜5の整数、 nは 0〜6の整数である。
mは;!〜 2、 nは 0〜4が好ましい。
[0129] 尚 m≥2の時、( )内の Ar'はそれぞれ同じでも異なっていてもよい。
また n≥2の時、 ( )内の X'はそれぞれ同じでも異なっていてもよい。
[0130] 発光層に用いられる材料として、さらに好ましくは以下に示されるアントラセン誘導 体が挙げられる。
Al -L-A2 - - - (II)
(式中、 A1及び A2は、それぞれ置換若しくは無置換のモノフエ二ルアントリル基又は 置換若しくは無置換のジフエニルァルアントリル基を示し、それらはたがいに同一で も異なっていてもよぐ Lは単結合又は二価の連結基を示す。 )
[0131] 他にも一般式 (III)に示されるアントラセン誘導体が挙げられる。
A3—An— Α4 · · · (III)
(式中、 Anは置換若しくは無置換の二価のアントラセン残基を示し、 A3及び A4は、 それぞれ置換若しくは無置換の一価の縮合芳香族環基又は置換若しくは無置換の 炭素数 12以上の非縮合環系ァリール基を示し、それらは互いに同一でも異なってい てちよい。 ) 式 (II)で表されるアントラセン誘導体としては、例えば下記式 (II a)で表されるァ ントラセン誘導体、
[化 37]
Figure imgf000070_0001
(式中、 R91〜R1Q°は、それぞれ独立に水素原子,アルキル基,シクロアルキル基,置 換してもよいァリール基,アルコキシル基,ァリーロキシ基,ァノレキノレアミノ基,ァリー ルァミノ基又は置換してもよい複素環式基を示し、 a及び bは、それぞれ;!〜 5の整数 を示し、それらが 2以上の場合、 R91同士又は R92同士は、それぞれにおいて、同一で も異なってレ、てもよく、また R91同士又は R92同士が結合して環を形成してレ、てもよレ、 し、 R93と R94, R95と R96, R97と R98, R99と R1Q°がたがいに結合して環を形成していても よい。 L1Qは単結合又は— O—,— S—,— N (R)— (Rはアルキル基又は置換しても よいァリール基である)又はァリーレン基を示す。)
又は下記式(II b)
[化 38]
Figure imgf000070_0002
(式中、 R 〜R は、それぞれ独立に水素原子,アルキル基,シクロアルキル基 置換もしくは無置換のァリール基,アルコキシル基,ァリーロキシ基,アルキルアミノ 基,ァリールアミノ基、又は置換もしくは無置換の複素環式基を示し、 c, d, e及び fは 、それぞれ 1〜5の整数を示し、それらが 2以上の場合、 R1Q1同士, R1Q2同士, R1Q6同 士又は R1()7同士は、それぞれにおいて、同一でも異なっていてもよぐまた R1Q1同士 , R1Q2同士, R1Q6同士又は R1Q7同士が結合して環を形成していてもよいし、 R1Q3と R"3 4, R1QSと R1Q9がたがいに結合して環を形成していてもよい。 L11は単結合又は— O— ,— S—,—N (R)— (Rはアルキル基又は置換してもよいァリール基である)又はァリ 一レン基を示す。 )で表されるアントラセン誘導体を好ましく挙げることができる。
[0134] 式(II— a)及び式(II— b)において、 R91〜R11Qの内のアルキル基としては炭素数 1 〜6のものが、シクロアルキル基としては炭素数 3〜6のもの力 ァリール基としては炭 素数 5〜; 18のものが、アルコキシル基としては炭素数 1〜6のもの力 ァリ一口キシ基 としては炭素数 5〜; 18のもの力 ァリールアミノ基としては炭素数 5〜; 16のァリール基 で置換されたァミノ基力 複素環式基としてはトリアゾール基,ォキサジァゾール基, キノキサリン基,フラニル基ゃチェニル基等が好ましく挙げられる。
また、 L1Q及び L11の内の一 N (R)—における Rで示されるアルキル基としては炭素 数;!〜 6のものが、ァリール基としては炭素数 5〜; 18のものが好ましい。
[0135] 後述するドーパントと共に発光層に使用できるホスト材料としては、下記 (i)〜(ix) で表される化合物が好ましレ、。
下記式 (i)で表される非対称アントラセン。
[化 39]
Figure imgf000071_0001
(式中、 Arは置換もしくは無置換の核炭素数 10〜50の縮合芳香族基である。 Ar'は 置換もしくは無置換の核炭素数 6〜50の芳香族基である。 ^〜Χ3は、それぞれ独立 にに置置換換ももししくくはは無無置置換換のの核核炭炭素素数数 66〜〜5500のの芳芳香香族族基基、、置置換換ももししくくはは無無置置換換のの核核原原子子 数数 55〜〜5500のの芳芳香香族族複複素素環環基基、、置置換換ももししくくはは無無置置換換のの炭炭素素数数 11〜〜5500ののアアルルキキルル基基、、置置 換換ももししくくはは無無置置換換のの炭炭素素数数 11〜〜5500ののアアルルココキキシシ基基、、置置換換ももししくくはは無無置置換換のの炭炭素素数数 66〜〜 5500ののァァララルルキキルル基基、、置置換換ももししくくはは無無置置換換のの核核原原子子数数 55〜〜5500ののァァリリーールルォォキキシシ基基、、置置 換換ももししくくはは無無置置換換のの核核原原子子数数 55〜〜5500ののァァリリーールルチチオオ基基、、置置換換ももししくくはは無無置置換換のの炭炭素素 数数 11〜〜5500ののアアルルココキキシシカカルルボボニニルル基基、、カカルルボボキキシシルル基基、、ハハロロゲゲンン原原子子、、シシァァノノ基基、、ニニトト 口口基基、、ヒヒドドロロキキシシ基基ででああるる。。 aa、、 bb及及びび ccはは、、そそれれぞぞれれ 00〜〜44のの整整数数ででああるる。。 nnはは;;!!〜〜 33のの整整 数数ででああるる。。ままたた、、 nnがが 22以以上上のの場場合合はは、、 [[ ]]内内はは、、同同じじででもも異異ななっってていいててももよよいい。。 ))
Figure imgf000072_0001
[化 40]
Figure imgf000072_0002
[0138] (式中、 Ar1及び Ar2は、それぞれ独立に、置換もしくは無置換の核炭素数 6〜50の 芳香族環基であり、 m及び nは、それぞれ 1〜4の整数である。ただし、 m = n= lでか つ Ar1と Ar2のベンゼン環への結合位置が左右対称型の場合には、 Ar1と Ar2は同一 ではなぐ m又は nが 2〜4の整数の場合には mと nは異なる整数である。
R'-R10^,それぞれ独立に、水素原子、置換もしくは無置換の核炭素数 6〜50の 芳香族環基、置換もしくは無置換の核原子数 5〜50の芳香族複素環基、置換もしく は無置換の炭素数 1〜50のアルキル基、置換もしくは無置換のシクロアルキル基、 置換もしくは無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置換の炭素数 6 〜50のァラノレキノレ基、置換もしくは無置換の核原子数 5〜50のァリールォキシ基、 置換もしくは無置換の核原子数 5〜50のァリールチオ基、置換もしくは無置換の炭 素数 1〜50のアルコキシカルボニル基、置換もしくは無置換のシリル基、カルボキシ ル基、ハロゲン原子、シァノ基、ニトロ基、ヒドロキシ基である。 )
[0139] 下記式 (iii)で表される非対称ピレン誘導体。
[化 41]
Figure imgf000073_0001
[0140] [式中、 Ar及び Ar'は、それぞれ置換もしくは無置換の核炭素数 6〜50の芳香族基 である。 L及び L'は、それぞれ置換もしくは無置換のフエ二レン基、置換もしくは無置 換のナフタレニレン基、置換もしくは無置換のフルォレニレン基又は置換もしくは無 置換のジベンゾシロリレン基である。
mは 0〜2の整数、 nは 1〜4の整数、 sは 0〜2の整数、 tは 0〜4の整数である。 また、 L又は Arは、ピレンの 1〜5位のいずれかに結合し、 L'又は Ar'は、ピレンの
6〜10位のいずれかに結合する。ただし、 n + tが偶数の時、 Ar, Ar', L, L'は下記
(1)又は (2)を満たす。
(1) Ar≠Ar'及び/又は L≠L' (ここで≠は、異なる構造の基であることを示す。)
(2) Ar=Ar'かつ L = L'の時
(2-1) m≠s及び/又は n≠t、又は
(2-2) m = sかつ n = tの時、
(2-2-1) L及び L'、又はピレン力 それぞれ Ar及び Ar'上の異なる結合位置に 結合している力、、 (2-2-2) L及び L'、又はピレン力 Ar及び Ar'上の同じ結合位置で 結合している場合、 L及び L'又は Ar及び Ar'のピレンにおける置換位置力 位と 6位 、又は 2位と 7位である場合はない。 ]
[0141] 下記式 (iv)で表される非対称アントラセン誘導体。 [化 42]
X
Figure imgf000074_0001
Y
[0142] (式中、 A1及び ΑΊま、それぞれ独立に、置換もしくは無置換の核炭素数 10〜20の 縮合芳香族環基である。
Ar1及び Ar2は、それぞれ独立に、水素原子、又は置換もしくは無置換の核炭素数 6〜50の芳香族環基である。
R'-R10^,それぞれ独立に、水素原子、置換もしくは無置換の核炭素数 6〜50の 芳香族環基、置換もしくは無置換の核原子数 5〜50の芳香族複素環基、置換もしく は無置換の炭素数 1〜50のアルキル基、置換もしくは無置換のシクロアルキル基、 置換もしくは無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置換の炭素数 6 〜50のァラノレキノレ基、置換もしくは無置換の核原子数 5〜50のァリールォキシ基、 置換もしくは無置換の核原子数 5〜50のァリールチオ基、置換もしくは無置換の炭 素数 1〜50のアルコキシカルボニル基、置換もしくは無置換のシリル基、カルボキシ ル基、ハロゲン原子、シァノ基、ニトロ基又はヒドロキシ基である。
Figure imgf000074_0002
R9及び R1Qは、それぞれ複数であってもよぐ隣接するもの同士で飽和も しくは不飽和の環状構造を形成してレ、てもよレ、。
ただし、式において、中心のアントラセンの 9位及び 10位に、該アントラセン上に示 す X— Y軸に対して対称型となる基が結合する場合はない。 )
[0143] 発光層には、さらに蛍光性化合物をドーパントとして少量添加し、発光性能を向上 させることが可能である。このようなドーパントは、それぞれ長寿命な発光材料として 公知のものを用いることが可能である力、下記式 (VI)で示される材料を発光材料の ドーパント材料として用いることが望ましレ、。
[化 43]
Figure imgf000075_0001
[0144] 式中、 Ar41〜Ar4 ま置換もしくは無置換の核炭素数 6〜50の芳香族基、又は置換 もしくは無置換のスチリル基である。
[0145] 置換もしくは無置換の核炭素数 6〜50の芳香族基の例としては、フエニル基、 1 ナフチル基、 2 ナフチル基、 1 アントリノレ基、 2 アントリノレ基、 9 アントリノレ基、 1 フエナントリノレ基、 2 フエナントリノレ基、 3 フエナントリノレ基、 4 フエナントリノレ基 、 9 フエナントリル基、 1 ナフタセニル基、 2 ナフタセニル基、 9 ナフタセニノレ 基、 1ーピレニル基、 2 ピレニル基、 4ーピレニル基、 2 ビフエ二ルイル基、 3 ビフ ェニノレイノレ基、 4ービフエニノレイノレ基、 p ターフェニノレー 4ーィノレ基、 p ターフェ二 ノレ 3 ィノレ基、 p ターフェニノレー 2 ィノレ基、 m ターフェニノレー 4ーィノレ基、 m ターフェニノレー 3 ィノレ基、 m—ターフェニノレー 2 ィノレ基、 o トリノレ基、 m—トリ ノレ基、 p トリノレ基、 p—t ブチルフエニル基、 p— (2—フエニルプロピノレ)フエニル 基、 3—メチルー 2—ナフチル基、 4ーメチルー 1 ナフチル基、 4ーメチルー 1 アン トリノレ基、 4 'ーメチルビフエ二ルイル基、 4"—tーブチノレー p—ターフェニノレー 4ーィ ノレ基、 2 フルォレニル基、 9, 9 ジメチルー 2 フルォレニル基、 3 フルオランテ ニル基等が挙げられる。
[0146] 好ましくはフエニル基、 1 ナフチル基、 2 ナフチル基、 9 フエナントリル基、 1 - ナフタセニル基、 2 ナフタセニル基、 9 ナフタセニル基、 1ーピレニル基、 2 ピレ 二ノレ基、 4 ピレニル基、 2 ビフエ二ルイル基、 3 ビフエ二ルイル基、 4 ビフエ二 ノレイノレ基、 o トリノレ基、 m—トリノレ基、 p トリノレ基、 p— t ブチルフエニル基、 2—フ ノレオレニル基、 9, 9 ジメチルー 2 フルォレニル基、 3 フルオランテニル基等力 挙げられる。
置換又は無置換のスチリル基の例としては、 2—フエ二ルー 1—ビュル基、 2, 2—ジ フエ二ルー 1—ビュル基、 1, 2, 2—トリフエ二ルー 1—ビュル基等が挙げられる。
[0147] pは 1〜4の整数である。
尚 p≥2の時、( )内の Ar42、 Ar43はそれぞれ同じでも異なっていてもよい。
[0148] (正孔注入、輸送層)
正孔注入、輸送層は発光層への正孔注入を助け、発光領域まで輸送する層であつ て、正孔移動度が大きぐイオン化エネルギーが通常 5. 6eV以下と小さい。このよう な正孔注入、輸送層としてはより低い電界強度で正孔を発光層に輸送する材料が好 ましぐさらに正孔の移動度が、例えば 104〜; 106V/cmの電界印加時に、少なくとも 10 _4cm2/V ·秒であれば好ましレ、。
本発明では、正孔注入層、正孔輸送層はそれぞれ複数層であってもよい。本発明 の素子構成で用いられている上記式(1)及び式(2)の化合物は、単独で正孔注入 層、輸送層を形成してもよいし、他の材料と混合して用いてもよい。
[0149] 本発明の素子構成で用いられている式(1)及び式(2)の化合物と混合して正孔注 入、輸送層を形成する材料としては、前記の好ましい性質を有するものであれば特に 制限はなぐ従来、光導伝材料において正孔の電荷輸送材料として慣用されている ものや、 EL素子の正孔注入層に使用される公知のものの中力、ら任意のものを選択し て用いることができる。また、芳香族ァミン誘導体層、含窒素複素環誘導体層以外に も正孔輸送帯域を構成する層があってもよぐそれらを形成する材料は、前記のよう に公知のものの中から任意のものを選択して用いることができる。芳香族ァミン誘導 体として下記式で表される化合物が考えられる。
[化 44]
Figure imgf000077_0001
(Ar 〜Arb、 Arbl〜Ar , Ar 〜Ar は、それぞれ置換もしくは無置換の核炭素 数 6〜50の芳香族基、又は核原子数 5〜50の複素芳香族基を表し、 a〜c、 p〜rは、 それぞれ 0〜3の整数であり、 Ar57と Ar58、 Ar59と Ar6°、 Ar61と Ar62はそれぞれ互い に連結して飽和もしくは不飽和の環を形成してもよい。 )
[化 45]
Figure imgf000077_0002
(ArAr 74は置換もしくは無置換の核炭素数 6〜50の芳香族基、又は核原子数 5 〜50の複素芳香族基を表し、 L12は連結基であり、単結合、もしくは置換もしくは無置 換の核炭素数 6〜50の芳香族基、又は核原子数 5〜50の複素芳香族基を表し、 X は 0〜5の整数であり、 Ar72と Ar73は互いに連結して飽和もしくは不飽和の環を形成 してもよレ、。 )
具体例として例えば、トリァゾール誘導体 (米国特許 3, 112, 197号明細書等参照 )、ォキサジァゾール誘導体 (米国特許 3, 189, 447号明細書等参照)、イミダゾー ノレ誘導体(特公昭 37— 16096号公報等参照)、ポリアリールアルカン誘導体 (米国 牛寺言午 3, 615, 402 明糸田 、同 3, 820, 989 明糸田 、同 3, 542, 544 明 細書、特公 B召 45— 555号公幸 、同 51— 10983号公幸 、特開昭 51— 93224号公幸 、同 55— 17105号公幸 、同 56— 4148号公幸 、同 55— 108667号公幸 、同 55— 1 56953号公報、同 56— 36656号公報等参照)、ピラゾリン誘導体及びピラゾロン誘 導体 (米国特許第 3, 180, 729号明細書、同第 4, 278, 746号明細書、特開昭 55 88064号公幸 、同 55— 88065号公幸 、同 49 105537号公幸 、同 55— 51086 号公幸 、同 56— 80051号公幸 、同 56— 88141号公幸 、同 57— 45545号公幸 、同
54— 112637号公幸 、同 55— 74546号公報等参照)、フエ二レンジァミン誘導体( 米国特許第 3, 615, 404号明細書、特公昭 51— 10105号公幸 、同 46— 3712号 公幸 、同 47— 25336号公幸 、同 54— 119925号公幸等参照)、ァリーノレァミン誘導 体 (米国特許第 3, 567, 450号明細書、同第 3, 240, 597号明細書、同第 3, 658
, 520号明細書、同第 4, 232, 103号明細書、同第 4, 175, 961号明細書、同第 4 , 012, 376号明細書、特公昭 49 35702号公幸 、同 39— 27577号公幸 、特開昭
55— 144250号公幸 、同 56— 119132号公幸 、同 56— 22437号公幸 、西独特許 第 1, 110, 518号明細書等参照)、ァミノ置換カルコン誘導体 (米国特許第 3, 526, 501号明細書等参照)、ォキサゾール誘導体 (米国特許第 3, 257, 203号明細書等 に開示のもの)、スチリルアントラセン誘導体(特開昭 56— 46234号公報等参照)、フ ノレオレノン誘導体(特開昭 54— 110837号公報等参照)、ヒドラゾン誘導体 (米国特 許第 3, 717, 462号明細書、特開昭 54— 59143号公報、同 55— 52063号公報、 同 55— 52064号公幸 、同 55— 46760号公幸 、同 57— 11350号公幸 、同 57— 14 8749号公報、特開平 2— 311591号公報等参照)、スチルベン誘導体(特開昭 61 210363号公幸 、同第 61— 228451号公幸 、同 61— 14642号公幸 、同 61— 72 255号公幸 、同 62— 47646号公幸 、同 62— 36674号公幸 、同 62— 10652号公幸 、同 62— 30255号公幸 、同 60— 93455号公幸 、同 60— 94462号公幸 、同 60— 1 74749号公報、同 60— 175052号公報等参照)、シラザン誘導体 (米国特許第 4, 9 50, 950号明細書)、ポリシラン系(特開平 2— 204996号公報)、ァニリン系共重合 体(特開平 2— 282263号公報)、導電性高分子オリゴマー(特にチォフェンオリゴマ 一)等を挙げることができる。
正孔注入層の材料としては上記のものを使用することができる力、ポルフィリン化合 物(特開昭 63— 295695号公報等に開示のもの)、芳香族第三級ァミン化合物及び スチリルァミン化合物(米国特許第 4, 127, 412号明細書、特開昭 53— 27033号公 幸 、同 54— 58445号公幸 、同 55— 79450号公幸 、同 55— 144250号公幸 、同 56 119132号公幸 、同 61— 295558号公幸 、同 61— 98353号公幸 、同 63— 2956 95号公報等参照)、特に芳香族第三級ァミン化合物を用いることが好ましい。
また米国特許第 5, 061, 569号に記載されている 2個の縮合芳香族環を分子内に 有する、例えば 4, 4,一ビス(N— (1—ナフチル) N フエニルァミノ)ビフエ二ノレ( 以下 NPDと略記する)、また特開平 4— 308688号公報に記載されているトリフエ二 ルァミンユニットが 3つスターバースト型に連結された 4, 4,, 4"—トリス(N— (3—メ チルフエニル) N フエニルァミノ)トリフエニルァミン(以下 MTDATAと略記する) 等を挙げること力でさる。
この他に特許 3571977号で開示されている下記式で表される含窒素複素環誘導 体ち用いること力 Sでさる。
[化 46]
Figure imgf000079_0001
(式中、 Rl l〜R1 bは、それぞれ置換又は無置換のアルキル基、置換又は無置換の ァリール基、置換又は無置換のァラルキル基、置換又は無置換の複素環基のいず れかを示す。但し、 R121〜R126は同じでも異なっていてもよい。また、 R121と R122、 R123 と R124、 R125と R126、 R121と R126、 R122と R123、 R124と R125が縮合環を形成していてもよ い。)
さらに、米国公開 2004/0113547で記載されてレ、る下記式の化合物も用いること ができる。
[化 47]
Figure imgf000080_0001
(式中、 Rldl R は置換基であり、好ましくはシァノ基、ニトロ基、スルホニル基、力 ルポニル基、トリフルォロメチル基、ハロゲン等の電子吸引基である。 )
[0155] これらの材料に代表されるように、ァクセプター性材料も正孔注入材料として用いる こと力できる。これらの具体例は上述した通りである。
また、発光層の材料として示した前述の芳香族ジメチリディン系化合物の他、 p型 Si p型 SiC等の無機化合物も正孔注入層の材料として使用することができる。
[0156] 正孔注入、輸送層は上述した化合物を、例えば真空蒸着法、スピンコート法、キヤ スト法、 LB法等の公知の方法により薄膜化することにより形成することができる。正孔 注入、輸送層としての膜厚は特に制限はないが、通常は 5nm 5 /i mである。この正 孔注入、輸送層は正孔輸送帯域に本発明の化合物を含有していれば、上述した材 料の一種又は二種以上からなる一層で構成されてもよいし、又は前記正孔注入、輸 送層とは別種の化合物からなる正孔注入、輸送層を積層したものであってもよい。
[0157] 尚、さらに有機半導体層を形成してもよい。この層は、発光層への正孔注入又は電 子注入を助ける層であって、 10_1QS/cm以上の導電率を有するものが好適である 。このような有機半導体層の材料としては、含チォフェンオリゴマーゃ特開平 8— 193 191号公報に開示してある含ァリールァミンオリゴマー等の導電性オリゴマー、含ァリ ールァミンデンドリマー等の導電性デンドリマー等を用いることができる。
[0158] (電子注入、輸送層)
電子注入層は発光層への電子の注入を助ける層であって、電子移動度が大きい。 尚、付着改善層は、電子注入層の中で特に陰極との付着がよい材料からなる層であ る。電子注入層に用いられる材料としては、 8—ヒドロキシキノリン又はその誘導体の 金属錯体が好適である。
上記 8—ヒドロキシキノリン又はその誘導体の金属錯体の具体例としては、ォキシン (一般に 8—キノリノール又は 8—ヒドロキシキノリン)のキレートを含む金属キレートォ キシノイド化合物が挙げられる。
例えば発光材料の項で記載した Alqを電子注入層として用いることができる。
一方ォキサジァゾール誘導体としては、以下の一般式で表される電子伝達化合物 が挙げられる。
[化 48]
Figure imgf000081_0001
(式中 A 1 , Ar , Ar , Ar , Ar , Α はそれぞれ置換又は無置換のァリール基 を示し、それぞれ互いに同一であっても異なっていてもよい。また Ar84, Ar87, Ar88は 置換又は無置換のァリーレン基を示し、それぞれ同一であっても異なっていてもよい )
[0160] ここでァリール基としてはフエニル基、ビフエ二ル基、アントラニル基、ペリレニル基、 ピレニル基が挙げられる。またァリーレン基としてはフエ二レン基、ナフチレン基、ビフ ェニレン基、アントラニレン基、ペリレニレン基、ピレニレン基等が挙げられる。また置 換基としては炭素数 1〜 10のアルキル基、炭素数;!〜 10のアルコキシ基又はシァノ 基等が挙げられる。この電子伝達化合物は薄膜形成性のものが好ましい。
上記電子伝達性化合物の具体例としては下記のものを挙げることができる。
[0161] [化 49]
Figure imgf000082_0001
また、電子注入層に用いられる材料として下記式 (A) 、(B)で表される含窒素複素 環誘導体が使用できる。
[化 50]
Figure imgf000082_0002
(式 (A)及び (B)中、 A 1〜A "は、それぞれ独立に、窒素原子又は炭素原子である
Ar21は、置換もしくは無置換の核炭素数 6〜60のァリール基、又は置換もしくは無 置換の核炭素数 3〜60のへテロアリール基であり、 Ar22は、水素原子、置換もしくは 無置換の核炭素数 6〜60のァリール基、置換もしくは無置換の核炭素数 3〜60のへ テロアリール基、置換もしくは無置換の炭素数 1〜20のアルキル基、又は置換もしく は無置換の炭素数 1〜20のアルコキシ基、あるいはこれらの 2価の基である。ただし 、 Ar21及び Ar22のいずれか一方は、置換もしくは無置換の核炭素数 10〜60の縮合 環基、又は置換もしくは無置換の核炭素数 3〜60のモノへテロ縮合環基、あるいはこ れらの 2価の基である。
Ar23は、置換もしくは無置換の炭素数 6〜60のァリーレン基、又は置換もしくは無 置換の炭素数 3〜60のへテロアリーレン基である。
Lu、 L12及び L13は、それぞれ独立に、単結合、置換もしくは無置換の核炭素数 6 〜60のァリーレン基、置換もしくは無置換の核炭素数 3〜60のへテロアリーレン基、 又は置換もしくは無置換のフルォレニレン基である。
R81は、水素原子、置換もしくは無置換の核炭素数 6〜60のァリール基、置換もしく は無置換の核炭素数 3〜60のへテロアリール基、置換もしくは無置換の炭素数 1〜2 0のアルキル基、又は置換もしくは無置換の炭素数 1〜20のアルコキシ基であり、 n は 0〜5の整数であり、 nが 2以上の場合、複数の R81は同一でも異なっていてもよぐ また、隣接する複数の R81基同士で結合して、炭素環式脂肪族環又は炭素環式芳香 族環を形成していてもよい。
R82は、水素原子、置換もしくは無置換の核炭素数 6〜60のァリール基、置換もしく は無置換の核炭素数 3〜60のへテロアリール基、置換もしくは無置換の炭素数 1〜2 0のアルキル基、又は置換もしくは無置換の炭素数 1〜20のアルコキシ基、又は—L "― Ar21— Ar22である。)で表される含窒素複素環誘導体。
HAr-L14-Ar24-Ar25 (C)
(式中、 HArは、置換基を有していてもよい炭素数 3〜40の含窒素複素環であり、 L1 4は、単結合、置換基を有していてもよい炭素数 6〜60のァリーレン基、置換基を有し てレ、てもよレ、炭素数 3〜60のへテロアリーレン基又は置換基を有してレ、てもよレ、フル ォレニレン基であり、 Ar24は、置換基を有していてもよい炭素数 6〜60の 2価の芳香 族炭化水素基であり、 Ar25は、置換基を有していてもよい炭素数 6〜60のァリール基 又は置換基を有していてもよい炭素数 3〜60のへテロアリール基である。)で表され る含窒素複素環誘導体。 [0165] [化 51]
Figure imgf000084_0001
[0166] (式中、 X11及び Y11は、それぞれ独立に炭素数 1〜6の飽和若しくは不飽和の炭化 水素基、アルコキシ基、アルケニルォキシ基、アルキニルォキシ基、ヒドロキシ基、置 換若しくは無置換のァリール基、置換若しくは無置換のへテロ環又は X11と Υ11が結 合して飽和又は不飽和の環を形成した構造であり、 R85〜R88は、それぞれ独立に水 素、ハロゲン原子、置換もしくは無置換の炭素数 1から 6までのアルキル基、アルコキ シ基、ァリールォキシ基、パーフルォロアルキル基、パーフルォロアルコキシ基、アミ ノ基、アルキルカルボニル基、ァリールカルボニル基、アルコキシカルボニル基、ァリ ールォキシカルボニル基、ァゾ基、アルキルカルボニルォキシ基、ァリールカルボ二 ルォキシ基、アルコキシカルボニルォキシ基、ァリールォキシカルボニルォキシ基、 スルフィニル基、スルフォニル基、スルファニル基、シリル基、力ルバモイル基、ァリー ル基、ヘテロ環基、アルケニル基、アルキニル基、ニトロ基、ホノレミノレ基、ニトロソ基、 ホルミルォキシ基、イソシァノ基、シァネート基、イソシァネート基、チオシァネート基、 イソチオシァネート基もしくはシァノ基又は隣接した場合には置換若しくは無置換の 環が縮合した構造である。 )で表されるシラシクロ-
[0167] [化 52]
Figure imgf000084_0002
[0168] (式中、 R91〜R98及び Z2は、それぞれ独立に、水素原子、飽和もしくは不飽和の炭化 水素基、芳香族基、ヘテロ環基、置換アミノ基、置換ボリル基、アルコキシ基又はァリ 一ルォキシ基を示し、 χ12、 Y12及び Z1は、それぞれ独立に、飽和もしくは不飽和の炭 化水素基、芳香族基、ヘテロ環基、置換アミノ基、アルコキシ基又はァリールォキシ 基を示し、 Z1と Z2の置換基は相互に結合して縮合環を形成してもよぐ nは;!〜 3の整 数を示し、 nが 2以上の場合、 Z1は異なってもよい。但し、 nが 1、 X12、 Y12及び R92がメ チル基であって、 R98が、水素原子又は置換ボリル基の場合、及び nが 3で Z力 Sメチ ル基の場合を含まない。)で表されるボラン誘導体。
[0169] [化 53]
Figure imgf000085_0001
[0170] [式中、 Q1及び Q2は、それぞれ独立に、下記式 (G)で示される配位子を表し、 L15は 、ハロゲン原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロアル キル基、置換もしくは無置換のァリール基、置換もしくは無置換の複素環基、 -OR ( Rは、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロア ルキル基、置換もしくは無置換のァリール基、置換もしくは無置換の複素環基である 。)又は— O— Ga— Q3 (Q4) (Q3及び Q4は、 Q1及び Q2と同じ)で示される配位子を表 す。 ]
[0171] [化 54]
Figure imgf000085_0002
A 25
( G)
[0172] [式中、環 A 4及び A bは、置換基を有してよい互いに縮合した 6員ァリール環構造で ある。」
[0173] この金属錯体は、 n型半導体としての性質が強ぐ電子注入能力が大きい。さらに は、錯体形成時の生成エネルギーも低いために、形成した金属錯体の金属と配位子 との結合性も強固になり、発光材料としての蛍光量子効率も大きくなつている。 式 (G)の配位子を形成する環 A 及び A25の置換基の具体的な例を挙げると、塩素 、臭素、ヨウ素、フッ素のハロゲン原子、メチル基、ェチル基、プロピル基、ブチル基、 s ブチル基、 t ブチル基、ペンチル基、へキシル基、ヘプチル基、ォクチル基、ス テアリル基、トリクロロメチル基等の置換もしくは無置換のアルキル基、フエニル基、ナ フチル基、 3—メチルフエニル基、 3—メトキシフエ二ル基、 3—フルオロフェニル基、 3 トリクロロメチルフエニル基、 3—トリフルォロメチルフエニル基、 3—二トロフエ二ノレ 基等の置換もしくは無置換のァリール基、メトキシ基、 n—ブトキシ基、 t—ブトキシ基、 トリクロロメトキシ基、トリフノレオ口エトキシ基、ペンタフルォロプロポキシ基、 2, 2, 3, 3 ーテトラフルォロプロポキシ基、 1, 1, 1, 3, 3, 3—へキサフルオロー 2—プロポキシ 基、 6—(パーフノレォロェチル)へキシルォキシ基等の置換もしくは無置換のアルコキ シ基、フエノキシ基、 p 二トロフエノキシ基、 p—t ブチルフエノキシ基、 3—フルォロ フエノキシ基、ペンタフルオロフェニル基、 3—トリフルォロメチルフエノキシ基等の置 換もしくは無置換のァリールォキシ基、メチルチオ基、ェチルチオ基、 tーブチルチオ 基、へキシルチオ基、ォクチルチオ基、トリフルォロメチルチオ基等の置換もしくは無 置換のアルキルチオ基、フエ二ルチオ基、 p 二トロフエ二ルチオ基、 p— tーブチノレ フエ二ルチオ基、 3—フルオロフェニルチオ基、ペンタフルオロフェニルチオ基、 3—ト リフルォロメチルフエ二ルチオ基等の置換もしくは無置換のァリールチオ基、シァノ基 、二卜 π基、 ミノ基、メチノレ ミノ基、ジェチノレ ミノ基、ェチノレ ミノ基、ジェチノレ ミ ノ基、ジプロピルアミノ基、ジブチルァミノ基、ジフエニルァミノ基等のモノ又はジ置換 アミノ基、ビス(ァセトキシメチル)アミノ基、ビス(ァセトキシェチル)アミノ基、ビスァセト キシプロピル)アミノ基、ビス(ァセトキシブチル)アミノ基等のァシルァミノ基、水酸基、 シロキシ基、ァシル基、力ルバモイル基、メチルカルバモイル基、ジメチルカルバモイ ル基、ェチルカルバモイル基、ジェチルカルバモイル基、プロィピルカルバモイル基 、ブチルカルバモイル基、フエ二ルカルバモイル基等の置換もしくは無置換の力ルバ モイル基、カルボン酸基、スルフォン酸基、イミド基、シクロペンタン基、シクロへキシ ル基等のシクロアルキル基、フエニル基、ナフチル基、ビフエ二リル基、アントリル基、 フエナントリル基、フルォレニル基、ピレニル基等のァリール基、ピリジニル基、ピラジ ニル基、ピリミジェノレ基、ピリダジニル基、トリアジニル基、インドリニノレ基、キノリニル 基、アタリジニル基、ピロリジニル基、ジォキサニル基、ピペリジニル基、モルフオリジ ニル基、ピペラジニル基、トリアチェノレ基、カルバゾリル基、フラニル基、チオフェニル 基、ォキサゾリル基、ォキサジァゾリル基、ベンゾォキサゾリル基、チアゾリル基、チア ジァゾリノレ基、ベンゾチアゾリル基、トリアゾリノレ基、イミダゾリノレ基、ベンゾイミダゾリル 基、ブラニル基等の複素環基等がある。また、以上の置換基同士が結合してさらなる
6員ァリール環もしくは複素環を形成しても良い。
[0174] さらに、該含窒素複素環基もしくは含窒素複素環誘導体を含む高分子化合物であ つてもよい。
[0175] 本発明の好ましい形態に、電子を輸送する領域又は陰極と有機層の界面領域に、 還元性ドーパントを含有する素子がある。ここで、還元性ドーパントとは、電子輸送性 化合物を還元ができる物質と定義される。従って、一定の還元性を有するものであれ ば、様々なものが用いられ、例えば、アルカリ金属、アルカリ土類金属、希土類金属、 アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、 アルカリ土類金属のハロゲン化物、希土類金属の酸化物又は希土類金属のハロゲン 化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体、希土類金属の有機 錯体からなる群から選択される少なくとも一つの物質を好適に使用することができる。
[0176] また、より具体的に、好ましい還元性ドーパントとしては、 Na (仕事関数: 2. 36eV) 、K (仕事関数: 2. 28eV)、Rb (仕事関数: 2. 16eV)及び Cs (仕事関数: 1. 95eV) 力もなる群から選択される少なくとも一つのアルカリ金属や、 Ca (仕事関数: 2. 9eV) 、 Sr (仕事関数: 2. 0〜2. 5eV)、及び Ba (仕事関数: 2. 52eV)力、らなる群から選択 される少なくとも一つのアルカリ土類金属が挙げられる仕事関数が 2. 9eV以下のも のが特に好ましい。これらのうち、より好ましい還元性ドーパントは、 K、 Rb及び Csか らなる群から選択される少なくとも一つのアルカリ金属であり、さらに好ましくは、 Rb又 は Csであり、最も好ましいものは、 Csである。これらのアルカリ金属は、特に還元能力 が高ぐ電子注入域への比較的少量の添加により、有機 EL素子における発光輝度 の向上や長寿命化が図られる。また、仕事関数が 2. 9eV以下の還元性ドーパントと して、これら 2種以上のアルカリ金属の組合わせも好ましぐ特に、 Csを含んだ組み合 わせ、例えば、 Csと Na、 Csと K、 Csと Rbあるいは Csと Naと Κとの組み合わせである ことが好ましい。 Csを組み合わせて含むことにより、還元能力を効率的に発揮するこ とができ、電子注入域への添加により、有機 EL素子における発光輝度の向上や長 寿命化が図られる。
[0177] 本発明においては、陰極と有機層の間に絶縁体や半導体で構成される電子注入 層をさらに設けてもよい。これにより、電流のリークを有効に防止して、電子注入性を 向上させること力 Sできる。このような絶縁体としては、アルカリ金属カルコゲナイド、ァ ルカリ土類金属カルコゲナイド、アルカリ金属のハロゲン化物及びアルカリ土類金属 のハロゲン化物からなる群から選択される少なくとも一つの金属化合物を使用するの が好ましい。電子注入層がこれらのアルカリ金属カルコゲナイド等で構成されていれ ば、電子注入性をさらに向上させることができる点で好ましい。
具体的に、好ましいアルカリ金属カルコゲナイドとしては、例えば、 Li 0、 LiO、 Na
2 2
S、 Na Se及び NaOが挙げられ、好ましいアルカリ土類金属カルコゲナイドとしては、
2
例えば、 CaO、 BaO、 SrO、 BeO、 BaS、及び CaSeが挙げられる。また、好ましいァ ルカリ金属のハロゲン化物としては、例えば、 LiF、 NaF、 KF、 LiCl、 KCl及び NaCl 等が挙げられる。また、好ましいアルカリ土類金属のハロゲン化物としては、例えば、 CaF、 BaF、 SrF、 MgF及び BeFといったフッ化物や、フッ化物以外のハロゲン
2 2 2 2 2
化物が挙げられる。
[0178] また、電子輸送層を構成する半導体としては、 Ba、 Ca、 Sr、 Yb、 Al、 Ga、 In、 Li、 Na、 Cd、 Mg、 Si、 Ta、 Sb及び Znの少なくとも一つの元素を含む酸化物、窒化物又 は酸化窒化物等の一種単独又は二種以上の組み合わせが挙げられる。また、電子 輸送層を構成する無機化合物が、微結晶又は非晶質の絶縁性薄膜であることが好 ましい。電子輸送層がこれらの絶縁性薄膜で構成されていれば、より均質な薄膜が 形成されるために、ダークスポット等の画素欠陥を減少させることができる。尚、このよ うな無機化合物としては、上述したアルカリ金属カルコゲナイド、アルカリ土類金属力 ルコゲナイド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物等 が挙げられる。
[0179] (陰極)
陰極としては仕事関数の小さい(4eV以下)金属、合金、電気伝導性化合物及びこ れらの混合物を電極物質とするものが用いられる。このような電極物質の具体例とし ては、ナトリウム、ナトリウム カリウム合金、マグネシウム、リチウム、マグネシウム '銀 合金、アルミニウム/酸化アルミニウム、アルミニウム 'リチウム合金、インジウム、希土 類金属等が挙げられる。
この陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成さ せることにより、作製すること力でさる。
ここで発光層からの発光を陰極から取り出す場合、陰極の発光に対する透過率は 1 0%より大きくすることが好ましレ、。
また、陰極としてのシート抵抗は数百 Ω /口以下が好ましぐ膜厚は通常 5nm〜l μ m、好ましくは 5〜200nmである。
尚、陰極を光半透過半反射性電極とする場合は、上記の材料の膜厚を調整すれ ばよい。
[0180] (絶縁層)
有機 ELは超薄膜に電界を印可するために、リークやショートによる画素欠陥が生じ やすい。これを防止するために、一対の電極間に絶縁性の薄膜層を挿入することが 好ましい。
絶縁層に用いられる材料としては例えば酸化アルミニウム、弗化リチウム、酸化リチ ゥム、弗化セシウム、酸化セシウム、酸化マグネシウム、弗化マグネシウム、酸化カル シゥム、弗化カルシウム、弗化セシウム、炭酸セシウム、窒化アルミニウム、酸化チタン 、酸化珪素、酸化ゲルマニウム、窒化珪素、窒化ホウ素、酸化モリブデン、酸化ルテ 二ゥム、酸化バナジウム等が挙げられる。
これらの混合物や積層物を用いてもょレ、。
[0181] (有機 EL素子の作製例)
以上例示した材料及び方法により陽極、発光層、必要に応じて正孔注入層、及び 必要に応じて電子注入層を形成し、さらに陰極を形成することにより有機 EL素子を 作製すること力 Sできる。また陰極から陽極へ、前記と逆の順序で有機 EL素子を作製 することちでさる。
以下、透光性基板上に陽極/正孔注入層/正孔輸送層/発光層/電子輸送層 /陰極が順次設けられた構成の有機 EL素子の作製例を記載する。
[0182] まず、適当な透光性基板上に陽極材料からなる薄膜を 1 μ m以下、好ましくは 10〜
200nmの範囲の膜厚になるように蒸着やスパッタリング等の方法により形成して陽極 を作製する。
[0183] 次に、この陽極上に上記式(2)の化合物からなる正孔注入層を設ける。正孔注入 層の形成は、前述したように真空蒸着法、スピンコート法、キャスト法、 LB法等の方法 により行うことができる力、均質な膜が得られやすぐかつピンホールが発生しにくい 等の点から真空蒸着法により形成することが好ましレ、。真空蒸着法により正孔注入層 を形成する場合、その蒸着条件は使用する化合物(正孔注入層の材料)、 目的とす る正孔注入層の結晶構造や再結合構造等により異なるが、一般に蒸着源温度 50〜 450°C、真空度 10— 7〜; 10— 3torr、蒸着速度 0. 0;!〜 50nm/秒、基板温度ー50〜 300°C、膜厚 5nm〜5 /i mの範囲で適宜選択することが好ましい。
[0184] この正孔注入層の上に上記式(1)の化合物からなる正孔輸送層を形成する。形成 方法や条件は、正孔注入層を形成する場合と同様である。
[0185] 次に、正孔輸送層上に発光層を設ける。発光層の形成も、所望の有機発光材料を 用いて真空蒸着法、スパッタリング、スピンコート法、キャスト法等の方法により有機発 光材料を薄膜化することにより形成できるが、均質な膜が得られやすぐかつピンホ ールが発生しにくい等の点から真空蒸着法により形成することが好ましレ、。真空蒸着 法により発光層を形成する場合、その蒸着条件は使用する化合物により異なるが、 一般的に正孔輸送層と同じような条件範囲の中から選択することができる。
[0186] 次に、この発光層上に電子輸送層を設ける。正孔輸送層、発光層と同様、均質な 膜を得る必要から真空蒸着法により形成することが好ましレ、。蒸着条件は正孔輸送 層、発光層と同様の条件範囲から選択することができる。
最後に陰極を積層して有機 EL素子を得ることができる。
陰極は金属から構成されるもので、蒸着法、スパッタリングを用いることができる。し 力、し下地の有機物層を製膜時の損傷から守るためには真空蒸着法が好ましい。 これまで記載してきた有機 EL素子の作製は一回の真空引きで一貫して陽極から陰 極まで作製することが好ましレヽ。 [0187] 尚、本発明の有機 EL素子の各層の形成方法は特に限定されない。従来公知の真 空蒸着法、スピンコーティング法等による形成方法を用いることができる。例えば、本 発明の有機 EL素子に用いる上記式(1)で示される化合物を含有する有機薄膜層は 、真空蒸着法、分子線蒸着法 (MBE法)あるいは溶媒に解力、した溶液のデイツビング 法、スピンコーティング法、キャスティング法、バーコート法、ロールコート法等の塗布 法による公知の方法で形成することができる。
[0188] 本発明の有機 EL素子の各有機層の膜厚は特に制限されないが、一般に膜厚が薄 すぎるとピンホール等の欠陥が生じやすぐ逆に厚すぎると高い印加電圧が必要とな り効率が悪くなるため、通常は数 nmから 1 μ mの範囲が好ましい。
[0189] 尚、有機 EL素子に直流電圧を印加する場合、陽極を +、陰極を一の極性にして、
5〜40Vの電圧を印加すると発光が観測できる。また、逆の極性で電圧を印加しても 電流は流れず、発光は全く生じない。さらに交流電圧を印加した場合には陽極が + 、陰極が一の極性になった時のみ均一な発光が観測される。印加する交流の波形は 任意でよい。
[実施例]
[0190] 以下、本発明について実施例をもとに詳細に説明する力 本発明はその要旨を越 えない限り、以下の実施例に限定されない。
[0191] 実施例 1
25mm X 75mm X l . 1mm厚の ITO透明電極(陽極)付きガラス基板(ジォマティ ック社製)をイソプロピルアルコール中で超音波洗浄を 5分間行なった後、 UVオゾン 洗浄を 30分間行なった。洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の 基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に、正孔注 入層として、前記透明電極を覆うようにして膜厚 60nmの下記式に示す化合物 B— 1 を成膜した。 B— 1膜の成膜に続けて、この B— 1膜上に、正孔輸送層として、膜厚 20 nmの下記式に示す A— 10を成膜した。
さらに、この A— 10膜上に、膜厚 40nmで下記式に示されるアントラセン誘導体 AN 1とスチリルァミン誘導体 D— 1を 40: 2の膜厚比で成膜し青色系発光層とした。 この膜上に、電子輸送層として膜厚 20nmで下記式に示される Alqを蒸着により成 膜した。この後、電子注入層として、 LiFを膜厚 lnmで成膜した。この LiF膜上に金 属 A1を 150nm蒸着させ金属陰極を形成し有機 EL発光素子を形成した。
[化 55]
Figure imgf000092_0001
AN— D一 A 1 q
Figure imgf000092_0002
B - A— 1 0 実施例 2
実施例 1において、正孔輸送層として化合物 A— 10の代わりに下記式に示す化合 物 A— 2を用いた他は実施例 1と同様にして有機 EL素子を作製した。
[化 56]
Figure imgf000092_0003
実施例 3
実施例 1において、正孔輸送層として化合物 A— 10の代わりに下記式に示す化合 物 A— 6を用いた他は実施例 1と同様にして有機 EL素子を作製した。
[化 57]
Figure imgf000093_0001
A一 6 実施例 4
実施例 1において、正孔輸送層として化合物 A— 10の代わりに下記式に示す化合 物 A— 9を用いた他は実施例 1と同様にして有機 EL素子を作製した。
[化 58]
Figure imgf000093_0002
A一 9 実施例 5
実施例 1において、正孔輸層層として化合物 A— 10の代わりに下記式に示す化合 物 A— 11を用いた他は実施例 1と同様にして有機 EL素子を作製した。
[化 59]
Figure imgf000093_0003
実施例 6
実施例 1において、正孔輸層層として化合物 A— 10の代わりに下記式に示す化合 物 A— 15を用いた他は実施例 1と同様に有機 EL素子を作製した。
[化 60]
Figure imgf000094_0001
実施例 7
実施例 1において、正孔輸送層として化合物 A— 10の代わりに下記式に示す化合 物 A— 25を用いた他は実施例 1と同様に有機 EL素子を作製した。
[化 61]
Figure imgf000094_0002
実施例 8
実施例 1において、正孔輸層層として化合物 A— 10の代わりに下記式に示す化合 物 A— 26を用いた他は実施例 1と同様に有機 EL素子を作製した。
[化 62]
Figure imgf000094_0003
実施例 9
実施例 1において、正孔輸送層として化合物 A— 10の代わりに下記式に示す化合 物 A— 28を用いた他は実施例 1と同様に有機 EL素子を作製した。
[化 63]
Figure imgf000095_0001
実施例 10
実施例 1において、正孔輸層層として化合物 A— 10の代わりに下記式に示す化合 物 A— 29を用いた他は実施例 1と同様に有機 EL素子を作製した。
[化 64]
Figure imgf000095_0002
実施例 11
実施例 1において、正孔注入層として化合物 B— 1の代わりに下記式に示す化合物 B— 5を用いた他は実施例 1と同様に有機 EL素子を作製した。
[化 65]
Figure imgf000095_0003
実施例 12
実施例 1において、正孔注入層として化合物 B— 1の代わりに下記式に示す化合物 B— 7を用いた他は実施例 1と同様に有機 EL素子を作製した。
[化 66]
Figure imgf000096_0001
実施例 13
実施例 1において、正孔注入層として化合物 B— 1の代わりに下記式に示す化合物 B— 8を用いた他は実施例 1と同様に有機 EL素子を作製した。
[化 67]
Figure imgf000096_0002
実施例 14
実施例 1において、正孔注入層として化合物 B— 1の代わりに下記式に示す化合物 B 12を用レ、た他は実施例 1と同様にして有機 EL素子を作製した。
[化 68]
Figure imgf000096_0003
実施例 15
実施例 1において、正孔注入層として化合物 B— 1の代わりに下記式に示す化合物 B - 25を用レ、た他は実施例 1と同様にして有機 EL素子を作製した。 [化 69]
Figure imgf000097_0001
実施例 16
実施例 1において、正孔注入層として化合物 B— 1の代わりに下記式に示す化合物 B— 27を用いた他は実施例 1と同様にして有機 EL素子を作製した。
[化 70]
Figure imgf000097_0002
実施例 17
実施例 1において、正孔注入層として化合物 B— 1の代わりに下記式に示す化合物 B 33を用レ、た他は実施例 1と同様にして有機 EL素子を作製した。
[化 71]
Figure imgf000097_0003
実施例 18
実施例 1において、正孔注入層として化合物 B— 1の代わりに下記式に示す化合物 B 39を用レ、た他は実施例 1と同様にして有機 EL素子を作製した。 [化 72]
Figure imgf000098_0001
比較例 1
実施例 1において、正孔輸送層として化合物 A— 10の代わりに下記式に示す化合 物(E— 1)を用いた他は実施例 1と同様にして有機 EL素子を作製した。
[化 73]
Figure imgf000098_0002
比較例 2
実施例 1において、正孔注入層として化合物 B— 1の代わりに下記式に示す E— 2 を、正孔輸送層として化合物 A - 10の代わりに化合物 B— 1を用レ、た他は実施例 1と 同様にして有機 EL素子を作製した。
[化 74]
Figure imgf000098_0003
比較例 3 実施例 1において、正孔注入層として化合物 B— 1の代わりに化合物 E— 2を用い た他は実施例 1と同様にして有機 EL素子を作製した。
比較例 4
実施例 1において、正孔注入層として化合物 B— 1の代わりに下記式に示す化合物 (E— 3)を用いた他は実施例 1と同様にして有機 EL素子を作製した。
[化 75]
Figure imgf000099_0001
[0214] 比較例 5
実施例 1において、化合物 B— 1からなる正孔注入層の膜厚を 80nmとし、正孔輸 送層を形成しなかった他は、実施例 1と同様にして有機 EL発光素子を形成した。
[0215] 比較例 6
比較例 5において、正孔注入層として化合物 B— 1の代わりに化合物 A— 10を用い た他は、比較例 5と同様に有機 EL素子を作製した。
[0216] 比較例 7
比較例 5において、正孔注入層として化合物 B— 1の代わりに化合物 B— 39を用い た他は、比較例 5と同様に有機 EL素子を作製した。
[0217] 実施例;!〜 18及び、比較例 1〜7の素子性能結果を表 1に示す。
[0218] [表 1] 正孔注入層 正孔輸送層 電圧 発光効率 発光色 寿命
(V) (cd/A)
実施例 1 B-1 A - 10 6.9 8.2 青色 8000 実施例 2 B-1 A-2 7.1 8.3 青色 7000 実施例 3 B-1 A-6 7 8.3 青色 7000 実施例 4 B-1 A - 9 6.9 8.3 青色 8000 実施例 5 B-1 A-11 6.9 8.2 青色 8000 実施例 6 B - 1 A 15 6.9 8.3 青色 8000 実施例 7 B-1 A-25 7.1 8.3 青色 8000 実施例 8 B-1 A-26 7 8.2 青色 8000 実施例 9 B-1 A-28 7 8.2 青色 8000 実施例 10 B-1 A-29 7 8.2 青色 8000 実施例 11 B-5 A-10 6.9 8.3 青色 8000 実施例 12 B-7 A-10 6.9 8.3 青色 8000 実施例 13 B-8 A-10 6.9 8.3 青色 8000 実施例 14 B-12 A-10 6.9 8.3 青色 8000 実施例 15 B - 25 A-10 6.9 8.3 青色 8000 実施例 16 B - 27 A-10 6.9 8,3 青色 8000 実施例 17 B-33 A-10 6.9 8.3 青色 8000 実施例 18 B-39 A- 10 6.9 8.2 青色 8000 比較例 1 B-1 E-1 7.3 6.7 青色 500 比較例 2 E-2 B-1 6.8 6.5 青色 8000 比較例 3 E-2 A-10 8.9 8.2 青色 500 比較例 4 E-3 A-10 8.5 8.3 青色 500 比較例 5 B-1 ― 6.8 6.5 青色 7000 比較例 6 A-10 ― 10.5 8.3 青色 500 比較例 7 B-39 ― 6.5 4.1 青色 600 実施例 19
25mmX75mmXl. 1mm厚の ITO透明電極(陽極)付きガラス基板(ジォマティ ック社製)をイソプロピルアルコール中で超音波洗浄を 5分間行なった後、 UVオゾン 洗浄を 30分間行なった。洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の 基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に、正孔注 入層として前記透明電極を覆うようにして膜厚 lOnmの下記式に示すァクセプター化 合物 C 1を成膜した。 C— 1膜の成膜に続けて、この C— 1膜上に、正孔輸送層(1)として膜厚 50nmの B 1を成膜した。
B— 1膜の成膜に続けて、この B— 1膜上に、正孔輸送層(2)として膜厚 20nmの A —10を成膜した。
さらに、この A— 10膜上に膜厚 40nmで AN— 1と D— 1を 40: 2の膜厚比で成膜し 青色系発光層とした。
この膜上に電子輸送層として膜厚 20nmで Alqを蒸着により成膜した。この後、電 子注入層として LiFを膜厚 lnmで成膜した。この LiF膜上に金属 A1を 150nm蒸着さ せ金属陰極を形成し有機 EL発光素子を形成した。
[化 76]
Figure imgf000101_0001
[0220] 実施例 20
実施例 19において、正孔注入層として化合物 C 1の代わりに下記式に示す化合 物 C 2を用いた他は実施例 19と同様にして有機 EL素子を作製した。
[化 77]
Figure imgf000101_0002
[0221] 実施例 21
実施例 19において、正孔輸送層(2)として化合物 A— 10の代わりに化合物 A— 2 を用いた他は実施例 19と同様にして有機 EL素子を作製した。
[0222] 実施例 22
実施例 19において、正孔輸層層(2)として化合物 A— 10の代わりに化合物 A— 6 を用いた他は実施例 19と同様にして有機 EL素子を作製した。 [0223] 実施例 23
実施例 19において、正孔輸送層(2)として化合物 A— 10の代わりに化合物 A— 9 を用いた他は実施例 19と同様にして有機 EL素子を作製した。
[0224] 実施例 24
実施例 19において、正孔輸送層(2)として化合物 A— 10の代わりに化合物 A— 11 を用いた他は実施例 19と同様にして有機 EL素子を作製した。
[0225] 実施例 25
実施例 19におレ、て、正孔輸送層(2)として化合物 A— 10の代わりに化合物 A— 15 を用いた他は実施例 19と同様にして有機 EL素子を作製した。
[0226] 実施例 26
実施例 19において、正孔輸送層(2)として化合物 A— 10の代わりに化合物 A— 25 を用いた他は実施例 19と同様にして有機 EL素子を作製した。
[0227] 実施例 27
実施例 19において、正孔輸送層(2)として化合物 A— 10の代わりに化合物 A— 26 を用いた他は実施例 19と同様にして有機 EL素子を作製した。
[0228] 実施例 28
実施例 19において、正孔輸送層(2)として化合物 A— 10の代わりに化合物 A— 28 を用いた他は実施例 19と同様にして有機 EL素子を作製した。
[0229] 実施例 29
実施例 19において、正孔輸送層(2)として化合物 A— 10の代わりに化合物 A— 29 を用いた他は実施例 19と同様にして有機 EL素子を作製した。
[0230] 実施例 30
実施例 19において、正孔輸送層(1)として化合物 B— 1の代わりに下記式の化合 物(B— 2)を用レ、た他は実施例 19と同様にして有機 EL素子を作製した。
[化 78]
Figure imgf000102_0001
[0231] 実施例 31
実施例 19において、正孔輸層層(1)として化合物 B— 1の代わりに化合物 B— 5を 用いた他は実施例 19と同様にして有機 EL素子を作製した。
[0232] 実施例 32
実施例 19において、正孔輸層層(1)として化合物 B— 1の代わりに化合物 B— 7を 用いた他は実施例 19と同様にして有機 EL素子を作製した。
[0233] 実施例 33
実施例 19において、正孔輸層層(1)として化合物 B— 1の代わりに化合物 B— 8を 用いた他は実施例 19と同様にして有機 EL素子を作製した。
[0234] 実施例 34
実施例 19において、正孔輸層層(1)として化合物 B—1の代わりに化合物 B— 12 を用いた他は実施例 19と同様にして有機 EL素子を作製した。
[0235] 実施例 35
実施例 19において、正孔輸送層(1)として化合物 B— 1の代わりに化合物 B— 25 を用いた他は実施例 19と同様にして有機 EL素子を作製した。
[0236] 実施例 36
実施例 19において、正孔輸送層(1)として化合物 B— 1の代わりに化合物 B— 33 を用いた他は実施例 19と同様にして有機 EL素子を作製した。
[0237] 実施例 37
実施例 19において、正孔輸送層(1)として化合物 B— 1の代わりに化合物 B— 39 を用いた他は実施例 19と同様にして有機 EL素子を作製した。
[0238] 比較例 8
実施例 19において、正孔輸層層(1)として化合物 B— 1の代わりに化合物 E— 2を 用いた他は実施例 19と同様にして有機 EL素子を作製した。
[0239] 比較例 9
実施例 19において、正孔輸送層(1)として化合物 B— 1の代わりに化合物 E— 3を 用いた他は実施例 19と同様にして有機 EL素子を作製した。
[0240] 比較例 10 実施例 19において、正孔輸送層(1)として化合物 B— 1の代わりに化合物 E— 3を 、正孔輸層層(2)として A— 10の代わりに B—1を用いた他は実施例 19と同様にして 有機 EL素子を作製した。
[0241] 比較例 11
25mm X 75mm X l . 1mm厚の ITO透明電極(陽極)付きガラス基板(ジォマティ ック社製)をイソプロピルアルコール中で超音波洗浄を 5分間行なった後、 UVオゾン 洗浄を 30分間行なった。洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の 基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に、正孔注 入層として、前記透明電極を覆うようにして膜厚 60nmのァクセプター化合物 C 1を 成膜した。 C— 1膜の成膜に続けて、この C— 1膜上に、正孔輸送層として膜厚 20nm の A— 10を成膜した。
さらに、この A— 10膜上に膜厚 40nmで AN— 1と D— 1を 40: 2の膜厚比で成膜し 青色系発光層とした。
この膜上に電子輸送層として膜厚 20nmで Alqを蒸着により成膜した。この後、電 子注入層として LiFを膜厚 lnmで成膜した。この LiF膜上に金属 A1を 150nm蒸着さ せ金属陰極を形成し有機 EL発光素子を形成した。
[0242] 比較例 12
比較例 11において、正孔輸送層として化合物 A— 10の代わりに化合物 B—1を用 V、た他は比較例 11と同様にして有機 EL素子を作製した。
[0243] 比較例 13
比較例 11において、正孔輸送層として化合物 A— 10の代わりに化合物 B— 39を 用いた他は比較例 11と同様にして有機 EL素子を作製した。
[0244] 実施例 19〜37及び比較例 8〜; 13の素子性能結果を表 2に示す。
[0245] [表 2] 正孔注入層 正孔輸送層 1 正孔輸送層 2 電圧 発光効率 発光色 寿命
(V) (cd/A)
実施例 19 C-1 B-1 A- 10 6.4 8.2 青色 8000 実施例 20 C- 2 B 1 A-10 6.4 8.2 青色 8000 実施例 21 C - 1 B-1 A-2 6.6 8.3 青色 7000 実施例 22 C-1 B-1 A- 6 6.5 8.3 7000 実施例 23 C-1 B-1 A-9 6.4 8, 3 青色 8000 実施例 24 C-1 B 1 A-11 6.4 8.2 青色 8000 実施例 25 C - 1 B-1 A-15 6.4 8.3 青色 8000 実施例 26 C- 1 B-1 A-25 6.6 8.3 青色 8000 実施例 27 C-1 B-1 A-26 6.5 8.2 青色 8000 実施例 28 C-1 B-1 A 28 6.5 8.2 青色 8000 実施例 29 C-1 B- 1 A-29 6.5 8.2 青色 8000 実施例 30 C-1 B-2 A-10 6.4 8.3 青色 8000 実施例 31 C- 1 B-5 A - 10 6.4 8.3 青色 8000 実施例 32 C-1 B-7 A-10 6.4 8, 3 青色 8000 実施例 33 C-1 B-8 A-10 6.4 8.3 青色 8000 実施例 34 C-1 B-12 A - 10 6.4 8, 3 青色 8000 実施例 35 C- 1 B-25 A 10 6.4 8.3 青色 8000 実施例 36 C- 1 B-33 A- 10 6.4 8.3 青色 8000 実施例 37 C- 1 B-39 A - 10 6.4 8.3 青色 8000 比較例 8 C- 1 E-2 A- 10 8,9 8.2 青色 500 比較例 9 C-1 E-3 A-10 8.9 8.2 青色 500 比較例 10 C- 1 E-3 B-1 6.9 6 青色 5000 比較例 11 C-1 A-10 10.5 7, 5 青色 500 比較例 12 C- 1 B-1 6.6 6.5 青色 7000 比較例 13 C-1 B-39 6.3 3.9 青色 600
[0246]
[0247]
Figure imgf000105_0001
[0248] 比較例 6のように、化合物 A— 10は単層で正孔輸送層を形成すると、比較例 4の B 1と比較して効率が高いが、同時に駆動電圧も高くなり、寿命も短い。 表 3の物性値から考えると、 A— 10の正孔移動度は非常に小さいため、厚膜化する ことにより電圧が上がる。また、このことにより、発光層へ注入される正孔量が少なくな るとともに、電子が正孔輸送層まで到達し、正孔輸送材料が劣化することにより短寿 命化すると考えられる。 A— 10は B—1よりも電子親和力がわずかに小さぐ電子プロ ック†生が大きレ、ため効率が高くなる。
比較例 3, 4のように正孔注入層を挿入すると、単層で A 10を用いた場合よりも低 電圧化するが、従来の構成である比較例 1よりも電圧が高い。化合物 E— 2の正孔移 動度が十分でないため、低電圧化が不十分であると考えられる。
[0249] 一方で、実施例;!〜 18では、高電圧化せず、高い発光効率でかつ長寿命を実現し ている。正孔注入層に B— 1を用いると、 B— 1が高い移動度を持っため高電圧化し ないと考えられる。
また、比較例 1の結果より化合物 E— 1を用いると高電圧化、短寿命化している。こ れから従来用いられてきた、正孔輸送材料のイオン化ポテンシャルレベルを階段的 に設定することが、必ずしも素子の低電圧、高効率、長寿命に効果を示すわけでは ないことがわかる。
[0250] 本発明の有機 EL素子の素子構成では、特定の材料系を用いることにより、特異的 に正孔が流れやすい構造になっており、発光層に注入される正孔が格段に多くなる 。また、電子の正孔輸送層への到達を妨げることができ、長寿命化する。また、 A- 1 0特有の高効率化の性質を維持し、さらに低電圧、長寿命を実現できる。
上述した傾向は、それぞれの周辺化合物を用いても同じであると考えられる。 さらに、同様の傾向が、陽極の界面にァクセプター材料を用いても得られる。ァクセ プター材料を用いることにより、さらなる低電圧化を実現できた。
産業上の利用可能性
[0251] 本発明の有機 EL素子は、青色を始めとした各色有機 EL用材料として使用可能で あり、各種表示素子、ディスプレイ、バックライト、照明光源、標識、看板、インテリア等 の分野に適用でき、特にカラーディスプレイの表示素子として適している。

Claims

請求の範囲
[1] 陽極と陰極と、
前記陽極と前記陰極の間に、少なくとも有機化合物からなる発光層と、
前記陽極と前記発光層の間である正孔注入'輸送帯域に 2以上の層を有し、 前記正孔注入 ·輸送帯域にある層の発光層に接する層が、下記式( 1 )で表される 化合物を含有し、
前記正孔注入'輸送帯域にある層の、陽極と、発光層に接する層の間にある層が、 下記式(2)で表されるァミン誘導体を含有する、有機エレクト口ルミネッセンス素子。
[化 79]
Figure imgf000107_0001
( 1 )
(式中、 Ζは置換又は無置換の含窒素複素環基であり、 Lは置換基を有していてもよ い 2価の芳香族基が、 1ないし 4個結合してなる連結基であり、 Ar及び Arは、各々
1 2
独立して、置換基を有していてもよい、芳香族炭化水素環基又は芳香族複素環基で ある。 )
[化 80]
ゝ 6 ( 2 )
(式中、 Lは置換もしくは無置換の核炭素数 10〜40のァリーレン基であり、 Ar〜Ar
2 3 は、それぞれ置換もしくは無置換の核炭素数 6〜60の芳香族炭化水素環基、又は
6
置換もしくは無置換の核原子数 6〜60の芳香族複素環基である。 )
[2] 前記アミン誘導体が下記式(3)で示される化合物である請求項 1記載の有機エレク トロルミネッセンス素子。
[化 81]
Figure imgf000108_0001
(式中、 Ar〜Arは、それぞれ置換もしくは無置換の核炭素数 6〜60の芳香族炭化
3 6
水素環基、又は置換もしくは無置換の核原子数 6〜60の芳香族複素環基であり、 R は置換基であり、 nは 2〜4の整数を表す。 )
前記アミン誘導体が下記式 (4)で示される化合物である請求項 2記載の有機エレク トロルミネッセンス素子。
[化 82]
Figure imgf000108_0002
(式中、 R及び Rは、それぞれ置換基であり、互いに連結して飽和又は不飽和の環
1 2
を形成してもよい。 Ar〜Ar は、それぞれ置換又は無置換の核炭素数 6〜60の芳
7 10
香族炭化水素環基、又は置換もしくは無置換の核炭素数 6〜60の芳香族複素環基 である。 )
式(4)中の Ar〜Ar の少なくとも一つが置換又は無置換のビフエニル基である言 1 求項 3記載の有機エレクト口ルミネッセンス素子。
[5] 前記アミン誘導体が、下記式(5)で示される化合物である請求項 2記載の有機エレ タトロルミネッセンス素子。
[化 83]
Figure imgf000108_0003
(式中、 R〜Rは、それぞれ置換基であり、互いに連結して飽和又は不飽和の環を
3 5
形成してもよい。 Ar 〜Ar は、それぞれ置換もしくは無置換の核炭素数 6〜60の 芳香族炭化水素環基、又は置換もしくは無置換の核原子数 6〜 60の芳香族複素環 式(5)中の Ar 〜Ar の少なくとも一つが置換又は無置換のビフエニル基である言 1 求項 5記載の有機エレクト口ルミネッセンス素子。
[7] 前記式(1)で表される化合物が、下記式(6)で表される化合物である請求項 1〜6 のいずれかに記載の有機エレクト口ルミネッセンス素子。
[化 84]
Figure imgf000109_0001
(式中、 Czは置換又は無置換のカルバゾリル基であり、 Lは置換基を有していてもよ
3
い 2価の芳香族基力 1ないし 4個結合してなる連結基であり、 Ar 及び Ar は、各
15 16 々独立して、置換基を有していてもよい、芳香族炭化水素環基又は芳香族複素環基 でめる。 )
前記式( 1 )で表される化合物が、下記式(7)で表される化合物である請求項 1〜 7 のいずれかに記載の有機エレクト口ルミネッセンス素子。
[化 85]
Figure imgf000109_0002
(式中、 Ar 及び Ar は、各々独立して、置換基を有していてもよい、芳香族炭化水
17 18
素環基又は芳香族複素環基を示し、 R〜R は、各々独立して、水素原子、ハロゲ
6 13
ン原子、アルキル基、ァラルキル基、アルケニル基、シァノ基、アミノ基、ァシル基、ァ ルコキシカルボニル基、カルボキシル基、アルコキシ基、ァリールォキシ基、アルキル スルホニル基、水酸基、アミド基、芳香族炭化水素環基又は芳香族複素環基を表し 、これらはいずれも、さらに置換されていてもよい。また、 R〜R は隣り合うもの同士
6 13
で環を形成していてもよい。 Lは、置換基を有していてもよい 2価の芳香族基が、 1な
4
いし 4個結合してなる連結基を表す。)
式(7)で表される化合物が下記式(8)で表される化合物である請求項 8記載の有 機エレクト口ルミネッセンス素子。
[化 86]
Figure imgf000110_0001
(式中、 Ar 及び Ar は、各々独立して、置換基を有していてもよい、芳香族炭化水
17 18
素環基又は芳香族複素環基を示し、 R〜R は、各々独立して、水素原子、ハロゲ
6 15
ン原子、アルキル基、ァラルキル基、アルケニル基、シァノ基、アミノ基、ァシル基、ァ ルコキシカルボニル基、カルボキシル基、アルコキシ基、ァリールォキシ基、アルキル スルホニル基、水酸基、アミド基、芳香族炭化水素環基又は芳香族複素環基を表し
、これらはいずれも、さらに置換されていてもよい。また、 R〜R は隣り合うもの同士
6 15
で環を形成していてもよい。 )
[10] 前記正孔注入'輸送帯域にある層の陽極に接する層が、ァクセプター材料を含有 する層である請求項 1〜9のいずれかに記載の有機エレクト口ルミネッセンス素子。
[11] 青色発光する請求項 1〜; 10のいずれかに記載の有機エレクト口ルミネッセンス素子
PCT/JP2007/062258 2006-06-22 2007-06-19 複素環含有アリールアミン誘導体を用いた有機エレクトロルミネッセンス素子 WO2007148660A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07767148.5A EP2031670B1 (en) 2006-06-22 2007-06-19 Organic electroluminescent device employing heterocycle-containing arylamine derivative
JP2008522454A JP5616582B2 (ja) 2006-06-22 2007-06-19 複素環含有アリールアミン誘導体を用いた有機エレクトロルミネッセンス素子
CN200780022945.1A CN101473464B (zh) 2006-06-22 2007-06-19 应用含有杂环的芳胺衍生物的有机电致发光元件
KR1020087030995A KR101422864B1 (ko) 2006-06-22 2007-06-19 복소환 함유 아릴아민 유도체를 이용한 유기 전계발광 소자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006172853 2006-06-22
JP2006-172853 2006-06-22

Publications (1)

Publication Number Publication Date
WO2007148660A1 true WO2007148660A1 (ja) 2007-12-27

Family

ID=38833402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062258 WO2007148660A1 (ja) 2006-06-22 2007-06-19 複素環含有アリールアミン誘導体を用いた有機エレクトロルミネッセンス素子

Country Status (7)

Country Link
US (6) US10263192B2 (ja)
EP (1) EP2031670B1 (ja)
JP (1) JP5616582B2 (ja)
KR (1) KR101422864B1 (ja)
CN (1) CN101473464B (ja)
TW (1) TWI478410B (ja)
WO (1) WO2007148660A1 (ja)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007424A (ja) * 2006-06-27 2008-01-17 Idemitsu Kosan Co Ltd 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2009072587A1 (en) * 2007-12-03 2009-06-11 Semiconductor Energy Laboratory Co., Ltd. Carbazole derivative, and light-emitting element, light-emitting device, and electronic device using carbazole derivative
WO2009081857A1 (ja) * 2007-12-21 2009-07-02 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2009151039A1 (ja) * 2008-06-11 2009-12-17 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
WO2010044130A1 (ja) * 2008-10-17 2010-04-22 三井化学株式会社 芳香族アミン誘導体、及びそれらを用いた有機エレクトロルミネッセンス素子
WO2010098458A1 (ja) * 2009-02-27 2010-09-02 出光興産株式会社 有機エレクトロルミネッセンス素子
JP2010192431A (ja) 2009-01-21 2010-09-02 Semiconductor Energy Lab Co Ltd 発光素子、発光装置及び電子機器
WO2011021520A1 (ja) 2009-08-19 2011-02-24 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2011024451A1 (ja) * 2009-08-28 2011-03-03 保土谷化学工業株式会社 カルバゾール環構造を有する化合物および有機エレクトロルミネッセンス素子
JPWO2010061824A1 (ja) * 2008-11-25 2012-04-26 出光興産株式会社 芳香族アミン誘導体及び有機エレクトロルミネッセンス素子
JPWO2010106806A1 (ja) * 2009-03-19 2012-09-20 三井化学株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2013109027A1 (ko) * 2012-01-18 2013-07-25 덕산하이메탈(주) 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
US8642782B2 (en) 2010-09-21 2014-02-04 Semiconductor Energy Laboratory Co., Ltd. Carbazole derivative, light-emitting element material and organic semiconductor material
WO2014034795A1 (ja) 2012-08-31 2014-03-06 出光興産株式会社 芳香族アミン誘導体およびこれを用いた有機エレクトロルミネッセンス素子
WO2014034793A1 (ja) 2012-08-30 2014-03-06 出光興産株式会社 芳香族アミン誘導体およびこれを用いた有機エレクトロルミネッセンス素子
US8697885B2 (en) 2010-11-30 2014-04-15 Semiconductor Energy Laboratory Co., Ltd. Carbazole compound, light-emitting element material, organic semiconductor material, light-emitting element, light emitting device, lighting device, and electronic device
CN103827255A (zh) * 2011-12-23 2014-05-28 株式会社Lg化学 有机发光二极管及其制造方法
WO2014088352A1 (en) * 2012-12-06 2014-06-12 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compounds and organic electroluminescent device comprising the same
JP2014532303A (ja) * 2012-02-27 2014-12-04 エルジー・ケム・リミテッド 有機発光素子
US20140374722A1 (en) * 2012-01-18 2014-12-25 Duksan High Metal Co., Ltd. Compound, organic electric element using the same, and an electronic device thereof
KR20150079664A (ko) 2012-11-02 2015-07-08 이데미쓰 고산 가부시키가이샤 유기 전기발광 소자
KR101566578B1 (ko) 2012-02-27 2015-11-05 주식회사 엘지화학 유기 발광 소자
JP2015213077A (ja) * 2015-06-22 2015-11-26 ユニバーサル ディスプレイ コーポレイション 溶液加工可能な、ドープされたトリアリールアミン正孔注入材料
WO2016013184A1 (ja) * 2014-07-25 2016-01-28 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
US9412962B2 (en) 2012-08-03 2016-08-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
WO2016126035A1 (ko) * 2015-02-03 2016-08-11 덕산네오룩스 주식회사 유기전기소자 및 이를 포함하는 전자장치
WO2017061480A1 (ja) * 2015-10-06 2017-04-13 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
US9691991B2 (en) 2012-02-27 2017-06-27 Lg Chem, Ltd. Organic light emitting diode
KR101764006B1 (ko) 2014-08-20 2017-08-02 주식회사 엘지화학 유기 발광 소자
US9780317B2 (en) 2012-12-05 2017-10-03 Samsung Display Co., Ltd. Amine derivative, organic luminescent material and organic electroluminescent device using the amine derivative or the organic luminescent material
US20180114916A1 (en) * 2015-04-10 2018-04-26 Hodogaya Chemical Co., Ltd. Organic electroluminescent device
US9991455B2 (en) 2013-09-20 2018-06-05 Idemitsu Kosan Co., Ltd. Amine compound and organic electroluminescent element
US9997715B2 (en) 2014-11-18 2018-06-12 Samsung Display Co., Ltd. Material for organic electroluminescent device and organic electroluminescent device using the same
US10103338B1 (en) 2017-08-14 2018-10-16 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and electronic device
JP2018188441A (ja) * 2009-03-31 2018-11-29 株式会社半導体エネルギー研究所 カルバゾール誘導体、発光素子、発光装置、電子機器、照明装置
JP2020098916A (ja) * 2016-05-27 2020-06-25 エルジー・ケム・リミテッド 有機発光素子
JP2021170672A (ja) * 2009-12-01 2021-10-28 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器および照明装置
CN113659089A (zh) * 2014-12-02 2021-11-16 三星显示有限公司 有机电致发光装置
US11258031B2 (en) 2017-12-11 2022-02-22 Lg Chem, Ltd. Organic light-emitting device and manufacturing method therefor

Families Citing this family (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5616582B2 (ja) * 2006-06-22 2014-10-29 出光興産株式会社 複素環含有アリールアミン誘導体を用いた有機エレクトロルミネッセンス素子
JP5467873B2 (ja) * 2008-02-14 2014-04-09 保土谷化学工業株式会社 置換されたピリジル基が連結したピリドインドール環構造を有する化合物および有機エレクトロルミネッセンス素子
EP2299509B1 (en) 2008-05-16 2016-06-29 Hodogaya Chemical Co., Ltd. Organic electroluminescent device
US20100314644A1 (en) 2009-06-12 2010-12-16 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
EP2471772B1 (en) * 2009-08-27 2019-04-17 Mitsubishi Chemical Corporation Monoamine compound, charge transport material, composition for charge transport film, organic electroluminescent element, organic el display device, and organic el lighting
KR101446401B1 (ko) 2009-10-02 2014-10-01 이데미쓰 고산 가부시키가이샤 방향족 아민 유도체 및 유기 전기발광 소자
KR101097316B1 (ko) * 2009-10-12 2011-12-23 삼성모바일디스플레이주식회사 유기 발광 소자
WO2011048822A1 (ja) * 2009-10-23 2011-04-28 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
KR101182444B1 (ko) 2010-04-01 2012-09-12 삼성디스플레이 주식회사 유기 발광 소자
EP2371828B1 (en) 2010-04-01 2018-01-10 Samsung Display Co., Ltd. Condensed-Cyclic Compound and Organic Light-Emitting Device Including the Same
JP2011222831A (ja) 2010-04-12 2011-11-04 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
US8586206B2 (en) 2010-06-30 2013-11-19 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescence device using the same
US20120187392A1 (en) 2010-07-09 2012-07-26 Idemitsu Kosan Co., Ltd Imidazopyridine derivatives and organic electroluminescent elements containing same
TW201213502A (en) 2010-08-05 2012-04-01 Idemitsu Kosan Co Organic electroluminescent element
JPWO2012029253A1 (ja) 2010-08-31 2013-10-28 出光興産株式会社 含窒素芳香族複素環誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2012046839A1 (ja) 2010-10-08 2012-04-12 出光興産株式会社 ベンゾ[k]フルオランテン誘導体及びそれを含んでなる有機エレクトロルミネッセンス素子
CN102548968A (zh) 2010-10-12 2012-07-04 出光兴产株式会社 芳香族杂环衍生物及使用该芳香族杂环衍生物的有机场致发光元件
EP2643866B1 (en) 2010-11-22 2019-05-08 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US8426040B2 (en) 2010-12-22 2013-04-23 Nitto Denko Corporation Compounds for use in light-emitting devices
US9349964B2 (en) * 2010-12-24 2016-05-24 Lg Chem, Ltd. Organic light emitting diode and manufacturing method thereof
WO2012103380A1 (en) * 2011-01-27 2012-08-02 Nitto Denko Corporation Phototherapy devices and methods comprising optionally substituted terphenyl and quaterphenyl compounds
KR101908384B1 (ko) * 2011-06-17 2018-10-17 삼성디스플레이 주식회사 유기 발광 소자 및 이를 포함하는 평판 표시 장치
US8933243B2 (en) 2011-06-22 2015-01-13 Nitto Denko Corporation Polyphenylene host compounds
KR101927943B1 (ko) * 2011-12-02 2018-12-12 삼성디스플레이 주식회사 다층 구조의 정공수송층을 포함하는 유기 발광 소자 및 이를 포함하는 평판 표시 장치
KR101927941B1 (ko) 2011-12-19 2018-12-12 삼성디스플레이 주식회사 다층 구조의 정공수송층을 포함하는 유기 발광 소자 및 이를 포함하는 평판 표시 장치
KR101251451B1 (ko) * 2012-08-17 2013-04-05 덕산하이메탈(주) 화합물을 이용한 유기전기소자 및 그 전자 장치
KR101292554B1 (ko) * 2012-08-02 2013-08-12 덕산하이메탈(주) 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102098061B1 (ko) * 2012-03-19 2020-04-08 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
TWI592463B (zh) 2012-12-10 2017-07-21 日東電工股份有限公司 用於發光裝置之雙極性主發光體
TWI607077B (zh) 2012-12-10 2017-12-01 日東電工股份有限公司 有機發光主體材料
US9614162B2 (en) 2012-12-17 2017-04-04 Nitto Denko Corporation Light-emitting devices comprising emissive layer
KR20140126610A (ko) 2013-04-23 2014-10-31 삼성디스플레이 주식회사 유기 발광 소자
KR20140142088A (ko) * 2013-06-03 2014-12-11 삼성디스플레이 주식회사 아릴 아민계 화합물 및 이를 포함한 유기 발광 소자
EP2881446B1 (en) 2013-12-05 2019-01-09 LG Display Co., Ltd. Organic compound and organic light emitting diode using the same
KR102235596B1 (ko) 2013-12-12 2021-04-05 삼성디스플레이 주식회사 유기 발광 소자
KR101546788B1 (ko) * 2013-12-27 2015-08-24 희성소재 (주) 헤테로고리 화합물 및 이를 이용한 유기발광소자
US10784448B2 (en) 2014-08-08 2020-09-22 Udc Ireland Limited Electroluminescent imidazo-quinoxaline carbene metal complexes
KR102390993B1 (ko) * 2014-09-09 2022-04-27 삼성디스플레이 주식회사 유기 일렉트로루미네센스 소자
KR102448359B1 (ko) * 2014-10-06 2022-09-29 삼성디스플레이 주식회사 유기 전계 발광 소자
WO2016060463A2 (ko) * 2014-10-14 2016-04-21 주식회사 동진쎄미켐 신규한 화합물 및 이를 포함하는 유기발광소자
JP6038387B2 (ja) * 2014-11-18 2016-12-07 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
KR102293436B1 (ko) * 2014-11-19 2021-08-25 덕산네오룩스 주식회사 유기전기소자용 조성물을 이용한 디스플레이 장치 및 유기전기소자
US9929361B2 (en) 2015-02-16 2018-03-27 Universal Display Corporation Organic electroluminescent materials and devices
US11056657B2 (en) 2015-02-27 2021-07-06 University Display Corporation Organic electroluminescent materials and devices
US11895909B2 (en) * 2015-04-29 2024-02-06 Samsung Display Co., Ltd. Organic light-emitting device
US9859510B2 (en) 2015-05-15 2018-01-02 Universal Display Corporation Organic electroluminescent materials and devices
US10418568B2 (en) 2015-06-01 2019-09-17 Universal Display Corporation Organic electroluminescent materials and devices
US11127905B2 (en) 2015-07-29 2021-09-21 Universal Display Corporation Organic electroluminescent materials and devices
CN105085374A (zh) * 2015-08-12 2015-11-25 吉林奥来德光电材料股份有限公司 芳香族胺类化合物及其制备方法和应用
US10361381B2 (en) 2015-09-03 2019-07-23 Universal Display Corporation Organic electroluminescent materials and devices
CN115557879B (zh) * 2015-09-24 2024-02-20 株式会社Lg化学 化合物和包含其的有机电子器件
KR102684614B1 (ko) 2015-12-21 2024-07-15 유디씨 아일랜드 리미티드 삼각형 리간드를 갖는 전이 금속 착체 및 oled에서의 이의 용도
US20170229663A1 (en) 2016-02-09 2017-08-10 Universal Display Corporation Organic electroluminescent materials and devices
US10573692B2 (en) 2016-04-06 2020-02-25 Samsung Display Co., Ltd. Organic light-emitting device having a sealing thin film encapsulation portion
KR102606277B1 (ko) 2016-04-06 2023-11-27 삼성디스플레이 주식회사 유기 발광 소자
US11056541B2 (en) 2016-04-06 2021-07-06 Samsung Display Co., Ltd. Organic light-emitting device
US10236456B2 (en) 2016-04-11 2019-03-19 Universal Display Corporation Organic electroluminescent materials and devices
US10672997B2 (en) 2016-06-20 2020-06-02 Universal Display Corporation Organic electroluminescent materials and devices
US10862054B2 (en) 2016-06-20 2020-12-08 Universal Display Corporation Organic electroluminescent materials and devices
US11482683B2 (en) 2016-06-20 2022-10-25 Universal Display Corporation Organic electroluminescent materials and devices
KR102570396B1 (ko) 2016-08-12 2023-08-24 삼성디스플레이 주식회사 발광 소자 및 이를 포함하는 표시 장치
US10608186B2 (en) 2016-09-14 2020-03-31 Universal Display Corporation Organic electroluminescent materials and devices
US10680187B2 (en) 2016-09-23 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US11196010B2 (en) 2016-10-03 2021-12-07 Universal Display Corporation Organic electroluminescent materials and devices
US11011709B2 (en) 2016-10-07 2021-05-18 Universal Display Corporation Organic electroluminescent materials and devices
US20180130956A1 (en) 2016-11-09 2018-05-10 Universal Display Corporation Organic electroluminescent materials and devices
US10680188B2 (en) 2016-11-11 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US11780865B2 (en) 2017-01-09 2023-10-10 Universal Display Corporation Organic electroluminescent materials and devices
US11479544B2 (en) 2017-03-08 2022-10-25 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescence element, organic electroluminescence element, and electronic device
US10844085B2 (en) 2017-03-29 2020-11-24 Universal Display Corporation Organic electroluminescent materials and devices
KR102088506B1 (ko) * 2017-04-07 2020-04-23 주식회사 엘지화학 유기 발광 소자
WO2018186662A2 (ko) * 2017-04-07 2018-10-11 주식회사 엘지화학 유기 발광 소자
US10944060B2 (en) 2017-05-11 2021-03-09 Universal Display Corporation Organic electroluminescent materials and devices
US12098157B2 (en) 2017-06-23 2024-09-24 Universal Display Corporation Organic electroluminescent materials and devices
US11228010B2 (en) 2017-07-26 2022-01-18 Universal Display Corporation Organic electroluminescent materials and devices
US11744142B2 (en) 2017-08-10 2023-08-29 Universal Display Corporation Organic electroluminescent materials and devices
US20190161504A1 (en) 2017-11-28 2019-05-30 University Of Southern California Carbene compounds and organic electroluminescent devices
EP3492480B1 (en) 2017-11-29 2021-10-20 Universal Display Corporation Organic electroluminescent materials and devices
US11937503B2 (en) 2017-11-30 2024-03-19 Universal Display Corporation Organic electroluminescent materials and devices
CN108101898B (zh) * 2017-12-26 2020-07-14 南京高光半导体材料有限公司 一种新型有机电致发光化合物和包含其的有机电致发光器件
US11542289B2 (en) 2018-01-26 2023-01-03 Universal Display Corporation Organic electroluminescent materials and devices
US20200075870A1 (en) 2018-08-22 2020-03-05 Universal Display Corporation Organic electroluminescent materials and devices
CN110957428B (zh) * 2018-09-27 2023-01-03 江苏三月科技股份有限公司 一种oled发光器件
CN111146349B (zh) * 2018-11-05 2022-12-23 乐金显示有限公司 有机化合物和包含其的有机电致发光器件
KR102696821B1 (ko) 2018-11-06 2024-08-21 삼성디스플레이 주식회사 아민계 화합물 및 이를 포함한 유기 발광 소자
US20220069232A1 (en) * 2018-11-07 2022-03-03 Idemitsu Kosan Co.,Ltd. Organic electroluminescence device and electronic apparatus using the same
KR102706946B1 (ko) 2018-11-23 2024-09-19 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 모노아민 화합물
US11737349B2 (en) 2018-12-12 2023-08-22 Universal Display Corporation Organic electroluminescent materials and devices
US11780829B2 (en) 2019-01-30 2023-10-10 The University Of Southern California Organic electroluminescent materials and devices
US20200251664A1 (en) 2019-02-01 2020-08-06 Universal Display Corporation Organic electroluminescent materials and devices
JP2020158491A (ja) 2019-03-26 2020-10-01 ユニバーサル ディスプレイ コーポレイション 有機エレクトロルミネセンス材料及びデバイス
EP3790857B1 (en) 2019-06-28 2023-01-11 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescence element, organic electroluminescence element and electronic device
KR20210013459A (ko) * 2019-07-25 2021-02-04 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
US20210032278A1 (en) 2019-07-30 2021-02-04 Universal Display Corporation Organic electroluminescent materials and devices
JP2021031490A (ja) 2019-08-16 2021-03-01 ユニバーサル ディスプレイ コーポレイション 有機エレクトロルミネセンス材料及びデバイス
US20210135130A1 (en) 2019-11-04 2021-05-06 Universal Display Corporation Organic electroluminescent materials and devices
KR102720072B1 (ko) 2019-11-05 2024-10-23 삼성디스플레이 주식회사 유기 발광 소자 및 이의 제조 방법
US20210217969A1 (en) 2020-01-06 2021-07-15 Universal Display Corporation Organic electroluminescent materials and devices
EP4063427A4 (en) * 2020-01-13 2023-01-11 LG Chem, Ltd. POLYMER AND ORGANIC LIGHT EMITTING DIODE USING THE SAME
US20220336759A1 (en) 2020-01-28 2022-10-20 Universal Display Corporation Organic electroluminescent materials and devices
EP3937268A1 (en) 2020-07-10 2022-01-12 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
US20220158096A1 (en) 2020-11-16 2022-05-19 Universal Display Corporation Organic electroluminescent materials and devices
US20220165967A1 (en) 2020-11-24 2022-05-26 Universal Display Corporation Organic electroluminescent materials and devices
US20220162243A1 (en) 2020-11-24 2022-05-26 Universal Display Corporation Organic electroluminescent materials and devices
US20220271241A1 (en) 2021-02-03 2022-08-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4060758A3 (en) 2021-02-26 2023-03-29 Universal Display Corporation Organic electroluminescent materials and devices
EP4059915A3 (en) 2021-02-26 2022-12-28 Universal Display Corporation Organic electroluminescent materials and devices
US20220298192A1 (en) 2021-03-05 2022-09-22 Universal Display Corporation Organic electroluminescent materials and devices
US20220298190A1 (en) 2021-03-12 2022-09-22 Universal Display Corporation Organic electroluminescent materials and devices
US20220298193A1 (en) 2021-03-15 2022-09-22 Universal Display Corporation Organic electroluminescent materials and devices
US20220340607A1 (en) 2021-04-05 2022-10-27 Universal Display Corporation Organic electroluminescent materials and devices
EP4075531A1 (en) 2021-04-13 2022-10-19 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
US20220352478A1 (en) 2021-04-14 2022-11-03 Universal Display Corporation Organic eletroluminescent materials and devices
US20220407020A1 (en) 2021-04-23 2022-12-22 Universal Display Corporation Organic electroluminescent materials and devices
US20230006149A1 (en) 2021-04-23 2023-01-05 Universal Display Corporation Organic electroluminescent materials and devices
US20230133787A1 (en) 2021-06-08 2023-05-04 University Of Southern California Molecular Alignment of Homoleptic Iridium Phosphors
EP4151699A1 (en) 2021-09-17 2023-03-22 Universal Display Corporation Organic electroluminescent materials and devices
CN117343078A (zh) 2021-11-25 2024-01-05 北京夏禾科技有限公司 有机电致发光材料和器件
US20240343970A1 (en) 2021-12-16 2024-10-17 Universal Display Corporation Organic electroluminescent materials and devices
EP4231804A3 (en) 2022-02-16 2023-09-20 Universal Display Corporation Organic electroluminescent materials and devices
US20230292592A1 (en) 2022-03-09 2023-09-14 Universal Display Corporation Organic electroluminescent materials and devices
US20230337516A1 (en) 2022-04-18 2023-10-19 Universal Display Corporation Organic electroluminescent materials and devices
US20230389421A1 (en) 2022-05-24 2023-11-30 Universal Display Corporation Organic electroluminescent materials and devices
EP4293001A1 (en) 2022-06-08 2023-12-20 Universal Display Corporation Organic electroluminescent materials and devices
US20240016051A1 (en) 2022-06-28 2024-01-11 Universal Display Corporation Organic electroluminescent materials and devices
US20240107880A1 (en) 2022-08-17 2024-03-28 Universal Display Corporation Organic electroluminescent materials and devices
TWI796272B (zh) * 2022-08-22 2023-03-11 泰盈光電股份有限公司 電致變色組成物及電致變色裝置
US20240180025A1 (en) 2022-10-27 2024-05-30 Universal Display Corporation Organic electroluminescent materials and devices
US20240188316A1 (en) 2022-10-27 2024-06-06 Universal Display Corporation Organic electroluminescent materials and devices
US20240188319A1 (en) 2022-10-27 2024-06-06 Universal Display Corporation Organic electroluminescent materials and devices
US20240196730A1 (en) 2022-10-27 2024-06-13 Universal Display Corporation Organic electroluminescent materials and devices
US20240188419A1 (en) 2022-10-27 2024-06-06 Universal Display Corporation Organic electroluminescent materials and devices
US20240247017A1 (en) 2022-12-14 2024-07-25 Universal Display Corporation Organic electroluminescent materials and devices

Citations (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1110518B (de) 1959-04-09 1961-07-06 Kalle Ag Material fuer die elektrophotographische Bilderzeugung
US3112197A (en) 1956-06-27 1963-11-26 Azoplate Corp Electrophotographic member
US3180729A (en) 1956-12-22 1965-04-27 Azoplate Corp Material for electrophotographic reproduction
US3189447A (en) 1956-06-04 1965-06-15 Azoplate Corp Electrophotographic material and method
US3240597A (en) 1961-08-21 1966-03-15 Eastman Kodak Co Photoconducting polymers for preparing electrophotographic materials
US3257203A (en) 1958-08-20 1966-06-21 Azoplate Corp Electrophotographic reproduction material
JPS45555B1 (ja) 1966-03-24 1970-01-09
US3526501A (en) 1967-02-03 1970-09-01 Eastman Kodak Co 4-diarylamino-substituted chalcone containing photoconductive compositions for use in electrophotography
US3542544A (en) 1967-04-03 1970-11-24 Eastman Kodak Co Photoconductive elements containing organic photoconductors of the triarylalkane and tetraarylmethane types
JPS463712B1 (ja) 1966-04-14 1971-01-29
US3567450A (en) 1968-02-20 1971-03-02 Eastman Kodak Co Photoconductive elements containing substituted triarylamine photoconductors
US3615404A (en) 1968-04-25 1971-10-26 Scott Paper Co 1 3-phenylenediamine containing photoconductive materials
US3615402A (en) 1969-10-01 1971-10-26 Eastman Kodak Co Tetra-substituted methanes as organic photoconductors
US3658520A (en) 1968-02-20 1972-04-25 Eastman Kodak Co Photoconductive elements containing as photoconductors triarylamines substituted by active hydrogen-containing groups
JPS4725336B1 (ja) 1969-11-26 1972-07-11
US3717462A (en) 1969-07-28 1973-02-20 Canon Kk Heat treatment of an electrophotographic photosensitive member
US3820989A (en) 1969-09-30 1974-06-28 Eastman Kodak Co Tri-substituted methanes as organic photoconductors
JPS4935702B1 (ja) 1969-06-20 1974-09-25
JPS49105537A (ja) 1973-01-15 1974-10-05
JPS5110105B2 (ja) 1972-02-09 1976-04-01
JPS5110983B2 (ja) 1971-09-10 1976-04-08
JPS5193224A (ja) 1974-12-20 1976-08-16
US4012376A (en) 1975-12-29 1977-03-15 Eastman Kodak Company Photosensitive colorant materials
JPS5327033A (en) 1976-08-23 1978-03-13 Xerox Corp Image forming member and image forming method
US4127412A (en) 1975-12-09 1978-11-28 Eastman Kodak Company Photoconductive compositions and elements
JPS5458445A (en) 1977-09-29 1979-05-11 Xerox Corp Electrostatic photosensitive device
JPS5459143A (en) 1977-10-17 1979-05-12 Ibm Electronic photographic material
JPS54110837A (en) 1978-02-17 1979-08-30 Ricoh Co Ltd Electrophotographic photoreceptor
JPS54112637A (en) 1978-02-06 1979-09-03 Ricoh Co Ltd Electrophotographic photoreceptor
US4175961A (en) 1976-12-22 1979-11-27 Eastman Kodak Company Multi-active photoconductive elements
JPS5517105A (en) 1978-07-21 1980-02-06 Konishiroku Photo Ind Co Ltd Electrophotographic photoreceptor
JPS5546760A (en) 1978-09-29 1980-04-02 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5551086A (en) 1978-09-04 1980-04-14 Copyer Co Ltd Novel pyrazoline compound, its preparation, and electrophotographic photosensitive substance comprising it
JPS5552064A (en) 1978-10-13 1980-04-16 Ricoh Co Ltd Electrophotographic receptor
JPS5552063A (en) 1978-10-13 1980-04-16 Ricoh Co Ltd Electrophotographic receptor
JPS5574546A (en) 1978-11-30 1980-06-05 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5579450A (en) 1978-12-04 1980-06-14 Xerox Corp Image formation device
JPS5588065A (en) 1978-12-12 1980-07-03 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5588064A (en) 1978-12-05 1980-07-03 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS55108667A (en) 1979-02-13 1980-08-21 Ricoh Co Ltd Electrophotographic receptor
US4232103A (en) 1979-08-27 1980-11-04 Xerox Corporation Phenyl benzotriazole stabilized photosensitive device
JPS55144250A (en) 1979-04-30 1980-11-11 Xerox Corp Image formation device
JPS55156953A (en) 1979-05-17 1980-12-06 Mitsubishi Paper Mills Ltd Organic semiconductor electrophotographic material
JPS564148A (en) 1979-06-21 1981-01-17 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5622437A (en) 1979-08-01 1981-03-03 Ricoh Co Ltd Electrophotographic receptor
JPS5636656A (en) 1979-09-03 1981-04-09 Mitsubishi Paper Mills Ltd Electrophotographic material
JPS5646234A (en) 1979-09-21 1981-04-27 Ricoh Co Ltd Electrophotographic receptor
JPS5680051A (en) 1979-12-04 1981-07-01 Ricoh Co Ltd Electrophotographic receptor
US4278746A (en) 1978-06-21 1981-07-14 Konishiroku Photo Industry Co., Ltd. Photosensitive elements for electrophotography
JPS5688141A (en) 1979-12-20 1981-07-17 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS56119132A (en) 1979-11-23 1981-09-18 Xerox Corp Image forming element
JPS5711350A (en) 1980-06-24 1982-01-21 Fuji Photo Film Co Ltd Electrophotographic receptor
JPS5745545A (en) 1980-09-03 1982-03-15 Mitsubishi Paper Mills Ltd Electrophotographic receptor
JPS5751781A (en) 1980-07-17 1982-03-26 Eastman Kodak Co Organic electroluminiscent cell and method
JPS57148749A (en) 1981-03-11 1982-09-14 Fuji Photo Film Co Ltd Electrophotographic receptor
JPS6093455A (ja) 1983-10-28 1985-05-25 Fuji Xerox Co Ltd 電子写真用現像剤
JPS6094462A (ja) 1983-10-28 1985-05-27 Ricoh Co Ltd スチルベン誘導体及びその製造法
JPS60175052A (ja) 1984-02-21 1985-09-09 Ricoh Co Ltd 電子写真用感光体
JPS60174749A (ja) 1984-02-21 1985-09-09 Ricoh Co Ltd スチリル化合物及びその製造法
JPS6114642A (ja) 1984-06-29 1986-01-22 Konishiroku Photo Ind Co Ltd 電子写真感光体
JPS6172255A (ja) 1984-09-14 1986-04-14 Konishiroku Photo Ind Co Ltd 電子写真感光体
JPS6198353A (ja) 1984-10-19 1986-05-16 ゼロツクス コーポレーシヨン 芳香族エーテル正孔移送層を含む感光装置
JPS61210363A (ja) 1985-03-15 1986-09-18 Canon Inc 電子写真感光体
JPS61228451A (ja) 1985-04-03 1986-10-11 Canon Inc 電子写真感光体
JPS61295558A (ja) 1985-06-24 1986-12-26 ゼロツクス コ−ポレ−シヨン アルコキシアミン電荷移送分子を含有する光導電性像形成部材
JPS6210652A (ja) 1985-07-08 1987-01-19 Minolta Camera Co Ltd 感光体
JPS6230255A (ja) 1985-07-31 1987-02-09 Minolta Camera Co Ltd 電子写真感光体
JPS6236674A (ja) 1985-08-05 1987-02-17 Fuji Photo Film Co Ltd 電子写真感光体
JPS6247646A (ja) 1985-08-27 1987-03-02 Konishiroku Photo Ind Co Ltd 感光体
JPS63295695A (ja) 1987-02-11 1988-12-02 イーストマン・コダック・カンパニー 有機発光媒体をもつ電場発光デバイス
JPH02204996A (ja) 1989-02-01 1990-08-14 Nec Corp 有機薄膜el素子
US4950950A (en) 1989-05-18 1990-08-21 Eastman Kodak Company Electroluminescent device with silazane-containing luminescent zone
JPH02282263A (ja) 1988-12-09 1990-11-19 Nippon Oil Co Ltd ホール輸送材料
JPH02311591A (ja) 1989-05-25 1990-12-27 Mitsubishi Kasei Corp 有機電界発光素子
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JPH04308688A (ja) 1991-04-08 1992-10-30 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH06314594A (ja) 1992-12-18 1994-11-08 Ricoh Co Ltd 複数のキャリヤー注入層を有する有機薄膜el素子
JPH08193191A (ja) 1995-01-19 1996-07-30 Idemitsu Kosan Co Ltd 有機電界発光素子及び有機薄膜
JPH08291115A (ja) 1995-04-21 1996-11-05 Bando Chem Ind Ltd 新規なトリフェニルアミン化合物
JPH11144873A (ja) 1997-11-11 1999-05-28 Mitsui Chem Inc 有機電界発光素子
JP2000302756A (ja) 1999-04-27 2000-10-31 Mitsui Chemicals Inc アミン化合物
JP2000309566A (ja) 1998-09-09 2000-11-07 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子およびフェニレンジアミン誘導体
US6242115B1 (en) 1997-09-08 2001-06-05 The University Of Southern California OLEDs containing thermally stable asymmetric charge carrier materials
JP2001273978A (ja) 2001-02-23 2001-10-05 Matsushita Electric Ind Co Ltd 電界発光素子
US20040113547A1 (en) 1999-12-31 2004-06-17 Se-Hwan Son Electroluminescent devices with low work function anode
JP3571977B2 (ja) 1999-11-12 2004-09-29 キヤノン株式会社 有機発光素子
WO2004091262A1 (ja) * 2003-04-02 2004-10-21 Fujitsu Limited 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンスディスプレイ
JP2005166680A (ja) * 1996-12-28 2005-06-23 Tdk Corp 有機el素子
JP3716096B2 (ja) 1998-04-02 2005-11-16 三菱重工業株式会社 微粉炭セパレータ装置
JP2006016384A (ja) * 2004-06-03 2006-01-19 Mitsui Chemicals Inc アミン化合物、および該アミン化合物を含有する有機電界発光素子
JP2006056841A (ja) * 2004-08-23 2006-03-02 Mitsui Chemicals Inc アミン化合物、および該アミン化合物を含有する有機電界発光素子
JP3927577B2 (ja) 1994-11-10 2007-06-13 マイケルスン、ガーリー、ケィー 電動骨鉗子

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0814221B2 (ja) 1991-01-31 1996-02-14 株式会社大井製作所 窓ガラスの昇降装置
JPH05179239A (ja) * 1991-09-09 1993-07-20 Fuji Electric Co Ltd 有機薄膜発光素子
US6344283B1 (en) 1996-12-28 2002-02-05 Tdk Corporation Organic electroluminescent elements
US5891587A (en) * 1997-02-27 1999-04-06 Xerox Corporation Electroluminescent devices
JP4088985B2 (ja) * 1997-05-09 2008-05-21 コニカミノルタホールディングス株式会社 新規アミノ化合物を使用した有機エレクトロルミネセンス素子
JP3801326B2 (ja) * 1997-11-18 2006-07-26 三井化学株式会社 有機電界発光素子
US6449772B1 (en) 1997-11-24 2002-09-17 Jolene M. Donner Wrist cover
JPH11329737A (ja) 1998-03-13 1999-11-30 Taiho Ind Co Ltd 有機多層型エレクトロルミネッセンス素子及び有機多層型エレクトロルミネッセンス素子用構造体の合成方法
JP3884557B2 (ja) 1998-04-01 2007-02-21 三井化学株式会社 有機電界発光素子
KR100841842B1 (ko) 1998-09-09 2008-06-27 이데미쓰 고산 가부시키가이샤 유기 전자발광 소자 및 페닐렌디아민 유도체
US6830828B2 (en) * 1998-09-14 2004-12-14 The Trustees Of Princeton University Organometallic complexes as phosphorescent emitters in organic LEDs
JP4067259B2 (ja) * 2000-01-12 2008-03-26 富士フイルム株式会社 縮環多環式炭化水素化合物、発光素子材料およびそれを使用した発光素子
TW532048B (en) 2000-03-27 2003-05-11 Idemitsu Kosan Co Organic electroluminescence element
TWI297038B (en) 2000-11-22 2008-05-21 Academia Sinica 3,6,9-trisubstituted carbazoles for light emitting diodes
JP4770033B2 (ja) 2001-02-13 2011-09-07 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子
JP2003068472A (ja) * 2001-08-29 2003-03-07 Hitachi Ltd 有機発光素子およびそれを用いた有機発光表示装置
KR100577179B1 (ko) 2001-10-30 2006-05-10 엘지전자 주식회사 유기 전계 발광 소자
JP4276398B2 (ja) 2001-12-10 2009-06-10 三井化学株式会社 非対称アリールアミン化合物の製造方法、該製造方法により製造された非対称アリールアミン化合物、および、該非対称アリールアミン化合物を使用した有機電界発光素子。
AU2003221969A1 (en) 2002-04-19 2003-11-03 3M Innovative Properties Company Materials for organic electronic devices
DE60330696D1 (de) * 2002-08-23 2010-02-04 Idemitsu Kosan Co Organische elektrolumineszenzvorrichtung und anthracenderivat
US20040058193A1 (en) * 2002-09-16 2004-03-25 Eastman Kodak Company White organic light-emitting devices with improved performance
JP4287198B2 (ja) * 2002-11-18 2009-07-01 出光興産株式会社 有機エレクトロルミネッセンス素子
JP4254211B2 (ja) * 2002-11-26 2009-04-15 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子及び表示装置
JP2004262761A (ja) * 2003-01-16 2004-09-24 Idemitsu Kosan Co Ltd 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP4177707B2 (ja) 2003-03-27 2008-11-05 三井化学株式会社 アミン化合物および該化合物を含有する有機電界発光素子
JP4250011B2 (ja) 2003-04-08 2009-04-08 三井化学株式会社 芳香族アミン化合物の製造方法
TWI232704B (en) * 2003-07-24 2005-05-11 Chien-Hong Cheng Organic light emitting diode containing a novel Ir complex as a phosphorescent emitter
JP4392206B2 (ja) * 2003-07-30 2009-12-24 三井化学株式会社 アントラセン化合物、および該アントラセン化合物を含有する有機電界発光素子
JP4563015B2 (ja) * 2003-10-06 2010-10-13 三井化学株式会社 有機電界発光素子
JP4585786B2 (ja) 2004-04-01 2010-11-24 キヤノン株式会社 発光素子及び表示装置
KR20070033947A (ko) * 2004-07-14 2007-03-27 이데미쓰 고산 가부시키가이샤 방향족 아민 유도체 및 그것을 이용한 유기 전기발광 소자
EP1794255B1 (en) * 2004-08-19 2016-11-16 LG Chem, Ltd. Organic light-emitting device comprising buffer layer and method for fabricating the same
US20090058262A1 (en) * 2004-10-28 2009-03-05 Zheng-Hong Lu Alkaline fluoride dope molecular films and applications for p-n junction and field-effect transistor
WO2006046441A1 (ja) * 2004-10-29 2006-05-04 Idemitsu Kosan Co., Ltd. 芳香族アミン化合物及びそれを用いた有機エレクトロルミネッセンス素子
US7597967B2 (en) * 2004-12-17 2009-10-06 Eastman Kodak Company Phosphorescent OLEDs with exciton blocking layer
JP4790260B2 (ja) 2004-12-22 2011-10-12 出光興産株式会社 アントラセン誘導体を用いた有機エレクトロルミネッセンス素子
CN101094828A (zh) 2005-01-05 2007-12-26 出光兴产株式会社 芳香族胺衍生物及使用其的有机电致发光元件
WO2006077130A1 (de) 2005-01-21 2006-07-27 Sensient Imaging Technologies Gmbh Triarylamin-derivate mit raumfüllenden seitengruppen und deren verwendung
JP4667926B2 (ja) 2005-03-30 2011-04-13 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP4848134B2 (ja) 2005-04-18 2011-12-28 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JPWO2006120859A1 (ja) 2005-05-09 2008-12-18 出光興産株式会社 新規有機エレクトロルミネッセンス材料、それを用いた有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス用薄膜形成溶液
CN101223138B (zh) 2005-07-14 2011-03-09 株式会社半导体能源研究所 咔唑衍生物,和使用该咔唑衍生物获得的发光元件材料、发光元件和电子设备
JP4893173B2 (ja) 2005-09-13 2012-03-07 三菱化学株式会社 有機電界発光素子用組成物及び有機電界発光素子
JP5708426B2 (ja) 2005-09-13 2015-04-30 三菱化学株式会社 有機電界発光素子用組成物及び有機電界発光素子
CN103641726B (zh) 2005-09-30 2015-10-28 株式会社半导体能源研究所 螺芴衍生物,发光元件用材料,发光元件,发光设备和电子设备
KR20080063291A (ko) 2005-09-30 2008-07-03 이데미쓰 고산 가부시키가이샤 유기 전계 발광 소자
US20070252516A1 (en) 2006-04-27 2007-11-01 Eastman Kodak Company Electroluminescent devices including organic EIL layer
JP4864476B2 (ja) 2006-02-14 2012-02-01 出光興産株式会社 有機エレクトロルミネッセンス素子
US20070215889A1 (en) 2006-03-20 2007-09-20 Semiconductor Energy Laboratory Co., Ltd. Aromatic amine compound, and light-emitting element, light-emitting device, and electronic appliance using the aromatic amine compound
EP2639231B1 (en) 2006-04-26 2019-02-06 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescence element using the same
WO2007133633A2 (en) 2006-05-09 2007-11-22 University Of Washington Crosslinkable hole-transporting materials for organic light-emitting devices
US7661430B2 (en) 2006-05-19 2010-02-16 Richard Mason Antimicrobial dental appliances including mouthguards and mouthpieces
JP5616582B2 (ja) * 2006-06-22 2014-10-29 出光興産株式会社 複素環含有アリールアミン誘導体を用いた有機エレクトロルミネッセンス素子
CN103254113A (zh) 2006-11-24 2013-08-21 出光兴产株式会社 芳香族胺衍生物及使用其的有机电致发光元件
US8779655B2 (en) 2007-07-07 2014-07-15 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and material for organic electroluminescence device
US8330350B2 (en) 2007-07-07 2012-12-11 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and material for organic electroluminescence device
US8211552B2 (en) 2007-07-07 2012-07-03 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US8154195B2 (en) 2007-07-07 2012-04-10 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and material for organic electroluminescence device
US20090045731A1 (en) 2007-07-07 2009-02-19 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and material for organic electroluminescence device
US20090174313A1 (en) 2007-11-22 2009-07-09 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and organic-electroluminescence-material-containing solution
WO2009084585A1 (ja) 2007-12-28 2009-07-09 Idemitsu Kosan Co., Ltd. 芳香族ジアミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
US9353027B2 (en) 2009-12-21 2016-05-31 Idemitsu Kosan Co., Ltd. Organic electroluminescent element using pyrene derivative
KR20120100709A (ko) 2010-01-15 2012-09-12 이데미쓰 고산 가부시키가이샤 유기 전계 발광 소자
TW201213502A (en) 2010-08-05 2012-04-01 Idemitsu Kosan Co Organic electroluminescent element
KR102098061B1 (ko) 2012-03-19 2020-04-08 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2013180241A1 (ja) 2012-06-01 2013-12-05 出光興産株式会社 有機エレクトロルミネッセンス素子および有機エレクトロルミネッセンス素子用材料
KR102167047B1 (ko) 2013-12-09 2020-10-19 삼성디스플레이 주식회사 유기 금속 착체 및 이를 포함한 유기 발광 소자
KR102679423B1 (ko) 2018-03-13 2024-07-02 삼성디스플레이 주식회사 유기 발광 소자
KR20200065952A (ko) 2018-11-30 2020-06-09 주식회사 엘지화학 유기 발광 소자
KR20200122117A (ko) 2019-04-17 2020-10-27 엘지디스플레이 주식회사 유기전계 발광소자
JP2022137315A (ja) 2019-05-27 2022-09-22 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
KR20210086216A (ko) 2019-12-31 2021-07-08 엘지디스플레이 주식회사 유기전기소자, 이를 포함하는 표시패널 및 이를 포함하는 표시장치
KR20210086165A (ko) 2019-12-31 2021-07-08 엘지디스플레이 주식회사 유기전기소자, 이를 포함하는 표시패널 및 이를 포함하는 표시장치
KR20210095562A (ko) 2020-01-23 2021-08-02 주식회사 엘지화학 유기 발광 소자
US20220310935A1 (en) 2020-02-28 2022-09-29 Lg Chem, Ltd. Organic light-emitting device

Patent Citations (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3189447A (en) 1956-06-04 1965-06-15 Azoplate Corp Electrophotographic material and method
US3112197A (en) 1956-06-27 1963-11-26 Azoplate Corp Electrophotographic member
US3180729A (en) 1956-12-22 1965-04-27 Azoplate Corp Material for electrophotographic reproduction
US3257203A (en) 1958-08-20 1966-06-21 Azoplate Corp Electrophotographic reproduction material
DE1110518B (de) 1959-04-09 1961-07-06 Kalle Ag Material fuer die elektrophotographische Bilderzeugung
US3240597A (en) 1961-08-21 1966-03-15 Eastman Kodak Co Photoconducting polymers for preparing electrophotographic materials
JPS45555B1 (ja) 1966-03-24 1970-01-09
JPS463712B1 (ja) 1966-04-14 1971-01-29
US3526501A (en) 1967-02-03 1970-09-01 Eastman Kodak Co 4-diarylamino-substituted chalcone containing photoconductive compositions for use in electrophotography
US3542544A (en) 1967-04-03 1970-11-24 Eastman Kodak Co Photoconductive elements containing organic photoconductors of the triarylalkane and tetraarylmethane types
US3567450A (en) 1968-02-20 1971-03-02 Eastman Kodak Co Photoconductive elements containing substituted triarylamine photoconductors
US3658520A (en) 1968-02-20 1972-04-25 Eastman Kodak Co Photoconductive elements containing as photoconductors triarylamines substituted by active hydrogen-containing groups
US3615404A (en) 1968-04-25 1971-10-26 Scott Paper Co 1 3-phenylenediamine containing photoconductive materials
JPS4935702B1 (ja) 1969-06-20 1974-09-25
US3717462A (en) 1969-07-28 1973-02-20 Canon Kk Heat treatment of an electrophotographic photosensitive member
US3820989A (en) 1969-09-30 1974-06-28 Eastman Kodak Co Tri-substituted methanes as organic photoconductors
US3615402A (en) 1969-10-01 1971-10-26 Eastman Kodak Co Tetra-substituted methanes as organic photoconductors
JPS4725336B1 (ja) 1969-11-26 1972-07-11
JPS5110983B2 (ja) 1971-09-10 1976-04-08
JPS5110105B2 (ja) 1972-02-09 1976-04-01
JPS49105537A (ja) 1973-01-15 1974-10-05
JPS5193224A (ja) 1974-12-20 1976-08-16
US4127412A (en) 1975-12-09 1978-11-28 Eastman Kodak Company Photoconductive compositions and elements
US4012376A (en) 1975-12-29 1977-03-15 Eastman Kodak Company Photosensitive colorant materials
JPS5327033A (en) 1976-08-23 1978-03-13 Xerox Corp Image forming member and image forming method
US4175961A (en) 1976-12-22 1979-11-27 Eastman Kodak Company Multi-active photoconductive elements
JPS5458445A (en) 1977-09-29 1979-05-11 Xerox Corp Electrostatic photosensitive device
JPS5459143A (en) 1977-10-17 1979-05-12 Ibm Electronic photographic material
JPS54112637A (en) 1978-02-06 1979-09-03 Ricoh Co Ltd Electrophotographic photoreceptor
JPS54110837A (en) 1978-02-17 1979-08-30 Ricoh Co Ltd Electrophotographic photoreceptor
US4278746A (en) 1978-06-21 1981-07-14 Konishiroku Photo Industry Co., Ltd. Photosensitive elements for electrophotography
JPS5517105A (en) 1978-07-21 1980-02-06 Konishiroku Photo Ind Co Ltd Electrophotographic photoreceptor
JPS5551086A (en) 1978-09-04 1980-04-14 Copyer Co Ltd Novel pyrazoline compound, its preparation, and electrophotographic photosensitive substance comprising it
JPS5546760A (en) 1978-09-29 1980-04-02 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5552063A (en) 1978-10-13 1980-04-16 Ricoh Co Ltd Electrophotographic receptor
JPS5552064A (en) 1978-10-13 1980-04-16 Ricoh Co Ltd Electrophotographic receptor
JPS5574546A (en) 1978-11-30 1980-06-05 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5579450A (en) 1978-12-04 1980-06-14 Xerox Corp Image formation device
JPS5588064A (en) 1978-12-05 1980-07-03 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5588065A (en) 1978-12-12 1980-07-03 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS55108667A (en) 1979-02-13 1980-08-21 Ricoh Co Ltd Electrophotographic receptor
JPS55144250A (en) 1979-04-30 1980-11-11 Xerox Corp Image formation device
JPS55156953A (en) 1979-05-17 1980-12-06 Mitsubishi Paper Mills Ltd Organic semiconductor electrophotographic material
JPS564148A (en) 1979-06-21 1981-01-17 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5622437A (en) 1979-08-01 1981-03-03 Ricoh Co Ltd Electrophotographic receptor
US4232103A (en) 1979-08-27 1980-11-04 Xerox Corporation Phenyl benzotriazole stabilized photosensitive device
JPS5636656A (en) 1979-09-03 1981-04-09 Mitsubishi Paper Mills Ltd Electrophotographic material
JPS5646234A (en) 1979-09-21 1981-04-27 Ricoh Co Ltd Electrophotographic receptor
JPS56119132A (en) 1979-11-23 1981-09-18 Xerox Corp Image forming element
JPS5680051A (en) 1979-12-04 1981-07-01 Ricoh Co Ltd Electrophotographic receptor
JPS5688141A (en) 1979-12-20 1981-07-17 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5711350A (en) 1980-06-24 1982-01-21 Fuji Photo Film Co Ltd Electrophotographic receptor
JPS5751781A (en) 1980-07-17 1982-03-26 Eastman Kodak Co Organic electroluminiscent cell and method
JPS5745545A (en) 1980-09-03 1982-03-15 Mitsubishi Paper Mills Ltd Electrophotographic receptor
JPS57148749A (en) 1981-03-11 1982-09-14 Fuji Photo Film Co Ltd Electrophotographic receptor
JPS6093455A (ja) 1983-10-28 1985-05-25 Fuji Xerox Co Ltd 電子写真用現像剤
JPS6094462A (ja) 1983-10-28 1985-05-27 Ricoh Co Ltd スチルベン誘導体及びその製造法
JPS60174749A (ja) 1984-02-21 1985-09-09 Ricoh Co Ltd スチリル化合物及びその製造法
JPS60175052A (ja) 1984-02-21 1985-09-09 Ricoh Co Ltd 電子写真用感光体
JPS6114642A (ja) 1984-06-29 1986-01-22 Konishiroku Photo Ind Co Ltd 電子写真感光体
JPS6172255A (ja) 1984-09-14 1986-04-14 Konishiroku Photo Ind Co Ltd 電子写真感光体
JPS6198353A (ja) 1984-10-19 1986-05-16 ゼロツクス コーポレーシヨン 芳香族エーテル正孔移送層を含む感光装置
JPS61210363A (ja) 1985-03-15 1986-09-18 Canon Inc 電子写真感光体
JPS61228451A (ja) 1985-04-03 1986-10-11 Canon Inc 電子写真感光体
JPS61295558A (ja) 1985-06-24 1986-12-26 ゼロツクス コ−ポレ−シヨン アルコキシアミン電荷移送分子を含有する光導電性像形成部材
JPS6210652A (ja) 1985-07-08 1987-01-19 Minolta Camera Co Ltd 感光体
JPS6230255A (ja) 1985-07-31 1987-02-09 Minolta Camera Co Ltd 電子写真感光体
JPS6236674A (ja) 1985-08-05 1987-02-17 Fuji Photo Film Co Ltd 電子写真感光体
JPS6247646A (ja) 1985-08-27 1987-03-02 Konishiroku Photo Ind Co Ltd 感光体
JPS63295695A (ja) 1987-02-11 1988-12-02 イーストマン・コダック・カンパニー 有機発光媒体をもつ電場発光デバイス
JPH02282263A (ja) 1988-12-09 1990-11-19 Nippon Oil Co Ltd ホール輸送材料
JPH02204996A (ja) 1989-02-01 1990-08-14 Nec Corp 有機薄膜el素子
US4950950A (en) 1989-05-18 1990-08-21 Eastman Kodak Company Electroluminescent device with silazane-containing luminescent zone
JPH02311591A (ja) 1989-05-25 1990-12-27 Mitsubishi Kasei Corp 有機電界発光素子
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JPH04308688A (ja) 1991-04-08 1992-10-30 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH06314594A (ja) 1992-12-18 1994-11-08 Ricoh Co Ltd 複数のキャリヤー注入層を有する有機薄膜el素子
JP3927577B2 (ja) 1994-11-10 2007-06-13 マイケルスン、ガーリー、ケィー 電動骨鉗子
JPH08193191A (ja) 1995-01-19 1996-07-30 Idemitsu Kosan Co Ltd 有機電界発光素子及び有機薄膜
JPH08291115A (ja) 1995-04-21 1996-11-05 Bando Chem Ind Ltd 新規なトリフェニルアミン化合物
JP2005166680A (ja) * 1996-12-28 2005-06-23 Tdk Corp 有機el素子
US6242115B1 (en) 1997-09-08 2001-06-05 The University Of Southern California OLEDs containing thermally stable asymmetric charge carrier materials
JPH11144873A (ja) 1997-11-11 1999-05-28 Mitsui Chem Inc 有機電界発光素子
JP3716096B2 (ja) 1998-04-02 2005-11-16 三菱重工業株式会社 微粉炭セパレータ装置
JP2000309566A (ja) 1998-09-09 2000-11-07 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子およびフェニレンジアミン誘導体
JP2000302756A (ja) 1999-04-27 2000-10-31 Mitsui Chemicals Inc アミン化合物
JP3571977B2 (ja) 1999-11-12 2004-09-29 キヤノン株式会社 有機発光素子
US20040113547A1 (en) 1999-12-31 2004-06-17 Se-Hwan Son Electroluminescent devices with low work function anode
JP2001273978A (ja) 2001-02-23 2001-10-05 Matsushita Electric Ind Co Ltd 電界発光素子
WO2004091262A1 (ja) * 2003-04-02 2004-10-21 Fujitsu Limited 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンスディスプレイ
JP2006016384A (ja) * 2004-06-03 2006-01-19 Mitsui Chemicals Inc アミン化合物、および該アミン化合物を含有する有機電界発光素子
JP2006056841A (ja) * 2004-08-23 2006-03-02 Mitsui Chemicals Inc アミン化合物、および該アミン化合物を含有する有機電界発光素子

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
C.W. TANG; S.A. VANSLYKE, APPLIED PHYSICS LETTERS, vol. 51, 1987, pages 913
See also references of EP2031670A1

Cited By (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007424A (ja) * 2006-06-27 2008-01-17 Idemitsu Kosan Co Ltd 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
JP2012097091A (ja) * 2007-12-03 2012-05-24 Semiconductor Energy Lab Co Ltd カルバゾール誘導体、カルバゾール誘導体を用いた発光素子、照明装置、発光装置、および電子機器
WO2009072587A1 (en) * 2007-12-03 2009-06-11 Semiconductor Energy Laboratory Co., Ltd. Carbazole derivative, and light-emitting element, light-emitting device, and electronic device using carbazole derivative
JP2009298767A (ja) * 2007-12-03 2009-12-24 Semiconductor Energy Lab Co Ltd カルバゾール誘導体、カルバゾール誘導体を用いた発光素子、発光装置、および電子機器
US10556864B2 (en) 2007-12-03 2020-02-11 Semiconductor Energy Laboratory Co., Ltd. Carbazole derivative, and light-emitting element, light-emitting device, and electronic device using the carbazole derivative
US12110274B2 (en) 2007-12-03 2024-10-08 Semiconductor Energy Laboratory Co., Ltd. Carbazole derivative, and light-emitting element, light-emitting device, and electronic device using carbazole derivative
JP2013091647A (ja) * 2007-12-03 2013-05-16 Semiconductor Energy Lab Co Ltd 化合物
WO2009081857A1 (ja) * 2007-12-21 2009-07-02 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
US9174938B2 (en) 2007-12-21 2015-11-03 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
WO2009151039A1 (ja) * 2008-06-11 2009-12-17 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
JP5373787B2 (ja) * 2008-06-11 2013-12-18 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
US8716698B2 (en) 2008-06-11 2014-05-06 Hodogaya Chemical Co., Ltd. Organic electroluminescent device containing arylamine compound and bipyridyl compound
CN102186819A (zh) * 2008-10-17 2011-09-14 三井化学株式会社 芳香族胺衍生物及使用其的有机场致发光元件
US9139522B2 (en) 2008-10-17 2015-09-22 Mitsui Chemicals, Inc. Aromatic amine derivative and organic electroluminescent device using the same
JP5429673B2 (ja) * 2008-10-17 2014-02-26 三井化学株式会社 芳香族アミン誘導体、及びそれらを用いた有機エレクトロルミネッセンス素子
KR101325329B1 (ko) * 2008-10-17 2013-11-08 미쓰이 가가쿠 가부시키가이샤 방향족 아민 유도체, 및 그것들을 이용한 유기 일렉트로루미네센스 소자
WO2010044130A1 (ja) * 2008-10-17 2010-04-22 三井化学株式会社 芳香族アミン誘導体、及びそれらを用いた有機エレクトロルミネッセンス素子
JPWO2010061824A1 (ja) * 2008-11-25 2012-04-26 出光興産株式会社 芳香族アミン誘導体及び有機エレクトロルミネッセンス素子
JP5608095B2 (ja) * 2008-11-25 2014-10-15 出光興産株式会社 芳香族アミン誘導体及び有機エレクトロルミネッセンス素子
JP2014099641A (ja) * 2009-01-21 2014-05-29 Semiconductor Energy Lab Co Ltd 発光装置
US9147854B2 (en) 2009-01-21 2015-09-29 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
JP2010192431A (ja) 2009-01-21 2010-09-02 Semiconductor Energy Lab Co Ltd 発光素子、発光装置及び電子機器
JPWO2010098458A1 (ja) * 2009-02-27 2012-09-06 出光興産株式会社 有機エレクトロルミネッセンス素子
CN102334210A (zh) * 2009-02-27 2012-01-25 出光兴产株式会社 有机电致发光元件
WO2010098458A1 (ja) * 2009-02-27 2010-09-02 出光興産株式会社 有機エレクトロルミネッセンス素子
JP5667042B2 (ja) * 2009-03-19 2015-02-12 三井化学株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JPWO2010106806A1 (ja) * 2009-03-19 2012-09-20 三井化学株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
US8980442B2 (en) 2009-03-19 2015-03-17 Mitsui Chemicals, Inc. Aromatic amine derivative and organic electroluminescent element using same
JP2018188441A (ja) * 2009-03-31 2018-11-29 株式会社半導体エネルギー研究所 カルバゾール誘導体、発光素子、発光装置、電子機器、照明装置
JPWO2011021520A1 (ja) * 2009-08-19 2013-01-24 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
DE202010018533U1 (de) 2009-08-19 2017-06-08 Idemitsu Kosan Co., Ltd. Aromatische Amin-Derivate und diese verwendende organische Elektrolumineszenzelemente
WO2011021520A1 (ja) 2009-08-19 2011-02-24 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP5709752B2 (ja) * 2009-08-19 2015-04-30 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JPWO2011024451A1 (ja) * 2009-08-28 2013-01-24 保土谷化学工業株式会社 カルバゾール環構造を有する化合物および有機エレクトロルミネッセンス素子
JP6049998B2 (ja) * 2009-08-28 2016-12-21 保土谷化学工業株式会社 カルバゾール環構造を有する化合物および有機エレクトロルミネッセンス素子
US9732036B2 (en) 2009-08-28 2017-08-15 Hodogaya Chemical Co., Ltd. Compound having carbazole ring structure, and organic electroluminescent device
WO2011024451A1 (ja) * 2009-08-28 2011-03-03 保土谷化学工業株式会社 カルバゾール環構造を有する化合物および有機エレクトロルミネッセンス素子
JP7254124B2 (ja) 2009-12-01 2023-04-07 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器および照明装置
JP2021170672A (ja) * 2009-12-01 2021-10-28 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器および照明装置
JP7423841B2 (ja) 2009-12-01 2024-01-29 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器および照明装置
JP2023082075A (ja) * 2009-12-01 2023-06-13 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器および照明装置
US9450188B2 (en) 2010-09-21 2016-09-20 Semiconductor Energy Laboratory Co., Ltd. Carbazole derivative, light-emitting element material and organic semiconductor material
US8642782B2 (en) 2010-09-21 2014-02-04 Semiconductor Energy Laboratory Co., Ltd. Carbazole derivative, light-emitting element material and organic semiconductor material
US10071993B2 (en) 2010-09-21 2018-09-11 Semiconductor Energy Laboratory Co., Ltd. Carbazole derivative, light-emitting element material and organic semiconductor material
US8697885B2 (en) 2010-11-30 2014-04-15 Semiconductor Energy Laboratory Co., Ltd. Carbazole compound, light-emitting element material, organic semiconductor material, light-emitting element, light emitting device, lighting device, and electronic device
CN103827255B (zh) * 2011-12-23 2016-02-10 株式会社Lg化学 有机发光二极管及其制造方法
CN103827255A (zh) * 2011-12-23 2014-05-28 株式会社Lg化学 有机发光二极管及其制造方法
US10026905B2 (en) 2012-01-18 2018-07-17 Duk San Neolux Co., Ltd. Compound, organic electric element using the same, and an electronic device thereof
WO2013109027A1 (ko) * 2012-01-18 2013-07-25 덕산하이메탈(주) 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
US20140374722A1 (en) * 2012-01-18 2014-12-25 Duksan High Metal Co., Ltd. Compound, organic electric element using the same, and an electronic device thereof
KR101566578B1 (ko) 2012-02-27 2015-11-05 주식회사 엘지화학 유기 발광 소자
JP2014532303A (ja) * 2012-02-27 2014-12-04 エルジー・ケム・リミテッド 有機発光素子
US9691991B2 (en) 2012-02-27 2017-06-27 Lg Chem, Ltd. Organic light emitting diode
US9331287B2 (en) 2012-02-27 2016-05-03 Lg Chem, Ltd. Organic light emitting diode
US11968889B2 (en) 2012-08-03 2024-04-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US10897012B2 (en) 2012-08-03 2021-01-19 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US9412962B2 (en) 2012-08-03 2016-08-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US11043637B2 (en) 2012-08-03 2021-06-22 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US10069076B2 (en) 2012-08-03 2018-09-04 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
WO2014034793A1 (ja) 2012-08-30 2014-03-06 出光興産株式会社 芳香族アミン誘導体およびこれを用いた有機エレクトロルミネッセンス素子
KR20150046069A (ko) 2012-08-30 2015-04-29 이데미쓰 고산 가부시키가이샤 방향족 아민 유도체 및 이것을 이용한 유기 전기발광 소자
EP3312167A1 (en) 2012-08-30 2018-04-25 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element using same
US10985325B2 (en) 2012-08-30 2021-04-20 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element using same
KR20170061727A (ko) 2012-08-31 2017-06-05 이데미쓰 고산 가부시키가이샤 방향족 아민 유도체 및 이것을 이용한 유기 전기발광 소자
WO2014034795A1 (ja) 2012-08-31 2014-03-06 出光興産株式会社 芳香族アミン誘導体およびこれを用いた有機エレクトロルミネッセンス素子
US10014477B2 (en) 2012-08-31 2018-07-03 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element using same
US11444246B2 (en) 2012-08-31 2022-09-13 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element using same
US11362279B2 (en) 2012-08-31 2022-06-14 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element using same
DE202013012834U1 (de) 2012-08-31 2020-03-19 lDEMITSU KOSAN CO., LTD. Aromatisches Aminderivat und organisches elektrolumineszierendes Element unter Verwendung desselben
KR20150079664A (ko) 2012-11-02 2015-07-08 이데미쓰 고산 가부시키가이샤 유기 전기발광 소자
US10629830B2 (en) 2012-12-05 2020-04-21 Samsung Display Co., Ltd. Organic electroluminescent device
US9780317B2 (en) 2012-12-05 2017-10-03 Samsung Display Co., Ltd. Amine derivative, organic luminescent material and organic electroluminescent device using the amine derivative or the organic luminescent material
WO2014088352A1 (en) * 2012-12-06 2014-06-12 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compounds and organic electroluminescent device comprising the same
US9991455B2 (en) 2013-09-20 2018-06-05 Idemitsu Kosan Co., Ltd. Amine compound and organic electroluminescent element
WO2016013184A1 (ja) * 2014-07-25 2016-01-28 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
JP5875742B1 (ja) * 2014-07-25 2016-03-02 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
KR101764006B1 (ko) 2014-08-20 2017-08-02 주식회사 엘지화학 유기 발광 소자
US9997715B2 (en) 2014-11-18 2018-06-12 Samsung Display Co., Ltd. Material for organic electroluminescent device and organic electroluminescent device using the same
CN113659089A (zh) * 2014-12-02 2021-11-16 三星显示有限公司 有机电致发光装置
WO2016126035A1 (ko) * 2015-02-03 2016-08-11 덕산네오룩스 주식회사 유기전기소자 및 이를 포함하는 전자장치
US20180114916A1 (en) * 2015-04-10 2018-04-26 Hodogaya Chemical Co., Ltd. Organic electroluminescent device
JP2015213077A (ja) * 2015-06-22 2015-11-26 ユニバーサル ディスプレイ コーポレイション 溶液加工可能な、ドープされたトリアリールアミン正孔注入材料
WO2017061480A1 (ja) * 2015-10-06 2017-04-13 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
US10464895B2 (en) 2015-10-06 2019-11-05 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescence elements, organic electroluminescence element, and electronic device
KR20180058733A (ko) 2015-10-06 2018-06-01 이데미쓰 고산 가부시키가이샤 화합물, 유기 전기발광 소자용 재료, 유기 전기발광 소자 및 전자 기기
JPWO2017061480A1 (ja) * 2015-10-06 2018-07-26 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
JP2020098916A (ja) * 2016-05-27 2020-06-25 エルジー・ケム・リミテッド 有機発光素子
KR20200040225A (ko) 2017-08-14 2020-04-17 이데미쓰 고산 가부시키가이샤 유기 일렉트로루미네센스 소자 및 전자 기기
JP7194107B2 (ja) 2017-08-14 2022-12-21 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
JPWO2019035412A1 (ja) * 2017-08-14 2020-10-01 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
US11665962B2 (en) 2017-08-14 2023-05-30 Idemitsu Kosan Co., Ltd. Organic electroluminescence element and electronic device
US10109804B1 (en) 2017-08-14 2018-10-23 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and electronic device
US10103338B1 (en) 2017-08-14 2018-10-16 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and electronic device
WO2019035412A1 (ja) 2017-08-14 2019-02-21 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
US10109803B1 (en) 2017-08-14 2018-10-23 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and electronic device
US11258031B2 (en) 2017-12-11 2022-02-22 Lg Chem, Ltd. Organic light-emitting device and manufacturing method therefor

Also Published As

Publication number Publication date
EP2031670A4 (en) 2011-05-04
US10283717B2 (en) 2019-05-07
JPWO2007148660A1 (ja) 2009-11-19
CN101473464A (zh) 2009-07-01
KR101422864B1 (ko) 2014-07-24
EP2031670B1 (en) 2013-11-27
TWI478410B (zh) 2015-03-21
US20180090685A1 (en) 2018-03-29
JP5616582B2 (ja) 2014-10-29
TW200816538A (en) 2008-04-01
US20160020403A1 (en) 2016-01-21
US20180040828A1 (en) 2018-02-08
KR20090021174A (ko) 2009-02-27
EP2031670A1 (en) 2009-03-04
US11094888B2 (en) 2021-08-17
US20080014464A1 (en) 2008-01-17
US20210083194A1 (en) 2021-03-18
US10263192B2 (en) 2019-04-16
US9960360B2 (en) 2018-05-01
US11678571B2 (en) 2023-06-13
CN101473464B (zh) 2014-04-23
US20210376247A1 (en) 2021-12-02
US11152574B2 (en) 2021-10-19

Similar Documents

Publication Publication Date Title
WO2007148660A1 (ja) 複素環含有アリールアミン誘導体を用いた有機エレクトロルミネッセンス素子
KR101414914B1 (ko) 유기 전계발광 소자용 재료 및 유기 전계발광 소자
KR101428840B1 (ko) 유기 전계 발광 소자
JP5432523B2 (ja) 有機エレクトロルミネッセンス素子
WO2012018120A1 (ja) モノアミン誘導体およびそれを用いる有機エレクトロルミネッセンス素子
WO2012014841A1 (ja) 有機エレクトロルミネッセンス素子
JP5097700B2 (ja) 有機エレクトロルミネッセンス素子
WO2008072400A1 (ja) 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2008023623A1 (fr) Dispositif électroluminescent organique
WO2007100010A1 (ja) 有機エレクトロルミネッセンス素子
WO2007032162A1 (ja) ピレン系誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2007080801A1 (ja) 新規イミド誘導体、有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2008072586A1 (ja) 有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
WO2006059512A1 (ja) 有機電界発光素子
WO2007080704A1 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007018004A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2008023550A1 (fr) Dérivé d'amine aromatique et dispositif électroluminescent organique utilisant celui-ci
WO2007102361A1 (ja) 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2007077766A1 (ja) 有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
WO2006070712A1 (ja) 有機エレクトロルミネッセンス素子用発光性インク組成物
WO2008062636A1 (en) Aromatic amine derivative and organic electroluminescent element using the same
WO2007017995A1 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007052759A1 (ja) 有機エレクトロルミネッセンス素子
WO2008015949A1 (fr) Composant organique électroluminescent
WO2007007464A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780022945.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767148

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008522454

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 6491/CHENP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2007767148

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087030995

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE