[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007017995A1 - 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子 - Google Patents

芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2007017995A1
WO2007017995A1 PCT/JP2006/313080 JP2006313080W WO2007017995A1 WO 2007017995 A1 WO2007017995 A1 WO 2007017995A1 JP 2006313080 W JP2006313080 W JP 2006313080W WO 2007017995 A1 WO2007017995 A1 WO 2007017995A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
carbon atoms
unsubstituted
organic
Prior art date
Application number
PCT/JP2006/313080
Other languages
English (en)
French (fr)
Inventor
Masahiro Kawamura
Masakazu Funahashi
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to EP06767688A priority Critical patent/EP1914222A1/en
Priority to KR1020087002673A priority patent/KR101331354B1/ko
Publication of WO2007017995A1 publication Critical patent/WO2007017995A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/61Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/10Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/26Phenanthrenes; Hydrogenated phenanthrenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers

Definitions

  • the present invention relates to an organic electoluminescence (hereinafter sometimes abbreviated as EL) element, and in particular, by using an aromatic amine derivative as a luminescent material, it has a long lifetime and high luminous efficiency. This relates to an organic EL device with a low manufacturing cost.
  • EL organic electoluminescence
  • An organic electroluminescence device (hereinafter, electroluminescence is abbreviated as EL) is a recombination energy between holes injected from the anode and electrons injected from the cathode by applying an electric field. This is a self-luminous device that utilizes the principle that fluorescent substances emit light. Report of low-voltage driven organic EL devices using stacked devices by Eastman Kodak's CW Tang, etc. (CW Tang, SA Vanslyke, Applied Physics Letters, 51 ⁇ , 913, 1987, etc.) Since then, research on organic EL devices using organic materials as constituent materials has been actively conducted. Tang et al.
  • the device structure of the organic EL device is a hole transport (injection) layer, a two-layer type of electron transporting light emitting layer, or a hole transport (injection) layer, light emitting layer, electron transport (injection) layer.
  • the three-layer type is well known. In such a multilayer structure element, the element structure and the formation method have been devised in order to increase the recombination efficiency of injected holes and electrons.
  • Patent Document 1 discloses the following compound (A)
  • Patent Document 4 discloses an aromatic diamine compound represented by the following general formula (B).
  • At least one of A and B is an atomic group forming a substituted or unsubstituted saturated 5-membered ring to saturated 8-membered ring, and may contain a spiro bond.
  • Patent Document 5 discloses an organic EL device using an aromatic triamine compound represented by the following general formula (C). Further, Patent Document 6 discloses an aromatic tetraamine compound represented by the following general formula (D).
  • B 1 and B 2 are substituted or unsubstituted biphenylene groups.
  • a in the general formula (D) is selected from the following structures.
  • Patent Document 7 is represented by the following general formula (E), and Patent Document 8 is represented by the following general formula (F). 9-: derivatives are disclosed.
  • Patent Document 1 U.S. Pat. No. 4,720,432
  • Patent Document 2 U.S. Pat.No. 5,061,569
  • Patent Document 3 Patent No. 3508984 Specification
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-080433
  • Patent Document 5 Patent No. 3565870 Specification
  • Patent Document 6 Patent No. 3220950 Specification
  • Patent Document 7 Japanese Patent Laid-Open No. 11-135261
  • Patent Document 8 Japanese Unexamined Patent Application Publication No. 2002-212151
  • An object of the present invention has been made to solve the above-described problems of the prior art, and by using an organic EL element material having an aromatic amine derivative strength, while maintaining a long life. It is to provide an organic EL device that simultaneously satisfies a decrease in driving voltage and an improvement in luminous efficiency.
  • an organic EL device material composed of the aromatic amine derivatives represented by 1) to (3) and (5) By using the organic EL device material composed of the aromatic amine derivatives represented by 1) to (3) and (5), an organic EL device having a low driving voltage and high luminous efficiency can be obtained while maintaining a long life.
  • the present invention has been completed by finding that it can be manufactured.
  • the present invention provides an aromatic amine derivative represented by the following general formulas (1) to (3).
  • Ar to Ar are each independently substituted or unsubstituted having 6 to 30 nuclear carbon atoms.
  • L and L are each independently a single bond, a substituted or unsubstituted nucleus having 6 to 30 nuclear carbon atoms.
  • R represents a substituent, and a plurality of fields a
  • R represents a substituent, and in the case of multiple, R may be bonded to each other to form a ring.
  • n is an integer of 0-8.
  • Ar to Ar are independently substituted or unsubstituted nuclear carbon numbers.
  • L to L are independently substituted or unsubstituted alkyl groups having 6 to 30 nuclear carbon atoms.
  • At least one of L to L is a linking group represented by the following general formula (4).
  • L and L are each independently a single bond, substituted or unsubstituted nuclear carbon number.
  • R represents a substituent, and in a plurality of cases, they may be bonded to each other to form a ring.
  • n is an integer of 0-8.
  • the present invention further provides an organic EL device material comprising an aromatic amine derivative represented by the general formulas (1) to (3), and at the same time, an organic EL material represented by the following general formula (5): Is provided.
  • Ar to Ar are each independently substituted or unsubstituted having 6 to 30 nuclear carbon atoms.
  • R represents a substituent, and in a plurality of cases, they may be bonded to each other to form a ring. It is an integer from 0 to 8.
  • the organic EL material of the present invention can be used as a doping material or a hole injection material or a hole transport material.
  • At least one layer of an organic thin film layer having at least one light emitting layer between an anode and a cathode or a multi-layer force contains the organic EL device material alone or as a component of a mixture.
  • the organic EL device material is used in the hole injection zone and / or the hole transport zone.
  • the material for the organic EL device is used for the hole injection layer and / or the hole transport layer.
  • the material for the organic EL device is used for the light emitting layer.
  • the organic EL device of the present invention contains 0.:! To 20% by weight of the organic EL device material in the light emitting layer.
  • the organic EL device of the present invention emits blue light.
  • the material for an organic EL device of the present invention is used in a hole transport zone, and more preferred is an excellent organic EL device when used for a hole transport layer.
  • the organic EL device material represented by the above general formulas (1) to (3) and (5) is preferably one of the organic thin film layers, preferably a hole transport band or a light emission band, more preferably positive.
  • a hole transport layer or a light-emitting layer more preferably a hole transport layer, it is possible to produce an organic EL device capable of obtaining a long-lived blue light emission with a high driving efficiency and a low driving voltage.
  • the present invention provides an aromatic amine derivative represented by the following general formulas (1) to (3).
  • Ar to Ar are each independently substituted or unsubstituted 6 to 3 nuclear carbon atoms.
  • L and L are each independently a single bond, a substituted or unsubstituted nuclear carbon number of 6 to 30
  • a substituted phenyl group, and both Ar and Ar are substituted or unsubstituted
  • R represents a substituent, and a plurality of a
  • R represents a substituent, and in a plurality of cases, a
  • n is an integer of 0-8.
  • Ar to Ar are each independently substituted or unsubstituted nuclear coal.
  • L to L are independently substituted or unsubstituted 6 to 30 nuclear carbon atoms.
  • At least one of 5 to L is a linking group represented by the following general formula (4).
  • L and L are each independently a single bond, substituted or unsubstituted nuclear carbon number.
  • R represents a substituent, and in a plurality of cases, they may be bonded to each other to form a ring.
  • n is an integer of 0-8.
  • Examples of the substituted or unsubstituted aryl group having 6 to 30 nuclear carbon atoms include a phenyl group, 1 naphthyl group, 2 naphthyl group, 1 anthracenyl group, 2 anthracenyl group, 9-anthracenyl group, 1 phenanthrinole group, 2 Phenanthrinol group, 3 phenanthryl group, 4-phenanthrinol group, 9 phenanthrinol group, 1-naphthacenyl group, 2 naphthacenyl group, 9-naphthacenyl group, 1-pyrenyl group, 2-pyrenyl group, 4-pyrenyl group, 2-biphenylyl Group, 3-biphenylyl group, 4-biphenylyl group, p-terfenyl 4-yl group, ⁇ terfeninore 1-inore group, p terfeninole 2-inole group
  • Examples of the substituted or unsubstituted condensed aromatic ring group having 10 to 20 nuclear carbon atoms include a naphthyl group, a phenanthryl group, an anthranyl group, a pyrenyl group, a chrysenyl group, an acenaphthyl group, and a fluorenyl group.
  • Force S preferably a naphthyl group or a phenanthryl group.
  • a phenyl group Preferable are a phenyl group, a naphthyl group, a biphenyl group, an anthranyl group, a phenanthrinol group, a pyrenyl group, a chrysenyl group, and a fluorenyl group. Particularly preferred are a phenyl group and a naphthyl group.
  • substituted or unsubstituted heteroarylene group having 5 to 30 nuclear carbon atoms for example, pyridyl group, pyrazyl group, quinolyl group, isoquinolyl group, phenanthryl group, furyl group, benzofuryl group, dibenzofuryl A group, a phenyl group, a dibenzophenyl group, a benzophenyl group, a pyraryl group, an indolyl group, a carbazolyl group, an imidazolyl group, a benzimidazolyl group, and the like.
  • a substituted or unsubstituted arylene group having 6-30 carbon atoms which is a pyridyl group, a quinolyl group, a carbazolyl group, an indolyl group, for example, a phenylene group, a biphenylene group, a terfenylene group, a quarter Phenylene, naphthylene, anthracenylene, phenanthrylene, chrysylene, pyrenylene, fluorenylene, 2, -6-diphenylnaphthalene-4 ', 4 "-ene, 2-phenylene And a naphthalene-2,4′-ene group, etc., preferably a phenylene group, a biphenylene group, a terfenylene group, a fluorenylene group, and a naphthylene group.
  • substituted or unsubstituted heteroaryl group having 5 to 30 nuclear carbon atoms for example, monovalent such as pyridine, quinoline, thiophene, furan, carbazole, dibenzofuran, dibenzothiophphene, fluorenone, oxazole, oxadiazole, thiadiazole, etc.
  • monovalent such as pyridine, quinoline, thiophene, furan, carbazole, dibenzofuran, dibenzothiophphene, fluorenone, oxazole, oxadiazole, thiadiazole, etc.
  • the group is listed.
  • Preferred are pyridine, carbazole, and thiophene.
  • Examples of the substituted or unsubstituted heteroarylene group having 5 to 30 nuclear carbon atoms include 2 such as pyridin, quinoline, thiophene, furan, canolevazonole, dibenzofuran, dibenzothiophene, fluorenone, oxazole, oxadiazole, thiadiazole and the like.
  • the value group is listed. Preferred are pyridine, carbazole, and thiophene.
  • aryleno group arylene group, heteroaryl group, heteroarylene group
  • An alkyl group preferably having a carbon number of 120, more preferably having a carbon number of 112, and particularly preferably having a carbon number of 18; for example, methyl, ethyl, isopropyl, t-butyl, n-octyl, n-decyl, n Xadecyl, cyclopropyl, cyclopentyl, cyclohexyl, etc.
  • an alkenyl group preferably having a carbon number of 220, more preferably a carbon number of 2 to: 12, particularly preferably a carbon number of 28, such as bull
  • alkynyl groups preferably having 20 carbon atoms, more preferably 212 carbon atoms, particularly preferably 28 carbon atoms, such as propargyl, 3 i
  • An amino group preferably having 0 to 20 carbon atoms, more preferably
  • an alkoxycarbonyl group Preferably it has 220 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 12 carbon atoms, And carbonyloxy group (preferably having a carbon number of 720, more preferably having a carbon number of 716, and particularly preferably having a carbon number of 7 to 10).
  • Phenyloxycarbonyl, etc. an acyloleoxy group (preferably having a carbon number of 220, more preferably having a carbon number of 2,16 and particularly preferably having a carbon number of 2 to 10; for example, acetooxy, benzoyloxy, etc.) ),
  • An acyloleamino group preferably having a carbon number of 220, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 10 carbon atoms, and examples thereof include acetylamino benzoylamino and the like.
  • An alkoxycarbonylamino group (preferably having a carbon number of 220, more preferably having a carbon number of 216, particularly preferably having a carbon number of 2 to 12 such as methoxycarbonylamino), aryloxycarbonyl, etc.
  • An amino group (preferably having a carbon number of 720, more preferably a carbon number of 716, particularly preferably a carbon number of 7 to 12; Examples thereof include phenyloxycarbonylamino. ), A sulfonylamino group (preferably having a carbon number:!
  • a sulfamoyl group (preferably having 0 to 20 carbon atoms, more preferably 0 to 16 carbon atoms, and particularly preferably 0 to 12 carbon atoms.
  • sulfamoyl, methylsulfamoyl, dimethylsulfamo And rubamoyl groups (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 12 carbon atoms).
  • 6 to 12 and examples thereof include phenylthio, etc.), a sulfonyl group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 12 carbon atoms).
  • a sulfonyl group preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 12 carbon atoms.
  • mesyl, tosyl, etc. sulfinyl groups (preferably carbon number:! -20, more preferably carbon number 1-16, particularly preferably carbon number 1-12: for example, methanesulfiel , Benzenesulfiel etc.), ureido groups (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as ureido and methinoreureido.
  • Phenylureido, etc. phosphoric acid amide groups (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as jetyl phosphoric acid amide and phenylphosphoric acid amide.
  • Hydroxy group mercapto group, halogen atom (eg, fluorine atom, chlorine atom, bromine atom, iodine atom), cyano group, sulfo group, carboxyl group, nitro group, hydroxamic acid group, sulfino group, A hydrazino group, an imino group, a heterocyclic group (preferably having 1 to 30 carbon atoms, more preferably 1 to 12 carbon atoms, and examples of the hetero atom include a nitrogen atom, an oxygen atom, and a sulfur atom.
  • halogen atom eg, fluorine atom, chlorine atom, bromine atom, iodine atom
  • a silyl group (preferably having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, particularly preferably 3 to 24 carbon atoms, such as trimethylsilyl, triphenyl Examples include silyl. ) And the like. These substituents may be further substituted. When there are two or more substituents, they may be the same or different. If possible, they can be linked together to form a ring.
  • Examples of the substituent R in the general formulas (1) and (4) include an alkyl group (preferably a carbon number).
  • :!-20 more preferably 1-12 carbon atoms, particularly preferably 1-8 carbon atoms, such as methylol, ethyl, isopropyl, t-butyl, n_octyl, n-decyl, n_hexadecyl, And cyclopropyl, cyclopentyl, cyclohexyl and the like.
  • An alkenyl group preferably having 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, particularly preferably 2 to 8 carbon atoms, and examples thereof include bur, aryl, 2-butyl, 3_pentenyl and the like.
  • An alkynyl group preferably having 2 to 20 carbon atoms, more preferably 2 to 12 carbon atoms, particularly preferably 2 to 8 carbon atoms, such as propargyl, 3_pentur, etc.
  • amino group Preferably having 0 to 20 carbon atoms, more preferably 0 to 12 carbon atoms, and particularly preferably 0 to 6 carbon atoms, and examples thereof include amino, methinoreamino, dimethylamino, jetylamino, diphenylamino dibenzylamino, and the like.
  • Examples thereof include methoxy, ethoxy, and butoxy. ), Aryloxy groups (preferably having 6 to 20 carbon atoms, more preferably 6 to 16 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenyloxy, 2-naphthyloxy, etc.), acyl.
  • a group preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include acetyl, benzoinole, formyl, bivaloyl and the like), alkoxy.
  • a carbonyl group (preferably having 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonyl, ethoxycarbonyl, etc.), aryloxy A carbonyl group (preferably having a carbon number of 7 to 20, more preferably a carbon number of 7 to 16, particularly preferably a carbon number of 7 to 10, and examples thereof include phenyloxycarbonyl and the like.
  • An acyl group (preferably having 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as acetoxy, benzoyloxy, etc.), an acylamino group (preferably Is a carbon number of 2 to 20, more preferably a carbon number of 2 to 16, particularly preferably a carbon number of 2 to 10, and examples thereof include acetylamino benzoylamino and the like.
  • a carbonylamino group (preferably having 2 to 20 carbon atoms, more preferably 2 to 16 carbon atoms, particularly preferably 2 to 12 carbon atoms, and examples thereof include methoxycarbonylamino) and the like.
  • Roxycarbonylamino group (preferably having 7 to 20 carbon atoms, more preferably 7 to 16 carbon atoms, particularly preferably 7 to 12 carbon atoms, and examples thereof include phenylcarbonylcarbonylamino and the like. ), A sulfonylamino group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include methanesulfonylamidobenzenesulfonylamino.
  • a sulfamoyl group (preferably having 0 to 20 carbon atoms, more preferably 0 to 16 carbon atoms, particularly preferably 0 to 12 carbon atoms, such as sulfamoyl, methylsulfamoyl, dimethylsulf And rubamoyl groups (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 12 carbon atoms. , Methylcarbamoyl, jetcarbamoyl, phenylcarbamoyl, etc.), an alkylthio group (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, and particularly preferably 1 to 12 carbon atoms).
  • Methylthio, ethylthio, etc. arylthio groups (preferably having 6-20 carbon atoms, more preferably 6-16 carbon atoms, particularly preferably 6-6 carbon atoms, such as phenylthio). ), Sulfonyl groups (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as mesyl, tosinore ), Sulfinyl groups (preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfinyl, benzenesulfinyl, etc.).
  • Ureido group preferably having 1 to 20 carbon atoms, more preferably 1 to 16 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include ureido, methylureido, and phenylureido.
  • Phosphoric acid amide groups preferably having 1 to 20 carbon atoms, more preferably carbon numbers:! To 16 and particularly preferably 1 to 12 carbon atoms, such as jetyl phosphoric acid amide, phenylphosphoric acid amide, etc. .
  • Hydroxy group mercapto group, halogen atom (eg fluorine atom, chlorine atom, bromine atom, iodine atom), cyano group, sulfo group, carboxyl group, nitro group, hydroxamic acid group, sulrefino group, hydrazino group, imino group Group, heterocyclic group (preferably having 1 to 30 carbon atoms, more preferably 1 to 12 carbon atoms, and examples of the hetero atom include a nitrogen atom, an oxygen atom, and a sulfur atom.
  • halogen atom eg fluorine atom, chlorine atom, bromine atom, iodine atom
  • cyano group eg fluorine atom, chlorine atom, bromine atom, iodine atom
  • sulfo group carboxyl group
  • nitro group hydroxamic acid group
  • sulrefino group e.g., sulrefino group
  • a silyl group (preferably having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, particularly preferably 3 to 24 carbon atoms, and examples thereof include trimethylsilyl and triphenylsilyl). These substituents may be further substituted. When there are two or more substituents, they may be the same or different. If possible, they may be linked to each other to form a ring.
  • the present invention provides an organic EL device material comprising an aromatic amine derivative represented by the above general formulas (1) to (3), and at the same time, further provides an organic compound represented by the following general formula (5). It provides materials for EL devices.
  • Ar to Ar are each independently substituted or unsubstituted 6 to 6 carbon atoms.
  • R represents a substituent, and in a plurality of cases, they may be bonded to each other to form a ring.
  • Ar an integer from 0 to 8.
  • the organic EL device material of the present invention represented by the general formulas (1) to (3) and (5) is an organic layer composed of one or more layers having at least a light emitting layer between the cathode and the cathode. At least one thin film layer is contained alone or as a component of a mixture.
  • the organic EL device material of the present invention is used in a hole injection zone and / or a hole transport zone or a light emission zone, preferably in a hole injection layer and / or a hole transport layer or a light emission layer, and more preferably positive.
  • a hole transport layer or a light emitting layer an excellent organic EL device can be obtained.
  • the hole transport layer or light-emitting layer preferably contains 0.:! To 20% by mass of the organic EL device material represented by (1) to (3) and (5).
  • the organic EL device of the present invention emits blue light.
  • composition of organic EL elements The following is a typical configuration example of an organic EL device used in the present invention. Of course, the present invention is not limited to this.
  • Anode Z Inorganic semiconductor layer Z Insulating layer Z Light emitting layer Z Insulating layer Z Cathode
  • the structures (4) and (8) are preferably used.
  • the organic EL device material of the present invention may be used in any of the organic layers described above, but is preferably contained in a hole transport band or a light emission band in these constituent elements. Particularly preferred is the case where it is contained in the hole transport layer.
  • the organic EL device of the present invention is manufactured on a light-transmitting substrate.
  • the transparent substrate is a substrate that supports the organic EL element, and a smooth substrate having a light transmittance in the visible region of 400 to 700 nm of 50% or more is preferable.
  • a glass plate, a polymer plate, etc. are mentioned.
  • the glass plate include soda-lime glass, norlium strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, norium borosilicate glass, and quartz.
  • Polymer plates include polycarbonate, acrylic, polyethylene terephthalate, and polyethersulfite. And polysulfone.
  • the anode of the organic thin film EL device plays a role of injecting holes into the hole transport layer or the light emitting layer, and it is effective to have a work function of 4.5 eV or more.
  • ITO indium tin oxide alloy
  • IZO indium zinc oxide alloy
  • NESA tin oxide
  • gold, silver, platinum, copper, lanthanoid, etc. can be applied. .
  • the anode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the transmittance of the anode for light emission is greater than 10%.
  • the sheet resistance of the anode is preferably several hundred ⁇ / mouth or less.
  • the film thickness of the anode is a force that depends on the material.
  • the light emitting layer of the organic EL device has the following functions. That is,
  • Injection function A function that can inject holes from the anode or hole injection layer when an electric field is applied, and can inject electrons from the cathode or electron injection layer.
  • Transport function Function to move injected charges (electrons and holes) by the force of electric field
  • Light-emitting function It provides a field for recombination of electrons and holes, and has the function to connect this to light emission. However, there is a difference between the ease of hole injection and the ease of electron injection, and the transport capability represented by the mobility of holes and electrons may be large or small. Les, preferred to move the charge.
  • the light emitting layer is particularly preferably a molecular deposited film, where the molecular deposited film is a thin film formed by deposition from a vapor phase material or a material in solution or liquid phase. This is a film formed by solidification from a compound.
  • this molecular deposited film is a coherent structure with a thin film (molecular accumulation film) formed by the LB method. It can be classified by the difference in the higher order structure and the functional difference resulting from it.
  • a binder such as a resin and a material compound are dissolved in a solvent to form a solution, which is then thin-filmed by a spin coating method or the like. Also, the light emitting layer can be formed.
  • a known light emitting material other than the light emitting material comprising the organic EL device material of the present invention may be contained in the light emitting layer as desired.
  • a light emitting layer containing another known light emitting material may be laminated on a light emitting layer containing a light emitting material made of the organic EL device material of the present invention.
  • a material having a condensed aromatic ring in the molecule such as anthracene pyrene is particularly suitable. Specific examples are shown below.
  • Examples of the light emitting material or doping material that can be used in the light emitting layer together with the material for the organic EL device of the present invention include anthracene, naphthalene, phenanthrene, pyrene, tetracene, coronene, taricene, fluorescein, perylene, lidar perylene, naphtha.
  • Ar is a substituted or unsubstituted condensed aromatic group having 10 to 50 nuclear carbon atoms.
  • Ar ′ is a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms.
  • X is a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 atomic atoms, a substituted or unsubstituted alkyl group having! To 50 carbon atoms.
  • substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms substituted or unsubstituted aranoloxy group having 6 to 50 carbon atoms, substituted or unsubstituted aryloxy group having 5 to 50 nucleus atoms, substituted or unsubstituted A arylthio group having 5 to 50 nucleus atoms, a substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, a carboxyl group, a halogen atom, a cyano group, a nitro group, and a hydroxyl group.
  • a, b and c are each an integer of 0-4.
  • n is an integer from:! If n is 2 or more, the numbers in [] may be the same or different. )
  • Ar 1 and Ar 2 are each independently a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms, and m and n are each an integer of 1 to 4)
  • R 1 -R ⁇ each independently represents a hydrogen atom, a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, or a substituted group.
  • an arylothio group of 5 to 50 a substituted or unsubstituted alkoxycarbonyl group of 1 to 50 carbons, a substituted or unsubstituted silyl group, a carboxyl group, a halogen atom, a cyano group, a nitro group, and a hydroxyl group.
  • Ar and Ar ′ are each a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms.
  • L and L ′ are a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthalenylene group, a substituted or unsubstituted fluorenylene group, or a substituted or unsubstituted dibenzosilolylene group, respectively.
  • n is an integer from 1 to 4
  • s is an integer from 0 to 2
  • t is an integer from 0 to 4.
  • L or Ar is bonded to any one of 1 to 5 positions of pyrene
  • L ′ or Ar is bonded to any of 6 to 10 positions of pyrene.
  • a 1 and A 2 are each independently a substituted or unsubstituted condensed aromatic ring group having 10 to 20 nuclear carbon atoms.
  • Ar 1 and Ar 2 are each independently a hydrogen atom or a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms.
  • ⁇ ! ⁇ Is independently a hydrogen atom, a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted Is an unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, Substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, substituted or unsubstituted A silyl group
  • ⁇ to ° are each independently a hydrogen atom, alkyl group, cycloalkyl group, optionally substituted aryl group, alkoxyl group, aryloxy group, alkylamino group, alkenyl group, aryl group, or A heterocyclic group which may be substituted; a and b each represent an integer of 1 to 5 , and when they are 2 or more, R 1 s or R 2 s are the same or different in each case.
  • L 1 is a single bond, -0-, -S-, —N (R) — (R is an alkyl group or an aryl group that may be substituted), alkylene Group or arylene group.)
  • R U to R are each independently a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an alkoxyl group, an aryloxy group, an aralkylamino group, or an arylamino group.
  • C, d, e and f each represent an integer of 1 to 5, and when they are 2 or more, R 11 to each other, R 12 to each other, R 16 to each other or R 17 to each other, In each case, they may be the same or different, and R 11 , R 12 , R 16, or R 17 may combine to form a ring, or R 13 and R 14 , R 18 and R 19 may be bonded to each other to form a ring, L 2 is a single bond, -0-, -S-, _N (R) _ (R may be an alkyl group or may be substituted. An alkylene group or an arylene group.)
  • a 5 to A 8 are each independently a substituted or unsubstituted biphenyl group or a substituted or unsubstituted naphthyl group.
  • a 9 to A 14 are the same as defined above; R 21 to R 23 each independently represent a hydrogen atom, a carbon number of 1 to
  • R and R are a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or
  • R bonded to different fluorene groups R, R may be the same or different fluorene groups
  • R and R bonded to may be the same or different.
  • R and R are hydrogen
  • 1 2 3 4 Represents an atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group.
  • Rs bonded to the fluorene group, and Rs may be the same or different,
  • R and R bonded to the same fluorene group may be the same or different.
  • 3 4 1 and Ar are substituted or unsubstituted condensed polycyclic aromatics with a total of 3 or more benzene rings
  • the total force of the aromatic group or benzene ring and heterocyclic ring represents a condensed polycyclic heterocyclic group bonded to the fluorene group by three or more substituted or unsubstituted carbons, and Ar and Ar are the same.
  • n an integer of 1 to 10.
  • anthracene derivatives are preferable, monoanthracene derivatives are more preferable, and asymmetric anthracene is particularly preferable.
  • a phosphorescent compound can also be used as the dopant light-emitting material.
  • a compound containing a rubazole ring as a host material is preferred.
  • the dopant is a compound that can emit light from triplet excitons, and is not particularly limited as long as it emits light from triplet excitons, but at least selected from the group consisting of Ir, Ru, Pd, Pt, ⁇ s and Re A metal complex containing one metal is preferable.
  • a suitable host for phosphorescence emission comprising a compound containing a strong rubazole ring is a compound having a function of emitting a phosphorescent compound as a result of energy transfer to its excited state force phosphorescent compound.
  • the phosphine H compound is not particularly limited as long as it is a compound that can transfer the exciton energy to the phosphorescent compound, and can be appropriately selected according to the purpose. It may have an arbitrary heterocyclic ring in addition to the strong rubazole ring.
  • host compounds include force rubazole derivatives, triazole derivatives, oxazole derivatives, oxaziazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, vinylene diamine derivatives, allylamamines Derivatives, amino substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidene compounds, porphyrin compounds, anthraquinodimethane derivatives, Anthrone derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carpositimide derivatives, fluorenylidenemethane derivatives, distyrylvirazine derivatives, naphthalene derivatives Heterocyclic
  • the phosphorescent dopant is a compound that can emit light from triplet excitons. Although it is not particularly limited as long as it emits light from a triplet exciton, it is preferably a metal complex containing at least one metal selected from the group consisting of Ir, Ru, Pd, Pt, Os and Re force. Metalated metal complexes are preferred.
  • the porphyrin metal complex is preferably a porphyrin platinum complex.
  • the phosphorescent compound may be used alone or in combination of two or more.
  • ligands for forming an onoletometal ⁇ metal complex include 2_phenyl pyridine derivatives, 7, 8 _benzoquinoline derivatives, 2_ (2_ Phenyl) pyridine derivatives, 2- (1 naphthyl) pyridine derivatives, 2-phenylquinoline derivatives, and the like. These derivatives may have a substituent as necessary. In particular, fluorinated compounds and trifluoromethyl groups have been introduced. Furthermore, it has a ligand other than the above ligands such as acetylylacetonate and picric acid as an auxiliary ligand.
  • the content of the phosphorescent dopant in the light-emitting layer is not particularly limited, and can be appropriately selected according to the purpose S, for example, 0:! To 70% by mass, and:! To 30 A mass% is preferred.
  • the content of the phosphorescent compound is less than 0.1% by mass, the light emission is weak and the effect of the content is not fully exhibited.
  • the content exceeds 70% by mass a phenomenon called concentration quenching becomes prominent. Device performance is degraded.
  • the light emitting layer may contain a hole transporting material, an electron transporting material, and a polymer binder as necessary.
  • the thickness of the light emitting layer is preferably 5 to 50 nm, more preferably 7 to 50 nm, and most preferably 10 to 50 nm. If the thickness is less than 5 nm, it is difficult to form a light emitting layer, and it may be difficult to adjust the chromaticity. If it exceeds 50 nm, the driving voltage may increase.
  • the hole injecting and transporting layer is a layer that helps injecting holes into the light emitting layer and transports it to the light emitting region.
  • the ion mobility energy with high hole mobility is usually as low as 5.5 eV or less.
  • a material that transports holes to the light emitting layer with a lower electric field strength is preferable.
  • a mobility force of holes for example, when 10 4 to 10 6 V / cm is applied. , preferably if it is at least 10- 4 cm 2 / V ⁇ sec Les,.
  • the compound of the present invention alone may form a hole injection / transport layer, or may be mixed with other materials.
  • the material for forming the hole injection / transport layer by mixing with the organic EL device material of the present invention is not particularly limited as long as it has the above-mentioned preferable properties.
  • a material that is commonly used as a charge transport material for a hole or a known medium force used for a hole injection layer of an EL element can be selected and used.
  • As the aromatic amine derivative a compound represented by the following general formula can be considered. [0069] [Chemical 35]
  • Ar u to Ar 13 , Ar 21 to Ar 23 , Ar 3 to Ar 8 are substituted or unsubstituted aromatic groups having 6 to 50 nuclear carbon atoms, or complex having 5 to 50 nuclear atoms.
  • Aromatic group. a to c and p to r are integers from 0 to 3, respectively.
  • Ar 3 and Ar 4 , Ar 5 and Ar 6 , Ar 7 and Ar 8 may be connected to each other to form a saturated or unsaturated ring.
  • Ar ⁇ Ar 4 is a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms, or a heteroaromatic group having 5 to 50 nuclear atoms.
  • L is a linking group, which is a single bond, a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms, or a heteroaromatic group having 5 to 50 nuclear atoms.
  • X is an integer from 0 to 5.
  • Ar 2 and Ar 3 may be linked to each other to form a saturated or unsaturated ring.
  • the above-described materials can be used.
  • S porphyrin compounds (disclosed in JP-A-63-29556965, etc.), aromatic tertiary amine compounds And styrylamine compounds (US Pat. No. 4,127,412, JP-A-53-27033, 54-58445, 54-149634, 54-64299, 55-79450 publication, 55-144250 publication, 56-119132 publication, 61-295558 publication, 61-98353 publication, 63-295695 publication, etc.), especially aromatic group 3 It is preferable to use a grade amine compound.
  • US Pat. No. 5,061,569 has two condensed aromatic rings in the molecule, for example, 4,4,1bis (N_ (1-naphthyl) 1N-phenylamino) biphenyl. (Hereinafter abbreviated as NPD), and three triphenylamine units described in JP-A-4-308688 are connected in a starburst type 4, 4 ', 4 "-Tris (N- (3 -Methylphenyl) -N-phenylamino) triphenylamine (hereinafter abbreviated as MTDATA).
  • NPD 1,4-naphthyl
  • MTDATA triphenylamine
  • R, R, R, R, R, R, R are substituted or unsubstituted alkyl groups, substituted or unsubstituted
  • R, R, R, R, R may be the same or different.
  • R1 to R6 are substituents, and are preferably electron-withdrawing groups such as cyano group, nitro group, sulfonyl group, carbonyl group, trifluoromethyl group, and halogen.
  • inorganic compounds such as p-type Si and p-type SiC can also be used as the material for the hole injection layer.
  • the hole injection and transport layer can be formed by thin-filming the above-described compound by a known method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method.
  • the thickness of the hole injection or transport layer is not particularly limited, but is usually 5 nm to 5 zm. If the hole injection / transport layer contains the compound of the present invention in the hole transport zone, the hole injection / transport layer may be composed of one or more of the above-described materials, or the positive layer.
  • a hole injection / transport layer made of a compound different from the hole injection / transport layer may be laminated.
  • the organic semiconductor layer is a layer that assists hole injection or electron injection into the light emitting layer, and preferably has a conductivity of 10-1Q S / cm or more.
  • Examples of materials for such an organic semiconductor layer include thiophene oligomers, conductive oligomers such as allylamin oligomers disclosed in JP-A-8-193191, and conductive materials such as allylamin dendrimers. Sex dendrimers and the like can be used.
  • Electron injection layer is a layer that assists the injection of electrons into the light emitting layer, and has a high electron mobility.
  • the adhesion improving layer is a layer made of a material that has a particularly good adhesion to the cathode. .
  • As a material used for the electron injection layer 8-hydroxyquinoline or a metal complex of its derivative is suitable.
  • metal complex of the above-mentioned 8-hydroxyquinoline or a derivative thereof include metal chelate toxinoid compounds containing a chelate of oxine (generally 8_quinolinol or 8-hydroxyquinoline).
  • Alq described in the section of the light emitting material can be used as the electron injection layer.
  • examples of the oxadiazole derivative include an electron transfer compound represented by the following general formula.
  • Ar 1 , Ar 2 , Ar 3 , Ar 5 , Ar 6 , Ar 9 each represents a substituted or unsubstituted aryl group, which may be the same or different from each other.
  • Ar 4 , Ar 7 and Ar 8 represent a substituted or unsubstituted arylene group, and may be the same or different.
  • the aryl group includes a phenyl group, a biphenyl group, an anthranyl group, a perylenyl group, and a pyrenyl group.
  • the arylene group include a phenylene group, a naphthylene group, a biphenylene group, an anthranylene group, a peryleneylene group, and a pyrenylene group.
  • the substituent include an alkenoquinole group having 1 to 10 carbon atoms, an alkoxy group having 10 to 10 carbon atoms, and a cyano group.
  • This electron transfer compound is preferably a film-forming compound. [0082] Specific examples of the electron transfer compound include the following.
  • materials represented by the following general formulas (E) to CF 3) can be used as materials used for the electron injection layer and the electron transport layer.
  • AA 3 independently represents a nitrogen atom or a carbon atom.
  • Ar 1 is a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, or a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms
  • Ar 2 is a hydrogen atom, substituted or unsubstituted Aryl group having 6 to 60 nuclear carbon atoms, substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or substituted or unsubstituted carbon number 1 to 20 alkoxy groups, or these divalent groups.
  • any one of Ar 1 and Ar 2 is a substituted or unsubstituted condensed ring group having 10 to 60 nuclear carbon atoms, or a substituted or unsubstituted monoheterocondensed ring group having 3 to 60 nuclear carbon atoms. .
  • ⁇ L 2 and L are each independently a single bond, a substituted or unsubstituted arylene group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroarylene group having 3 to 60 nuclear carbon atoms, or a substituted or unsubstituted group. It is a substituted fluorenylene group.
  • R represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms, a substituted or unsubstituted alkyl group having! To 20 carbon atoms.
  • a plurality of R groups bonded together to form a carbocyclic aliphatic ring or a carbocyclic aromatic ring. The nitrogen-containing heterocyclic derivative represented by this.
  • HAr is a nitrogen-containing heterocycle having 3 to 40 carbon atoms which may have a substituent
  • L is a single bond and having 6 to 60 carbon atoms which may have a substituent.
  • Ariren group, Les substituted, also good Le, Re has a heteroarylene group or substituent to the 3 to 60 carbon atoms, it may also be a full Oreniren group
  • Ar 1 is, A divalent aromatic hydrocarbon group having 6 to 60 carbon atoms which may have a substituent
  • Ar 2 is an aryl group or substituted having 6 to 60 carbon atoms which may have a substituent.
  • X and Y are each independently a saturated or unsaturated hydrocarbon group having from 6 to 6 carbon atoms, an alkoxy group, an alkenyloxy group, an alkynyloxy group, a hydroxy group, a substituted or Is a structure in which an unsubstituted aryl group, a substituted or unsubstituted heterocyclic ring, or X and ⁇ are combined to form a saturated or unsaturated ring.
  • R to R are independently hydrogen, halogen, or halogen.
  • Atoms substituted or unsubstituted alkyl groups having 1 to 6 carbon atoms, alkoxy groups, aryloxy groups, perfluoroalkyl groups, perfluoroalkoxy groups, amino groups, alkylcarbonyl groups, aryls.
  • R to R and Z are each independently a hydrogen atom, a saturated or unsaturated carbonization
  • a hydrogen group, an aromatic hydrocarbon group, a heterocyclic group, a substituted amino group, a substituted boryl group, an alkoxy group or an aryloxy group, and X, Y and Z are each independently saturated or unsaturated.
  • N represents an integer from 1 to 3, and when n is 2 or more, Z may be different.
  • n is 1, X, Y
  • R-catayl group R force in the case of hydrogen atom or substituted boryl group, and n is 3.
  • Q 1 and Q 2 each independently represent a ligand represented by the following general formula (K), and L represents a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted group.
  • Substituted cycloalkyl group, substituted or unsubstituted aryl group, substituted or unsubstituted heterocyclic group one OR 1 (R 1 is a hydrogen atom, substituted or unsubstituted alkyl group, substituted or unsubstituted cycloalkyl group Substituted or unsubstituted aryl group, substituted or unsubstituted heterocyclic group The ) Or —O—Ga—Q 3 (Q 4 ) (Q 3 and Q 4 are the same as Q 1 and Q 2 ). ]
  • rings A 1 and A 2 are 6-membered aryl rings condensed with each other and may have a substituent.
  • This metal complex is strong as an n-type semiconductor and has a high electron injection capability. Furthermore, since the generation energy at the time of complex formation is low, the bond between the metal and the ligand of the formed metal complex is strengthened, and the fluorescence quantum efficiency as a light emitting material is also increasing.
  • substituents of the rings A 1 and A 2 that form the ligand of the general formula (K) include chlorine, bromine, iodine, a halogen atom of fluorine, a methylol group, an ethyl group, a propyl group, Butyl group, s-butynol group, t-butyl group, pentyl group, hexyl group, heptyl group, octyl group, stearyl group, trichloromethyl group, etc., substituted or unsubstituted alkyl group, fuel group, naphthyl group, 3 Substituted or unsubstituted aryl groups such as _methylphenyl group, 3-methoxyphenyl group, 3_fluorophenylene group, 3_trichloromethylphenyl group, 3_trifluoromethylphenyl group, 3_nitrophenyl group , Methoxy group, n-but
  • Mono- or di-substituted amino groups such as allylthio group, cyano group, nitro group, amino group, methylamino group, jetylamino group, ethylamino group, jetinoreamino group, dipropylamino group, dibutylamino group, diphenylamino group, etc., bis (acetoxymethyl) ) Amino group, bis (acetoxetyl) amino group, bisacetoxypropyl) An amino group such as a mino group, a bis (acetoxybutyl) amino group, a hydroxyl group, a siloxy group, an acyl group, a methylcarbamoyl group, a dimethylcarbamoyl group, an ethynole rubamoyl group, a jetylcarbamoyl group, a propylcarbamoyl group, Powerful rubamoyl groups such as butyl carbamoyl
  • the reducing dopant is defined as a substance capable of reducing an electron transporting compound. Accordingly, various materials can be used as long as they have a certain reducibility, for example, alkali metals, alkaline earth metals, rare earth metals, alkali metal oxides, alkali metal halides, alkaline earths.
  • Metal oxide, alkaline earth metal halide, rare earth metal oxide or rare earth metal At least one substance selected from the group consisting of halides of the above, alkali metal organic complexes, alkaline earth metal organic complexes, and rare earth metal organic complexes can be suitably used.
  • preferable reducing dopants include Na (work function: 2.36 eV), K (work function: 2.28 eV), Rb (work function: 2.16 eV) and Cs (work At least one alkali metal selected from the group consisting of: 1.95 eV), Ca (work function: 2.9 eV), Sr (work function: 2.0 to 2.5 eV), and Ba (work function: 2. 52 eV) force, at least one alkaline earth metal selected from the group consisting of those having a work function of 2.9 eV or less is particularly preferred.
  • a more preferable reducing dopant is at least one alkali metal selected from the group consisting of K, Rb and Cs, more preferably Rb or Cs, and most preferably Cs. .
  • alkali metals in particular, can improve the emission brightness and extend the life of organic EL devices by adding a relatively small amount to the electron injection region where the reducing ability is high.
  • a reducing dopant having a work function of 2.9 eV or less a combination of two or more alkali metals is also preferable. Particularly, combinations containing Cs, for example, Cs and Na, Cs and K, and Cs. A combination of Rb or Cs, Na and ⁇ is preferred. By including Cs in combination, the reducing ability can be efficiently exhibited, and by adding it to the electron injection region, the emission luminance of the organic EL element can be improved and the lifetime can be extended.
  • an electron injection layer composed of an insulator or a semiconductor may be further provided between the cathode and the organic layer.
  • an insulator use is made of at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides. I like it. If the electron injection layer is composed of these alkali metal chalcogenides or the like, it is preferable in that the electron injection property can be further improved.
  • preferable alkali metal chalcogenides include, for example, LiO, LiO, Na S, Na Se and NaO
  • preferable alkaline earth metal chalcogenides include, for example, CaO, BaO, SrO, BeO, BaS, and CaSe.
  • preferred alkali metal halogenation Examples of the product include LiF, NaF, KF, LiCl, KC1, and NaCl.
  • preferable alkaline earth metal halides include, for example, CaF, BaF, SrF,
  • Examples include fluorides such as MgF and BeF, and halides other than fluorides.
  • the electron transport layer As a semiconductor constituting the electron transport layer, at least one element of Ba, Ca, Sr, Yb, Al, Ga, In, Li, Na, Cd, Mg, Si, Ta, Sb and Zn is used. One kind or a combination of two or more kinds of oxides, nitrides, oxynitrides and the like are included.
  • the inorganic compound constituting the electron transport layer is preferably a microcrystalline or amorphous insulating thin film. If the electron transport layer is composed of these insulating thin films, a more uniform thin film is formed, so that pixel defects such as dark spots can be reduced. Examples of such inorganic compounds include the alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides described above.
  • a material having a low work function (4 eV or less) metal, an alloy, an electrically conductive compound, and a mixture thereof is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium'silver alloy, aluminum / aluminum oxide, aluminum'lithium alloy, indium, and rare earth metals.
  • This cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the transmittance of the cathode for light emission is greater than 10 ° / o.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / mouth or less.
  • the film thickness is usually 10 nm to l zm, preferably 50 to 200 nm.
  • organic EL applies an electric field to an ultra-thin film, pixel defects are likely to occur due to leaks and shorts.
  • an insulating thin film layer between the pair of electrodes.
  • materials used for the insulating layer include aluminum oxide, lithium fluoride, lithium oxide, cesium fluoride, cesium oxide, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, aluminum nitride, titanium oxide, and oxide.
  • examples thereof include silicon, germanium oxide, silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, and vanadium oxide.
  • a mixture or laminate of these may be used.
  • an organic EL device By forming the anode, the light emitting layer, the hole injection layer as necessary, and the electron injection layer as necessary by the materials and methods exemplified above, an organic EL device can be produced by forming a cathode. it can. In addition, the organic EL device can be manufactured in the reverse order from the cathode to the anode.
  • an organic EL device having a configuration in which an anode, a hole injection layer, a Z light emitting layer, a Z electron injection layer, and a Z cathode are sequentially provided on a light transmitting substrate will be described.
  • a thin film having an anode material strength is formed on a suitable translucent substrate by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably 10 to 2 OO nm.
  • a hole injection layer is provided on the anode.
  • the hole injection layer can be formed by a vacuum deposition method, a spin coating method, a casting method, an LB method, or the like, but a homogeneous film can be obtained immediately and pinholes are generated. It is preferable to form it by a vacuum evaporation method from the point of being hard to do.
  • the deposition conditions vary depending on the compound used (material of the hole injection layer), the crystal structure of the target hole injection layer, the recombination structure, etc. deposition source temperature 50 to 450 ° C, vacuum degree of 10- 7 ⁇ : 10- 3 Torr, the deposition rate of 0. 01 ⁇ 50nm / sec, a substrate temperature of - 50 to 300 ° C, in the range of thickness of 5 nm to 5 mu m It is preferable to select appropriately.
  • the formation of a light-emitting layer in which a light-emitting layer is provided on the hole injection layer is also performed by using a desired organic light-emitting material and thinning the organic light-emitting material by a method such as vacuum deposition, sputtering, spin coating, or casting.
  • a method such as vacuum deposition, sputtering, spin coating, or casting.
  • the deposition conditions vary depending on the compound used, but Generally, it is possible to select a medium force within the same condition range as the hole injection layer.
  • an electron injection layer is provided on the light emitting layer. Similar to the hole injection layer and the light emitting layer, it is necessary to obtain a homogeneous film.
  • the vapor deposition conditions can be selected from the same condition ranges as those for the hole injection layer and the light emitting layer.
  • the compound of the present invention differs depending on which layer in the light emission band or the hole transport band is contained, but when the vacuum evaporation method is used, it can be co-deposited with other materials. Moreover, when using a spin coat method, it can be contained by mixing with other materials.
  • a cathode can be stacked to obtain an organic EL device.
  • the cathode is made of metal, and vapor deposition or sputtering can be used. In order to protect the underlying organic layer from damage during film formation, vacuum deposition is preferred. For the organic EL device described so far, it is preferable to produce the anode negative electrode consistently with a single vacuum.
  • the method of forming each layer of the organic EL device of the present invention is not particularly limited. Conventionally known methods such as vacuum deposition and spin coating can be used.
  • the organic thin film layer containing the compound represented by the general formula (1) used in the organic EL device of the present invention is prepared by a vacuum deposition method, a molecular beam deposition method (MBE method) or a dating method of a solution dissolved in a solvent. Further, it can be formed by a known method using a coating method such as a spin coating method, a casting method, a bar coating method, or a roll coating method.
  • each organic layer of the organic EL device of the present invention is not particularly limited, but in general, if the film thickness is too thin, defects such as pinholes are generated, and conversely, if it is too thick, a high applied voltage is required and efficiency is increased. Usually, the range of several nm to lxm is preferable because it worsens.
  • 2,7-dibromophenanthrene 3.36 g, N-phenyl mono 1-naphthylamine 5.26 g, tris (dibenzylideneacetone) dipalladium (0) 183 mg, t-butoxy sodium 1.34 g in toluene 100 .beta.L of a 0.66 wt% toluene solution of t_butylphosphine was collected and heated to reflux for 5 hours. After cooling to room temperature, the precipitated solid was collected by filtration. The obtained solid was sequentially washed with methanol, water, methanol and toluene, and dried under reduced pressure.
  • N—Henrilu 1—Naphthylamine 21 ⁇ 9 g, 4—Bromoiodobenzene 28.2 g, t— 14.4 g of butoxy sodium, 3.81 g of copper powder, and 17.6 g of N, ⁇ '-dimethylethylenediamine were added to a lOOmL solution of xylene, and the mixture was heated to reflux for 24 hours under an argon atmosphere. After cooling to room temperature, the mixture was filtered to remove insoluble matters, and the filtrate was concentrated. The residue was purified by silica gel column chromatography to obtain N- (4-bromophenyl) -1-N-phenyl-1-1-naphthylamine 25.4 g.
  • N_ (4_bromophenyl) -N-phenyl- 1_naphthylamine 18.7 g of dry ethyl ether 100 mL, dry toluene lOOmL solution was cooled to 78 ° C, and 1.6 M normal butyllithium was added. 32.8 mL of a xanthan solution was added dropwise. The reaction solution was stirred for 1 hour while warming to 0 ° C. The reaction solution was cooled again to _78 ° C, and a solution of 23.5 g of triisopropyl borate in 50 mL of dry etherol was added dropwise. The reaction solution was stirred at room temperature for 5 hours.
  • a glass substrate with a 25 mm ⁇ 75 mm ⁇ l. 1 mm thick IT ⁇ transparent electrode (Zomatic Co., Ltd.) was ultrasonically cleaned in isopropyl alcohol for 5 minutes, followed by UV ozone cleaning for 30 minutes.
  • a glass substrate with a transparent electrode line after cleaning is mounted on the substrate holder of a vacuum deposition apparatus, and a compound with a thickness of 80 nm is first formed on the surface where the transparent electrode line is formed so as to cover the transparent electrode.
  • One film was formed by resistance heating vapor deposition. This compound 1 film functions as a hole injection transport layer.
  • AN-1 (2-naphthyl) _10_ [4_ (1_naphthyl) phenyl] anthracene (hereinafter abbreviated as AN-1) is formed on the compound 1 film at a thickness of 40 nm.
  • AN-1 was formed by resistance heating vapor deposition.
  • the following amine-rich compound D-1 having a styryl group was vapor-deposited at a weight ratio of 2:40 as AN-1.
  • This film functions as a light emitting layer.
  • An Alq film with a thickness of 10 nm was formed on this film. This functions as an electron injection layer.
  • Li Li source: manufactured by SAES Getter Co., Ltd.
  • Alq Alq
  • metal A1 was deposited to form a metal cathode, thereby forming an organic EL light emitting device.
  • 25mmX75mmXl 1mm thick glass substrate with IT ⁇ transparent electrode (Zomatic) was ultrasonically cleaned in isopropyl alcohol for 5 minutes, then UV ozone cleaned. 0 minutes was done.
  • a glass substrate with a transparent electrode line after cleaning is mounted on the substrate holder of a vacuum evaporation system, and a compound with a film thickness of 60 nm is first formed on the surface on which the transparent electrode line is formed so as to cover the transparent electrode. Eleven films were formed by resistance heating vapor deposition. This compound 11 film functions as a first hole injection layer (hole transport layer).
  • NPD film 4,4 '_bis [N _ (1 _ naphthyl) _ N-modified nilamino] biphenyl film (hereinafter abbreviated as “NPD film”) ) was formed by resistance heating vapor deposition.
  • NPD film functions as a second hole injection layer (hole transport layer).
  • AN-1 was deposited on this NPD film with a thickness of 40 nm by resistance heating evaporation.
  • D-1 was vapor-deposited at a weight ratio of 2:40 with respect to AN-1. This film functions as a light emitting layer.
  • Alq film having a thickness of lOnm was formed on this film. This functions as an electron injection layer. Thereafter, Li (Li source: manufactured by SAES Getter Co., Ltd.), which is a reducing dopant, and Alq were vapor-deposited to form an eight-layer film (film thickness 10! 1111) as an electron injection layer (cathode). A gold cathode A1 was deposited on the Alq: Li film to form a metal cathode to form an organic EL light emitting device.
  • Li Li source: manufactured by SAES Getter Co., Ltd.
  • a similar organic EL device was produced using the following compound (E) instead of the compound 11 in Example 11.
  • Table 2 shows the performance measurement results of the organic EL devices obtained in Example 11 and Comparative Example 11.
  • the hole injection property is good, the light emission efficiency is high, and the lifetime is long.
  • the organic electoluminescence device of the present invention comprises a substituted or unsubstituted aromatic amine derivative containing a phenanthrenylene group as a linking group and a material for an organic EL device.
  • the organic thin film layer is formed from the contained material, and has a longer life, better hole injection properties, and higher luminous efficiency than those conventionally known from compounds and organic EL device materials.
  • the organic EL device using the aromatic amine derivative of the present invention and the material for the organic EL device can provide blue light emission with high luminous efficiency and long life, and is practical. It is extremely useful as an organic EL device with high resistance. For this reason, the organic electoluminescence element of the present invention is useful as a light source such as a flat light emitter of a wall-mounted television or a backlight of a display.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 特定構造の芳香族アミン誘導体、並びに、陰極と陽極間に少なくとも発光層を含む一層又は複数層からなる有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、該有機薄膜層の少なくとも一層が、前記芳香族アミン誘導体又は有機エレクトロルミネッセンス素子用材料を単独もしくは混合物の成分として含有することによって、発光効率が高く、長寿命な青色発光が得られる有機エレクトロルミネッセンス素子及びそれを実現する新規な芳香族アミン誘導体及び有機エレクトロルミネッセンス素子用材料を提供する。

Description

明 細 書
芳香族ァミン誘導体及びそれを用いた有機エレクト口ルミネッセンス素子 技術分野
[0001] 本発明は、有機エレクト口ルミネッセンス(以下 ELと略すことがある)素子に関し、特 に、芳香族ァミン誘導体を発光材料として用いることで、長寿命で、高発光効率であ り、さらに製造コストが安価な有機 EL素子に関するものである。
背景技術
[0002] 有機エレクト口ルミネッセンス素子(以下エレクト口ルミネッセンスを ELと略記すること 力 Sある)は、電界を印加することにより、陽極より注入された正孔と陰極より注入された 電子の再結合エネルギーにより蛍光性物質が発光する原理を利用した自発光素子 である。イーストマン 'コダック社の C. W. Tang等による積層型素子による低電圧駆 動有機 EL素子の報告(C. W. Tang, S. A. Vanslyke,アプライドフィジックスレタ ーズ (Applied Physics Letters) , 51卷、 913頁、 1987年等)がなされて以来、 有機材料を構成材料とする有機 EL素子に関する研究が盛んに行われている。 Tan g等は、トリス(8—キノリノラト)アルミニウムを発光層に、トリフエ二ルジァミン誘導体を 正孔輸送層に用いている。積層構造の利点としては、発光層への正孔の注入効率を 高めること、陰極より注入された電子をブロックして再結合により生成する励起子の生 成効率を高めること、発光層内で生成した励起子を閉じ込めること等が挙げられる。 この例のように有機 EL素子の素子構造としては、正孔輸送 (注入)層、電子輸送性 発光層の二層型、または正孔輸送 (注入)層、発光層、電子輸送 (注入)層の 3層型 等がよく知られている。こうした積層型構造素子では注入された正孔と電子の再結合 効率を高めるため、素子構造や形成方法の工夫がなされている。
[0003] 従来、有機 EL素子に用いられる正孔輸送材料として、特許文献 1記載の芳香族ジ ァミン誘導体や、特許文献 2記載の芳香族縮合環ジァミン誘導体が知られていた。こ れらの芳香族ァミン誘導体を改良したものとして、特許文献 3には下記化合物 (A)、 また特許文献 4には下記一般式 (B)で表される芳香族ジァミン化合物が開示されて いる。 [化 1]
Figure imgf000003_0001
(A) ( B )
一般式(B)において、 A及び Bのうち少なくとも一つは、置換もしくは未置換の飽和 5 員環〜飽和 8員環を形成する原子団であり、スピロ結合を含んでいてもよい。
また、特許文献 5には下記一般式 (C)で表される芳香族トリァミン化合物を用いた 有機 EL素子が開示されている。さらに特許文献 6には下記一般式 (D)で表される芳 香族テトラアミン化合物が開示されている。
[化 2]
Figure imgf000003_0002
( C ) ( D ) 一般式 (C)において、 B1及び B2は置換もしくは無置換のビフエ二レン基である。一般 式 (D)における Aは下記の構造の中から選ばれる。
[化 3]
R
Figure imgf000003_0003
また、特許文献 7には下記一般式 (E)、特許文献 8には下記一般式 (F)で表される 9- :ン誘導体が開示されている。
[化 4]
Figure imgf000004_0001
一般式 (E)における Ai^ Ar4は下式で表される c
[化 5]
Figure imgf000004_0002
しかし、これらの材料を用いた有機 EL素子では、改善が認められるが、実用性能 には達しておらず、さらなる長寿命化、高効率化及び高移動度化が求められていた 特許文献 1 :米国特許第 4, 720, 432号明細
特許文献 2 :米国特許第 5, 061, 569号明細
特許文献 3:特許第 3508984号明細書
特許文献 4 :特開 2002— 080433号公報
特許文献 5:特許第 3565870号明細書
特許文献 6:特許第 3220950号明細書
特許文献 7 :特開平 11一 135261号公報
特許文献 8 :特開 2002— 212151号公報
発明の開示 発明が解決しょうとする課題
[0006] 本発明の課題は、前記の従来技術の問題点を解決するためなされたもので、芳香 族ァミン誘導体力 なる有機 EL素子用材料を用レ、ることで、長寿命を維持しつつ、 駆動電圧の低下及び発光効率の向上を同時に満足する有機 EL素子を提供するこ とである。
課題を解決するための手段
[0007] 本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、下記一般式(
1)〜(3)及び(5)で表される芳香族ァミン誘導体からなる有機 EL素子用材料を用い ると、長寿命を維持しつつ、駆動電圧が低ぐ発光効率が高い有機 EL素子を製造で きることを見出し、本発明を完成したものである。
[0008] すなわち、本発明は、下記一般式(1)〜(3)で表される芳香族ァミン誘導体を提供 するものである。
[化 6]
Figure imgf000005_0001
( 1 )
(1)式中、 Ar〜Arはそれぞれ独立に、置換もしくは無置換の核炭素数 6〜30の
1 4
ァリール基、又は、置換もしくは無置換の核炭素数 5〜30のへテロアリール基を表す 。 L及び Lはそれぞれ独立に、単結合、置換もしくは無置換の核炭素数 6〜30のァ
1 2
リーレン基、又は、置換もしくは無置換の核炭素数 5〜30のへテロアリーレン基を表 す。但し、 L及び Lが単結合である場合は、 Ar及び Arが共に置換もしくは無置換
1 2 1 3
のフエニル基であり、かつ Ar及び Arが共に置換もしくは無置換のビフヱ二リル基又
2 4
は置換もしくは無置換のフヱニル基である場合はない。 Rは置換基を示し、複数の場 a
合には互いに結合して環を形成しても良い。 Rは置換基を示し、複数の場合には互 いに結合して環を形成しても良レ、。 nは 0〜8の整数である。
[0009] [化 7]
Figure imgf000006_0001
( 2 ) ( 3 )
(2)及び(3)式中、 Ar〜Ar はそれぞれ独立に、置換もしくは無置換の核炭素数
5 15
6〜30のァリーノレ基、又は、置換もしくは無置換の核炭素数 5〜30のへテロアリール 基を表す。 L〜Lはそれぞれ独立に、置換もしくは無置換の核炭素数 6〜30のァリ
3 7
一レン基、又は置換もしくは無置換の核炭素数 5〜30のへテロアリーレン基を示し、 かつ、一般式(2)において L及び Lの少なくとも一つ、あるいは一般式(3)において
3 4
L〜Lのうち少なくとも一つが、下記一般式 (4)で表される連結基である。
5 7
[化 8]
Figure imgf000006_0002
4 )
(4)式中、 Lおよび Lはそれぞれ独立に、単結合、置換もしくは無置換の核炭素数
8 9
6〜30のァリーレン基、又は置換もしくは無置換の核炭素数 5〜30のへテロアリーレ ン基を表す。 Rは置換基を示し、複数の場合には互いに結合して環を形成しても良 レ、。 nは 0〜8の整数である。
本発明はさらに、上記一般式(1)〜(3)で表される芳香族ァミン誘導体からなる有 機 EL素子用材料を提供すると同時に、下記一般式 (5)で表される有機 EL用材料を 提供するものである。
[化 9]
Figure imgf000007_0001
( 5 )
(5)式中、 Ar 〜Ar はそれぞれ独立に、置換もしくは無置換の核炭素数 6〜30の
16 19
ァリール基、又は、置換もしくは無置換の核炭素数 5〜30のへテロアリール基を表し 、L 及び L はそれぞれ独立に、単結合、置換もしくは無置換の核炭素数 6〜30の
10 11
ァリーレン基、又は、置換もしくは無置換の核炭素数 5〜30のへテロアリーレン基を 示す。 Rは置換基を示し、複数の場合には互いに結合して環を形成しても良レ、。 ま 0〜8の整数である。
本発明の有機 EL用材料は正孔注入材料又は正孔輸送材料あるレ、はドーピング材 料として利用できる。
本発明の有機 EL素子は、陽極と陰極間に少なくとも発光層を有する一層又は複数 層力 なる有機薄膜層の少なくとも一層が該有機 EL素子用材料を単独又は混合物 の成分として含有する。
本発明の有機 EL素子は、正孔注入帯域及び/又は正孔輸送帯域に該有機 EL素 子用材料が用いられている。
本発明の有機 EL素子は、正孔注入層及び/又は正孔輸送層に該有機 EL素子用 材料が用いられている。
本発明の有機 EL素子は、発光層に該有機 EL素子用材料が用いられている。 本発明の有機 EL素子は、発光層中に該有機 EL素子用材料を 0.:!〜 20重量% 含有している。
本発明の有機 EL素子は青色系発光である。
特に好ましくは本発明の有機 EL素子用材料を正孔輸送帯域に用いた場合であり、 さらに好ましくは正孔輸送層に用レ、た場合に優れた有機 EL素子が得られる。
発明の効果 [0012] 上記一般式(1)〜(3)及び(5)で表される有機 EL素子用材料を有機薄膜層のい ずれかに、好ましくは正孔輸送帯域又は発光帯域、より好ましくは正孔輸送層又は 発光層、さらに好ましくは正孔輸送層に用いると、低い駆動電圧で、発光効率の高い 、長寿命な青色発光が得られる有機 EL素子を作製することが可能である。
発明を実施するための最良の形態
[0013] 本発明は、下記一般式(1)〜(3)で表される芳香族ァミン誘導体を提供するもので ある。
[化 10]
Figure imgf000008_0001
一般式(1)中、 Ar〜Arはそれぞれ独立に、置換もしくは無置換の核炭素数 6〜3
1 4
0のァリール基、又は、置換もしくは無置換の核炭素数 5〜30のへテロアリール基を 表す。 L及び Lはそれぞれ独立に、単結合、置換もしくは無置換の核炭素数 6〜30
1 2
のァリーレン基、又は、置換もしくは無置換の核炭素数 5〜30のへテロアリーレン基 を表す。 但し、 L及び Lが単結合である場合は、 Ar及び Arが共に置換もしくは無
1 2 1 3
置換のフエニル基であり、かつ Ar及び Arが共に置換もしくは無置換のビフエ二リノレ
2 4
基又は置換もしくは無置換のフエニル基である場合はない。 Rは置換基を示し、複数 a
の場合には互いに結合して環を形成しても良い。 Rは置換基を示し、複数の場合に a
は互いに結合して環を形成しても良レ、。 nは 0〜8の整数である。
[0014] [化 11]
Figure imgf000008_0002
一般式(2)及び(3)中、 Ar〜Ar はそれぞれ独立に、置換もしくは無置換の核炭
5 15
素数 6〜30のァリール基、又は、置換もしくは無置換の核炭素数 5〜30のへテロァリ 一ル基を表す。 L〜Lはそれぞれ独立に、置換もしくは無置換の核炭素数 6〜30の
3 7
ァリーレン基、又は置換もしくは無置換の核炭素数 5〜30のへテロアリーレン基を示 し、かつ、一般式(2)において L及び Lの少なくとも一つ、あるいは一般式(3)にお
3 4
いて L
5〜Lのうち少なくとも一つが、下記一般式 (4)で表される連結基である。
7
[化 12]
Figure imgf000009_0001
( 4 )
(4)式中、 Lおよび Lはそれぞれ独立に、単結合、置換もしくは無置換の核炭素数
8 9
6〜30のァリーレン基、又は置換もしくは無置換の核炭素数 5〜30のへテロアリーレ ン基を表す。 Rは置換基を示し、複数の場合には互いに結合して環を形成しても良 レ、。 nは 0〜8の整数である。
置換もしくは無置換の核炭素数 6〜30のァリール基としては、例えばフエ二ル基、 1 ナフチル基、 2 ナフチル基、 1 アントラセニル基、 2 アントラセニル基、 9ーァ ントラセニル基、 1 フエナントリノレ基、 2 フエナントリノレ基、 3 フエナントリル基、 4 —フエナントリノレ基、 9 フエナントリノレ基、 1—ナフタセニル基、 2 ナフタセニル基、 9—ナフタセニル基、 1—ピレニル基、 2—ピレニル基、 4—ピレニル基、 2—ビフエ二 ルイル基、 3—ビフエ二ルイル基、 4ービフエ二ルイル基、 p—ターフェ二ルー 4ーィル 基、 ρ ターフェ二ノレ一 3—イノレ基、 p ターフェ二ノレ一 2—イノレ基、 m—ターフェ二ノレ —4—イノレ基、 m—ターフェ二ノレ一 3—イノレ基、 m—ターフェ二ノレ一 2—イノレ基、 o ト リル基、 m トリノレ基、 ρ トリノレ基、 ρ— t ブチルフエニル基、 p— (2—フエニルプロ ピル)フエニル基、 3_メチル _ 2_ナフチル基、 4_メチル _ 1 _ナフチル基、 4—メ チル _ 1 _アントリル基、 4,—メチルビフエ二ルイル基、 4" _t—ブチノレ— p—ターフ ヱニル _4—ィル基、フルォレニル基、等が挙げられる。好ましくはフヱニル基、ナフ チル基、ビフエ二ルイル基、ターフェ二ルイル基、フエナントリル基である。
[0016] 置換もしくは無置換の核炭素数 10〜20の縮合芳香族環基として、例えばナフチル 基、フエナントリル基、アントラニル基、ピレニル基、クリセ二ル基、ァセナフチル基、フ ルォレニル基等が挙げられる力 S、好ましくはナフチル基、フヱナントリル基である。 好ましくはフエ二ル基、ナフチル基、ビフヱニル基、アントラニル基、フヱナンスリノレ 基、ピレニル基、クリセ二ル基、フルォレニル基である。特に好ましくはフエニル基、ナ フチル基である。
[0017] 置換もしくは無置換の核炭素数 5〜30のへテロアリーレン基として、例えば、ピリジ ル基、ピラジル基、キノリル基、イソキノリル基、フヱナント口リル基、フリル基、ベンゾフ リル基、ジベンゾフリル基、チェニル基、ジベンゾチェニル基、ベンゾチェ二ル基、ピ 口リル基、インドリル基、カルバゾリル基、イミダゾリル基、ベンズイミダゾリル基などが 挙げられる。好ましくは、ピリジル基、キノリル基、カルバゾリル基、インドリル基である 置換もしくは無置換の核炭素数 6〜30のァリーレン基として、例えば、フエ二レン基 、ビフエ二レン基、ターフェ二レン基、クォーターフエ二レン基、ナフチレン基、アントラ セニレン基、フエナントリレン基、クリセ二レン基、ピレニレン基、フルォレニレン基、 2,- 6-ジフエ二ルナフタレン- 4',4"-ェン基、 2-フエ二ルナフタレン- 2,4'-ェン基、等が挙 げられる。好ましくは、フエ二レン基、ビフエ二レン基、ターフェ二レン基、フルォレニレ ン基、ナフチレン基である。
[0018] 置換もしくは無置換の核炭素数 5〜30のへテロアリール基として、例えば、ピリジン 、キノリン、チォフェン、フラン、カルバゾール、ジベンゾフラン、ジベンゾチフフェン、 フルォレノン、ォキサゾール、ォキサジァゾール、チアジアゾール等の 1価の基が挙 げられる。好ましくはピリジン、カルバゾール、チォフェンである。
[0019] 置換もしくは無置換の核炭素数 5〜30のへテロアリーレン基として、例えば、ピリジ ン、キノリン、チォフェン、フラン、カノレバゾーノレ、ジベンゾフラン、ジベンゾチフフェン 、フルォレノン、ォキサゾール、ォキサジァゾール、チアジアゾール等の 2価の基が挙 げられる。好ましくはピリジン、カルバゾール、チォフェンである。
[0020] ァリーノレ基、ァリーレン基、ヘテロァリール基、ヘテロァリーレン基の置換基としては 、例えば、アルキル基 (好ましくは炭素数 1 20、より好ましくは炭素数 1 12、特に 好ましくは炭素数 1 8であり、例えばメチル、ェチル、イソプロピル、 tーブチル、 n— ォクチル、 n—デシル、 n キサデシル、シクロプロピル、シクロペンチル、シクロへ キシル等が挙げられる。)、アルケニル基 (好ましくは炭素数 2 20、より好ましくは炭 素数 2〜: 12、特に好ましくは炭素数 2 8であり、例えばビュル、ァリル、 2—ブテュル 3 ^ンテュル等が挙げられる。)、アルキニル基(好ましくは炭素数 2 20、より好 ましくは炭素数 2 12、特に好ましくは炭素数 2 8であり、例えばプロパルギル、 3 iンチュル等が挙げられる。)、アミノ基 (好ましくは炭素数 0 20、より好ましくは 炭素数 0〜: 12、特に好ましくは炭素数 0 6であり、例えばアミ人メチルアミ人ジメチ ノレアミノ、ジェチルアミ人ジフヱニルアミ人ジベンジルァミノ等が挙げられる。)、アル コキシ基 (好ましくは炭素数 1 20、より好ましくは炭素数 1 12、特に好ましくは炭 素数 1 8であり、例えばメトキシ、エトキシ、ブトキシ等が挙げられる。)、ァリールォキ シ基 (好ましくは炭素数 6 20、より好ましくは炭素数 6 16、特に好ましくは炭素数 6 12であり、例えばフエニルォキシ、 2—ナフチルォキシ等が挙げられる。)、ァシ ル基 (好ましくは炭素数 1 20、より好ましくは炭素数 1 16、特に好ましくは炭素数 :! 12であり、例えばァセチル、ベンゾィル、ホルミル、ビバロイル等が挙げられる。 ) 、アルコキシカルボニル基(好ましくは炭素数 2 20、より好ましくは炭素数 2〜: 16 特に好ましくは炭素数 2〜: 12であり、例えばメトキシカルボニル、エトキシカルボ二ノレ 等が挙げられる。)、ァリールォキシカルボニル基(好ましくは炭素数 7 20、より好ま しくは炭素数 7 16、特に好ましくは炭素数 7〜: 10であり、例えばフエニルォキシカ ルポニルなどが挙げられる。)、アシノレオキシ基(好ましくは炭素数 2 20、より好まし くは炭素数 2 16、特に好ましくは炭素数 2〜: 10であり、例えばァセトキシ、ベンゾィ ルォキシ等が挙げられる。)、アシノレアミノ基 (好ましくは炭素数 2 20、より好ましくは 炭素数 2〜: 16、特に好ましくは炭素数 2〜: 10であり、例えばァセチルアミ人ベンゾィ ルァミノ等が挙げられる。)、アルコキシカルボニルァミノ基(好ましくは炭素数 2 20 、より好ましくは炭素数 2 16、特に好ましくは炭素数 2〜: 12であり、例えばメトキシカ ルポニルァミノ等が挙げられる。)、ァリールォキシカルボニルァミノ基(好ましくは炭 素数 7 20、より好ましくは炭素数 7 16、特に好ましくは炭素数 7〜: 12であり、例え ばフエニルォキシカルボニルァミノ等が挙げられる。)、スルホニルァミノ基(好ましくは 炭素数:!〜 20、より好ましくは炭素数 1〜16、特に好ましくは炭素数 1〜: 12であり、例 えばメタンスルホニルァミノ、ベンゼンスルホニルァミノ等が挙げられる。)、スルファモ ィル基 (好ましくは炭素数 0〜20、より好ましくは炭素数 0〜16、特に好ましくは炭素 数 0〜: 12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイ ル、フヱニルスルファモイル等が挙げられる。)、力ルバモイル基(好ましくは炭素数 1 〜20、より好ましくは炭素数 1〜16、特に好ましくは炭素数 1〜: 12であり、例えば力 ルバモイル、メチルカルバモイル、ジェチルカルバモイル、フエ二ルカルバモイル等 が挙げられる。)、アルキルチオ基 (好ましくは炭素数 1〜20、より好ましくは炭素数 1 〜16、特に好ましくは炭素数 1〜: 12であり、例えばメチルチオ、ェチルチオ等が挙げ られる。)、ァリールチオ基 (好ましくは炭素数 6〜20、より好ましくは炭素数 6〜: 16、 特に好ましくは炭素数 6〜: 12であり、例えばフエ二ルチオ等が挙げられる。)、スルホ ニル基 (好ましくは炭素数 1〜20、より好ましくは炭素数 1〜16、特に好ましくは炭素 数 1〜: 12であり、例えばメシル、トシル等が挙げられる。)、スルフィニル基(好ましくは 炭素数:!〜 20、より好ましくは炭素数 1〜16、特に好ましくは炭素数 1〜: 12であり、例 えばメタンスルフィエル、ベンゼンスルフィエル等が挙げられる。)、ウレイド基(好まし くは炭素数 1〜20、より好ましくは炭素数 1〜16、特に好ましくは炭素数 1〜: 12であり 、例えばウレイド、メチノレウレイド、フエニルウレイド等が挙げられる。)、リン酸アミド基( 好ましくは炭素数 1〜20、より好ましくは炭素数 1〜16、特に好ましくは炭素数 1〜: 12 であり、例えばジェチルリン酸アミド、フエニルリン酸アミド等が挙げられる。)、ヒドロキ シ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素 原子)、シァノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ 基、ヒドラジノ基、イミノ基、ヘテロ環基 (好ましくは炭素数 1〜30、より好ましくは炭素 数 1〜: 12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子を含む ものであり具体的には例えばイミダゾリル、ピリジノレ、キノリル、フリル、チェニル、ピぺ リジノレ、モルホリノ、ベンゾォキサゾリル、ベンゾイミダゾリル、ベンゾチアゾリル、カル バゾリル等が挙げられる。)、シリル基 (好ましくは炭素数 3〜40、より好ましくは炭素 数 3〜30、特に好ましくは炭素数 3〜24であり、例えばトリメチルシリル、トリフエニル シリル等が挙げられる。)等が挙げられる。これらの置換基は更に置換されても良い。 また置換基が二つ以上ある場合は、同一でも異なっていても良い。また、可能な場合 には互レヽに連結して環を形成してレ、ても良レ、。
一般式(1)及び (4)における置換基 Rとして例えば、アルキル基 (好ましくは炭素数
:!〜 20、より好ましくは炭素数 1〜12、特に好ましくは炭素数 1〜8であり、例えばメチ ノレ、ェチル、イソプロピル、 t—ブチル、 n_オタチル、 n—デシル、 n_へキサデシル 、シクロプロピル、シクロペンチル、シクロへキシル等が挙げられる。;)、アルケニル基( 好ましくは炭素数 2〜20、より好ましくは炭素数 2〜12、特に好ましくは炭素数 2〜8 であり、例えばビュル、ァリル、 2—ブテュル、 3 _ペンテニル等が挙げられる。)、ァ ルキニル基 (好ましくは炭素数 2〜20、より好ましくは炭素数 2〜 12、特に好ましくは 炭素数 2〜8であり、例えばプロパルギル、 3_ペンチュル等が挙げられる。)、アミノ 基 (好ましくは炭素数 0〜20、より好ましくは炭素数 0〜 12、特に好ましくは炭素数 0 〜6であり、例えばァミノ、メチノレアミノ、ジメチルァミノ、ジェチルァミノ、ジフエニルアミ 入ジベンジルァミノ等が挙げられる。)、アルコキシ基(好ましくは炭素数 1〜20、より 好ましくは炭素数 1〜12、特に好ましくは炭素数 1〜8であり、例えばメトキシ、ェトキ シ、ブトキシ等が挙げられる。)、ァリールォキシ基(好ましくは炭素数 6〜20、より好ま しくは炭素数 6〜16、特に好ましくは炭素数 6〜: 12であり、例えばフエニルォキシ、 2 ナフチルォキシ等が挙げられる。)、ァシル基(好ましくは炭素数 1〜20、より好まし くは炭素数 1〜16、特に好ましくは炭素数 1〜: 12であり、例えばァセチル、ベンゾィ ノレ、ホルミル、ビバロイル等が挙げられる。)、アルコキシカルボニル基(好ましくは炭 素数 2〜20、より好ましくは炭素数 2〜16、特に好ましくは炭素数 2〜: 12であり、例え ばメトキシカルボニル、エトキシカルボニル等が挙げられる。)、ァリールォキシカルボ ニル基 (好ましくは炭素数 7〜20、より好ましくは炭素数 7〜16、特に好ましくは炭素 数 7〜10であり、例えばフエニルォキシカルボニルなどが挙げられる。)、ァシルォキ シ基 (好ましくは炭素数 2〜20、より好ましくは炭素数 2〜16、特に好ましくは炭素数 2〜10であり、例えばァセトキシ、ベンゾィルォキシ等が挙げられる。)、ァシルァミノ 基 (好ましくは炭素数 2〜20、より好ましくは炭素数 2〜16、特に好ましくは炭素数 2 〜10であり、例えばァセチルアミ人ベンゾィルァミノ等が挙げられる。)、アルコキシ カルボニルァミノ基 (好ましくは炭素数 2〜20、より好ましくは炭素数 2〜16、特に好 ましくは炭素数 2〜: 12であり、例えばメトキシカルボニルァミノ等が挙げられる。)、ァリ ールォキシカルボニルァミノ基(好ましくは炭素数 7〜20、より好ましくは炭素数 7〜1 6、特に好ましくは炭素数 7〜: 12であり、例えばフエニルォキシカルボニルァミノ等が 挙げられる。)、スルホニルァミノ基 (好ましくは炭素数 1〜20、より好ましくは炭素数 1 〜16、特に好ましくは炭素数 1〜12であり、例えばメタンスルホニルアミ人ベンゼン スルホニルァミノ等が挙げられる。)、スルファモイル基(好ましくは炭素数 0〜20、より 好ましくは炭素数 0〜16、特に好ましくは炭素数 0〜: 12であり、例えばスルファモイル 、メチルスルファモイル、ジメチルスルファモイル、フエニルスルファモイル等が挙げら れる。)、力ルバモイル基 (好ましくは炭素数 1〜20、より好ましくは炭素数 1〜16、特 に好ましくは炭素数 1〜 12であり、例えば力ルバモイル、メチルカルバモイル、ジェチ ルカルバモイル、フエ二ルカルバモイル等が挙げられる。)、アルキルチオ基(好ましく は炭素数 1〜20、より好ましくは炭素数 1〜16、特に好ましくは炭素数 1〜: 12であり、 例えばメチルチオ、ェチルチオ等が挙げられる。)、ァリールチオ基(好ましくは炭素 数 6〜20、より好ましくは炭素数 6〜16、特に好ましくは炭素数 6〜: 12であり、例えば フエ二ルチオ等が挙げられる。)、スルホニル基(好ましくは炭素数 1〜20、より好まし くは炭素数 1〜16、特に好ましくは炭素数 1〜: 12であり、例えばメシル、トシノレ等が挙 げられる。)、スルフィニル基 (好ましくは炭素数 1〜20、より好ましくは炭素数 1〜16、 特に好ましくは炭素数 1〜: 12であり、例えばメタンスルフィニル、ベンゼンスルフィニ ル等が挙げられる。)、ウレイド基 (好ましくは炭素数 1〜20、より好ましくは炭素数 1〜 16、特に好ましくは炭素数 1〜: 12であり、例えばウレイド、メチルウレイド、フエニルゥ レイド等が挙げられる。)、リン酸アミド基 (好ましくは炭素数 1〜20、より好ましくは炭 素数:!〜 16、特に好ましくは炭素数 1〜: 12であり、例えばジェチルリン酸アミド、フエ ニルリン酸アミド等が挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例え ばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シァノ基、スルホ基、カルボキシ ル基、ニトロ基、ヒドロキサム酸基、スノレフイノ基、ヒドラジノ基、イミノ基、ヘテロ環基( 好ましくは炭素数 1〜30、より好ましくは炭素数 1〜: 12であり、ヘテロ原子としては、 例えば窒素原子、酸素原子、硫黄原子を含むものであり具体的には例えばイミダゾリ ノレ、ピリジノレ、キノリル、フリル、チェニル、ピペリジル、モルホリノ、ベンゾォキサゾリル 、ベンゾイミダゾリル、ベンゾチアゾリル、カルバゾリル等が挙げられる。)、シリル基( 好ましくは炭素数 3〜40、より好ましくは炭素数 3〜30、特に好ましくは炭素数 3〜24 であり、例えばトリメチルシリル、トリフエニルシリル等が挙げられる。)等が挙げられる 。これらの置換基は更に置換されても良い。また置換基が二つ以上ある場合は、同 一でも異なっていても良い。また、可能な場合には互いに連結して環を形成していて も良い。
[0022] 一般式(1)〜(3)で表される化合物を以下に例示するが、本発明の化合物はこれ らの例示に限定するものではない。
[0023] [化 13]
Figure imgf000016_0001
[0024] [化 14]
Figure imgf000017_0001
[0025] [化 15]
Figure imgf000018_0001
[0026] [化 16]
Figure imgf000019_0001
[0027] [化 17]
OSA/-S.0/v:90sfcl£ 080£
Figure imgf000020_0001
Figure imgf000021_0001
[0029] [化 19]
Figure imgf000022_0001
00321
Figure imgf000023_0001
S 20030
Figure imgf000024_0001
[0032] [化 22] [£ζ^ [εεοο]
Figure imgf000025_0001
Figure imgf000026_0001
[0034] 本発明は上記一般式(1)〜(3)で表される芳香族ァミン誘導体からなる有機 EL素 子用材料を提供すると同時に、さらに、下記一般式 (5)で表される有機 EL素子用材 料を提供するものである。
[化 24]
Figure imgf000027_0001
( 5 )
一般式(5)中、 Ar 〜Ar はそれぞれ独立に、置換もしくは無置換の核炭素数 6〜
16 19
30のァリーノレ基、又は、置換もしくは無置換の核炭素数 5〜30のへテロアリール基を 表し、 L 及び L はそれぞれ独立に、単結合、置換もしくは無置換の核炭素数 6〜3
10 11
0のァリーレン基、又は、置換もしくは無置換の核炭素数 5〜30のへテロアリーレン基 を示す。 Rは置換基を示し、複数の場合には互いに結合して環を形成しても良い。 n a
は 0〜8の整数である。 Ar 〜Ar 、L 、L 及び Rの具体例としては前述と同様のも
16 19 10 11 a
のが挙げられる。
[0035] さらに、一般式(1)〜(3)及び(5)で表される本発明の有機 EL素子用材料は、陽 極と陰極間に少なくとも発光層を有する一層又は複数層からなる有機薄膜層の少な くとも一層に単独または混合物の成分として含有される。
本発明の有機 EL素子用材料は、正孔注入帯域及び/又は正孔輸送帯域あるいは 発光帯域に、好ましくは正孔注入層及び/又は正孔輸送層又は発光層に用いられ、 さらに好ましくは正孔輸送層又は発光層に用いた場合に優れた有機 EL素子が得ら れる。
前記正孔輸送層又は発光層は、(1)〜(3)及び(5)で表される有機 EL素子用材 料を 0.:!〜 20質量%含有していることが好ましい。
本発明の有機 EL素子は青色系発光である。
[0036] 以下に本発明の有機 EL素子の素子構成に関して詳細に説明する。
(1)有機 EL素子の構成 以下に本発明に用レ、られる有機 EL素子の代表的な構成例を示す。もちろ ん、本発明はこれに 限定されるものではない。
(1)陽極/発光層/陰極
(2)陽極/ /正孔注入層 Z発光層 Z陰極
(3)陽極/ /発光層 Z電子注入層 Z陰極
(4)陽極/ /正孔注入層 Z発光層 Z電子注入層 Z陰極
(5)陽極/ /有機半導体層 z発光層 Z陰極
(6)陽極/ /有機半導体層 z電子障壁層 Z発光層 Z陰極
(7)陽極/ /有機半導体層 z発光層 Z付着改善層 Z陰極
(8)陽極/ /正孔注入層 Z正孔輸送層 Z発光層 Z電子注入層 Z陰極
(9)陽極 Z絶縁層 Z発光層 Z絶縁層 Z陰極
do)陽極 Z無機半導体層 Z絶縁層 Z発光層 Z絶縁層 Z陰極
(11)陽極/有機半導体層/絶縁層/発光層/絶縁層/陰極
(12)陽極/絶縁層/正孔注入層/正孔輸送層/発光層/絶縁層/陰極
(13)陽極/絶縁層/正孔注入層/正孔輸送層/発光層/電子注入層/陰極 などの構造を挙げることができる。
これらの中で通常 (4)、(8)の構成が好ましく用いられる。
[0037] 本発明の有機 EL素子用材料は、上記のどの有機層に用いられてもよいが、これら の構成要素の中の正孔輸送帯域もしくは発光帯域に含有されていることが好ましい。 特に好ましくは正孔輸送層に含有されてレ、る場合である。
[0038] (2)透光性基板
本発明の有機 EL素子は透光性の基板上に作製する。ここでレ、う透光性基板は有 機 EL素子を支持する基板であり、 400〜700nmの可視領域の光の透過率が 50% 以上で、平滑な基板が好ましい。
具体的には、ガラス板、ポリマー板等が挙げられる。ガラス板としては、特にソーダ 石灰ガラス、ノ リウム 'ストロンチウム含有ガラス、鉛ガラス、アルミノケィ酸ガラス、ホウ ケィ酸ガラス、ノ リウムホウケィ酸ガラス、石英等が挙げられる。またポリマー板として は、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルフアイ ド、ポリサルフォン等を挙げることができる。
[0039] (3)陽極
有機薄膜 EL素子の陽極は、正孔を正孔輸送層または発光層に注入する役割を担 うものであり、 4. 5eV以上の仕事関数を有することが効果的である。本発明に用いら れる陽極材料の具体例としては、酸化インジウム錫合金 (ITO)、酸化インジウム亜鉛 合金 (IZ〇)、酸化錫 (NESA)、金、銀、白金、銅、ランタノイド等が適用できる。また これらの合金や、積層体を用いてもよい。
陽極はこれらの電極物質を蒸着法やスパッタリング法等の方法で薄膜を形成させる ことにより作製することができる。
このように発光層からの発光を陽極から取り出す場合、陽極の発光に対する透過率 が 10%より大きくすることが好ましい。また陽極のシート抵抗は、数百 Ω /口以下が 好ましレ、。陽極の膜厚は材料にもよる力 通常 10nm〜l z m、好ましくは 10〜200n mの範囲で選択される。
[0040] (4)発光層
有機 EL素子の発光層は以下の機能を併せ持つものである。すなわち、
(1)注入機能;電界印加時に陽極または正孔注入層より正孔を注入することがで き、陰極または電子注 入層より電子を注入することができる機能
(2)輸送機能;注入した電荷 (電子と正孔)を電界の力で移動させる機能
(3)発光機能;電子と正孔の再結合の場を提供し、これを発光につなげる機能 がある。但し、正孔の注入されやすさと電子の注入されやすさに違いがあってもよぐ また正孔と電子の移動度で表される輸送能に大小があってもよいが、どちらか一方の 電荷を移動することが好ましレ、。
この発光層を形成する方法としては、例えば蒸着法、スピンコート法、 LB法等の公 知の方法を適用することができる。発光層は、特に分子堆積膜であることが好ましレ、 ここで分子堆積膜とは、気相状態の材料ィヒ合物から沈着され形成された薄膜や、 溶液状態または液相状態の材料化合物から固体化され形成された膜のことであり、 通常この分子堆積膜は、 LB法により形成された薄膜 (分子累積膜)とは凝集構造、 高次構造の相違や、それに起因する機能的な相違により区分することができる。 また、特開昭 57— 51781号公報に開示されているように、樹脂等の結着剤と材料 化合物とを溶剤に溶かして溶液とした後、これをスピンコート法等により薄膜ィヒするこ とによっても、発光層を形成することができる。
[0041] 本発明においては、本発明の目的が損なわれない範囲で、所望により発光層に本 発明の有機 EL素子用材料をからなる発光材料以外の他の公知の発光材料を含有 させても良ぐまた本発明の有機 EL素子用材料からなる発光材料を含む発光層に、 他の公知の発光材料を含む発光層を積層しても良い。
公知の発光材料としては、特にアントラセンゃピレンのような縮合芳香族環を分子 内に有する材料が好適である。その具体例を以下に示す。
[0042] 本発明の有機 EL素子用材料と共に発光層に使用できる発光材料又はドーピング 材料としては、例えば、アントラセン、ナフタレン、フエナントレン、ピレン、テトラセン、 コロネン、タリセン、フルォレセイン、ペリレン、フタ口ペリレン、ナフタ口ペリレン、ぺリノ ン、フタ口ペリノン、ナフタ口ペリノン、ジフエ二ルブタジエン、テトラフェニルブタジエン 、クマリン、ォキサジァゾール、アルダジン、ビスベンゾキサゾリン、ビススチリル、ピラ ジン、シクロペンタジェン、キノリン金属錯体、ァミノキノリン金属錯体、ベンゾキノリン 金属錯体、ィミン、ジフエニルエチレン、ビニルアントラセン、ジァミノカルバゾール、ピ ラン、チォピラン、ポリメチン、メロシアニン、イミダゾールキレートィ匕ォキシノイド化合 物、キナクリドン、ルブレン及び蛍光色素等が挙げられるが、これらに限定されるもの ではない。
[0043] 本発明の有機 EL素子用材料と共に発光層に使用できるホスト材料としては、下記( i)〜(ix)で表される化合物が好ましレ、。
[0044] 下記一般式 (i)で表される非対称アントラセン。
[化 25]
Figure imgf000030_0001
[0045] (式中、 Arは置換もしくは無置換の核炭素数 10〜50の縮合芳香族基である。
Ar'は置換もしくは無置換の核炭素数 6〜50の芳香族基である。
Xは、置換もしくは無置換の核炭素数 6〜50の芳香族基、置換もしくは無置換の核 原子数 5〜50の芳香族複素環基、置換もしくは無置換の炭素数:!〜 50のアルキル 基、置換もしくは無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置換の炭素 数 6〜50のァラノレキノレ基、置換もしくは無置換の核原子数 5〜50のァリールォキシ 基、置換もしくは無置換の核原子数 5〜50のァリールチオ基、置換もしくは無置換の 炭素数 1〜50のアルコキシカルボニル基、カルボキシル基、ハロゲン原子、シァノ基 、 ニトロ基、ヒドロキシル基である。
a、 b及び cは、それぞれ 0〜4の整数である。
nは:!〜 3の整数である。また、 nが 2以上の場合は、 [ ]内は、同じでも異なってい てあよレヽ。 )
[0046] 下記一般式 (ii)で表される非対称モノアントラセン誘導体。
[化 26]
Figure imgf000031_0001
[0047] (式中、 Ar1及び Ar2は、それぞれ独立に、置換もしくは無置換の核炭素数 6〜50の 芳香族環基であり、 m及び nは、それぞれ 1〜4の整数である。ただし、 m=n= lでか つ Ar1と Ar2のベンゼン環への結合位置が左右対称型の場合には、 Ar1と Ar2は同一 ではなぐ m又は nが 2〜4の整数の場合には mと nは異なる整数である。
R -R^は、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数 6〜50の 芳香族環基、置換もしくは無置換の核原子数 5〜50の芳香族複素環基、置換もしく は無置換の炭素数 1〜50のアルキル基、置換もしくは無置換のシクロアルキル基、 置換もしくは無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置換の炭素数 6 〜50のァラルキル基、置換もしくは無置換の核原子数 5〜50のァリールォキシ基、 置換もしくは無置換の核原子数 5〜50のァリールチオ基、置換もしくは無置換の炭 素数 1〜50のアルコキシカルボニル基、置換もしくは無置換のシリル基、カルボキシ ル基、ハロゲン原子、シァノ基、ニトロ基、ヒドロキシル基である。 )
[0048] 下記一般式 (m)で表される非対称ピレン誘導体。
[化 27]
Figure imgf000032_0001
[0049] [式中、 Ar及び Ar'は、それぞれ置換もしくは無置換の核炭素数 6〜50の芳香族基 である。
L及び L'は、それぞれ置換もしくは無置換のフエ二レン基、置換もしくは無置換の ナフタレニレン基、置換もしくは無置換のフルォレニレン基又は置換もしくは無置換 のジベンゾシロリレン基である。
mは 0〜2の整数、 nは 1〜4の整数、 sは 0〜2の整数、 tは 0〜4の整数である。 また、 L又は Arは、ピレンの 1〜5位のいずれかに結合し、 L'又は Ar,は、ピレンの 6〜: 10位のいずれかに結合する。
ただし、 n+tが偶数の時、 Ar, Ar' , L, Vは下記 (1)又は (2)を満たす。
(1) Ar≠Ar '及び Z又は L≠L' (ここで≠は、異なる構造の基であることを示す。)
(2) Ar=Ar'かつ L=L'の時 (2-1) m≠s及び/又は n≠t、又は
(2-2) m = sかつ n=tの時、
(2-2-1) L及び L'、又はピレン力 それぞれ Ar及び Ar,上の異なる結合位置に 結合している力、、 (2-2-2) L及び L'、又はピレン力 Ar及び Ar'上の同じ結合位置で 結合している場合、 L及び L'又は Ar及び Ar,のピレンにおける置換位置力 位と 6位 、又は 2位と 7位である場合はなレ、。 ]
[0050] 下記一般式 (iv)で表される非対称アントラセン誘導体。
[化 28]
Figure imgf000033_0001
[0051] (式中、 A1及び A2は、それぞれ独立に、置換もしくは無置換の核炭素数 10〜20の 縮合芳香族環基である。
Ar1及び Ar2は、それぞれ独立に、水素原子、又は置換もしくは無置換の核炭素数 6〜50の芳香族環基である。
〜!^は、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数 6〜50の 芳香族環基、置換もしくは無置換の核原子数 5〜50の芳香族複素環基、置換もしく は無置換の炭素数 1〜50のアルキル基、置換もしくは無置換のシクロアルキル基、 置換もしくは無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置換の炭素数 6 〜50のァラルキル基、置換もしくは無置換の核原子数 5〜50のァリールォキシ基、 置換もしくは無置換の核原子数 5〜50のァリールチオ基、置換もしくは無置換の炭 素数 1〜50のアルコキシカルボニル基、置換もしくは無置換のシリル基、カルボキシ ル基、ハロゲン原子、シァノ基、ニトロ基又はヒドロキシル基である。 Ar2、 R9及び R1Qは、それぞれ複数であってもよぐ隣接するもの同士で飽和も しくは不飽和の環状構造を形成してレ、てもよレ、。
ただし、一般式(1)において、中心のアントラセンの 9位及び 10位に、該アントラセ ン上に示す X_Y軸に対して対称型となる基が結合する場合はなレ、。 )
下記一般式 (V)で表されるアントラセン誘導体。
[化 29]
Figure imgf000034_0001
[0053] (式中、 ^〜 °は、それぞれ独立に水素原子,アルキル基,シクロアルキル基,置換 しても良いァリール基,アルコキシル基,ァリーロキシ基,アルキルアミノ基,アルケニ ル基,ァリールアミノ基又は置換しても良い複素環式基を示し、 a及び bは、それぞれ 1〜5の整数を示し、それらが 2以上の場合、 R1同士又は R2同士は、それぞれにおい て、同一でも異なっていてもよぐまた R1 同士または R2 同士が結合して環を形成 していてもよいし、 R3と R4, R5と R6, R7と R8, R9と R1Qがたがいに結合して環を形成して いてもよい。 L1は単結合、 -0- , -S - , —N (R)—(Rはアルキル基又は置換して も良いァリール基である)、アルキレン基又はァリーレン基を示す。)
[0054] 下記一般式 (vi)で表されるアントラセン誘導体。
[化 30]
Figure imgf000035_0001
[0055] (式中、 RU〜R は、それぞれ独立に水素原子,アルキル基,シクロアルキル基,ァリ ール基,アルコキシル基,ァリーロキシ基,ァノレキルアミノ基,ァリールアミノ基又は置 換しても良い複数環式基を示し、 c, d, e及び fは、それぞれ 1〜5の整数を示し、それ らが 2以上の場合、 R11同士, R12同士, R16同士又は R17同士は、それぞれにおいて、 同一でも異なっていてもよぐまた R11同士, R12同士, R16同士又は R17同士が結合して 環を形成していてもよいし、 R13と R14, R18と R19がたがいに結合して環を形成していて もよレ、。 L2は単結合、 -0- , -S - , _N (R) _ (Rはアルキル基又は置換しても良 ぃァリール基である)、アルキレン基又はァリーレン基を示す。)
[0056] 下記一般式 (vii)で表されるスピロフルオレン誘導体。
[化 31]
Figure imgf000035_0002
(vii)
[0057] (式中、 A5〜A8は、それぞれ独立に、置換もしくは無置換のビフエ二ル基又は置換も しくは無置換のナフチル基である。 )
[0058] 下記一般式 (viii)で表される縮合環含有化合物。 [化 32]
Figure imgf000036_0001
(viii)
[0059] (式中、 A9〜A14は前記と同じ、 R21〜R23は、それぞれ独立に、水素原子、炭素数 1〜
6のァノレキノレ基、炭素数 3〜6のシクロアルキル基、炭素数 1〜6のアルコキシル基、 炭素数 5〜 18のァリールォキシ基、炭素数 7〜 18のァラルキルォキシ基、炭素数 5 〜16のァリーノレアミノ基、ニトロ基、シァノ基、炭素数 1〜6のエステル基又はハロゲ ン原子を示し、 A9〜A14のうち少なくとも 1つは 3環以上の縮合芳香族環を有する基で ある。 )
[0060] 下記一般式 (ix)で表されるフルオレン化合物。
[化 33]
Figure imgf000036_0002
[0061] (式中、 Rおよび Rは、水素原子、置換あるいは無置換のアルキル基、置換あるいは
1 2
無置換のァラルキル基、置換あるいは無置換のァリール基,置換あるいは無置換の 複素環基、置換アミノ基、シァノ基またはハロゲン原子を表わす。異なるフルオレン基 に結合する R同士、 R同士は、同じであっても異なっていてもよぐ同じフルオレン基
1 2
に結合する Rおよび Rは、同じであっても異なっていてもよい。 Rおよび Rは、水素
1 2 3 4 原子、置換あるいは無置換のアルキル基、置換あるいは無置換のァラルキル基、置 換あるいは無置換のァリール基または置換あるいは無置換の複素環基を表わし、異 なるフルオレン基に結合する R同士、 R同士は、同じであっても異なっていてもよく、
3 4
同じフルオレン基に結合する Rおよび Rは、同じであっても異なっていてもよい。 Ar
3 4 1 および Arは、ベンゼン環の合計が 3個以上の置換あるいは無置換の縮合多環芳香
2
族基またはベンゼン環と複素環の合計力 ¾個以上の置換あるいは無置換の炭素でフ ルオレン基に結合する縮合多環複素環基を表わし、 Arおよび Arは、同じであって
1 2
も異なっていてもよレ、。 nは、 1乃至 10の整数を表す。 )
[0062] 以上のホスト材料の中でも、好ましくはアントラセン誘導体、さらに好ましくはモノア ントラセン誘導体、特に好ましくは非対称アントラセンである。
また、ドーパントの発光材料としては、りん光発光性の化合物を用いることもできる。 りん光発光性の化合物としては、ホスト材料に力ルバゾール環を含む化合物が好まし レ、。ドーパントとしては三重項励起子から発光することのできる化合物であり、三重項 励起子から発光する限り特に限定されないが、 Ir、 Ru、 Pd、 Pt、〇s及び Reからなる 群から選択される少なくとも一つの金属を含む金属錯体であることが好ましい。
力ルバゾール環を含む化合物からなるりん光発光に好適なホストは、その励起状態 力 りん光発光性化合物へエネルギー移動が起こる結果、りん光発光性化合物を発 光させる機能を有する化合物である。ホス H匕合物としては励起子エネルギーをりん 光発光性化合物にエネルギー移動できる化合物ならば特に制限はなぐ 目的に応じ て適宜選択することができる。力ルバゾール環以外に任意の複素環などを有してレ、 ても良い。
[0063] このようなホスト化合物の具体例としては、力ルバゾール誘導体、トリァゾール誘導 体、ォキサゾール誘導体、ォキサジァゾール誘導体、イミダゾール誘導体、ポリアリー ルアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フヱニレンジァミン誘導体、 ァリールァミン誘導体、ァミノ置換カルコン誘導体、スチリルアントラセン誘導体、フル ォレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三 ァミン化合物、スチリルァミン化合物、芳香族ジメチリデン系化合物、ポルフィリン系 化合物、アントラキノジメタン誘導体、アントロン誘導体、ジフヱ二ルキノン誘導体、チ ォピランジオキシド誘導体、カルポジイミド誘導体、フルォレニリデンメタン誘導体、ジ スチリルビラジン誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フ タロシアニン誘導体、 8-キノリノール誘導体の金属錯体ゃメタルフタロシアニン、ベン ゾォキサゾールやべンゾチアゾールを配位子とする金属錯体に代表される各種金属 錯体ポリシラン系化合物、ポリ(N-ビュルカルバゾール)誘導体、ァニリン系共重合体 、チォフェンオリゴマー、ポリチォフェン等の導電性高分子オリゴマー、ポリチォフェン 誘導体、ポリフエ二レン誘導体、ポリフエ二レンビニレン誘導体、ポリフルオレン誘導 体等の高分子化合物等が挙げられる。ホストイ匕合物は単独で使用しても良いし、 2種 以上を併用しても良い。
具体例としては、以下のような化合物が挙げられる。
[0064] [化 34]
Figure imgf000038_0001
[0065] りん光発光性のドーパントは三重項励起子から発光することのできる化合物である 。三重項励起子から発光する限り特に限定されないが、 Ir、 Ru、 Pd、 Pt、 Os及び Re 力 なる群から選択される少なくとも一つの金属を含む金属錯体であることが好ましく 、ポルフィリン金属錯体又はオルトメタル化金属錯体が好ましい。ポルフィリン金属錯 体としては、ポルフィリン白金錯体が好ましい。りん光発光性化合物は単独で使用し ても良いし、 2種以上を併用しても良い。
[0066] オノレトメタルイ匕金属錯体を形成する配位子としては種々のものがある力 好ましい 配位子としては、 2_フヱニルビリジン誘導体、 7, 8 _ベンゾキノリン誘導体、 2_(2_ チェニル)ピリジン誘導体、 2— (1 ナフチル)ピリジン誘導体、 2—フエ二ルキノリン誘 導体等が挙げられる。これらの誘導体は必要に応じて置換基を有しても良い。特に、 フッ素化物、トリフルォロメチル基を導入したもの力 青色系ドーパントとしては好まし レ、。さらに補助配位子としてァセチルァセトナート、ピクリン酸等の上記配位子以外の 配位子を有してレ、ても良レ、。
りん光発光性のドーパントの発光層における含有量としては、特に制限はなぐ 目 的に応じて適宜選択することができる力 S、例えば、 0. :!〜 70質量%であり、:!〜 30質 量%が好ましい。りん光発光性化合物の含有量が 0. 1質量%未満では発光が微弱 であり、その含有効果が十分に発揮されず、 70質量%を超える場合は、濃度消光と 言われる現象が顕著になり素子性能が低下する。
[0067] また、発光層は、必要に応じて正孔輸送材、電子輸送材、ポリマーバインダーを含 有しても良い。
さらに、発光層の膜厚は、好ましくは 5〜50nm、より好ましくは 7〜50nm、最も好ま しくは 10〜50nmである。 5nm未満では発光層形成が困難となり、色度の調整が困 難となる恐れがあり、 50nmを超えると駆動電圧が上昇する恐れがある。
[0068] (5)正孔注入、輸送層
正孔注入、輸送層は発光層への正孔注入を助け、発光領域まで輸送する層であつ て、正孔移動度が大きぐイオンィ匕エネルギーが通常 5. 5eV以下と小さレ、。このよう な正孔注入、輸送層としてはより低い電界強度で正孔を発光層に輸送する材料が好 ましぐさらに正孔の移動度力 例えば 104〜: 106V/cmの電界印加時に、少なくとも 10— 4cm2/V ·秒であれば好ましレ、。
本発明の有機 EL素子用材料を正孔輸送帯域に用いる場合、本発明の化合物単独 で正孔注入、輸送層を形成しても良いし、他の材料と混合して用いても良い。
本発明の有機 EL素子用材料と混合して正孔注入、輸送層を形成する材料としては 、前記の好ましい性質を有するものであれば特に制限はなぐ従来、光導伝材料に ぉレ、て正孔の電荷輸送材料として慣用されてレ、るものや、 EL素子の正孔注入層に 使用される公知のものの中力 任意のものを選択して用いることができる。芳香族アミ ン誘導体として下記一般式で表される化合物が考えられる。 [0069] [化 35]
Figure imgf000040_0001
[0070] 上式中、 Aru〜Ar13、 Ar21〜Ar23、 Ar3〜Ar8は置換もしくは無置換の核炭素数 6〜 50の芳香族基、または核原子数 5〜50の複素芳香族基。 a〜c、 p〜rはそれぞれ 0 〜3の整数。 Ar3と Ar4、 Ar5と Ar6、 Ar7と Ar8はそれぞれ互いに連結して飽和もしくは 不飽和の環を形成しても良い。
[0071] [化 36]
Figure imgf000040_0002
[0072] 上式中、 Ar^Ar4は置換もしくは無置換の核炭素数 6〜50の芳香族基、または核 原子数 5〜50の複素芳香族基。 Lは連結基であり、単結合、もしくは置換もしくは無 置換の核炭素数 6〜50の芳香族基、または核原子数 5〜50の複素芳香族基。 Xは 0 〜5の整数。 Ar2と Ar3は互いに連結して飽和もしくは不飽和の環を形成しても良い。
[0073] 具体例として例えば、トリァゾール誘導体 (米国特許 3, 112, 197号明細書等参照 )、ォキサジァゾール誘導体 (米国特許 3, 189, 447号明細書等参照)、イミダゾー ル誘導体 (特公昭 37— 16096号公報等参照)、ポリアリールアルカン誘導体 (米国 言午 3, 615, 402 明糸田 、同 3, 820, 989 明糸田 、同 ^3, 542, 544 明 細書、特公昭 45— 555号公報、同 51— 10983号公報、特開昭 51— 93224号公報 、同 55— 17105号公報、同 56— 4148号公報、同 55— 108667号公報、同 55— 1 56953号公報、同 56— 36656号公報等参照)、ピラゾリン誘導体およびピラゾロン 誘導体 (米国特許第 3, 180, 729号明細書、同第 4, 278, 746号明細書、特開昭 5 5— 88064号公報、同 55— 88065号公報、同 49— 105537号公報、同 55— 5108 6号公報、同 56— 80051号公報、同 56— 88141号公報、同 57— 45545号公報、 同 54—112637号公報、同 55— 74546号公報等参照)、フエ二レンジァミン誘導体 (米国特許第 3, 615, 404号明細書、特公昭 51— 10105号公報、同 46— 3712号 公報、同 47— 25336号公報、特開昭 54— 53435号公報、同 54— 110536号公報 、同 54— 119925号公報等参照)、ァリールァミン誘導体(米国特許第 3, 567, 450 号明細書、同第 3, 180, 703号明細書、同第 3, 240, 597号明細書、同第 3, 658 , 520号明細書、同第 4, 232, 103号明細書、同第 4, 175, 961号明細書、同第 4 , 012, 376号明細書、特公昭 49— 35702号公報、同 39— 27577号公報、特開昭 55— 144250号公報、同 56— 119132号公報、同 56— 22437号公報、西独特許 第 1 , 110, 518号明細書等参照)、ァミノ置換カルコン誘導体 (米国特許第 3, 526, 501号明細書等参照)、ォキサゾール誘導体 (米国特許第 3, 257, 203号明細書等 に開示のもの)、スチリルアントラセン誘導体 (特開昭 56— 46234号公報等参照)、フ ルォレノン誘導体(特開昭 54— 110837号公報等参照)、ヒドラゾン誘導体 (米国特 許第 3, 717, 462号明細書、特開昭 54— 59143号公報、同 55— 52063号公報、 同 55— 52064号公報、同 55— 46760号公報、同 55— 85495号公報、同 57— 11 350号公報、同 57— 148749号公報、特開平 2— 311591号公報等参照)、スチル ベン誘導体(特開昭 61— 210363号公報、同第 61— 228451号公報、同 61— 146 42号公報、同 61— 72255号公報、同 62— 47646号公報、同 62— 36674号公報、 同 62— 10652号公報、同 62— 30255号公報、同 60— 93455号公報、同 60— 94 462号公報、同 60— 174749号公報、同 60— 175052号公報等参照)、シラザン誘 導体(米国特許第 4, 950, 950号明細書)、ポリシラン系(特開平 2— 204996号公 報)、ァニリン系共重合体(特開平 2— 282263号公報)、特開平 1 211399号公報 に開示されてレ、る導電性高分子オリゴマー(特にチォフェンオリゴマー)等を挙げるこ とができる。
[0074] 正孔注入層の材料としては上記のものを使用することができる力 S、ポルフィリン化合 物(特開昭 63— 2956965号公報等に開示のもの)、芳香族第三級アミンィ匕合物お よびスチリルアミン化合物(米国特許第 4, 127, 412号明細書、特開昭 53— 27033 号公報、同 54— 58445号公報、同 54— 149634号公報、同 54— 64299号公報、 同 55— 79450号公報、同 55— 144250号公報、同 56— 119132号公報、同 61— 295558号公報、同 61— 98353号公報、同 63— 295695号公報等参照)、特に芳 香族第三級ァミン化合物を用いることが好ましい。
また米国特許第 5, 061 , 569号に記載されている 2個の縮合芳香族環を分子内に 有する、例えば 4, 4,一ビス(N_ (1—ナフチル)一N—フエニルァミノ)ビフエ二ノレ( 以下 NPDと略記する)、また特開平 4— 308688号公報に記載されているトリフエ二 ルァミンユニットが 3つスターバースト型に連結された 4, 4' , 4"—トリス(N— (3—メ チルフエニル)—N—フエニルァミノ)トリフエニルァミン(以下 MTDATAと略記する) 等を挙げることができる。
[0075] この他に特許— 03571977で開示されている下記一般式で表される含窒素複素 環誘導体も用いることができる。
[化 37]
Figure imgf000042_0001
上式中、 R、 R , R、 R、 R、 Rは置換または無置換のアルキル基、置換または無
1 2 3 4 5 6
置換のァリール基、置換または無置換のァラルキル基、置換または無置換の複素環 基のいずれかを示す。但し、 R、 R , R、 R、 R、 Rは同じでも異なっていてもよレ、。 また、 Rと R , Rと R、 Rと Rまたは Rと R , Rと R、 Rと Rが縮合環を形成していて
1 2 3 4 5 6 1 6 2 3 4 5
あよい。
さらに、 US - 20040113547で記載されてレ、る下記一般式の化合物も用いること ができる。
[化 38]
Figure imgf000043_0001
R1〜R6は置換基であり、好ましくはシァノ基、ニトロ基、スルホニル基、カルボニル 基、トリフルォロメチル基、ハロゲンなどの電子吸引基である。
[0077] また発光層の材料として示した前述の芳香族ジメチリディン系化合物の他、 p型 Si、 p型 SiC等の無機化合物も正孔注入層の材料として使用することができる。
正孔注入、輸送層は上述した化合物を、例えば真空蒸着法、スピンコート法、キヤ スト法、 LB法等の公知の方法により薄膜ィ匕することにより形成することができる。正孔 注入、輸送層としての膜厚は特に制限はなレ、が、通常は 5nm〜5 z mである。この正 孔注入、輸送層は正孔輸送帯域に本発明の化合物を含有していれば、上述した材 料の一種または二種以上からなる一層で構成されてもょレ、し、または前記正孔注入、 輸送層とは別種の化合物からなる正孔注入、輸送層を積層したものであってもよい。
[0078] また有機半導体層は発光層への正孔注入または電子注入を助ける層であって、 1 0— 1QS/cm以上の導電率を有するものが好適である。このような有機半導体層の材 料としては、含チォフェンオリゴマーゃ特開平 8— 193191号公報に開示してある含 ァリールァミンオリゴマー等の導電性オリゴマー、含ァリールァミンデンドリマー等の 導電性デンドリマー等を用いることができる。
[0079] (6)電子注入層 電子注入層は発光層への電子の注入を助ける層であって、電子移動度が大きぐ また付着改善層は、この電子注入層の中で特に陰極との付着が良い材料からなる層 である。電子注入層に用いられる材料としては、 8—ヒドロキシキノリンまたはその誘導 体の金属錯体が好適である。
上記 8—ヒドロキシキノリンまたはその誘導体の金属錯体の具体例としては、ォキシ ン(一般に 8 _キノリノールまたは 8—ヒドロキシキノリン)のキレートを含む金属キレー トォキシノイド化合物が挙げられる。
例えば発光材料の項で記載した Alqを電子注入層として用いることができる。
[0080] 一方ォキサジァゾール誘導体としては、以下の一般式で表される電子伝達化合物 が挙げられる。
[化 39]
Figure imgf000044_0001
[0081] 式中 Ar1, Ar2, Ar3, Ar5, Ar6, Ar9はそれぞれ置換または無置換のァリール基を示し 、それぞれ互いに同一であっても異なっていてもよレ、。また Ar4, Ar7, Ar8は置換また は無置換のァリーレン基を示し、それぞれ同一であっても異なっていてもよい。
ここでァリール基としてはフエニル基、ビフエ二ル基、アントラニル基、ペリレニル基、 ピレニル基が挙げられる。またァリーレン基としてはフエ二レン基、ナフチレン基、ビフ ェニレン基、アントラニレン基、ペリレニレン基、ピレニレン基などが挙げられる。また 置換基としては炭素数 1〜 10のァノレキノレ基、炭素数:!〜 10のアルコキシ基またはシ ァノ基等が挙げられる。この電子伝達化合物は薄膜形成性のものが好ましレ、。 [0082] 上記電子伝達性化合物の具体例としては下記のものを挙げることができる。
[化 40]
Figure imgf000045_0001
[0083] またその他含窒素複素環を有する化合物が電子輸送材料として好適であることが 知られている。
[0084] さらに、電子注入層及び電子輸送層に用いられる材料として、下記一般式 (E)〜CF )で表されるものも用レ、ることができる。
[化 41]
Figure imgf000045_0002
[0085] (一般式 (E)及び (F)中、 A A3は、それぞれ独立に、窒素原子又は炭素原子であ る。
Ar1は、置換もしくは無置換の核炭素数 6〜60のァリール基、又は置換もしくは無 置換の核炭素数 3〜60のへテロアリール基であり、 Ar2は、水素原子、置換もしくは 無置換の核炭素数 6〜60のァリール基、置換もしくは無置換の核炭素数 3〜60のへ テロアリール基、置換もしくは無置換の炭素数 1〜20のアルキル基、又は置換もしく は無置換の炭素数 1〜20のアルコキシ基、あるいはこれらの 2価の基である。ただし 、 Ar1及び Ar2のいずれか一方は、置換もしくは無置換の核炭素数 10〜60の縮合環 基、又は置換もしくは無置換の核炭素数 3〜60のモノへテロ縮合環基である。
ΐΛ L2及び Lは、それぞれ独立に、単結合、置換もしくは無置換の核炭素数 6〜60 のァリーレン基、置換もしくは無置換の核炭素数 3〜60のへテロアリーレン基、又は 置換もしくは無置換のフルォレニレン基である。
Rは、水素原子、置換もしくは無置換の核炭素数 6〜60のァリール基、置換もしくは 無置換の核炭素数 3〜60のへテロアリール基、置換もしくは無置換の炭素数:!〜 20 のアルキル基、又は置換もしくは無置換の炭素数 1〜20のアルコキシ基であり、 ま 0〜5の整数であり、 ηが 2以上の場合、複数の Rは同一でも異なっていてもよぐまた 、隣接する複数の R基同士で結合して、炭素環式脂肪族環又は炭素環式芳香族環 を形成してレ、てもよレ、。 )で表される含窒素複素環誘導体。
[0086] HAr-L-Ar'-Ar2 (G)
(式中、 HArは、置換基を有していてもよい炭素数 3〜40の含窒素複素環であり、 L は、単結合、置換基を有していてもよい炭素数 6〜60のァリーレン基、置換基を有し てレ、てもよレ、炭素数 3〜60のへテロアリーレン基又は置換基を有してレ、てもよレ、フル ォレニレン基であり、 Ar1は、置換基を有していてもよい炭素数 6〜60の 2価の芳香族 炭化水素基であり、 Ar2は、置換基を有していてもよい炭素数 6〜60のァリール基又 は置換基を有してレ、てもよレ、炭素数 3〜60のへテロアリール基である。 )で表される 含窒素複素環誘導体。
[0087] [化 42]
Figure imgf000047_0001
[0088] (式中、 X及び Yは、それぞれ独立に炭素数:!〜 6の飽和若しくは不飽和の炭化水素 基、アルコキシ基、アルケニルォキシ基、アルキニルォキシ基、ヒドロキシ基、置換若 しくは無置換のァリール基、置換若しくは無置換のへテロ環又は Xと Υが結合して飽 和又は不飽和の環を形成した構造であり、 R〜Rは、それぞれ独立に水素、ハロゲ
1 4
ン原子、置換もしくは無置換の炭素数 1から 6までのアルキル基、アルコキシ基、ァリ ールォキシ基、パーフルォロアルキル基、パーフルォロアルコキシ基、アミノ基、アル キルカルボニル基、ァリールカルボニル基、アルコキシカルボニル基、ァリールォキ シカルボニル基、ァゾ基、アルキルカルボニルォキシ基、ァリールカルボニルォキシ 基、アルコキシカルボニルォキシ基、ァリールォキシカルボニルォキシ基、スルフィニ ノレ基、スルフォニル基、スルファニル基、シリノレ基、力ルバモイル基、ァリール基、へ テロ環基、アルケニル基、アルキニル基、ニトロ基、ホルミノレ基、ニトロソ基、ホルミル ォキシ基、イソシァノ基、シァネート基、イソシァネート基、チオシァネート基、イソチォ シァネート基もしくはシァノ基又は隣接した場合には置換若しくは無置換の環が縮合 した構造である。 )で表されるシラシクロペンタジェン誘導体。
[0089] [化 43]
Figure imgf000048_0001
[0090] (式中、 R〜R及び Zは、それぞれ独立に、水素原子、飽和もしくは不飽和の炭化
1 8 2
水素基、芳香族炭化水素基、ヘテロ環基、置換アミノ基、置換ボリル基、アルコキシ 基又はァリールォキシ基を示し、 X、 Y及び Zは、それぞれ独立に、飽和もしくは不飽
1
和の炭化水素基、芳香族炭化水素基、ヘテロ環基、置換アミノ基、アルコキシ基又は ァリールォキシ基を示し、 Zと Zの置換基は相互に結合して縮合環を形成してもよく
1 2
、 nは 1〜3の整数を示し、 nが 2以上の場合、 Zは異なってもよレ、。但し、 nが 1、 X、 Y
1
及び Rカ^チル基であって、 R力 水素原子又は置換ボリル基の場合、及び nが 3で
2 8
z力 sメチル基の場合を含まない。)で表されるボラン誘導体。
1
[0091] [化 44]
Figure imgf000048_0002
[0092] [式中、 Q1及び Q2は、それぞれ独立に、下記一般式 (K)で示される配位子を表し、 L は、ハロゲン原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロア ルキル基、置換もしくは無置換のァリール基、置換もしくは無置換の複素環基、一 O R1 (R1は、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロ アルキル基、置換もしくは無置換のァリール基、置換もしくは無置換の複素環基であ る。)又は— O— Ga— Q3 (Q4) (Q3及び Q4は、 Q1及び Q2と同じ)で示される配位子を 表す。 ]
[0093] [化 45]
Figure imgf000049_0001
2 ·ノ,
( K )
[式中、環 A1及び A2は、置換基を有してよい互いに縮合した 6員ァリール環構造であ る。 ]
[0094] この金属錯体は、 n型半導体としての性質が強ぐ電子注入能力が大きい。さらに は、錯体形成時の生成エネルギーも低いために、形成した金属錯体の金属と配位子 との結合性も強固になり、発光材料としての蛍光量子効率も大きくなつている。
一般式 (K)の配位子を形成する環 A1及び A2の置換基の具体的な例を挙げると、 塩素、臭素、ヨウ素、フッ素のハロゲン原子、メチノレ基、ェチル基、プロピル基、ブチ ル基、 s—ブチノレ基、 t一ブチル基、ペンチル基、へキシル基、ヘプチル基、ォクチル 基、ステアリル基、トリクロロメチル基等の置換もしくは無置換のアルキル基、フエエル 基、ナフチル基、 3 _メチルフエニル基、 3—メトキシフエ二ル基、 3 _フルオロフェニ ノレ基、 3 _トリクロロメチルフエニル基、 3 _トリフルォロメチルフエニル基、 3 _ニトロフ ェニル基等の置換もしくは無置換のァリール基、メトキシ基、 n—ブトキシ基、 t—ブト キシ基、トリクロロメトキシ基、トリフノレオ口エトキシ基、ペンタフルォロプロポキシ基、 2 , 2, 3, 3—テトラフノレ才ロプロポキシ基、 1 , 1, 1, 3, 3, 3 _へキサフノレ才ロ _ 2—プ 口ポキシ基、 6 - (パーフルォロェチル)へキシルォキシ基等の置換もしくは無置換の アルコキシ基、フエノキシ基、 p—二トロフエノキシ基、 p— t—ブチルフエノキシ基、 3— フルオロフエノキシ基、ペンタフルオロフェニル基、 3—トリフルォロメチルフエノキシ基 等の置換もしくは無置換のァリールォキシ基、メチルチオ基、ェチルチオ基、 tーブチ ルチオ基、へキシルチオ基、ォクチルチオ基、トリフルォロメチルチオ基等の置換もし くは無置換のアルキルチオ基、フエ二ルチオ基、 p—二トロフエ二ルチオ基、 p— tーブ チルフヱ二ルチオ基、 3 _フルオロフヱ二ルチオ基、ペンタフルオロフヱ二ルチオ基、 3 _トリフルォロメチルフヱ二ルチオ基等の置換もしくは無置換のァリールチオ基、シ ァノ基、ニトロ基、アミノ基、メチルァミノ基、ジェチルァミノ基、ェチルァミノ基、ジェチ ノレアミノ基、ジプロピルアミノ基、ジブチルァミノ基、ジフエニルァミノ基等のモノ又はジ 置換アミノ基、ビス(ァセトキシメチル)アミノ基、ビス(ァセトキシェチル)アミノ基、ビス ァセトキシプロピル)アミノ基、ビス(ァセトキシブチル)アミノ基等のァシルァミノ基、水 酸基、シロキシ基、ァシル基、メチルカルバモイル基、ジメチルカルバモイル基、ェチ ノレ力ルバモイル基、ジェチルカルバモイル基、プロィピルカルバモイル基、ブチルカ ノレバモイル基、フエ二ルカルバモイル基等の力ルバモイル基、カルボン酸基、スルフ オン酸基、イミド基、シクロペンタン基、シクロへキシル基等のシクロアルキル基、フエ ニル基、ナフチル基、ビフエ二ル基、アントラニル基、フエナントリル基、フルォレニノレ 基、ピレニル基等のァリール基、ピリジニル基、ビラジニル基、ピリミジェル基、ピリダ ジニル基、トリアジニル基、インドリニル基、キノリニル基、アタリジニル基、ピロリジニ ル基、ジォキサニル基、ピペリジニル基、モルフオリジニル基、ピペラジニル基、トリア チニル基、カルバゾリル基、フラニル基、チオフェニル基、ォキサゾリル基、ォキサジ ァゾリル基、ベンゾォキサゾリル基、チアゾリル基、チアジアゾリル基、ベンゾチアゾリ ル基、トリァゾリル基、イミダゾリル基、ベンゾイミダゾリル基、プラエル基等の複素環基 等がある。また、以上の置換基同士が結合してさらなる 6員ァリール環もしくは複素環 を形成しても良い。
本発明の好ましい形態に、電子を輸送する領域または陰極と有機層の界面領域に 、還元性ドーパントを含有する素子がある。ここで、還元性ドーパントとは、電子輸送 性化合物を還元ができる物質と定義される。したがって、一定の還元性を有するもの であれば、様々なものが用いられ、例えば、アルカリ金属、アルカリ土類金属、希土 類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の 酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物または希土類金属 のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体、希土類 金属の有機錯体からなる群から選択される少なくとも一つの物質を好適に使用するこ とができる。
[0096] また、より具体的に、好ましい還元性ドーパントとしては、 Na (仕事関数: 2. 36eV) 、K (仕事関数: 2. 28eV)、Rb (仕事関数: 2. 16eV)および Cs (仕事関数: 1. 95eV )からなる群から選択される少なくとも一つのアルカリ金属や、 Ca (仕事関数: 2. 9eV )、 Sr (仕事関数: 2. 0〜2. 5eV)、および Ba (仕事関数: 2. 52eV)力、らなる群から 選択される少なくとも一つのアルカリ土類金属が挙げられる仕事関数が 2. 9eV以下 のものが特に好ましい。これらのうち、より好ましい還元性ドーパントは、 K、 Rbおよび Csからなる群から選択される少なくとも一つのアルカリ金属であり、さらに好ましくは、 Rbまたは Csであり、最も好ましのは、 Csである。これらのアルカリ金属は、特に還元 能力が高ぐ電子注入域への比較的少量の添加により、有機 EL素子における発光 輝度の向上や長寿命化が図られる。また、仕事関数が 2. 9eV以下の還元性ドーパ ントとして、これら 2種以上のアルカリ金属の組合わせも好ましぐ特に、 Csを含んだ 組み合わせ、例えば、 Csと Na、 Csと K、 Csと Rbあるいは Csと Naと Κとの組み合わせ であることが好ましい。 Csを組み合わせて含むことにより、還元能力を効率的に発揮 することができ、電子注入域への添加により、有機 EL素子における発光輝度の向上 や長寿命化が図られる。
[0097] 本発明においては陰極と有機層の間に絶縁体や半導体で構成される電子注入層 をさらに設けても良い。この時、電流のリークを有効に防止して、電子注入性を向上さ せること力 Sできる。このような絶縁体としては、アルカリ金属カルコゲナイド、アルカリ土 類金属カルコゲナイド、アルカリ金属のハロゲン化物およびアルカリ土類金属のハロ ゲンィ匕物からなる群から選択される少なくとも一つの金属化合物を使用するのが好ま しい。電子注入層がこれらのアルカリ金属カルコゲナイド等で構成されていれば、電 子注入性をさらに向上させることができる点で好ましい。具体的に、好ましいアルカリ 金属カルコゲナイドとしては、例えば、 Li〇、 Li〇、 Na S、 Na Seおよび Na〇が挙げ られ、好ましいアルカリ土類金属カルコゲナイドとしては、例えば、 Ca〇、 Ba〇、 SrO 、 BeO、 BaS、および CaSeが挙げられる。また、好ましいアルカリ金属のハロゲン化 物としては、例えば、 LiF、 NaF、 KF、 LiCl、 KC1および NaCl等が挙げられる。また 、好ましいアルカリ土類金属のハロゲン化物としては、例えば、 CaF、 BaF、 SrF、
MgFおよび BeFといったフッ化物や、フッ化物以外のハロゲン化物が挙げられる。
[0098] また、電子輸送層を構成する半導体としては、 Ba、 Ca、 Sr、 Yb、 Al、 Ga、 In、 Li、 Na、 Cd、 Mg、 Si、 Ta、 Sbおよび Znの少なくとも一つの元素を含む酸化物、窒化物 または酸化窒化物等の一種単独または二種以上の組み合わせが挙げられる。また、 電子輸送層を構成する無機化合物が、微結晶または非晶質の絶縁性薄膜であるこ とが好ましい。電子輸送層がこれらの絶縁性薄膜で構成されていれば、より均質な薄 膜が形成されるために、ダークスポット等の画素欠陥を減少させることができる。なお 、このような無機化合物としては、上述したアルカリ金属カルコゲナイド、アルカリ土類 金属カルコゲナイド、アルカリ金属のハロゲン化物およびアルカリ土類金属のハロゲ ン化物等が挙げられる。
[0099] (7)陰極
陰極としては仕事関数の小さい(4eV以下)金属、合金、電気伝導性化合物および これらの混合物を電極物質とするものが用いられる。このような電極物質の具体例と しては、ナトリウム、ナトリウム一カリウム合金、マグネシウム、リチウム、マグネシウム' 銀合金、アルミニウム/酸化アルミニウム、アルミニウム 'リチウム合金、インジウム、希 土類金属などが挙げられる。
この陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成さ せることにより、作製することができる。
ここで発光層からの発光を陰極から取り出す場合、陰極の発光に対する透過率は 1 0°/oより大きくすることが好ましい。
また陰極としてのシート抵抗は数百 Ω /口以下が好ましぐ膜厚は通常 10nm〜l z m、好ましくは 50〜200nmである。
[0100] (8)絶縁層
有機 ELは超薄膜に電界を印可するために、リークやショートによる画素欠陥が生じ やすい。これを防止するために、一対の電極間に絶縁性の薄膜層を揷入することが 好ましい。 絶縁層に用いられる材料としては例えば酸化アルミニウム、弗化リチウム、酸化リチ ゥム、弗化セシウム、酸化セシウム、酸化マグネシウム、弗化マグネシウム、酸化カル シゥム、弗化カルシウム、窒化アルミニウム、酸化チタン、酸化珪素、酸化ゲルマニウ ム、窒化珪素、窒化ホウ素、酸化モリブデン、酸化ルテニウム、酸化バナジウム等が 挙げられる。
これらの混合物や積層物を用いてもよい。
(9)有機 EL素子の作製例
以上例示した材料および方法により陽極、発光層、必要に応じて正孔注入層、およ び必要に応じて電子注入層を形成し、さらに陰極を形成することにより有機 EL素子 を作製することができる。また陰極から陽極へ、前記と逆の順序で有機 EL素子を作 製することちできる。
以下、透光性基板上に陽極 Z正孔注入層 Z発光層 Z電子注入層 Z陰極が順次 設けられた構成の有機 EL素子の作製例を記載する。
まず適当な透光性基板上に陽極材料力 なる薄膜を 1 μ m以下、好ましくは 10〜2 OOnmの範囲の膜厚になるように蒸着やスパッタリング等の方法により形成して陽極 を作製する。次にこの陽極上に正孔注入層を設ける。正孔注入層の形成は、前述し たように真空蒸着法、スピンコート法、キャスト法、 LB法等の方法により行うことができ るが、均質な膜が得られやすぐかつピンホールが発生しにくい等の点から真空蒸着 法により形成することが好ましい。真空蒸着法により正孔注入層を形成する場合、そ の蒸着条件は使用する化合物 (正孔注入層の材料)、 目的とする正孔注入層の結晶 構造や再結合構造等により異なるが、一般に蒸着源温度 50〜450°C、真空度 10— 7 〜: 10— 3Torr、蒸着速度 0. 01〜50nm/秒、基板温度— 50〜300°C、膜厚 5nm〜 5 μ mの範囲で適宜選択することが好ましい。
次に正孔注入層上に発光層を設ける発光層の形成も、所望の有機発光材料を用 いて真空蒸着法、スパッタリング、スピンコート法、キャスト法等の方法により有機発光 材料を薄膜化することにより形成できるが、均質な膜が得られやすぐかつピンホー ルが発生しにくい等の点力 真空蒸着法により形成することが好ましい。真空蒸着法 により発光層を形成する場合、その蒸着条件は使用する化合物により異なるが、一 般的に正孔注入層と同じような条件範囲の中力 選択することができる。
[0102] 次にこの発光層上に電子注入層を設ける。正孔注入層、発光層と同様、均質な膜 を得る必要力 真空蒸着法により形成することが好ましい。蒸着条件は正孔注入層、 発光層と同様の条件範囲から選択することができる。
本発明の化合物は、発光帯域ゃ正孔輸送帯域のいずれの層に含有させるかによ つて異なるが、真空蒸着法を用いる場合は他の材料との共蒸着をすることができる。 またスピンコート法を用いる場合は、他の材料と混合することによって含有させること ができる。
最後に陰極を積層して有機 EL素子を得ることができる。
陰極は金属から構成されるもので、蒸着法、スパッタリングを用いることができる。し 力、し下地の有機物層を製膜時の損傷から守るためには真空蒸着法が好ましい。 これまで記載してきた有機 EL素子の作製は一回の真空引きで一貫して陽極力 陰 極まで作製することが好ましレヽ。
[0103] 本発明の有機 EL素子の各層の形成方法は特に限定されない。従来公知の真空 蒸着法、スピンコーティング法等による形成方法を用いることができる。本発明の有 機 EL素子に用いる、前記一般式(1)で示される化合物を含有する有機薄膜層は、 真空蒸着法、分子線蒸着法 (MBE法)あるいは溶媒に解力した溶液のデイツビング 法、スピンコーティング法、キャスティング法、バーコート法、ロールコート法等の塗布 法による公知の方法で形成することができる。
本発明の有機 EL素子の各有機層の膜厚は特に制限されないが、一般に膜厚が薄 すぎるとピンホール等の欠陥が生じやすぐ逆に厚すぎると高い印加電圧が必要とな り効率が悪くなるため、通常は数 nmから l x mの範囲が好ましい。
なお有機 EL素子に直流電圧を印加する場合、陽極を +、陰極を—の極性にして、 5〜40Vの電圧を印加すると発光が観測できる。また逆の極性で電圧を印加しても 電流は流れず、発光は全く生じない。さらに交流電圧を印加した場合には陽極が + 、陰極が—の極性になった時のみ均一な発光が観測される。印加する交流の波形は 任意でよい。
以下、本発明を実施例をもとに詳細に説明するが、本発明はその要旨を越えない 限り、以下の実施例に限定されない。
実施例
[0104] (A)合成実施例 1 中間体の合成
(A- l) 2, 7_ジブロモ一9, 10—ジハイド口フエナントレンの合成
9, 10—ジハイド口フエナントレン 30. Ogを (Me〇) PO 200mLに溶解させ、臭素 5
3
6. 7gの (MeO) PO lOOmL溶液を滴下した。フラスコを遮光し、反応溶液を 8時間
3
攪拌した。 白色の沈殿が生成した。反応終了後、反応溶液中の白色沈殿を濾取した 。得られた結晶をメタノールで洗浄後、真空乾燥し、 2, 7—ジブ口モー 9, 10—ジハ イド口フエナントレン 32. 7gを白色結晶として得た。
(A- 2) 2, 7—ジブロモフエナントレンの合成
2, 7—ジブロモ— 9, 10—ジノヽイド口フエナントレン 32. 7g、 DDQ 24. lg、ベンゼ ン 500mLを仕込み、アルゴン雰囲気下、 64時間加熱還流した。反応終了後、室温 まで冷却し、ろ過した。ろ液をエバポレーターで濃縮し、残渣をメタノールで洗浄した 。得られた個体をショートカラムで精製した後、トルエンで再結晶し、 2, 7—ジブロモ フエナントレン 15. 5gを無色の針状結晶として得た。
[0105] (B)合成実施例 2 フエナントレンアミン誘導体の合成
[化 46]
Figure imgf000056_0001
Figure imgf000056_0002
[0106] (B— 1)化合物 1の合成
2, 7—ジブロモフエナントレン 3. 36g、 N—フエニル一 1—ナフチルァミン 5. 26g 、トリス (ジベンジリデンアセトン)ジパラジウム(0) 183mg、 t—ブトキシナトリウム 1. 34 gのトルエン lOOmL溶液にトリ t_ブチルホスフィンの 0. 66wt%トルエン溶液 100 β Lをカ卩えて、 5時間加熱還流した。室温に冷却後、析出した固体を濾取した。得ら れた個体をメタノール、水、メタノール、トルエンで順次洗浄し、減圧下乾燥させた。こ の固体を熱トルエンに溶解させた後、熱濾過し、室温まで冷却すると結晶が析出した 。結晶を濾取し、トルエンで再結晶することにより 3. 26gの淡緑白色結晶が得られた 。このものは、マススペクトル分析の結果、 目的物であり、分子量 612. 26に対し、 m /e = 612であった。
[0107] (B— 2)化合物 2の合成
(1) N— (4—ブロモフエ二ル)— N—フエ二ルー 1—ナフチルァミンの合成
N—フエ二ルー 1—ナフチルァミン 21 · 9g、 4—ブロモヨードベンゼン 28· 2g、 t— ブトキシナトリウム 14. 4g、銅粉 3. 81g、キシレン lOOmL溶液中に N, Ν '—ジメチ ルエチレンジァミン 17. 6gを加え、アルゴン雰囲気下 24時間加熱還流した。室温に 冷却後、濾過し、不溶物を取り除き、濾液を濃縮した。残渣をシリカゲルカラムクロマ トグラフィで精製し、 N— (4—ブロモフエ二ル)一 N—フエニル一 1—ナフチルァミン 2 5. 4gを得た。
[0108] (2) 4_ (N_ 1 _ナフチル— N—フエニルァミノ)フエニルボロン酸の合成
アルゴン雰囲気下、 N_(4_ブロモフエ二ル)— N—フエニル— 1 _ナフチルァミン 18. 7gの乾燥ェチルエーテル 100mL、乾燥トルエン lOOmL溶液を— 78°Cに冷 却し、 1. 6Mノルマルブチルリチウムのへキサン溶液 32. 8mLを滴下した。反応溶 液を 0°Cまで加温しながら 1時間攪拌した。反応溶液を再び _ 78°Cまで冷却し、ホウ 酸トリイソプロピル 23. 5gの乾燥エーテノレ 50mL溶液を滴下した。反応溶液を室温 で 5時間攪拌した。 1N塩酸 lOOmLをカ卩え、 1時間攪拌後、水層を除去した。有機 層を硫酸マグネシウムで乾燥させ、溶媒を減圧留去した。得られた個体をシリカゲル カラムクロマトグラフィで精製し、 4- (N— 1—ナフチル一 N—フエニルァミノ)フエ二 ルボロン酸 10· 2gを得た。
(3) 2—ブロモ—7— (N—1—ナフチル— N—フエニルァミノ)フエナントレンの合成 アルゴン気流下、 N—フエ二ルー 1—ナフチルァミン 13. 7g、 2, 7—ジブロモフエ ナントレン 21. Og、炭酸カリクム 13. Og、 ί同粉 0. 400g、デカリン 40mLを仕込み 、 200°Cにて 6日間反応した。
反応後、熱時濾過し、不溶分はトルエンで洗浄し、濾液を併せ濃縮した。残渣にト ルェン 30mLをカ卩ぇ析出晶を濾取して除き、濾液を濃縮した。次いで残渣にメタノー ル lOOmLを加え、攪拌後上澄み液を廃棄し、更に 30mLのメタノールを加え、攪拌 後上澄み液を廃棄してカラム精製したところ、黄色粉末を得た。これを 15mLのトル ェンに加熱溶解し、へキサン 15mLをカ卩ぇ冷却し、析出した結晶を濾取したところ、 2—ブロモ一7— (N— 1—ナフチル一 N—フエニルァミノ)フエナントレンを 13. 4g得た
[0109] (4)化合物 2の合成
アルゴン気流下、 2_ブロモ _ 7_(N_ 1 _ナフチル—N—フエニルァミノ)フエナン トレン 5· 00g、 4— (Ν— 1—ナフチル一 Ν フエニルァミノ)フエニルボロン酸 4· 29g、 テトラキス(トリフエニルフォスフィン)パラジウム(0) 243mg、トルエン 40mL、 2M炭酸 ナトリウム水溶液 20mLを仕込み、 8時間加熱還流した。反応終了後、濾過した。得ら れた個体を水、メタノールで洗浄後、トルエンで再結晶し、 3. 12gの淡緑白色結晶が 得られた。このものは、マススペクトル分析の結果、 目的物であり、分子量 688. 29に 対し、 mZe = 688であった。
[0110] (B— 3)化合物 3の合成
化合物 2の合成において N—フエニル— 1 _ナフチルァミンの代わりに N—ビフエ二 ルァニリンを用いて同様の方法で合成した。このものは、マススペクトル分析の結果、 目的物であり、分子量 740. 32に対し、 m/e = 740であった。
(B— 4)化合物 4の合成
化合物 2の合成において、 2_ブロモ _ 7_(N_ 1 _ナフチル— N—フエニルァミノ )フエナントレンの代わりに 2, 7 ジブロモフエナントレンを用いて同様の方法で合成 した。このものは、マススペクトル分析の結果、 目的物であり、分子量 764. 32に対し 、 m/e = 764であった。
[0111] (B— 5)化合物 5の合成
2 ブロモ 7— (N—1—ナフチル一 N フエニルァミノ)フエナントレン 10· 4g、ァ 二リン 0· 930g、トリス (ジベンジリデンアセトン)ジパラジウム (0) 366mg、 t—ブトキシ ナトリウム 2. 68gのトノレェン 200mL溶 ί夜 ίこトリ tーブチノレホスフィンの 0. 66wt0/0ト ルェン溶液 200 しを力 0えて、 5時間加熱還流した。室温に冷却後、析出した固体 を濾取した。得られた個体をメタノール、水、メタノール、トルエンで順次洗浄し、減圧 下乾燥させた。この固体を熱トルエンに溶解させた後、熱濾過し、室温まで冷却する と結晶が析出した。結晶を濾取し、トルエンで再結晶することにより 7. 26gの淡緑白 色結晶が得られた。このものは、マススペクトル分析の結果、 目的物であり、分子量 8 79. 36に対し、 mZe = 879であった。
[0112] (B— 6)化合物 6の合成
化合物 5の合成において、 2_ブロモ _ 7_(N_ 1 _ナフチル— N—フエニルァミノ )フエナントレンの代わりに 2—ブロモ一 7— [N, N—ビス(4-ビフエニル)ァミノ]フエナ ントレンを用いて同様の方法で合成した。このものは、マススペクトル分析の結果、 目 的物であり、分子量 1083· 46に対し、 m/e = 1083であった。
(B— 7)化合物 7の合成
化合物 5の合成において、 2 _ブロモ _ 7 _(N_ 1 _ナフチル— N—フエニルァミノ )フエナントレンの代わりに 2—ブロモ一7— [N— (4—ビフエ二ル)一 N—フエニルアミ ノ]フエナントレンを用いて同様の方法で合成した。このものは、マススペクトル分析の 結果、 目的物であり、分子量 931. 39に対し、 m/e = 931であった。
[0113] (B— 8)化合物 8の合成
(1) 4—ブロモ _4 ' _(N_ 1 _ナフチル -N-フエニルァミノ)ビフエニルの合成 アルゴン気流下、 N—フエニル一 1 _ナフチルァミン 13. 7g、 4, 4 ' _ジブ口モビフ ェニノレ 19. 5g、炭酸カリウム 13. 0g、 $同粉 0. 400g、デカリン 40mLを仕込み、 20 0°Cにて 6日間反応した。反応後、熱時濾過し、不溶分はトルエンで洗浄し、濾液を 併せ濃縮した。残渣にトルエン 30mLを加え析出晶を濾取して除き、濾液を濃縮し た。次いで残渣にメタノール lOOmLを加え、攪拌後上澄み液を廃棄し、更に 30mL のメタノールを加え、攪拌後上澄み液を廃棄してカラム精製したところ、黄色粉末を 得た。これを 15mLのトルエンに加熱溶解し、へキサン 15mLを加え冷却し、析出し た結晶を濾取したところ、 4—ブロモ—4, - (N— 1—ナフチル -N-フエニルァミノ)ビ フエニルを 13· 4g得た。
( 2) N, N ' ジフエニル N— 1 ナフチルベンジジンの合成
4 ブロモ—4 '— (N— 1—ナフチル— N フエニルァミノ)ビフエ二ル 4· 50g、ァ 二リン 1. l lg、トリス(ベンジリデンアセトン)ジパラジウム(0) 183mg、 t—ブトキシナ トリウム 1. 35gのトルエン lOOmL溶液にトリ t-ブチルホスフィンの 0. 66wt%トルェ ン溶液 100 z Lをカ卩えて、室温で 5時間攪拌した。反応終了後、混合物をセライト濾 過し、濾液をトルエンで抽出した。これを減圧下で濃縮し、得られた粗生成物をカラム 精製し、 3. 50gの淡黄色粉末が得られた。
[0114] (3)化合物 8の合成
2—ブロモ一7— (N— 1—ナフチル一 N—フエニルァミノ)フエナントレン 2. 37g、 N , N ' _ジフヱニル一 N—1 _ナフチルベンジジン 2. 25g、トリス(ジベンジリデンァセ トン)ジノ ラジウム(0) 91. 5mg、 t—ブトキシナトリウム 0. 670gのトノレェン 50mL溶 液にトリ t ブチルホスフィンの 0. 66wt%トルエン溶液 50 /i Lを加えて、 5時間加熱 還流した。室温に冷却後、析出した固体を濾取した。得られた個体をメタノール、水、 メタノーノレ、トルエンで順次洗浄し、減圧下乾燥させた。この固体を熱トルエンに溶解 させた後、熱濾過し、室温まで冷却すると結晶が析出した。結晶を濾取し、トルエンで 再結晶することにより 3. 26gの淡緑白色結晶が得られた。このものは、マススぺクトノレ 分析の結果、 目的物であり、分子量 855. 36に対し、 mZe = 855であった。
[0115] (B— 9)化合物 9の合成
( 1 ) 4—ブロモ一4 " _ (N— 1—ナフチル一N—フエニルァミノ) _ p—ターフェ二ノレ の合成
アルゴン気流下、 N, N—ジフエニルァミン 13. 7g、 4, 4 ',一ジブロモ一 p—ターフ ェニノレ 24. 3g、炭酸カリウム 13. 0g、 $同粉 0. 400g、デカリン 40mLを仕込み、 20 0°Cにて 6日間反応した。
反応後、熱時濾過し、不溶分はトルエンで洗浄し、濾液を併せ濃縮した。残渣にト ルェン 30mLをカ卩ぇ析出晶を濾取して除き、濾液を濃縮した。次いで残渣にメタノー ノレ l OOmLを加え、攪拌後上澄み液を廃棄し、更に 30mLのメタノールを加え、攪拌 後上澄み液を廃棄してカラム精製したところ、黄色粉末を得た。これを 15mLのトル ェンに加熱溶解し、へキサン 15mLを加え冷却し、析出した結晶を濾取したところ、 4—ブロモ 4 "—ジフエニノレアミノ一 p ターフェ二ノレを 13· 4g得た。
(2) 2— (N—1—ナフチル— N フエニルァミノ)— 7— (N フエニルァミノ)フエナン トレンの合成
4—ブロモ—4 '— (N— 1—ナフチル— N—フエニルァミノ)ビフエ二ル 4. 74g、ァ 二リン 1. l lg、トリス(ベンジリデンアセトン)ジパラジウム(0) 183mg、 t—ブトキシナ トリウム 1. 35gのトルエン l OOmL溶液にトリ t _ブチルホスフィンの 0. 66wt0/。トノレ ェン溶液 100 x Lをカロえて、室温で 5時間攪拌した。反応終了後、混合物を濾過し た。得られた個体をメタノール、水、メタノーノレ、トルエンで順次洗浄し、減圧下で乾 燥させ、 3. 50gの灰色粉末が得られた (粗生成物)。
[0116] (3)化合物 9の合成 4ーブロモー 4 ' 'ージフエニルアミノー p—ターフェニル 2. 63g、 2— (N— 1 ナフ チル一 N フエニルァミノ)一 7— (N フエニルァミノ)フエナントレン 2· 91g、トリス( ジベンジリデンアセトン)ジパラジウム(0) 91. 5mg、 t—ブトキシナトリウム 0. 670g のトルエン 50mL溶液にトリ t_ブチルホスフィンの 0. 66wt%トルエン溶液 50 μ Lを カロえて、 5時間加熱還流した。室温に冷却後、析出した固体を濾取した。得られた個 体をメタノール、水、メタノーノレ、トルエンで順次洗浄し、減圧下乾燥させた。この固体 を熱トルエンに溶解させた後、熱濾過し、室温まで冷却すると結晶が析出した。結晶 を濾取し、トルエンで再結晶することにより 2. 26gの淡緑白色結晶が得られた。この ものは、マススペクトル分析の結果、 目的物であり、分子量 931. 39に対し、 m/e = 931であった。
[0117] (B— 10)化合物 10の合成
(1) 2, 7_ビス(N—ァニリノ)フエナントレンの合成
2, 7 ジブロモフエナントレン 3· 36g、ァニリン 1 · l lg、トリス(ジベンジリデンァセト ン)ジパラジウム(0) 183mg、 t—ブトキシナトリウム 1 · 34gのトルエン lOOmL溶液に トリ t-ブチルホスフィンの 0. 66wt%トルエン溶液 100 /i Lを加えて、 5時間加熱還流 した。室温に冷却後、析出した固体を濾取した。得られた個体をメタノール、水、メタ ノーノレ、トルエンで順次洗浄し、減圧下乾燥させ、 3. 26gの灰色固体が得られた。
(2)化合物 10の合成
2, 7 ビス (N-ァニリノ)フエナントレン 1. 80g、 4 ブロモ 4 '— (N, N ジフエ二 ルァミノ)ビフエ二ル 4· 40g、トリス(ジベンジリデンアセトン)ジパラジウム(0) 183m g、 t ブトキシナトリウム 1. 35gのトノレェン 50mL溶液にトリ t ブチルホスフィンの 0 . 66wt%トルエン溶液 100 x Lをカロえて、 5時間加熱還流した。室温に冷却後、析 出した固体を濾取した。得られた個体をメタノール、水、メタノーノレ、トルエンで順次 洗浄し、減圧下乾燥させた。この固体を熱トルエンに溶解させた後、熱濾過し、室温 まで冷却すると結晶が析出した。結晶を濾取し、トルエンで再結晶することにより 2. 2 Ogの淡緑白色結晶が得られた。このものは、マススペクトル分析の結果、 目的物であ り、分子量 998. 43に対し、 m/e = 998であった。
[0118] (B— 11)化合物 11の合成 化合物 10の合成において 4ーブロモー 4 '一(N, N—ジフエニルァミノ)ビフエ二ル の代わりに 4ーブロモトリフエニルァミンを用いて同様の方法で合成した。このものは、 マススペクトル分析の結果、 目的物であり、分子量 846. 37に対し、 m/e = 846であ つた。
[0119] 実施例 1
25mm X 75mm X l . 1mm厚の IT〇透明電極付きガラス基板(ジォマティック社製 )をイソプロピルアルコール中で超音波洗浄を 5分間行なった後、 UVオゾン洗浄を 3 0分間行なった。洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホ ルダ一に装着し、まず透明電極ラインが形成されている側の面上に、前記透明電極 を覆うようにして膜厚 80nmの化合物 1膜を抵抗加熱蒸着により成膜した。この化合 物 1膜は、正孔注入輸送層として機能する。化合物 1膜の成膜に続けてこの化合物 1 膜上に、膜厚 40nmで 9 _ ( 2 -ナフチル) _ 10_ [4_ (1 _ナフチル)フエニル]アン トラセン (以下 AN— 1と略記する。)を抵抗加熱蒸着により成膜した。同時に発光分 子として、下記のスチリル基を有するアミンィヒ合物 D— 1を AN— 1に対し重量比 2: 40 で蒸着した。この膜は、発光層として機能する。この膜上に膜厚 10nmの Alq膜を成 膜した。これは、電子注入層として機能する。この後還元性ドーパントである Li (Li源: サエスゲッタ一社製)と Alqを二元蒸着させ、電子注入層(陰極)として Alq: Li膜 (膜 厚 lOnm)を形成した。この Alq : Li膜上に金属 A1を蒸着させ金属陰極を形成し有機 EL発光素子を形成した。
[0120] [化 47]
Figure imgf000063_0001
A 1 q
Figure imgf000063_0002
AN-1
[0121] 実施例 2〜: 10
実施例 1における化合物 1の代わりに化合物 2〜: 10をそれぞれ用いて、同様の有 機 EL素子を作製した。
[0122] 比較例:!〜 7
実施例 1における化合物 1の代わりに下記化合物 (A)〜(G)をそれぞれ用いて、同 様の有機 EL素子を作製した。
[0123] [化 48]
Figure imgf000064_0001
表 1
Figure imgf000065_0001
[0126] 表 1より、本発明の化合物を正孔注入輸送層に用いると、電荷注入性が大きく向上 し、発光効率も大きくなる。また、高い注入性、発光効率を維持しつつ、長寿命である 。 9一フエナントレンァミンの構造(比較例 6、 7)よりも 2, 7_フエナントレンジァミンの 構造が非常に効果的である。
[0127] 実施例 11
25mmX75mmXl. 1mm厚の IT〇透明電極付きガラス基板(ジォマティック社製 )をイソプロピルアルコール中で超音波洗浄を 5分間行なった後、 UVオゾン洗浄を 3 0分間行なった。洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホ ルダ一に装着し、まず透明電極ラインが形成されている側の面上に、前記透明電極 を覆うようにして膜厚 60nmの化合物 11膜を抵抗加熱蒸着により成膜した。この化合 物 11膜は、第一の正孔注入層(正孔輸送層)として機能する。化合物 11膜の成膜に 続けてこの化合物 11膜上に膜厚 20nmの 4, 4 ' _ビス [N _ ( 1 _ナフチル) _ N—フ 工ニルァミノ]ビフエニル膜 (以下「NPD膜」と略記する。 )を抵抗加熱蒸着により成膜 した。この NPD膜は第 2の正孔注入層(正孔輸送層)として機能する。さらに、 NPD 膜の成膜に続けてこの NPD膜上に膜厚 40nmで AN— 1とを抵抗加熱蒸着により成 膜した。同時に発光分子として、 D—1を AN— 1に対し重量比 2 : 40で蒸着した。この 膜は、発光層として機能する。この膜上に膜厚 lOnmの Alq膜を成膜した。これは、電 子注入層として機能する。この後還元性ドーパントである Li (Li源:サエスゲッタ一社 製)と Alqを二元蒸着させ、電子注入層(陰極)として八 丄1膜(膜厚10!1111)を形成し た。この Alq : Li膜上に金ゾク A1を蒸着させ金属陰極を形成し有機 EL発光素子を形 成した。
Figure imgf000066_0001
実施例 11における化合物 11の代わりに下記化合物 (E)を用いて、同様の有機 EL 素子を作製した。
[化 49]
Figure imgf000066_0002
( E )
[0129] 表 2は、実施例 11と比較例 11で得られた有機 EL素子の性能測定結果である。
[0130] [表 2] 表 2
Figure imgf000067_0001
[0131] 本発明の化合物を正孔注入層に用いても、正孔注入性がよぐ発光効率が高ぐ 且つ、長寿命である。
[0132] 以上、詳細に説明したように、本発明の有機エレクト口ルミネッセンス素子は、連結 基にフエナントレニレン基を含有する置換あるいは無置換の芳香族ァミン誘導体及 び有機 EL素子用材料を含む材料から有機薄膜層を形成されたものであり、従来か ら知られていた化合物及び有機 EL素子用材料によるものよりも、長寿命で、正孔注 入性が優れ高発光効率である。
産業上の利用可能性
[0133] 以上詳細に説明したように、本発明の芳香族ァミン誘導体及び有機 EL素子用材 料を用レ、た有機 EL素子は、発光効率が高ぐ長寿命な青色発光が得られ、実用性 の高い有機 EL素子として極めて有用である。このため、本発明の有機エレクト口ルミ ネッセンス素子は、壁掛テレビの平面発光体やディスプレイのバックライト等の光源と して有用である。

Claims

請求の範囲
下記一般式(1)で表される芳香族ァミン誘導体。
Figure imgf000068_0001
[式中、 Ar〜Arはそれぞれ独立に、置換もしくは無置換の核炭素数 6〜30のァリ
1 4
ール基、又は、置換もしくは無置換の核炭素数 5〜30のへテロアリール基を表す。
L及び Lはそれぞれ独立に、単結合、置換もしくは無置換の核炭素数 6〜30のァ
1 2
リーレン基、又は、置換もしくは無置換の核炭素数 5〜30のへテロアリーレン基を表 す。
但し、 L及び Lが単結合である場合は、 Ar及び Arが共に置換もしくは無置換の
1 2 1 3
フエニル基であり、かつ Ar及び Arが共に置換もしくは無置換のビフヱ二リル基又は
2 4
置換もしくは無置換のフヱニル基である場合はなレ、。
Rは置換基を示し、複数の場合には互いに結合して環を形成しても良い。
nは 0〜8の整数である。 ]
下記一般式 (2)又は(3)で表される芳香族ァミン誘導体。
[化 2]
Figure imgf000068_0002
[式中、 Ar〜Ar はそれぞれ独立に、置換もしくは無置換の核炭素数 6〜30のァリ
5 15
ール基、又は、置換もしくは無置換の核炭素数 5〜30のへテロアリール基を表す。 L〜Lはそれぞれ独立に、置換もしくは無置換の核炭素数 6〜30のァリーレン基、
3 7
又は置換もしくは無置換の核炭素数 5〜30のへテロアリーレン基を示し、かつ、一般 式(2)において L及び Lの少なくとも一つ、あるいは一般式(3)において L〜Lのう
3 4 5 7 ち少なくとも一つが、下記一般式 (4)で表される連結基である。
[化 3]
Figure imgf000069_0001
( 4 )
{式中、 Lおよび Lはそれぞれ独立に、単結合、置換もしくは無置換の核炭素数 6〜
8 9
30のァリーレン基、又は置換もしくは無置換の核炭素数 5〜30のへテロアリーレン基 を表す。
Rは置換基を示し、複数の場合には互いに結合して環を形成しても良い。 nは 0〜8の整数である。 } ]
[3] 請求項 1又は 2に記載の芳香族ァミン誘導体である有機エレクト口ルミネッセンス素 子用材料。
[4] 下記一般式(5)で表される有機エレ外口ルミネッセンス素子用材料。
[化 4]
Figure imgf000069_0002
[式中、 Ar 〜Ar はそれぞれ独立に、置換もしくは無置換の核炭素数 6〜30のァリ
16 19
ール基、又は、置換もしくは無置換の核炭素数 5〜30のへテロアリール基を表し、 L 及び L はそれぞれ独立に、単結合、置換もしくは無置換の核炭素数 6〜30の
10 11
ァリーレン基、又は、置換もしくは無置換の核炭素数 5〜30のへテロアリーレン基を 示す。 Rは置換基を示し、複数の場合には互いに結合して環を形成しても良い。
a
nは 0〜8の整数である。 ]
[5] 有機エレクト口ルミネッセンス素子用正孔注入材料または正孔輸送材料である請求 項 3又は 4に記載の有機エレクト口ルミネッセンス素子用材料。
[6] 有機エレクト口ルミネッセンス素子用ドーピング材料である請求項 3又は 4に記載の 有機エレクト口ルミネッセンス素子用材料。
[7] 陽極と陰極間に少なくとも発光層を有する一層又は複数層からなる有機薄膜層が 挟持されている有機エレクト口ルミネッセンス素子において、該有機薄膜層の少なくと も一層が請求項 3又は 4に記載の有機エレクト口ルミネッセンス素子用材料を単独ま たは混合物の成分として含有する有機エレクト口ルミネッセンス素子。
[8] 前記有機薄膜層が正孔輸送帯域及び/または正孔注入帯域を有し、請求項 3又は 4に記載の有機エレクト口ルミネッセンス素子用材料力 正孔注入帯域及び/または 正孔輸送帯域に用いられている請求項 7記載の有機エレクト口ルミネッセンス素子。
[9] 前記有機薄膜層が正孔輸送層及び/または正孔注入層を有し、請求項 3又は 4に 記載の有機エレクト口ルミネッセンス素子用材料力 正孔注入層及び/または正孔輸 送層に用いられている請求項 7記載の有機エレクト口ルミネッセンス素子。
[10] 前記有機薄膜層が発光層を有し、請求項 3又は 4に記載の有機エレクト口ルミネッ センス素子用材料が、発光層に用いられている請求項 7記載の有機エレクトロルミネ ッセンス素子。
[11] 請求項 3又は 4に記載の有機エレクト口ルミネッセンス素子用材料が、該発光層中 に 0.:!〜 20重量%含有されている請求項 7記載の有機エレクト口ルミネッセンス素子
[12] 青色系発光である請求項 7〜: 11のいずれかに記載の有機エレクト口ルミネッセンス 素子。
PCT/JP2006/313080 2005-08-08 2006-06-30 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子 WO2007017995A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06767688A EP1914222A1 (en) 2005-08-08 2006-06-30 Aromatic amine derivative and organic electroluminescence device making use of the same
KR1020087002673A KR101331354B1 (ko) 2005-08-08 2006-06-30 방향족 아민 유도체 및 그것을 이용한 유기 전기발광 소자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-230127 2005-08-08
JP2005230127A JP4848152B2 (ja) 2005-08-08 2005-08-08 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子

Publications (1)

Publication Number Publication Date
WO2007017995A1 true WO2007017995A1 (ja) 2007-02-15

Family

ID=37717049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313080 WO2007017995A1 (ja) 2005-08-08 2006-06-30 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子

Country Status (7)

Country Link
US (2) US7405326B2 (ja)
EP (1) EP1914222A1 (ja)
JP (1) JP4848152B2 (ja)
KR (1) KR101331354B1 (ja)
CN (1) CN101258126A (ja)
TW (1) TW200714574A (ja)
WO (1) WO2007017995A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009221442A (ja) * 2008-03-19 2009-10-01 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子用材料ならびに有機エレクトロルミネッセンス素子

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100026176A1 (en) 2002-03-28 2010-02-04 Jan Blochwitz-Nomith Transparent, Thermally Stable Light-Emitting Component Having Organic Layers
EP1792893A4 (en) * 2004-08-31 2007-11-21 Idemitsu Kosan Co AROMATIC AMINE DERIVATIVE AND ORGANIC ELECTROLUMINESCENT DEVICE USING THIS
WO2006114921A1 (ja) * 2005-04-18 2006-11-02 Idemitsu Kosan Co., Ltd. 芳香族トリアミン化合物及びそれを用いた有機エレクトロルミネッセンス素子
JP4848152B2 (ja) 2005-08-08 2011-12-28 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP2007230960A (ja) 2006-03-03 2007-09-13 Idemitsu Kosan Co Ltd 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
KR20090023411A (ko) * 2006-06-27 2009-03-04 이데미쓰 고산 가부시키가이샤 방향족 아민 유도체 및 그들을 이용한 유기 전기발광 소자
US20100039024A1 (en) 2006-09-14 2010-02-18 Wendeborn Frederique New Heterocyclic bridged biphenyls
WO2008119666A1 (en) * 2007-03-29 2008-10-09 Basf Se Heterocyclic bridged biphenyls
JP2009051764A (ja) * 2007-08-27 2009-03-12 Hodogaya Chem Co Ltd 置換されたフェナントレン環構造を有する化合物および有機エレクトロルミネッセンス素子
KR20100077200A (ko) 2007-11-20 2010-07-07 이데미쓰 고산 가부시키가이샤 고분자 화합물 및 그것을 이용한 유기 전기발광 소자
WO2009075223A1 (ja) 2007-12-11 2009-06-18 Idemitsu Kosan Co., Ltd. 高分子化合物及びそれを用いた有機エレクトロルミネッセンス素子
EP2223949A4 (en) 2007-12-11 2011-11-23 Idemitsu Kosan Co POLYMER COMPOUND AND ORGANIC ELECTROLUMINESCENCE DEVICE THEREWITH
KR101050459B1 (ko) 2008-09-03 2011-07-20 삼성모바일디스플레이주식회사 플루오렌 화합물 및 이를 이용한 유기 전계 발광 장치
KR20110050690A (ko) * 2008-09-24 2011-05-16 이데미쓰 고산 가부시키가이샤 복합 유기 전계 발광 재료
KR20100070979A (ko) * 2008-12-18 2010-06-28 동우 화인켐 주식회사 비대칭 구조의 유기전기발광소자용 아릴아민유도체, 그 제조방법, 이를 포함하는 유기전기발광소자용 유기박막재료 및 이를 이용한 유기 전기발광소자
WO2010071352A2 (ko) * 2008-12-18 2010-06-24 동우화인켐 주식회사 비대칭 구조의 유기전기발광소자용 아릴아민유도체, 그 제조방법, 이를 포함하는 유기전기발광소자용 유기박막재료 및 이를 이용한 유기 전기발광소자
WO2010145991A1 (en) 2009-06-18 2010-12-23 Basf Se Phenanthroazole compounds as hole transporting materials for electro luminescent devices
JP5810152B2 (ja) * 2010-04-27 2015-11-11 ノヴァレッド・アクチエンゲゼルシャフト 有機半導体材料および電子部品
KR20110121147A (ko) * 2010-04-30 2011-11-07 다우어드밴스드디스플레이머티리얼 유한회사 신규한 유기 발광 화합물 및 이를 포함하는 유기 발광 소자
KR101688230B1 (ko) * 2010-07-01 2016-12-20 동우 화인켐 주식회사 신규 비대칭 구조의 유기전기발광소자용 아릴아민유도체, 그 제조방법, 이를 포함하는 유기전기발광소자용 유기박막재료 및 이를 이용한 유기 전기발광소자
JP5703394B2 (ja) * 2011-01-17 2015-04-15 エルジー・ケム・リミテッド 新規な化合物およびこれを含む有機発光素子
JP2015013806A (ja) * 2011-09-22 2015-01-22 出光興産株式会社 芳香族アミン誘導体およびそれを用いた有機エレクトロルミネッセンス素子
JP5891798B2 (ja) * 2012-01-12 2016-03-23 住友化学株式会社 高分子化合物及びそれを用いた発光素子
GB201223369D0 (en) * 2012-12-24 2013-02-06 Cambridge Display Tech Ltd Polymer and device
GB2515909B (en) 2012-01-31 2020-07-15 Cambridge Display Tech Ltd Composition comprising a fluorescent light-emitting material and triplet-accepting polymer and use thereof
JP6078998B2 (ja) * 2012-06-20 2017-02-15 住友化学株式会社 高分子化合物およびそれを用いた発光素子
KR102131960B1 (ko) 2013-01-16 2020-07-09 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함하는 유기 전계 발광 소자
KR102105076B1 (ko) 2013-06-04 2020-04-28 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함하는 유기 전계 발광 소자
US9425416B2 (en) 2013-06-07 2016-08-23 Samsung Display Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
US9929361B2 (en) 2015-02-16 2018-03-27 Universal Display Corporation Organic electroluminescent materials and devices
US11056657B2 (en) 2015-02-27 2021-07-06 University Display Corporation Organic electroluminescent materials and devices
KR102343572B1 (ko) * 2015-03-06 2021-12-28 삼성디스플레이 주식회사 유기 발광 소자
US9859510B2 (en) 2015-05-15 2018-01-02 Universal Display Corporation Organic electroluminescent materials and devices
US10418568B2 (en) 2015-06-01 2019-09-17 Universal Display Corporation Organic electroluminescent materials and devices
US11127905B2 (en) 2015-07-29 2021-09-21 Universal Display Corporation Organic electroluminescent materials and devices
US10361381B2 (en) 2015-09-03 2019-07-23 Universal Display Corporation Organic electroluminescent materials and devices
US20170229663A1 (en) 2016-02-09 2017-08-10 Universal Display Corporation Organic electroluminescent materials and devices
US10236456B2 (en) 2016-04-11 2019-03-19 Universal Display Corporation Organic electroluminescent materials and devices
KR102126602B1 (ko) * 2016-04-22 2020-06-24 주식회사 엘지화학 카바졸 유도체 및 이를 이용한 유기 발광 소자
US10862054B2 (en) 2016-06-20 2020-12-08 Universal Display Corporation Organic electroluminescent materials and devices
US11482683B2 (en) 2016-06-20 2022-10-25 Universal Display Corporation Organic electroluminescent materials and devices
US10672997B2 (en) 2016-06-20 2020-06-02 Universal Display Corporation Organic electroluminescent materials and devices
US10608186B2 (en) 2016-09-14 2020-03-31 Universal Display Corporation Organic electroluminescent materials and devices
US10680187B2 (en) 2016-09-23 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US11196010B2 (en) 2016-10-03 2021-12-07 Universal Display Corporation Organic electroluminescent materials and devices
US11011709B2 (en) 2016-10-07 2021-05-18 Universal Display Corporation Organic electroluminescent materials and devices
US20180130956A1 (en) 2016-11-09 2018-05-10 Universal Display Corporation Organic electroluminescent materials and devices
US10680188B2 (en) 2016-11-11 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US11780865B2 (en) 2017-01-09 2023-10-10 Universal Display Corporation Organic electroluminescent materials and devices
US10844085B2 (en) 2017-03-29 2020-11-24 Universal Display Corporation Organic electroluminescent materials and devices
US10944060B2 (en) 2017-05-11 2021-03-09 Universal Display Corporation Organic electroluminescent materials and devices
US12098157B2 (en) 2017-06-23 2024-09-24 Universal Display Corporation Organic electroluminescent materials and devices
US11228010B2 (en) 2017-07-26 2022-01-18 Universal Display Corporation Organic electroluminescent materials and devices
US11744142B2 (en) 2017-08-10 2023-08-29 Universal Display Corporation Organic electroluminescent materials and devices
US20190161504A1 (en) 2017-11-28 2019-05-30 University Of Southern California Carbene compounds and organic electroluminescent devices
EP3492480B1 (en) 2017-11-29 2021-10-20 Universal Display Corporation Organic electroluminescent materials and devices
US11937503B2 (en) 2017-11-30 2024-03-19 Universal Display Corporation Organic electroluminescent materials and devices
US11542289B2 (en) 2018-01-26 2023-01-03 Universal Display Corporation Organic electroluminescent materials and devices
US11426818B2 (en) 2018-08-10 2022-08-30 The Research Foundation for the State University Additive manufacturing processes and additively manufactured products
US20200075870A1 (en) 2018-08-22 2020-03-05 Universal Display Corporation Organic electroluminescent materials and devices
US11737349B2 (en) 2018-12-12 2023-08-22 Universal Display Corporation Organic electroluminescent materials and devices
US11780829B2 (en) 2019-01-30 2023-10-10 The University Of Southern California Organic electroluminescent materials and devices
US20200251664A1 (en) 2019-02-01 2020-08-06 Universal Display Corporation Organic electroluminescent materials and devices
JP2020158491A (ja) 2019-03-26 2020-10-01 ユニバーサル ディスプレイ コーポレイション 有機エレクトロルミネセンス材料及びデバイス
CN110105225B (zh) * 2019-05-15 2020-06-30 陕西莱特光电材料股份有限公司 一种有机电致发光材料及包含该材料的有机电致发光器件
US20210032278A1 (en) 2019-07-30 2021-02-04 Universal Display Corporation Organic electroluminescent materials and devices
JP2021031490A (ja) 2019-08-16 2021-03-01 ユニバーサル ディスプレイ コーポレイション 有機エレクトロルミネセンス材料及びデバイス
US20210135130A1 (en) 2019-11-04 2021-05-06 Universal Display Corporation Organic electroluminescent materials and devices
US20210217969A1 (en) 2020-01-06 2021-07-15 Universal Display Corporation Organic electroluminescent materials and devices
US20220336759A1 (en) 2020-01-28 2022-10-20 Universal Display Corporation Organic electroluminescent materials and devices
EP3937268A1 (en) 2020-07-10 2022-01-12 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
US20220158096A1 (en) 2020-11-16 2022-05-19 Universal Display Corporation Organic electroluminescent materials and devices
US20220162243A1 (en) 2020-11-24 2022-05-26 Universal Display Corporation Organic electroluminescent materials and devices
US20220165967A1 (en) 2020-11-24 2022-05-26 Universal Display Corporation Organic electroluminescent materials and devices
US20220271241A1 (en) 2021-02-03 2022-08-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4060758A3 (en) 2021-02-26 2023-03-29 Universal Display Corporation Organic electroluminescent materials and devices
EP4059915A3 (en) 2021-02-26 2022-12-28 Universal Display Corporation Organic electroluminescent materials and devices
US20220298192A1 (en) 2021-03-05 2022-09-22 Universal Display Corporation Organic electroluminescent materials and devices
US20220298190A1 (en) 2021-03-12 2022-09-22 Universal Display Corporation Organic electroluminescent materials and devices
US20220298193A1 (en) 2021-03-15 2022-09-22 Universal Display Corporation Organic electroluminescent materials and devices
US20220340607A1 (en) 2021-04-05 2022-10-27 Universal Display Corporation Organic electroluminescent materials and devices
EP4075531A1 (en) 2021-04-13 2022-10-19 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
US20220352478A1 (en) 2021-04-14 2022-11-03 Universal Display Corporation Organic eletroluminescent materials and devices
US20220407020A1 (en) 2021-04-23 2022-12-22 Universal Display Corporation Organic electroluminescent materials and devices
US20230006149A1 (en) 2021-04-23 2023-01-05 Universal Display Corporation Organic electroluminescent materials and devices
US20230133787A1 (en) 2021-06-08 2023-05-04 University Of Southern California Molecular Alignment of Homoleptic Iridium Phosphors
EP4151699A1 (en) 2021-09-17 2023-03-22 Universal Display Corporation Organic electroluminescent materials and devices
US20240343970A1 (en) 2021-12-16 2024-10-17 Universal Display Corporation Organic electroluminescent materials and devices
EP4231804A3 (en) 2022-02-16 2023-09-20 Universal Display Corporation Organic electroluminescent materials and devices
US20230292592A1 (en) 2022-03-09 2023-09-14 Universal Display Corporation Organic electroluminescent materials and devices
US20230337516A1 (en) 2022-04-18 2023-10-19 Universal Display Corporation Organic electroluminescent materials and devices
US20230389421A1 (en) 2022-05-24 2023-11-30 Universal Display Corporation Organic electroluminescent materials and devices
EP4293001A1 (en) 2022-06-08 2023-12-20 Universal Display Corporation Organic electroluminescent materials and devices
US20240016051A1 (en) 2022-06-28 2024-01-11 Universal Display Corporation Organic electroluminescent materials and devices
US20240107880A1 (en) 2022-08-17 2024-03-28 Universal Display Corporation Organic electroluminescent materials and devices
US20240196730A1 (en) 2022-10-27 2024-06-13 Universal Display Corporation Organic electroluminescent materials and devices
US20240180025A1 (en) 2022-10-27 2024-05-30 Universal Display Corporation Organic electroluminescent materials and devices
US20240188319A1 (en) 2022-10-27 2024-06-06 Universal Display Corporation Organic electroluminescent materials and devices
US20240188419A1 (en) 2022-10-27 2024-06-06 Universal Display Corporation Organic electroluminescent materials and devices
US20240188316A1 (en) 2022-10-27 2024-06-06 Universal Display Corporation Organic electroluminescent materials and devices
US20240247017A1 (en) 2022-12-14 2024-07-25 Universal Display Corporation Organic electroluminescent materials and devices

Citations (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1110518B (de) 1959-04-09 1961-07-06 Kalle Ag Material fuer die elektrophotographische Bilderzeugung
US3112197A (en) 1956-06-27 1963-11-26 Azoplate Corp Electrophotographic member
US3180729A (en) 1956-12-22 1965-04-27 Azoplate Corp Material for electrophotographic reproduction
US3180703A (en) 1963-01-15 1965-04-27 Kerr Mc Gee Oil Ind Inc Recovery process
US3189447A (en) 1956-06-04 1965-06-15 Azoplate Corp Electrophotographic material and method
US3240597A (en) 1961-08-21 1966-03-15 Eastman Kodak Co Photoconducting polymers for preparing electrophotographic materials
US3257203A (en) 1958-08-20 1966-06-21 Azoplate Corp Electrophotographic reproduction material
JPS45555B1 (ja) 1966-03-24 1970-01-09
US3526501A (en) 1967-02-03 1970-09-01 Eastman Kodak Co 4-diarylamino-substituted chalcone containing photoconductive compositions for use in electrophotography
US3542544A (en) 1967-04-03 1970-11-24 Eastman Kodak Co Photoconductive elements containing organic photoconductors of the triarylalkane and tetraarylmethane types
JPS463712B1 (ja) 1966-04-14 1971-01-29
US3567450A (en) 1968-02-20 1971-03-02 Eastman Kodak Co Photoconductive elements containing substituted triarylamine photoconductors
US3615402A (en) 1969-10-01 1971-10-26 Eastman Kodak Co Tetra-substituted methanes as organic photoconductors
US3615404A (en) 1968-04-25 1971-10-26 Scott Paper Co 1 3-phenylenediamine containing photoconductive materials
US3658520A (en) 1968-02-20 1972-04-25 Eastman Kodak Co Photoconductive elements containing as photoconductors triarylamines substituted by active hydrogen-containing groups
JPS4725336B1 (ja) 1969-11-26 1972-07-11
US3717462A (en) 1969-07-28 1973-02-20 Canon Kk Heat treatment of an electrophotographic photosensitive member
JPS4935702A (ja) 1972-08-29 1974-04-02
US3820989A (en) 1969-09-30 1974-06-28 Eastman Kodak Co Tri-substituted methanes as organic photoconductors
JPS49105537A (ja) 1973-01-15 1974-10-05
JPS5110105A (ja) 1974-04-16 1976-01-27 Uddeholms Ab
JPS5110983A (ja) 1974-07-17 1976-01-28 Matsushita Electric Ind Co Ltd Kanshitsuzai
JPS5193224A (ja) 1974-12-20 1976-08-16
US4012376A (en) 1975-12-29 1977-03-15 Eastman Kodak Company Photosensitive colorant materials
JPS5327033A (en) 1976-08-23 1978-03-13 Xerox Corp Image forming member and image forming method
US4127412A (en) 1975-12-09 1978-11-28 Eastman Kodak Company Photoconductive compositions and elements
JPS5453435A (en) 1977-10-01 1979-04-26 Yoshikatsu Kume Portable bicycle equipped with foldable type triangle frame
JPS5458445A (en) 1977-09-29 1979-05-11 Xerox Corp Electrostatic photosensitive device
JPS5459143A (en) 1977-10-17 1979-05-12 Ibm Electronic photographic material
JPS5464299A (en) 1977-10-29 1979-05-23 Toshiba Corp Beam deflector for charged particles
JPS54110837A (en) 1978-02-17 1979-08-30 Ricoh Co Ltd Electrophotographic photoreceptor
JPS54110536A (en) 1978-02-20 1979-08-30 Ichikoh Ind Ltd Device for time-lag putting out room lamp for motorcar
JPS54112637A (en) 1978-02-06 1979-09-03 Ricoh Co Ltd Electrophotographic photoreceptor
JPS54119925A (en) 1978-03-10 1979-09-18 Ricoh Co Ltd Photosensitive material for electrophotography
JPS54149634A (en) 1978-05-12 1979-11-24 Xerox Corp Image forming member and method of forming image using same
US4175961A (en) 1976-12-22 1979-11-27 Eastman Kodak Company Multi-active photoconductive elements
JPS5517105A (en) 1978-07-21 1980-02-06 Konishiroku Photo Ind Co Ltd Electrophotographic photoreceptor
JPS5546760A (en) 1978-09-29 1980-04-02 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5551086A (en) 1978-09-04 1980-04-14 Copyer Co Ltd Novel pyrazoline compound, its preparation, and electrophotographic photosensitive substance comprising it
JPS5552063A (en) 1978-10-13 1980-04-16 Ricoh Co Ltd Electrophotographic receptor
JPS5552064A (en) 1978-10-13 1980-04-16 Ricoh Co Ltd Electrophotographic receptor
JPS5574546A (en) 1978-11-30 1980-06-05 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5579450A (en) 1978-12-04 1980-06-14 Xerox Corp Image formation device
JPS5585495A (en) 1978-12-18 1980-06-27 Pacific Metals Co Ltd Method of composting organic waste
JPS5588064A (en) 1978-12-05 1980-07-03 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5588065A (en) 1978-12-12 1980-07-03 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS55108667A (en) 1979-02-13 1980-08-21 Ricoh Co Ltd Electrophotographic receptor
US4232103A (en) 1979-08-27 1980-11-04 Xerox Corporation Phenyl benzotriazole stabilized photosensitive device
JPS55144250A (en) 1979-04-30 1980-11-11 Xerox Corp Image formation device
JPS55156953A (en) 1979-05-17 1980-12-06 Mitsubishi Paper Mills Ltd Organic semiconductor electrophotographic material
JPS564148A (en) 1979-06-21 1981-01-17 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5622437A (en) 1979-08-01 1981-03-03 Ricoh Co Ltd Electrophotographic receptor
JPS5636656A (en) 1979-09-03 1981-04-09 Mitsubishi Paper Mills Ltd Electrophotographic material
JPS5646234A (en) 1979-09-21 1981-04-27 Ricoh Co Ltd Electrophotographic receptor
JPS5680051A (en) 1979-12-04 1981-07-01 Ricoh Co Ltd Electrophotographic receptor
US4278746A (en) 1978-06-21 1981-07-14 Konishiroku Photo Industry Co., Ltd. Photosensitive elements for electrophotography
JPS5688141A (en) 1979-12-20 1981-07-17 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS56119132A (en) 1979-11-23 1981-09-18 Xerox Corp Image forming element
JPS5711350A (en) 1980-06-24 1982-01-21 Fuji Photo Film Co Ltd Electrophotographic receptor
JPS5745545A (en) 1980-09-03 1982-03-15 Mitsubishi Paper Mills Ltd Electrophotographic receptor
JPS5751781A (en) 1980-07-17 1982-03-26 Eastman Kodak Co Organic electroluminiscent cell and method
JPS57148749A (en) 1981-03-11 1982-09-14 Fuji Photo Film Co Ltd Electrophotographic receptor
JPS6093455A (ja) 1983-10-28 1985-05-25 Fuji Xerox Co Ltd 電子写真用現像剤
JPS6094462A (ja) 1983-10-28 1985-05-27 Ricoh Co Ltd スチルベン誘導体及びその製造法
JPS60175052A (ja) 1984-02-21 1985-09-09 Ricoh Co Ltd 電子写真用感光体
JPS60174749A (ja) 1984-02-21 1985-09-09 Ricoh Co Ltd スチリル化合物及びその製造法
JPS6114642A (ja) 1984-06-29 1986-01-22 Konishiroku Photo Ind Co Ltd 電子写真感光体
JPS6172255A (ja) 1984-09-14 1986-04-14 Konishiroku Photo Ind Co Ltd 電子写真感光体
JPS6198353A (ja) 1984-10-19 1986-05-16 ゼロツクス コーポレーシヨン 芳香族エーテル正孔移送層を含む感光装置
JPS61210363A (ja) 1985-03-15 1986-09-18 Canon Inc 電子写真感光体
JPS61228451A (ja) 1985-04-03 1986-10-11 Canon Inc 電子写真感光体
JPS61295558A (ja) 1985-06-24 1986-12-26 ゼロツクス コ−ポレ−シヨン アルコキシアミン電荷移送分子を含有する光導電性像形成部材
JPS6210652A (ja) 1985-07-08 1987-01-19 Minolta Camera Co Ltd 感光体
JPS6230255A (ja) 1985-07-31 1987-02-09 Minolta Camera Co Ltd 電子写真感光体
JPS6236674A (ja) 1985-08-05 1987-02-17 Fuji Photo Film Co Ltd 電子写真感光体
JPS6247646A (ja) 1985-08-27 1987-03-02 Konishiroku Photo Ind Co Ltd 感光体
US4720432A (en) 1987-02-11 1988-01-19 Eastman Kodak Company Electroluminescent device with organic luminescent medium
JPH01211399A (ja) 1988-02-19 1989-08-24 Toshiba Corp スキャン機能付きダイナミックシフトレジスタ
JPH02204996A (ja) 1989-02-01 1990-08-14 Nec Corp 有機薄膜el素子
US4950950A (en) 1989-05-18 1990-08-21 Eastman Kodak Company Electroluminescent device with silazane-containing luminescent zone
JPH02282263A (ja) 1988-12-09 1990-11-19 Nippon Oil Co Ltd ホール輸送材料
JPH02311591A (ja) 1989-05-25 1990-12-27 Mitsubishi Kasei Corp 有機電界発光素子
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JPH11135261A (ja) 1997-10-27 1999-05-21 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子材料およびそれを使用した有機エレクトロルミネッセンス素子
JP2000012229A (ja) * 1998-06-29 2000-01-14 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子材料およびそれを使用した有機エレクトロルミネッセンス素子
WO2000039247A1 (fr) * 1998-12-28 2000-07-06 Idemitsu Kosan Co., Ltd. Element electroluminescent organique
JP3220950B2 (ja) 1993-11-01 2001-10-22 保土谷化学工業株式会社 ベンジジン化合物
JP2002080433A (ja) 2000-09-05 2002-03-19 Idemitsu Kosan Co Ltd 新規アリールアミン化合物及び有機エレクトロルミネッセンス素子
JP2002212151A (ja) 2001-01-15 2002-07-31 Toyo Ink Mfg Co Ltd トリアミン化合物およびその製造方法
JP3508984B2 (ja) 1997-05-19 2004-03-22 キヤノン株式会社 有機化合物及び該有機化合物を用いた発光素子
US20040113547A1 (en) 1999-12-31 2004-06-17 Se-Hwan Son Electroluminescent devices with low work function anode
JP3565870B2 (ja) 1992-02-25 2004-09-15 株式会社リコー 電界発光素子
JP3571977B2 (ja) 1999-11-12 2004-09-29 キヤノン株式会社 有機発光素子
JP3716096B2 (ja) 1998-04-02 2005-11-16 三菱重工業株式会社 微粉炭セパレータ装置
JP3927577B2 (ja) 1994-11-10 2007-06-13 マイケルスン、ガーリー、ケィー 電動骨鉗子

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2879369B2 (ja) * 1990-11-16 1999-04-05 キヤノン株式会社 電子写真感光体、該電子写真感光体を備えた電子写真装置並びにファクシミリ
JPH04186362A (ja) * 1990-11-21 1992-07-03 Canon Inc 電子写真感光体、該電子写真感光体を備えた電子写真装置並びにファクシミリ
DE69412567T2 (de) * 1993-11-01 1999-02-04 Hodogaya Chemical Co., Ltd., Tokio/Tokyo Aminverbindung und sie enthaltende Elektrolumineszenzvorrichtung
JP3463402B2 (ja) * 1995-03-24 2003-11-05 東洋インキ製造株式会社 正孔輸送材料およびその用途
DE19525557A1 (de) 1995-07-13 1997-01-16 Knf Flodos Ag Dosierpumpe
JP3508353B2 (ja) * 1995-12-18 2004-03-22 東洋インキ製造株式会社 有機エレクトロルミネッセンス素子用発光材料およびそれを使用した有機エレクトロルミネッセンス素子
JP3511825B2 (ja) * 1996-01-29 2004-03-29 東洋インキ製造株式会社 有機エレクトロルミネッセンス素子用発光材料およびそれを使用した有機エレクトロルミネッセンス素子
DE69804529T2 (de) * 1997-05-19 2002-10-02 Canon Kk Organisches Material und elektrolumineszente Vorrichtung dasselbe nutzend
AU2003264400A1 (en) * 2002-09-10 2004-04-30 Sankio Chemical Co., Ltd. Process for producing arylamine
EP1645610A1 (de) * 2004-10-11 2006-04-12 Covion Organic Semiconductors GmbH Phenanthren-Derivate
JP4848152B2 (ja) 2005-08-08 2011-12-28 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子

Patent Citations (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3189447A (en) 1956-06-04 1965-06-15 Azoplate Corp Electrophotographic material and method
US3112197A (en) 1956-06-27 1963-11-26 Azoplate Corp Electrophotographic member
US3180729A (en) 1956-12-22 1965-04-27 Azoplate Corp Material for electrophotographic reproduction
US3257203A (en) 1958-08-20 1966-06-21 Azoplate Corp Electrophotographic reproduction material
DE1110518B (de) 1959-04-09 1961-07-06 Kalle Ag Material fuer die elektrophotographische Bilderzeugung
US3240597A (en) 1961-08-21 1966-03-15 Eastman Kodak Co Photoconducting polymers for preparing electrophotographic materials
US3180703A (en) 1963-01-15 1965-04-27 Kerr Mc Gee Oil Ind Inc Recovery process
JPS45555B1 (ja) 1966-03-24 1970-01-09
JPS463712B1 (ja) 1966-04-14 1971-01-29
US3526501A (en) 1967-02-03 1970-09-01 Eastman Kodak Co 4-diarylamino-substituted chalcone containing photoconductive compositions for use in electrophotography
US3542544A (en) 1967-04-03 1970-11-24 Eastman Kodak Co Photoconductive elements containing organic photoconductors of the triarylalkane and tetraarylmethane types
US3567450A (en) 1968-02-20 1971-03-02 Eastman Kodak Co Photoconductive elements containing substituted triarylamine photoconductors
US3658520A (en) 1968-02-20 1972-04-25 Eastman Kodak Co Photoconductive elements containing as photoconductors triarylamines substituted by active hydrogen-containing groups
US3615404A (en) 1968-04-25 1971-10-26 Scott Paper Co 1 3-phenylenediamine containing photoconductive materials
US3717462A (en) 1969-07-28 1973-02-20 Canon Kk Heat treatment of an electrophotographic photosensitive member
US3820989A (en) 1969-09-30 1974-06-28 Eastman Kodak Co Tri-substituted methanes as organic photoconductors
US3615402A (en) 1969-10-01 1971-10-26 Eastman Kodak Co Tetra-substituted methanes as organic photoconductors
JPS4725336B1 (ja) 1969-11-26 1972-07-11
JPS4935702A (ja) 1972-08-29 1974-04-02
JPS49105537A (ja) 1973-01-15 1974-10-05
JPS5110105A (ja) 1974-04-16 1976-01-27 Uddeholms Ab
JPS5110983A (ja) 1974-07-17 1976-01-28 Matsushita Electric Ind Co Ltd Kanshitsuzai
JPS5193224A (ja) 1974-12-20 1976-08-16
US4127412A (en) 1975-12-09 1978-11-28 Eastman Kodak Company Photoconductive compositions and elements
US4012376A (en) 1975-12-29 1977-03-15 Eastman Kodak Company Photosensitive colorant materials
JPS5327033A (en) 1976-08-23 1978-03-13 Xerox Corp Image forming member and image forming method
US4175961A (en) 1976-12-22 1979-11-27 Eastman Kodak Company Multi-active photoconductive elements
JPS5458445A (en) 1977-09-29 1979-05-11 Xerox Corp Electrostatic photosensitive device
JPS5453435A (en) 1977-10-01 1979-04-26 Yoshikatsu Kume Portable bicycle equipped with foldable type triangle frame
JPS5459143A (en) 1977-10-17 1979-05-12 Ibm Electronic photographic material
JPS5464299A (en) 1977-10-29 1979-05-23 Toshiba Corp Beam deflector for charged particles
JPS54112637A (en) 1978-02-06 1979-09-03 Ricoh Co Ltd Electrophotographic photoreceptor
JPS54110837A (en) 1978-02-17 1979-08-30 Ricoh Co Ltd Electrophotographic photoreceptor
JPS54110536A (en) 1978-02-20 1979-08-30 Ichikoh Ind Ltd Device for time-lag putting out room lamp for motorcar
JPS54119925A (en) 1978-03-10 1979-09-18 Ricoh Co Ltd Photosensitive material for electrophotography
JPS54149634A (en) 1978-05-12 1979-11-24 Xerox Corp Image forming member and method of forming image using same
US4278746A (en) 1978-06-21 1981-07-14 Konishiroku Photo Industry Co., Ltd. Photosensitive elements for electrophotography
JPS5517105A (en) 1978-07-21 1980-02-06 Konishiroku Photo Ind Co Ltd Electrophotographic photoreceptor
JPS5551086A (en) 1978-09-04 1980-04-14 Copyer Co Ltd Novel pyrazoline compound, its preparation, and electrophotographic photosensitive substance comprising it
JPS5546760A (en) 1978-09-29 1980-04-02 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5552063A (en) 1978-10-13 1980-04-16 Ricoh Co Ltd Electrophotographic receptor
JPS5552064A (en) 1978-10-13 1980-04-16 Ricoh Co Ltd Electrophotographic receptor
JPS5574546A (en) 1978-11-30 1980-06-05 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5579450A (en) 1978-12-04 1980-06-14 Xerox Corp Image formation device
JPS5588064A (en) 1978-12-05 1980-07-03 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5588065A (en) 1978-12-12 1980-07-03 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5585495A (en) 1978-12-18 1980-06-27 Pacific Metals Co Ltd Method of composting organic waste
JPS55108667A (en) 1979-02-13 1980-08-21 Ricoh Co Ltd Electrophotographic receptor
JPS55144250A (en) 1979-04-30 1980-11-11 Xerox Corp Image formation device
JPS55156953A (en) 1979-05-17 1980-12-06 Mitsubishi Paper Mills Ltd Organic semiconductor electrophotographic material
JPS564148A (en) 1979-06-21 1981-01-17 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5622437A (en) 1979-08-01 1981-03-03 Ricoh Co Ltd Electrophotographic receptor
US4232103A (en) 1979-08-27 1980-11-04 Xerox Corporation Phenyl benzotriazole stabilized photosensitive device
JPS5636656A (en) 1979-09-03 1981-04-09 Mitsubishi Paper Mills Ltd Electrophotographic material
JPS5646234A (en) 1979-09-21 1981-04-27 Ricoh Co Ltd Electrophotographic receptor
JPS56119132A (en) 1979-11-23 1981-09-18 Xerox Corp Image forming element
JPS5680051A (en) 1979-12-04 1981-07-01 Ricoh Co Ltd Electrophotographic receptor
JPS5688141A (en) 1979-12-20 1981-07-17 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5711350A (en) 1980-06-24 1982-01-21 Fuji Photo Film Co Ltd Electrophotographic receptor
JPS5751781A (en) 1980-07-17 1982-03-26 Eastman Kodak Co Organic electroluminiscent cell and method
JPS5745545A (en) 1980-09-03 1982-03-15 Mitsubishi Paper Mills Ltd Electrophotographic receptor
JPS57148749A (en) 1981-03-11 1982-09-14 Fuji Photo Film Co Ltd Electrophotographic receptor
JPS6093455A (ja) 1983-10-28 1985-05-25 Fuji Xerox Co Ltd 電子写真用現像剤
JPS6094462A (ja) 1983-10-28 1985-05-27 Ricoh Co Ltd スチルベン誘導体及びその製造法
JPS60175052A (ja) 1984-02-21 1985-09-09 Ricoh Co Ltd 電子写真用感光体
JPS60174749A (ja) 1984-02-21 1985-09-09 Ricoh Co Ltd スチリル化合物及びその製造法
JPS6114642A (ja) 1984-06-29 1986-01-22 Konishiroku Photo Ind Co Ltd 電子写真感光体
JPS6172255A (ja) 1984-09-14 1986-04-14 Konishiroku Photo Ind Co Ltd 電子写真感光体
JPS6198353A (ja) 1984-10-19 1986-05-16 ゼロツクス コーポレーシヨン 芳香族エーテル正孔移送層を含む感光装置
JPS61210363A (ja) 1985-03-15 1986-09-18 Canon Inc 電子写真感光体
JPS61228451A (ja) 1985-04-03 1986-10-11 Canon Inc 電子写真感光体
JPS61295558A (ja) 1985-06-24 1986-12-26 ゼロツクス コ−ポレ−シヨン アルコキシアミン電荷移送分子を含有する光導電性像形成部材
JPS6210652A (ja) 1985-07-08 1987-01-19 Minolta Camera Co Ltd 感光体
JPS6230255A (ja) 1985-07-31 1987-02-09 Minolta Camera Co Ltd 電子写真感光体
JPS6236674A (ja) 1985-08-05 1987-02-17 Fuji Photo Film Co Ltd 電子写真感光体
JPS6247646A (ja) 1985-08-27 1987-03-02 Konishiroku Photo Ind Co Ltd 感光体
US4720432A (en) 1987-02-11 1988-01-19 Eastman Kodak Company Electroluminescent device with organic luminescent medium
JPS63295695A (ja) 1987-02-11 1988-12-02 イーストマン・コダック・カンパニー 有機発光媒体をもつ電場発光デバイス
JPH01211399A (ja) 1988-02-19 1989-08-24 Toshiba Corp スキャン機能付きダイナミックシフトレジスタ
JPH02282263A (ja) 1988-12-09 1990-11-19 Nippon Oil Co Ltd ホール輸送材料
JPH02204996A (ja) 1989-02-01 1990-08-14 Nec Corp 有機薄膜el素子
US4950950A (en) 1989-05-18 1990-08-21 Eastman Kodak Company Electroluminescent device with silazane-containing luminescent zone
JPH02311591A (ja) 1989-05-25 1990-12-27 Mitsubishi Kasei Corp 有機電界発光素子
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JP3565870B2 (ja) 1992-02-25 2004-09-15 株式会社リコー 電界発光素子
JP3220950B2 (ja) 1993-11-01 2001-10-22 保土谷化学工業株式会社 ベンジジン化合物
JP3927577B2 (ja) 1994-11-10 2007-06-13 マイケルスン、ガーリー、ケィー 電動骨鉗子
JP3508984B2 (ja) 1997-05-19 2004-03-22 キヤノン株式会社 有機化合物及び該有機化合物を用いた発光素子
JPH11135261A (ja) 1997-10-27 1999-05-21 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子材料およびそれを使用した有機エレクトロルミネッセンス素子
JP3716096B2 (ja) 1998-04-02 2005-11-16 三菱重工業株式会社 微粉炭セパレータ装置
JP2000012229A (ja) * 1998-06-29 2000-01-14 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子材料およびそれを使用した有機エレクトロルミネッセンス素子
WO2000039247A1 (fr) * 1998-12-28 2000-07-06 Idemitsu Kosan Co., Ltd. Element electroluminescent organique
JP3571977B2 (ja) 1999-11-12 2004-09-29 キヤノン株式会社 有機発光素子
US20040113547A1 (en) 1999-12-31 2004-06-17 Se-Hwan Son Electroluminescent devices with low work function anode
JP2002080433A (ja) 2000-09-05 2002-03-19 Idemitsu Kosan Co Ltd 新規アリールアミン化合物及び有機エレクトロルミネッセンス素子
JP2002212151A (ja) 2001-01-15 2002-07-31 Toyo Ink Mfg Co Ltd トリアミン化合物およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
C. W. TANG; S. A. VANSLYKE, APPLIED PHYSICS LETTERS, vol. 51, 1987, pages 913

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009221442A (ja) * 2008-03-19 2009-10-01 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子用材料ならびに有機エレクトロルミネッセンス素子

Also Published As

Publication number Publication date
CN101258126A (zh) 2008-09-03
US20070029927A1 (en) 2007-02-08
US20080233434A1 (en) 2008-09-25
JP2007045725A (ja) 2007-02-22
TW200714574A (en) 2007-04-16
KR20080034137A (ko) 2008-04-18
KR101331354B1 (ko) 2013-11-19
US7405326B2 (en) 2008-07-29
EP1914222A1 (en) 2008-04-23
JP4848152B2 (ja) 2011-12-28

Similar Documents

Publication Publication Date Title
JP4848152B2 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
KR101414914B1 (ko) 유기 전계발광 소자용 재료 및 유기 전계발광 소자
US8088901B2 (en) Azaindenofluorenedione derivative, material for organic electroluminescence device and organic electroluminescence device
KR101370183B1 (ko) 방향족 아민 유도체 및 그것을 이용한 유기 전기발광 소자
WO2007102361A1 (ja) 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2008072400A1 (ja) 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
JP3895178B2 (ja) アミン化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2007080704A1 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2006114921A1 (ja) 芳香族トリアミン化合物及びそれを用いた有機エレクトロルミネッセンス素子
JPWO2006046441A1 (ja) 芳香族アミン化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2007125714A1 (ja) 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2008032631A1 (fr) Dérivé d'amine aromatique et dispositif électroluminescent organique l'employant
WO2007018004A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2008023550A1 (fr) Dérivé d'amine aromatique et dispositif électroluminescent organique utilisant celui-ci
WO2008001551A1 (fr) Dérivé d'amine aromatique et dispositif a électroluminescence organique utilisant celui-ci
WO2007111262A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2006073054A1 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007007463A1 (ja) 電子吸引性置換基を有する含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007100010A1 (ja) 有機エレクトロルミネッセンス素子
WO2008072586A1 (ja) 有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
JPWO2007116750A1 (ja) 有機エレクトロルミネッセンス素子用材料、及びこれを用いた有機エレクトロルミネッセンス素子
WO2006073059A1 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007060795A1 (ja) アミン系化合物及びそれを利用した有機エレクトロルミネッセンス素子
WO2008032766A1 (fr) Élément électroluminescent organique et matériau pour élément électroluminescent organique
WO2006120859A1 (ja) 新規有機エレクトロルミネッセンス材料、それを用いた有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス用薄膜形成溶液

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680028601.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006767688

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087002673

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE