[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2007102361A1 - 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子 - Google Patents

芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2007102361A1
WO2007102361A1 PCT/JP2007/053748 JP2007053748W WO2007102361A1 WO 2007102361 A1 WO2007102361 A1 WO 2007102361A1 JP 2007053748 W JP2007053748 W JP 2007053748W WO 2007102361 A1 WO2007102361 A1 WO 2007102361A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
general formula
unsubstituted
carbon atoms
Prior art date
Application number
PCT/JP2007/053748
Other languages
English (en)
French (fr)
Inventor
Nobuhiro Yabunouchi
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to US12/282,070 priority Critical patent/US20090066239A1/en
Priority to JP2008503792A priority patent/JPWO2007102361A1/ja
Priority to EP07737502A priority patent/EP1997799A1/en
Publication of WO2007102361A1 publication Critical patent/WO2007102361A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/58Naphthylamines; N-substituted derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B

Definitions

  • Aromatic amine amine derivatives and organic electoluminescence devices using them are aromatic amine amine derivatives and organic electoluminescence devices using them.
  • the present invention relates to an aromatic amine derivative and an organic electoluminescence (EL) device using the same, and in particular, by using an aromatic amine derivative having a specific substituent as a hole transport material.
  • the present invention relates to an aromatic amine derivative that suppresses crystallization, improves the yield in manufacturing an organic EL device, improves the lifetime of the organic EL device, and realizes it.
  • An organic EL element is a self-luminous element that utilizes the principle that a fluorescent substance emits light by recombination energy of holes injected from an anode and electrons injected from a cathode by applying an electric field. .
  • Tang et al Used tris (8-quinolinolato) aluminum for the light-emitting layer and triphenyldiamin derivative for the hole-transporting layer.
  • the advantages of the stacked structure are that it increases the efficiency of hole injection into the light-emitting layer, increases the efficiency of exciton generation by recombination by blocking electrons injected from the cathode, and generates in the light-emitting layer. For example, confining excitons.
  • the device structure of the organic EL device is a two-layer type of hole transport (injection) layer, electron transport light-emitting layer, or hole transport (injection) layer, light-emitting layer, electron transport (injection) layer
  • the three-layer type is well known.
  • the element structure and the formation method have been devised in order to increase the recombination efficiency of injected holes and electrons.
  • Patent Document 3 describes a diamine compound in which a naphthyl group having a methyl group is bonded to an amine, and this compound has a short lifetime as a result of the creation of an element using the compound by the present inventors. I found that this was a problem.
  • a diamine compound in which a phenyl group is bonded to a naphthyl group but specific examples do not describe any feature of substitution with an aromatic hydrocarbon.
  • Patent Document 4 there is a description of a diamine compound in which a phenyl group is bonded to a naphthyl group, but specific examples are not described at all about the feature of substitution with an aromatic hydrocarbon.
  • Patent Documents 5 and 6 there are reports of aromatic diamine derivatives in which a substituted phenanthrene is bonded to amine, but this is specific to compounds in which an aromatic hydrocarbon is bonded to phenanthrene. There is no specific description.
  • Patent Document 1 U.S. Pat.No. 4,720,432
  • Patent Document 2 US Pat. No. 5,061,569
  • Patent Document 3 Japanese Patent Laid-Open No. 11-149986
  • Patent Document 4 JP-A-11-312587
  • Patent Document 5 Japanese Patent Laid-Open No. 11 312586
  • Patent Document 6 JP-A-11 135261
  • the present invention has been made to solve the above-described problems, and has improved the yield when manufacturing an organic EL device, and has realized a long-life organic EL device, as molecules are crystallized. It is an object of the present invention to provide an aromatic amine derivative.
  • novel aromatic amine derivative having a specific substituent represented by (1) is used as a material for an organic EL device, particularly as a hole transport material, it has been found that the above-mentioned problems can be solved, and the present invention It came to complete.
  • an amino group substituted with an aryl group represented by the general formula (2) is suitable as an amine unit having a specific substituent. Since this amine unit has steric hindrance force S, the interaction between molecules is small, so that crystallization is suppressed, the yield of manufacturing the organic EL device is improved, and the life of the resulting organic EL device is extended. In particular, it has been found that a remarkable long-life effect can be obtained by combining with a blue light emitting element.
  • the present invention provides an aromatic amine derivative represented by the following general formula (1).
  • R is a substituted or unsubstituted aryl group having 5 to 50 nuclear atoms, substituted or unsubstituted
  • a is an integer of 0 to 4, and when a is 2 or more, a plurality of Rs are bonded to each other and saturated or
  • b is an integer of 1 to 3, and when a is 1 or more and b is 2 or more, multiple Rs are bonded to each other
  • At least one of Ar to Ar is a group of the following general formula (2).
  • Ar represents a substituted or unsubstituted condensed aromatic ring group having 10 to 20 nuclear carbon atoms.
  • 5e is a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms or a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear carbon atoms.
  • Ar to Ar that are not groups of general formula (2) are independent of each other.
  • the present invention provides an organic EL device in which an organic thin film layer composed of one or more layers including at least a light emitting layer is sandwiched between a cathode and an anode, wherein at least one of the organic thin film layers is the fragrance.
  • the present invention provides an organic EL device containing a group amine derivative alone or as a component of a mixture.
  • the aromatic amine derivative of the present invention and the organic EL device using the same are difficult to crystallize molecules, improve the yield in producing the organic EL device, and have a long life.
  • R is a substituted or unsubstituted aryl group having 5 to 50 nuclear atoms
  • a is an integer of 0 to 4, and when a is 2 or more, a plurality of Rs are mutually
  • 1 may combine to form a 5-membered or 6-membered cyclic structure which may be substituted, saturated or unsaturated.
  • b is an integer of 1 to 3, and when a is 1 or more and b is 2 or more, multiple Rs are bonded to each other
  • At least one of Ar to Ar is a group of the following general formula (2).
  • Ar is a substituted or unsubstituted condensed aromatic group having 10 to 20 nuclear carbon atoms.
  • Ar is a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms or a substituted group.
  • Ar to Ar that are not groups of general formula (2) are independent of each other.
  • the aromatic amine amine derivative of the general formula (1) of the present invention has a total number of carbon atoms of 56 or less excluding substituents. It is more preferable to be above 68 to 80.
  • the glass transition temperature (Tg) is lowered, which may cause adverse effects such as a change in emission color, a decrease in emission efficiency, an increase in drive voltage, and a shortened emission lifetime.
  • the sublimation temperature becomes high, which may cause adverse effects such as decomposition at the time of vapor deposition or uneven formation of vapor deposition, and may shorten the life.
  • Examples of the aryl group of R in the general formula (1) include a phenyl group, a 1_naphthyl group,
  • a phenyl group, a naphthyl group, a biphenyl group, an anthranyl group, a phenanthryl group, a pyrenyl group, a chrysenyl group, a fluoranthenyl group, and a fluorenyl group are preferable.
  • Examples of the alkyl group for R in the general formula (1) include a methyl group, an ethyl group, and propyl.
  • the alkoxy group of R is a group represented by OY.
  • Examples of the aralkyl group of R in the general formula (1) include a benzyl group and 1 phenyl group.
  • Tyl group 2-phenylethyl group, 1 phenylisopropyl group, 2-phenylisopropyl group, phenyl tbutyl group, ⁇ naphthylmethyl group, 1 ⁇ naphthylethyl group, 2 a naphthylethyl group, 1 ⁇ naphthylisopropyl group, 2 a naphthylisopropyl group, ⁇ -naphthylmethyl group, 1- ⁇ -naphthylethyl group, 2-naphthyl-noretinoyl group, 1- ⁇ -naphthylisopropyl group, 2 ⁇ -naphthylisopropyl group, 1-pyrrolylmethyl group, 2-(1-pyrrolyl) ethyl group, ⁇ methylbenzyl group, m- Mechinore Benjinore group, o- Mechinore base Njinore group
  • the aryl thio group of R is represented as SY ′.
  • the alkoxycarbonyl group of R in the general formula (1) is a group represented by _C ⁇ OY,
  • Examples of Y include the same examples as those described for the alkyl group.
  • the halogen atom for R is a fluorine atom, a chlorine atom, or a bromine atom.
  • a is an integer of 0 to 4, and when a is 2 or more, a plurality of R are mutually
  • 1 may combine to form a 5-membered or 6-membered cyclic structure which may be substituted, saturated or unsaturated.
  • b is an integer of 1 to 3, and when a is 1 or more and b is 2 or more, multiple Rs are bonded to each other
  • Examples of the 5-membered or 6-membered cyclic structure that may be formed include cycloalkanes having 5 to 12 carbon atoms such as cyclopentane, cyclohexane, adamantane, norbornane, cyclopentene, cyclohexene and the like. C6-C12 cycloalkadiene such as cycloalkene, cyclopentagene, cyclohexagen, etc. And aromatic rings.
  • the aromatic amine derivative of the present invention is the compound represented by the general formula (1) wherein Ar and Ar are
  • the aromatic amine derivative has an asymmetric structure, which is preferable in terms of suppressing crystallization or easiness of vapor deposition.
  • the aromatic amine derivative of the present invention has the general formula (1), wherein Ar is the general formula (2)
  • the aromatic amine derivative has an asymmetric structure, which is preferable in terms of suppressing crystallization or easiness of vapor deposition.
  • Examples of the condensed aromatic ring that is Ar in the general formula (2) include naphthalene and phenol.
  • Ar is substituted or unsubstituted nuclear carbon atoms of 10 to
  • Examples of the 20 condensed aromatic ring group include, among the groups shown as R aryl groups, phenol.
  • Examples thereof include a group other than a nyl group or an aromatic heterocyclic group as an arylene group.
  • Ar in the general formula (2) is, for example, an aryl of R in the general formula (1).
  • the aromatic amine derivative of the present invention has the following general formula (3):
  • R is selected from the same groups as R in the general formula (1).
  • c is an integer of 0-6. When c is 2 or more, multiple Rs are bonded together to saturate or
  • Examples of the ring structure of the 2 1 2 membered ring or 6 membered ring are the same as those given in the general formula (1).
  • a substituted or unsubstituted alkyl group having 5 to 50 nuclear atoms can be used.
  • substituted or unsubstituted alkyl group having 1 to 50 carbon atoms substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms.
  • Substituted or unsubstituted aryloxy group having 5 to 50 nucleus atoms substituted or unsubstituted aryloxy group having 5 to 50 nucleus atoms, substituted or unsubstituted alkoxycarbonyl group having 2 to 50 carbon atoms, substituted or unsubstituted
  • the alkyl group, alkoxy group, aralkyl group, aryloxy group to Ar to Ar to Ar
  • Ar in the general formula (2) is a phenyl group
  • the aromatic amine derivative of the present invention has the following general formula (4):
  • R is selected from the same groups as R in the general formula (1).
  • d is an integer from 0 to 4, and when d is 2 or more, multiple Rs are bonded to each other to be saturated or
  • e is an integer from:! to 3 and when d is 1 or more and e is 2 or more, multiple Rs are bonded to each other
  • Ar and Ar are a group of the general formula (2) or each independently a substituted or unsubstituted nucleus
  • R is selected from the same groups as R in the general formula (1).
  • R may be bonded to each other and may be substituted with a saturated or unsaturated 5- or 6-membered ring.
  • the 5-membered or 6-membered cyclic structure that may be formed includes, for example, cyclopentane, cyclohexane, adamantane, norbornane, etc.
  • C4-C12 cycloalkene such as alkane, cyclopentene, cyclohexene, etc.
  • C6-C12 cycloalkene such as cyclopentene, cyclohexagen, benzene, naphthalene, phenanthrene, anthracene, pyrene, talisene, and acenaphthylene
  • aromatic rings having 6 to 50 carbon atoms such as
  • Ar and Ar are groups of the general formula (2) or each independently substituted
  • amino group substituted with a alkoxy group, an aralkyl group, an aryloxy group, an aryloxy group, an alkoxycarbonyl group, and an aryl group are the same as those described for R.
  • the aromatic amine derivative of the present invention has the Ar and Ar forces in the general formula (1), respectively.
  • the aromatic amine derivative of the present invention is preferably a material for an organic electoluminescence device.
  • the aromatic amine derivative of the present invention is preferably an organic electoluminescence luminescent hole transport material.
  • the organic electroluminescent device of the present invention is an organic electroluminescent device in which an organic thin film layer composed of one or more layers including at least a light emitting layer is sandwiched between a cathode and an anode. It is preferable that at least one layer contains the aromatic amine derivative of the present invention alone or as a component of a mixture.
  • the organic electoluminescence device of the present invention is preferably when the aromatic amine derivative of the present invention is contained in a hole transport layer.
  • the organic thin film layer has a hole transport layer and an electron transport layer or an electron injection layer, and the aromatic amine amine of the present invention is introduced into the hole transport layer. It is preferable that a conductor is contained, and that the electron transport layer or the electron injection layer contains a nitrogen-containing heterocyclic compound.
  • the organic electoluminescence device of the present invention preferably emits blue light.
  • the organic electoluminescence device of the present invention preferably contains styrylamine and / or arylamine in the light emitting layer.
  • aromatic amine derivative represented by the general formula (1) of the present invention are shown below, but are not limited to these exemplified compounds.
  • the organic EL device of the present invention is an organic EL device in which an organic thin film layer having at least one light emitting layer or a plurality of layers is sandwiched between a cathode and an anode, and at least one layer of the organic thin film layer is
  • the organic thin film layer has a hole transport layer, and the hole transport layer is a single compound of the aromatic amine derivative of the present invention. Or as a component of the mixture Les.
  • the hole transport layer contains the aromatic amine derivative of the present invention as a main component.
  • the aromatic amine derivative of the present invention is particularly preferably used for an organic EL device emitting blue light.
  • the organic EL device of the present invention is preferable when the light emitting layer contains an arylamine compound and / or a styrylamine compound because blue light emission is easily obtained.
  • Examples of the styrylamine compound include compounds represented by the following general formula (I), and examples of the arylamine compound include compounds represented by the following general formula (II).
  • Ar represents phenyl, biphenyl, terphenyl, stilbene, distyryl.
  • Ar and Ar are each a hydrogen atom or 6 carbon atoms.
  • p ' is an integer from 1 to 4
  • Ar and / or Ar is substituted with a styryl group.
  • the aromatic group having 6 to 20 carbon atoms is preferably a phenyl group, a naphthyl group, an anthranyl group, a phenanthryl group, a terphenyl group, or the like.
  • Ar to Ar are optionally substituted aryl groups having 5 to 40 nuclear carbon atoms.
  • aryl groups having 5 to 40 nuclear atoms include phenyl, naphthyl, and anthranyl. , Phenanthryl, pyrenyl, coloninole, biphenyl, terphenyl, pyrrolyl, furaninole, thiophenyl, benzothiophenyl, oxadiazolyl, diphenylanthranyl, indolinole, canolebasolinole, pyridinole, benzoquinolyl, fluoranthrant I like it.
  • the aryl group having 5 to 40 nucleus atoms may be further substituted with a substituent.
  • Examples of the preferable substituent include alkyl groups (ethyl group, methinole group, i— Propyl group, n-propyl group, s_butyl group, t-butylene group, pentyl group, hexyl group, cyclopentyl group, cyclohexyl group, etc.), carbon number:!
  • -6 alkoxy group (ethoxy group, methoxy group) Group, i-propoxy group, n-propoxy group, s-butoxy group, t-butoxy group, pentoxy group, hexyloxy group, cyclopentoxy group, cyclohexyloxy group, etc.), aryl group having 5 to 40 nuclear atoms
  • Anode Z insulating layer Z hole injection layer Z hole transport layer / light emitting layer / insulating layer / cathode (12) Anode Z insulating layer Z hole injection layer Z hole transport layer / light emitting layer / insulating layer / cathode (13) Structures such as anode / insulating layer / hole injection layer / hole transport layer / light emitting layer / electron injection layer / cathode can be mentioned.
  • the force for which the configuration of (8) is usually preferably used is not limited to these.
  • the aromatic amine derivative of the present invention may be used in any organic thin film layer of an organic EL device, and can be used in a light emission band or a hole transport band, preferably a hole transport band, particularly preferably a positive layer. By using it in the hole transport layer, the yield in manufacturing an organic EL device in which molecules are difficult to crystallize is improved.
  • the amount of the aromatic amine derivative of the present invention contained in the organic thin film layer is preferably 30 to 100 mol%.
  • the aromatic amine derivative of the present invention is contained in a hole transport layer, if the content is less than 30 mol%, the hole transport performance may be lowered, so the content is 30 to 30%. : it is preferred that 100 mol 0/0.
  • the organic EL device of the present invention is manufactured on a light-transmitting substrate.
  • the translucent substrate referred to here is a substrate that supports the organic EL element, and is preferably a smooth substrate having a light transmittance in the visible region of 400 to 700 nm of 50% or more.
  • a glass plate, a polymer plate, etc. are mentioned.
  • the glass plate include soda lime glass, glass containing strontium, lead glass, aluminosilicate glass, borosilicate glass, borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyethersulfide, and polysulfone.
  • the anode of the organic EL device of the present invention has a function of injecting holes into the hole transport layer or the light emitting layer, and it is effective to have a work function of 4.5 eV or more.
  • Specific examples of the anode material used in the present invention include indium tin oxide alloy (ITO), tin oxide (NE SA), indium-zinc oxide (IZ0), gold, silver, platinum, copper and the like.
  • the anode can be manufactured by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. In this way, when the light emitted from the light emitting layer is extracted with an anodic force, the transmittance of the light emitted from the anode is preferably greater than 10%. Also, the sheet resistance of the anode is preferably several hundred ⁇ / mouth or less. The film thickness of the anode is a force depending on the material. Usually, it is selected in the range of 1011111 to 1/1111, preferably 10 to 200 nm.
  • the light emitting layer of the organic EL device has the following functions (1) to (3).
  • Injection function Function that can inject holes from the anode or hole injection layer when an electric field is applied, and can inject electrons from the cathode or electron injection layer
  • Transport function Function to move injected charges (electrons and holes) by the force of electric field
  • Light emission function A function to provide a field for recombination of electrons and holes and connect this to light emission.However, there is no difference between the ease of hole injection and the ease of electron injection.
  • the transport capacity expressed by the mobility of holes and electrons may be large or small, but it is preferable to move one of the charges.
  • the light emitting layer is particularly preferably a molecular deposited film.
  • the molecular deposited film is a thin film formed by deposition from a material compound in a gas phase state or a film formed by solidification from a material compound in a solution state or a liquid phase state.
  • This molecular deposited film can be distinguished from a thin film (molecular accumulation film) formed by the LB method by the difference in aggregated structure and higher-order structure and the functional differences resulting from it.
  • a binder such as a resin and a material compound are dissolved in a solvent to form a solution, which is then thin-filmed by a spin coating method or the like. Also, the light emitting layer can be formed.
  • a known light-emitting material other than the light-emitting material comprising the aromatic amine derivative of the present invention may be contained in the light-emitting layer as desired, as long as the object of the present invention is not impaired.
  • a light emitting layer containing another known light emitting material may be laminated on the light emitting layer containing the light emitting material comprising the aromatic amine derivative of the present invention.
  • Examples of the light emitting material or doping material that can be used in the light emitting layer together with the aromatic amine derivative of the present invention include anthracene, naphthalene, phenanthrene, pyrene, tetracene, Coronene, Talycene, Fluorescein, Perylene, Lid mouth perylene, Naphtal perylene, Perinone, Lid mouth perinone, Naphtha mouth perinone, Diphenylbutadiene, Tetraphenylbutadiene, Coumarin, Oxadiazole, Aldazine, Bisbenzoxazoline, Bistyryl, Pyrazine, cyclopentagen, quinoline metal complex, aminoquinoline metal complex, benzoquinoline metal complex, imine, diphenylethylene, buranthracene, diaminocarbazole, pyran, thiopyran, polymethine, merocyanine, imidazole chelate oxinoid compound Quinacridone
  • Ar is a substituted or unsubstituted condensed aromatic group having 10 to 50 nuclear carbon atoms.
  • Ar ′ is a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms.
  • X is a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 atomic atoms, a substituted or unsubstituted alkyl group having! To 50 carbon atoms.
  • substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms substituted or unsubstituted aranoloxy group having 6 to 50 carbon atoms, substituted or unsubstituted aryloxy group having 5 to 50 nucleus atoms, substituted or unsubstituted A arylthio group having 5 to 50 nucleus atoms, a substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, a carboxyl group, a halogen atom, a cyano group, a nitro group, and a hydroxyl group.
  • a, b and c are each an integer of 0-4.
  • n is an integer from:! If n is 2 or more, the items in [] are the same or different. Let's go. )
  • R -R 10 independently of each other, a hydrogen atom, a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, substituted Or an unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, and a substituted or unsubstituted aranolenoquino group having 6 to 50 carbon atoms.
  • Substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, substituted or unsubstituted These are silyl group, carboxyl group, halogen atom, cyano group, nitro group and hydroxyl group.
  • Ar and Ar ′ are each a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms.
  • L and L ′ are a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthalenylene group, a substituted or unsubstituted fluorenylene group, or a substituted or unsubstituted dibenzosilolylene group, respectively.
  • n is an integer from 1 to 4
  • s is an integer from 0 to 2
  • t is an integer from 0 to 4.
  • L or Ar is bonded to any one of 1 to 5 positions of pyrene
  • L ′ or Ar is bonded to any of 6 to 10 positions of pyrene.
  • a 1 and A 2 are each independently a substituted or unsubstituted condensed aromatic ring group having 10 to 20 nuclear carbon atoms.
  • Ar 1 and Ar 2 are each independently a hydrogen atom or a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms.
  • ⁇ ! ⁇ Is independently a hydrogen atom, a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted Is an unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, Substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, substituted or unsubstituted A silyl group
  • R 9 and R 1Q may be plural or adjacent to each other to form a saturated or unsaturated cyclic structure.
  • ⁇ to ° each independently represents a hydrogen atom, an alkyl group, a cycloalkyl group, an optionally substituted aryl group, alkoxyl group, aryloxy group, alkylamino group, alkenyl group, aryl group or substituted
  • a and b each represent an integer of 1 to 5 , and when they are 2 or more, R 1 s or R 2 s may be the same or different from each other. Alternatively, R 1 or R 2 may be bonded to form a ring, or R 3 and R 4 , R 5 and R 6 , R 7 and R 8 , R 9 and R 1Q are bonded to each other.
  • L 1 may be a single bond, —O—, —S —, N (R) — (R is an alkyl group or an optionally substituted aryl group), Represents an alkylene group or an arylene group.)
  • C, d, e and f each represent an integer of 1 to 5, and when they are 2 or more, R 11 to each other, R 12 to each other, R 16 to each other or R 17 may be the same or different from each other, and R 11 , R 12 , R 16, or R 17 may be combined to form a ring, or R 13 and R 14 , R 18 and R 19 may be joined together to form a ring.
  • L 2 represents a single bond, -0-, -S-, _N (R) _ (R is an alkyl group or an optionally substituted aryl group), an alkylene group or an arylene group. )
  • a 5 to A 8 are each independently a substituted or unsubstituted biphenyl group or a substituted or unsubstituted naphthyl group.
  • R 21 to R 23 are each independently a hydrogen atom, an alkenoquinole group having 1 to 6 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, or 1 carbon atom.
  • An atom, and at least one of A 9 to A 14 is a group having three or more condensed aromatic rings. is there.
  • R and R are hydrogen atoms, substituted or unsubstituted alkyl groups, substituted or
  • R bonded to different fluorene groups R, R may be the same or different fluorene groups
  • R and R bonded to may be the same or different.
  • R and R are hydrogen
  • R represents an atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group, and R bonded to a different fluorene group
  • R may be the same or different
  • R and R bonded to the same fluorene group may be the same or different.
  • 3 4 1 and Ar are substituted or unsubstituted condensed polycyclic aromatics with a total of 3 or more benzene rings
  • the total force of the aromatic group or benzene ring and heterocyclic ring represents a condensed polycyclic heterocyclic group bonded to the fluorene group by three or more substituted or unsubstituted carbons, and Ar and Ar are the same.
  • n an integer of 1 to 10.
  • an anthracene derivative is preferable, a monoanthracene derivative is more preferable, and an asymmetric anthracene is particularly preferable.
  • a phosphorescent compound can also be used as the dopant light-emitting material.
  • a compound containing a rubazole ring as a host material is preferred.
  • the dopant is a compound that can emit light from triplet excitons, and is not particularly limited as long as it emits light from triplet excitons, but at least selected from the group consisting of Ir, Ru, Pd, Pt, ⁇ s and Re Borf prefers to be a metal complex containing one metal An iriline metal complex or an orthometal ⁇ metal complex is preferred.
  • a suitable host for phosphorescence emission comprising a compound containing a strong rubazole ring is a compound having a function of emitting a phosphorescent compound as a result of energy transfer to its excited state force phosphorescent compound.
  • the host compound is not particularly limited as long as it is a compound that can transfer the exciton energy to the phosphorescent compound, and can be appropriately selected according to the purpose. It may have an arbitrary heterocyclic ring in addition to the strong rubazole ring.
  • host compounds include force rubazole derivatives, triazole derivatives, oxazole derivatives, oxaziazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, vinylene diamine derivatives.
  • Arylamine derivatives amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidene compounds, porphyrin compounds, anthraquinodimethane Derivatives, anthrone derivatives, diphenylquinone derivatives, thiobilane dioxide derivatives, carpositimide derivatives, fluorenylidenemethane derivatives, distyrylvirazine derivatives, Metal complexes of heterocyclic tetracarboxylic anhydrides such as phthaleneperylene, phthalocyanine derivatives, 8-quinolinol derivatives, metal phthalocyanines, metal complexes with benzoxazole and benzothiazole as ligands Compounds, poly (N-butylcarbazole) derivatives, poly
  • a phosphorescent dopant is a compound that can emit light from triplet excitons. Although it is not particularly limited as long as it emits light from a triplet exciton, it is preferably a metal complex containing at least one metal selected from the group consisting of Ir, Ru, Pd, Pt, Os, and Re force. A porphyrin metal complex or ortho Metalated metal complexes are preferred. The porphyrin metal complex is preferably a porphyrin platinum complex.
  • the phosphorescent compound may be used alone or in combination of two or more.
  • ligands that form ortho-metal ⁇ metal complexes.
  • Preferred ligands include 2 phenyl pyridine derivatives, 7, 8 benzoquinoline derivatives, 2— (2 enyl) pyridine derivatives, 2— (1 naphthyl) pyridine derivatives, 2-phenylquinoline derivatives and the like. These derivatives may have a substituent as necessary. In particular, fluorinated compounds and trifluoromethyl groups have been introduced. Further, it may have a ligand other than the above-mentioned ligands such as acetylacetonate and picric acid as an auxiliary ligand.
  • the content of the phosphorescent dopant in the light-emitting layer is not particularly limited, and can be appropriately selected according to the purpose S, for example, 0:! To 70% by mass, and:! To 30 A mass% is preferred.
  • Light emission is weak when the phosphorescent compound content is less than 0.1% by mass. However, if the content is not sufficiently exhibited and the content exceeds 70% by mass, a phenomenon called concentration quenching becomes remarkable and the device performance deteriorates.
  • the light emitting layer may contain a hole transport material, an electron transport material, and a polymer binder as necessary.
  • the thickness of the light emitting layer is preferably 5 to 50 nm, more preferably 7 to 50 nm, and most preferably 10 to 50 nm. If the thickness is less than 5 nm, it is difficult to form a light emitting layer, and it may be difficult to adjust the chromaticity. If it exceeds 50 nm, the driving voltage may increase.
  • the hole injection / transport layer is a layer that helps injecting holes into the light emitting layer and transports it to the light emitting region, and has a high ion mobility and a low ion energy of 5.5 eV or less.
  • a hole injecting / transporting layer a material that transports holes to the light emitting layer with a lower electric field strength is preferable.
  • the mobility force of holes is small, for example, when an electric field of 10 4 to 10 6 VZcm is applied. and also preferable if the 10- 4 cm 2 / V ⁇ sec Rere.
  • the aromatic amine derivative of the present invention when used in a hole transport zone, the aromatic amine derivative of the present invention alone may be used as a hole injection or transport layer, or may be mixed with other materials. Les.
  • the material for forming the hole injection / transport layer by mixing with the aromatic amine derivative of the present invention is not particularly limited as long as it has the above-mentioned preferred properties.
  • a material that is commonly used as a transport material or a known medium force used for a hole injection / transport layer of an organic EL device can be selected and used.
  • fragrance especially fragrance It is preferable to use a group III tertiary amine compound.
  • NPD N-(2-naphthyl) -N-phenylamino) biphenol having two condensed aromatic rings described in US Pat. No. 5,061,569 in the molecule.
  • Ninore hereinafter abbreviated as NPD
  • three triphenylamine units described in JP-A-4-308688 are connected in a starburst type 4, 4, 4, 4 ', one tris (N — (3-methylphenyl) _N_phenylamino) triphenylamine (hereinafter abbreviated as MTDATA) and the like.
  • examples of the material for the hole injection / transport layer include compounds represented by the following formula (a) disclosed in JP-A-2001-143871, and JP-T-2006-503443.
  • An acceptor compound such as a compound represented by the following formula (b) described in 1 can also be used.
  • R to R are substituted or unsubstituted alkyl groups, substituted or unsubstituted aryl groups.
  • R to R are the same but different
  • R and R, R and R, R and R or R and R, R and R, R and R are fused rings.
  • R to R are substituents, preferably nitrile group, nitro group, sulfonyl group,
  • An electron-withdrawing group such as a fluoromethyl group and a halogen.
  • inorganic compounds such as p-type Si and p-type SiC can also be used as the material for the hole injection / transport layer.
  • the hole injection / transport layer may be formed by thin-filming the aromatic amine derivative of the present invention by a known method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method. it can.
  • the thickness of the hole injection / transport layer is not particularly limited, but is usually 5 nm to 5 / m 2.
  • the hole injection / transport layer may be composed of one or more layers of the above-described materials.
  • a hole injection / transport layer made of a compound different from the hole injection / transport layer may be laminated.
  • a hole injection or electron injection organic semiconductor layer provided as a layer to help Moyogu 10- 1Q SZcm more of the conductivity of the light-emitting layer.
  • Examples of the material of such an organic semiconductor layer include thiophene oligomers, conductive oligomers such as allylamin oligomers disclosed in JP-A-8-193191, and conductive properties such as allylamin dendrimers. Dendrimers and the like can be used.
  • the electron injection layer 'transport layer is a layer that assists the injection of electrons into the light emitting layer and transports it to the light emitting region.
  • the electron mobility is high and the adhesion improving layer is included in the electron injection layer.
  • it is a layer made of a material with good adhesion to the cathode.
  • the electron transport layer is appropriately selected with a film thickness of several nm to several xm.
  • 10 4 ⁇ :! OV / electron mobility when an electric field is applied in cm is preferably a on at least 10- 5 cm 2 / Vs or more.
  • 8-hydroxyquinoline or a metal complex of its derivative, oxadiazole derivative is suitable.
  • specific examples of the above-mentioned metal complexes of 8-hydroxyquinoline or its derivatives include metal chelate oxinoid compounds containing a chelate of oxine (generally 8_quinolinol or 8_hydroxyquinoline) such as tris (8-quinolinol) aluminum. It can be used as an injection material.
  • examples of the oxadiazole derivative include electron transfer compounds represented by the following general formula.
  • Ar 1 , Ar 2 , Ar 3 , Ar 5 , Ar 6 , Ar 9 each represents a substituted or unsubstituted aryl group, which may be the same or different from each other.
  • Ar 7 and Ar 8 each represent a substituted or unsubstituted arylene group, which may be the same or different.
  • the aryl group includes a phenyl group, a biphenyl group, an anthranyl group, a perylenyl group, A pyrenyl group is mentioned.
  • arylene group examples include a phenylene group, a naphthylene group, a biphenylene group, an anthranylene group, a peryleneylene group, and a pyrenylene group.
  • substituent an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or Examples include cyan groups.
  • This electron transfer compound is preferably a thin film-forming compound. Specific examples of the electron transfer compound include the following.
  • the power represented by the following general formulas (A) to (F) can be used as materials used for the electron injection layer and the electron transport layer.
  • Ar 1 is a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms or a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms
  • Ar 2 is a hydrogen atom, substituted or unsubstituted Unsubstituted aryl group having 6 to 60 carbon atoms, substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or substituted or unsubstituted An alkoxy group having 1 to 20 carbon atoms, or a divalent group thereof.
  • any one of Ar 1 and Ar 2 is a substituted or unsubstituted condensed ring group having 10 to 60 nuclear carbon atoms, or a substituted or unsubstituted monoheterocondensed ring group having 3 to 60 nuclear carbon atoms. .
  • ⁇ L 2 and L are each independently a single bond, a substituted or unsubstituted arylene group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroarylene group having 3 to 60 nuclear carbon atoms, or a substituted or unsubstituted group. It is a substituted fluorenylene group.
  • R represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms, a substituted or unsubstituted alkyl group having! To 20 carbon atoms.
  • a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, ⁇ is an integer of 0 to 5 , and when ⁇ is 2 or more, a plurality of R may be the same or different.
  • a plurality of adjacent R groups may be bonded together to form a carbocyclic aliphatic ring or carbocyclic aromatic ring. The nitrogen-containing heterocyclic derivative represented by this.
  • HAr is a nitrogen-containing heterocycle having 3 to 40 carbon atoms which may have a substituent
  • L is a single bond and having 6 to 60 carbon atoms which may have a substituent.
  • Ariren group, Les substituted, also good Le, Re has a heteroarylene group or substituent to the 3 to 60 carbon atoms, it may also be a full Oreniren group
  • Ar 1 is, A divalent aromatic hydrocarbon group having 6 to 60 carbon atoms which may have a substituent
  • Ar 2 is an aryl group or substituted having 6 to 60 carbon atoms which may have a substituent.
  • X and Y are each independently a saturated or unsaturated hydrocarbon having carbon number:! To 6) Group, an alkoxy group, an alkenyloxy group, an alkynyloxy group, a hydroxy group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocycle, or a combination of X and Y that is saturated or unsaturated.
  • Atoms substituted or unsubstituted alkyl groups having 1 to 6 carbon atoms, alkoxy groups, aryloxy groups, perfluoroalkyl groups, perfluoroalkoxy groups, amino groups, alkylcarbonyl groups, aryls.
  • R to R and Z are each independently a hydrogen atom, saturated or unsaturated carbonization
  • a hydrogen group, an aromatic group, a heterocyclic group, a substituted amino group, a substituted boryl group, an alkoxy group or an aryloxy group, and X, Y and Z are each independently a saturated or unsaturated carbonization.
  • Z and Z substituents may be bonded to each other to form a condensed ring.
  • N is 1.
  • n 1
  • Z 1
  • R 1 is a hydrogen atom, substituted Or an unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group.
  • R 1 is a hydrogen atom, substituted Or an unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group.
  • — ⁇ _Ga_Q (Q) Q and Q are , Q and Q are the same)
  • rings A 1 and A 2 are 6-membered aryl ring structures condensed with each other which may have a substituent. ]
  • This metal complex is strong as an n-type semiconductor and has a high electron injection capability. Furthermore, since the generation energy at the time of complex formation is low, the bond between the metal and the ligand of the formed metal complex is strengthened, and the fluorescence quantum efficiency as a light emitting material is also increasing.
  • substituents of the rings A 1 and A 2 forming the ligand of the general formula (G) include chlorine, bromine, iodine, halogen atoms of fluorine, methino group, ethyl group, propyl group, Butyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, heptyl group, octyl group, stearyl group, trichloromethyl group, etc., substituted or unsubstituted alkyl group, fuel group, naphthyl group, 3 Substituted or unsubstituted aryl groups such as _methylphenyl group, 3-methoxyphenyl group, 3_fluorophenylene group, 3_trichloromethylphenyl group, 3_trifluoromethylphenyl group, 3_nitrophenyl group , Methoxy group, n-butoxy group, t-but X
  • Groups mono- or di-substituted amino groups such as ethynoleamino group, dipropylamino group, dibutylamino group, diphenylamino group, bis (acetoxymethyl) amino group, bis (acetoxetyl) amino group, bisacetoxypropyl) amino group, bis (Acetoxybutyl) Amino group such as amino group, hydroxyl group, siloxy group, acyl group, methylcarbamoyl group, dimethylcarbamoyl group, ethylcarbamoyl group, jetylcarbamoyl group, pleuvircarbamoyl group, butyl strength rubermoyl group, phenylcarbamoyl group, etc.
  • Lubamoi Group carboxylic acid group, sulfonic acid group, imide group, cyclopentane group, cyclohexyl group and the like, phenyl group, naphthyl group, biphenyl group, anthranyl group, phenanthryl group, fluorenyl group, Aryl group such as pyrenyl group, pyridinyl group, birazinyl group, pyrimidinyl group, pyridazinyl group, triazinyl group, indolinyl group, quinolinyl group, attaridinyl group, pyrrolidinyl group, dioxanyl group, piperidinyl group, morpholinidyl group, piperazinyl group, triatuol Group, carbazolyl group, furanyl group, thiophenyl group, oxazolyl group, oxadiazolyl group, benzoxazolyl group, thiazolyl group, thi
  • the organic EL device of the present invention a region for transporting electrons or a cathode and an organic There is an element containing a reducing dopant in the interface region of the layer.
  • the reducing dopant is defined as a substance capable of reducing the electron transporting compound. Accordingly, various materials can be used as long as they have a certain reducibility, such as alkali metals, alkaline earth metals, rare earth metals, alkali metal oxides, alkali metal halides, alkaline earths.
  • metal oxides From the group consisting of metal oxides, alkaline earth metal halides, rare earth metal oxides or rare earth metal halides, alkali metal organic complexes, alkaline earth metal organic complexes, rare earth metal organic complexes. At least one selected material can be suitably used.
  • preferable reducing dopants include Na (work function: 2.36 eV), K (work function: 2.28 eV), Rb (work function: 2.16 eV), and Cs (work function: 1). 95 eV), at least one alkali metal selected from the group consisting of Ca (work function: 2.9 eV), Sr (work function: 2.0 to 2.5 eV), and Ba (work function: 2.52 eV) Particularly preferred are those having a work function of 2.9 eV or less, including at least one alkaline earth metal selected from the group consisting of: Among these, a more preferable reducing dopant is at least one alkali metal selected from the group consisting of K, Rb and Cs, more preferably Rb or Cs, and most preferably Cs.
  • alkali metals can improve the emission brightness and extend the life of organic EL devices by adding a relatively small amount to the electron injection region, which has a particularly high reduction capacity.
  • a combination of two or more alkali metals is also preferable.
  • a combination containing Cs for example, Cs and Na, Cs and K, Cs and Rb.
  • a combination of Cs, Na and ⁇ is preferable.
  • an electron injection layer composed of an insulator or a semiconductor may be further provided between the cathode and the organic layer.
  • an insulator use is made of at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides. Like That's right. If the electron injection layer is composed of these alkali metal chalcogenides or the like, it is preferable in that the electron injection property can be further improved.
  • preferred alkaline metal chalcogenides include, for example, LiO, K0, NaS, NaSe and NaO
  • preferred alkaline earth metal chalcogenides include, for example, CaO, BaO, Sr. 0, BeO, BaS, and CaSe
  • preferable alkali metal halides include, for example, LiF, NaF, KF, LiCl, KC1, and NaCl
  • preferable alkaline earth metal halides include, for example, CaF, BaF, SrF.
  • semiconductors constituting the electron transport layer include Ba, Ca, Sr, Yb, Al, Ga, In, Li, Na, Cd, One kind or a combination of two or more kinds of oxides, nitrides or oxynitrides containing at least one element of Mg, Si, Ta, Sb and Zn can be used.
  • the inorganic compound constituting the electron transport layer is preferably a microcrystalline or amorphous insulating thin film. If the electron transport layer is composed of these insulating thin films, a more uniform thin film is formed, so that pixel defects such as dark spots can be reduced. Examples of such inorganic compounds include the alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides described above.
  • a metal, an alloy, an electrically conductive compound having a low work function (4 eV or less), and a mixture thereof are used as an electrode material.
  • electrode materials include sodium, sodium / potassium alloys, magnesium, lithium, magnesium'silver alloys, aluminum / anolymium oxide, aluminum'lithium alloys, indium, rare earth metals, and the like.
  • This cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the transmittance of the cathode for light emission is greater than 10 ° / o.
  • the sheet resistance as a cathode is preferably several hundred ⁇ / mouth or less.
  • the film thickness is usually 10 nm 1 / im, preferably 50 200.
  • organic EL devices apply an electric field to ultra-thin films, pixel defects are likely to occur due to leaks and shorts. In order to prevent this, it is preferable to insert an insulating thin film layer between the pair of electrodes.
  • Examples of materials used for the insulating layer include aluminum oxide, lithium fluoride, lithium oxide, cesium fluoride, cesium oxide, magnesium oxide, magnesium fluoride, calcium oxide, calcium fluoride, aluminum nitride, titanium oxide, and oxide.
  • Examples thereof include silicon, germanium oxide, silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, and vanadium oxide, and a mixture or laminate thereof may be used.
  • the organic EL An element can be manufactured.
  • An organic EL element can also be fabricated from the cathode to the anode in the reverse order.
  • an anode is prepared by forming a thin film having an anode material strength on a suitable translucent substrate by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably 10 200 nm.
  • a hole injection layer is provided on the anode.
  • the hole injection layer can be formed by a method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method. A homogeneous film can be obtained immediately and pinholes are not easily generated. In view of the above, it is preferable to form the film by a vacuum evaporation method.
  • the deposition conditions vary depending on the compound used (material of the hole injection layer), the crystal structure and recombination structure of the target hole injection layer, etc.
  • deposition source temperature 50 450 ° C, vacuum degree of 10- 7 ⁇ : 10- 3 Torr, the deposition rate of 0. 01 50nmZ sec, substrate temperature - 50 300 ° C, may be suitably selected in the range of film thickness 5 nm 5 mu m preferable.
  • the formation of the light emitting layer in which the light emitting layer is provided on the hole injection layer is also performed using a desired organic light emitting material by a method such as vacuum deposition, sputtering, spin coating, or casting.
  • the film can be formed by thin film forming, but it is preferable to form the film by a point vacuum deposition method in which a homogeneous film is obtained immediately and pinholes are hardly generated.
  • the deposition condition varies depending on the compound used, but in general, the medium range of conditions similar to the hole injection layer can be selected.
  • an electron injection layer is provided on the light emitting layer. Similar to the hole injection layer and the light emitting layer, the necessary power to obtain a homogeneous film is preferably formed by vacuum evaporation.
  • the vapor deposition conditions can be selected from the same condition ranges as those for the hole injection layer and the light emitting layer.
  • the aromatic amine derivative of the present invention differs depending on which layer in the emission band or the hole transport band, but can be co-deposited with other materials when using the vacuum deposition method. . Moreover, when using a spin coat method, it can be included by mixing with other materials.
  • a cathode can be stacked to obtain an organic EL device.
  • the cathode is made of metal, and vapor deposition or sputtering can be used. In order to protect the underlying organic layer from damage during film formation, vacuum deposition is preferred. It is preferable to fabricate the organic EL element from the anode to the cathode consistently by a single vacuum.
  • the method for forming each layer of the organic EL device of the present invention is not particularly limited. Conventionally known methods such as vacuum deposition and spin coating can be used.
  • the organic thin film layer containing the compound represented by the general formula (1) used in the organic EL device of the present invention is prepared by a vacuum deposition method, a molecular beam deposition method (MBE method), or a solution dating method using a solvent. Further, it can be formed by a known method using a coating method such as a spin coating method, a casting method, a bar coating method, or a roll coating method.
  • each organic layer of the organic EL device of the present invention is not particularly limited, but in general, if the film thickness is too thin, defects such as pinholes are generated, and conversely, if it is too thick, a high applied voltage is required and efficiency is increased. Usually, the range of several nm to lxm is preferable because it worsens.
  • reaction solution was extracted with toluene / water and dried over anhydrous sodium sulfate.
  • a glass substrate with a 25 mm ⁇ 75 mm ⁇ l. 1 mm thick IT ⁇ transparent electrode was ultrasonically cleaned in isopropyl alcohol for 5 minutes, followed by UV ozone cleaning for 30 minutes.
  • a glass substrate with a transparent electrode line after cleaning is attached to a substrate holder of a vacuum deposition apparatus.
  • the following compound ⁇ 232 having a film thickness of 60 nm is formed so as to cover the transparent electrode on the surface where the transparent electrode line is formed.
  • a film was formed.
  • This H232 film functions as a hole injection layer.
  • the compound HI layer having a thickness of 20 nm was formed as a hole transport material.
  • This film functions as a hole transport layer.
  • the following compound EM1 with a film thickness of 40 nm The film was formed by vapor deposition.
  • the following amine compound D1 having a styryl group was deposited as a luminescent molecule so that the weight ratio of EM1 to D1 was 40: 2. This film functions as a light emitting layer.
  • Alq film having a thickness of lOnm was formed. This functions as an electron injection layer.
  • Li Li source: manufactured by SAES Getter Co., Ltd.
  • Alq Alq
  • metal A1 was deposited to form a metal cathode, and an organic EL device was formed.
  • the obtained organic EL device was measured for luminous efficiency and observed for luminescent color.
  • Luminous efficiency was measured using a Minolta CS 1000, and the luminous efficiency at a current density of 1 OmA / cm 2 was calculated.
  • Table 1 shows the results of measuring the half-life of light emission at an initial luminance of 5000 nits, room temperature, and DC constant current drive.
  • Example 1 an organic EL device was produced in the same manner except that the compound shown in Table 1 was used instead of compound HI as the hole transport material.
  • Table 1 shows the results of measuring the luminous efficiency of the obtained organic EL device, observing the emission color, and measuring the half-life of light emission with an initial luminance of 5000 nits, room temperature, and DC constant current drive.
  • Comparative Example 1 An organic EL device was produced in the same manner as in Example 1, except that Comparative Compound 1 (Comparative Example 1) was used instead of Compound HI as the hole transport material. Comparative compound 1 crystallized during vapor deposition, and a normal device could not be produced.
  • Table 1 shows the results of measuring the luminous efficiency of the obtained organic EL device, observing the luminescent color, and measuring the half life of light emission with an initial luminance of 5000 nits, room temperature, and DC constant current drive.
  • An organic EL device was prepared in the same manner as in Example 1 except that Comparative Compound 2 was used instead of Compound HI as the hole transport material.
  • Table 1 shows the results of measuring the luminous efficiency of the obtained organic EL device, observing the emission color, and measuring the half-life of light emission with an initial luminance of 5000 nits, room temperature, and DC constant current drive.
  • An organic EL device was prepared in the same manner as in Example 1 except that the following arylamine compound D2 was used instead of the amine compound D1 having a styryl group. Me is a methyl group.
  • the emission efficiency of the obtained organic EL device was measured and found to be 5.2 cd / A, and the emission color was blue. Furthermore, the half-life of light emission measured with an initial luminance of 5000 nits, room temperature, and DC constant current drive was 400 hours.
  • the light emission efficiency of the obtained organic EL device was measured and found to be 4.9 cd / A, and the emission color was blue. Furthermore, the half-life of light emission measured at an initial luminance of 5000 nits, room temperature, and DC constant current drive was 260 hours.
  • An organic EL device was produced in the same manner as in Example 1 except that the above comparative compounds 3 and 4 were used in place of the compound HI as the hole transport material.
  • Table 1 shows the results of measuring the luminous efficiency of the obtained organic EL device, observing the emission color, and measuring the half-life of light emission with an initial luminance of 5000 nits, room temperature, and DC constant current drive.
  • the aromatic amine derivative of the present invention has steric hindrance and therefore has a small interaction between molecules, so that crystallization is suppressed and an organic EL device is produced.
  • it can be deposited at a low sublimation temperature, molecular decomposition during deposition is suppressed and a long-life organic EL device can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

明 細 書
芳香族ァミン誘導体及びそれらを用いた有機エレクト口ルミネッセンス素 子
技術分野
[0001] 本発明は、芳香族ァミン誘導体及びそれらを用いた有機エレクト口ルミネッセンス( EL)素子に関し、特に、特定の置換基を有する芳香族ァミン誘導体を正孔輸送材料 に用いることにより、分子の結晶化を抑制し、有機 EL素子を製造する際の歩留りを向 上させ、有機 EL素子の寿命の改善及びそれを実現する芳香族ァミン誘導体に関す るものである。
背景技術
[0002] 有機 EL素子は、電界を印加することより、陽極より注入された正孔と陰極より注入さ れた電子の再結合エネルギーにより蛍光性物質が発光する原理を利用した自発光 素子である。イーストマン 'コダック社の C. W. Tangらによる積層型素子による低電 圧駆動有機 EL素子の報告(C.W. Tang, S.A. Vanslyke,アプライドフィジックスレター ズ (Applied Physics Letters), 51卷、 913頁、 1987年等)がなされて以来、有機材料 を構成材料とする有機 EL素子に関する研究が盛んに行われている。 Tangらは、トリ ス(8—キノリノラト)アルミニウムを発光層に、トリフヱニルジァミン誘導体を正孔輸送 層に用いている。積層構造の利点としては、発光層への正孔の注入効率を高めるこ と、陰極より注入された電子をブロックして再結合により生成する励起子の生成効率 を高めること、発光層内で生成した励起子を閉じ込めること等が挙げられる。この例 のように有機 EL素子の素子構造としては、正孔輸送 (注入)層、電子輸送発光層の 2 層型、又は正孔輸送 (注入)層、発光層、電子輸送 (注入)層の 3層型等がよく知られ ている。こうした積層型構造素子では注入された正孔と電子の再結合効率を高める ため、素子構造や形成方法の工夫がなされている。
[0003] 通常、高温環境下で有機 EL素子を駆動させたり、保管すると、発光色の変化、発 光効率の低下、駆動電圧の上昇、発光寿命の短時間化等の悪影響が生じる。これを 防ぐためには正孔輸送材料のガラス転移温度 (Tg)を高くする必要があった。そのた めに正孔輸送材料の分子内に多くの芳香族基を有する必要があり(例えば、特許文 献 1の芳香族ジァミン誘導体、特許文献 2の芳香族縮合環ジァミン誘導体)、通常 8 〜 12個のベンゼン環を有する構造が好ましく用いられてレ、る。
し力、しながら、分子内に多くの芳香族基を有すると、これらの正孔輸送材料を用い て薄膜を形成して有機 EL素子を作製する際に結晶化が起こりやすぐ蒸着に用いる るつぼの出口を塞いだり、結晶化に起因する薄膜の欠陥が発生し、有機 EL素子の 歩留り低下を招くなどの問題が生じていた。また、分子内に多くの芳香族基を有する 化合物は、一般的にガラス転移温度 (Tg)は高いものの、昇華温度が高ぐ蒸着時の 分解や蒸着が不均一に形成される等の現象が起こると考えられるために寿命が短い という問題があった。
一方、ァミンに直接結合した縮合環が置換基を有する芳香族ジァミン誘導体が開 示された公知文献がある。例えば、特許文献 3においてはメチル基を有するナフチル 基がァミンに結合したジァミン化合物が記載されている力 S、この化合物は本発明者ら がこの化合物を用いて素子を作成した結果、寿命が短いことが問題であることが分か つた。また、フエニル基がナフチル基に結合したジァミン化合物の記載があるが具体 的な実施例はなぐ芳香族炭化水素で置換することの特徴については一切記載がな レ、。特許文献 4においてもフエニル基がナフチル基に結合したジァミン化合物の記載 があるが具体的な実施例はなぐ芳香族炭化水素で置換することの特徴については 一切記載がなレ、。特許文献 5および 6におレ、ては置換基を有するフエナントレンがァ ミンに結合した芳香族ジァミン誘導体の報告があるが、芳香族炭化水素がフエナント レンに結合した化合物にっレ、ては具体的な記載が無レ、。
以上のように、長寿命な有機 EL素子の報告があるものの、未だ必ずしも充分なもの とはいえない。そのため、より優れた性能を有する有機 EL素子の開発が強く望まれ ていた。
特許文献 1 :米国特許第 4, 720, 432号明細書
特許文献 2 :米国特許第 5, 061, 569号明細書
特許文献 3:特開平 11 - 149986号公報
特許文献 4 :特開平 11一 312587号公報 特許文献 5 :特開平 11 312586号公報
特許文献 6 :特開平 11 135261号公報
発明の開示
発明が解決しょうとする課題
[0004] 本発明は、前記の課題を解決するためになされたもので、分子が結晶化しに《、 有機 EL素子を製造する際の歩留りが向上し、寿命が長い有機 EL素子及びそれを 実現する芳香族ァミン誘導体を提供することを目的とする。
課題を解決するための手段
[0005] 本発明者らは、前記目的を達成するために、鋭意研究を重ねた結果、下記一般式
(1)で表される特定の置換基を有する新規な芳香族ァミン誘導体を有機 EL素子用 材料として用い、特に正孔輸送材料として用いると、前記の課題を解決することを見 出し、本発明を完成するに至った。
また特定の置換基を有するァミンユニットとして、一般式(2)で表されるァリール基 で置換されたァミノ基が好適であることを見出した。このアミンユニットは立体障害性 力 Sあるため分子間の相互作用が小さいことから、結晶化が抑制され、有機 EL素子を 製造する歩留を向上させ、得られる有機 EL素子の寿命を長くする効果があり、特に 青色発光素子と組み合わせることにより、顕著な長寿命効果が得られることが判った
[0006] すなわち、本発明は、下記一般式(1)で表される芳香族ァミン誘導体を提供するも のである。
Figure imgf000005_0001
[式中、 Rは、置換もしくは無置換の核原子数 5〜50のァリール基、置換もしくは無
1
置換の炭素数 1〜50のアルキル基、置換もしくは無置換の炭素数 1〜50のアルコキ シ基、置換もしくは無置換の炭素数 6〜50のァラルキル基、置換もしくは無置換の核 原子数 5〜50のァリールォキシ基、置換もしくは無置換の核原子数 5〜50のァリー ルチオ基、置換もしくは無置換の炭素数 2〜50のアルコキシカルボニル基、置換もし くは無置換の核原子数 5〜50のァリール基で置換されたァミノ基、ハロゲン基、シァ ノ基、ニトロ基、ヒドロキシル基、又はカルボキシル基である。
aは 0〜4の整数であり、 aが 2以上のとき複数の Rは、互いに結合して、飽和もしく
1
は不飽和の置換されてもよい 5員環又は 6員環の環状構造を形成してもよい。
bは 1〜3の整数であり、 aが 1以上でかつ bが 2以上のとき複数の Rは、互いに結合
1
して、飽和もしくは不飽和の置換されてもよい 5員環又は 6員環の環状構造を形成し てもよい。
Ar〜Arのうち少なくとも 1つは下記一般式(2)の基である。
1 4
[化 2] Ar5 Ar6 ( 2 )
{式中、 Arは置換もしくは無置換の核炭素数 10〜20の縮合芳香族環基である。 Ar
5 e は置換もしくは無置換の核炭素数 6〜50のァリール基又は置換もしくは無置換の核 炭素数 5〜50の芳香族複素環基である。 }
一般式(1)において、 Ar〜Arのうち一般式(2)の基でないものは、それぞれ独立
1 4
に、置換もしくは無置換の核炭素数 6〜50のァリール基又は置換もしくは無置換の 核炭素数 5〜50の芳香族複素環基である。 ]
[0007] また、本発明は、陰極と陽極間に少なくとも発光層を含む一層又は複数層からなる 有機薄膜層が挟持されている有機 EL素子において、該有機薄膜層の少なくとも 1層 が、前記芳香族ァミン誘導体を単独もしくは混合物の成分として含有する有機 EL素 子を提供するものである。
発明の効果
[0008] 本発明の芳香族ァミン誘導体及びそれを用いた有機 EL素子は、分子が結晶化し にくく、有機 EL素子を製造する際の歩留りが向上し、寿命が長いものである。
発明を実施するための最良の形態
[0009] 本発明の芳香族ァミン誘導体は、下記一般式(1)で表されるものである。 [化 3]
Figure imgf000007_0001
一般式(1)において、 Rは、置換もしくは無置換の核原子数 5〜50のァリール基、
1
置換もしくは無置換の炭素数 1〜50のアルキル基、置換もしくは無置換の炭素数 1 〜50のアルコキシ基、置換もしくは無置換の炭素数 6〜50のァラルキル基、置換もし くは無置換の核原子数 5〜50のァリールォキシ基、置換もしくは無置換の核原子数 5〜50のァリールチオ基、置換もしくは無置換の炭素数 2〜50のアルコキシカルボ二 ル基、置換もしくは無置換の核原子数 5〜50のァリール基で置換されたァミノ基、ノヽ ロゲン基、シァノ基、ニトロ基、ヒドロキシル基、又はカルボキシル基である。
一般式(1)において、 aは 0〜4の整数であり、 aが 2以上のとき複数の Rは、互いに
1 結合して、飽和もしくは不飽和の置換されてもよい 5員環又は 6員環の環状構造を形 成してもよい。
bは 1〜3の整数であり、 aが 1以上でかつ bが 2以上のとき複数の Rは、互いに結合
1
して、飽和もしくは不飽和の置換されてもよい 5員環又は 6員環の環状構造を形成し てもよい。
Ar〜Arのうち少なくとも 1つは下記一般式(2)の基である。
1 4
[化 4]
Γ5 Ar6 ( 2 ) 一般式(2)において、 Arは置換もしくは無置換の核炭素数 10〜20の縮合芳香族
5
環基である。 Arは置換もしくは無置換の核炭素数 6〜50のァリール基又は置換もし
6
くは無置換の核炭素数 5〜 50の芳香族複素環基である。
一般式(1)において、 Ar〜Arのうち一般式(2)の基でないものは、それぞれ独立
1 4
に、置換もしくは無置換の核炭素数 6〜50のァリール基又は置換もしくは無置換の 核炭素数 5〜 50の芳香族複素環基である。
本発明の一般式(1)の芳香族ァミン誘導体は、置換基を除く炭素数の合計が 56以 上であることが好ましぐ 68〜80であるとさらに好ましレ、。炭素数の合計が 56未満の 場合はガラス転移温度 (Tg)が低くなり、発光色の変化、発光効率の低下、駆動電圧 の上昇、発光寿命の短時間化等の悪影響が生じる恐れがある。一方、 80を超えると 、昇華温度が高くなり、蒸着時の分解や蒸着が不均一に形成される等の悪影響を生 じ、寿命が短くなる恐れがある。
一般式(1)における Rのァリール基としては例えば、フエニル基、 1 _ナフチル基、
1
2_ナフチル基、 1 _アントリノレ基、 2_アントリノレ基、 9 _アントリル基、 1 _フエナント リル基、 2—フエナントリル基、 3—フエナントリル基、 4—フエナントリル基、 9_フエナ ントリル基、 1 _ナフタセニル基、 2_ナフタセニル基、 9 _ナフタセニル基、 1—ピレ ニル基、 2—ピレニル基、 4—ピレニル基、 2 _ビフヱ二ルイル基、 3 _ビフヱ二ルイル 基、 4_ビフヱ二ルイル基、 p—テルフヱニル 4—ィル基、 p—テルフヱニル 3_ィル基 、 p—テルフエニル 2—ィル基、 m—テルフエニル 4—ィル基、 m—テルフエニル 3—ィ ル基、 m—テルフエニル 2—ィル基、 o トリル基、 m トリル基、 ρ トリノレ基、 p— t— ブチルフエニル基、 p— (2 フエニルプロピル)フエニル基、 3—メチルー 2 ナフチ ル基、 4ーメチルー 1 ナフチル基、 4ーメチノレー 1 アントリノレ基、 4,ーメチルビフエ 二ルイル基、 4" tーブチルー p テルフエニル 4ーィル基、フルオランテュル基、フ ルォレニル基、 1 ピロリル基、 2 ピロリル基、 3 ピロリル基、ビラジニル基、 2 ピリ ジニル基、 3 ピリジニル基、 4 ピリジニル基、 1 インドリル基、 2 インドリル基、 3 インドリル基、 4 インドリル基、 5—インドリル基、 6—インドリル基、 7—インドリル基 、 1 イソインドリル基、 2—イソインドリル基、 3—イソインドリル基、 4 イソインドリノレ 基、 5 イソインドリル基、 6 イソインドリル基、 7 イソインドリル基、 2 フリル基、 3 —フリル基、 2 _ベンゾフラニル基、 3 _ベンゾフラニル基、 4 _ベンゾフラニル基、 5 —ベンゾフラニル基、 6 _ベンゾフラニル基、 7 _ベンゾフラニル基、 1 _イソべンゾフ ラニノレ基、 3 _イソべンゾフラニル基、 4 _イソべンゾフラニル基、 5 _イソベンゾフラ二 ル基、 6 _イソべンゾフラニル基、 7 _イソべンゾフラニル基、キノリノレ基、 3 _キノリノレ 基、 4ーキノリノレ基、 5 キノリノレ基、 6 キノリノレ基、 7 キノリノレ基、 8 キノリノレ基、 1 —イソキノリル基、 3 _イソキノリノレ基、 4_イソキノリル基、 5_イソキノリノレ基、 6 _イソ キノリル基、 7_イソキノリル基、 8 _イソキノリノレ基、 2_キノキサリニル基、 5_キノキ サリニル基、 6 キノキサリニル基、 1一力ルバゾリル基、 2 力ルバゾリル基、 3 力ノレ バゾリル基、 4 カノレバゾリノレ基、 9 カノレバゾリノレ基、 1 フエナントリジニル基、 2— フエナントリジニル基、 3—フエナントリジニル基、 4 フエナントリジニル基、 6—フエナ ントリジニル基、 7—フエナントリジニル基、 8—フエナントリジニル基、 9—フエナントリ ジニル基、 10 フエナントリジニル基、 1—アタリジニノレ基、 2—アタリジニノレ基、 3- アタリジニル基、 4—アタリジニノレ基、 9—アタリジニノレ基、 1, 7_フエナント口リン _2 —ィノレ基、 1, 7_フエナント口リン一 3—ィノレ基、 1, 7_フエナント口リン一 4—ィノレ基 、 1, 7_フエナント口リン一 5—ィノレ基、 1, 7_フエナント口リン一 6—ィノレ基、 1, 7- フエナント口リン _8—ィノレ基、 1, 7_フエナント口リン _9—ィノレ基、 1, 7_フエナント 口リン一 10 ィル基、 1, 8 フエナント口リン一 2 ィル基、 1, 8 フエナント口リン一 3_イノレ基、 1, 8_フエナント口リン _4_イノレ基、 1, 8_フエナント口リン _5_イノレ基 、 1, 8_フエナント口リン一 6—ィノレ基、 1, 8_フエナント口リン一 7—ィノレ基、 1, 8- フエナント口リン一 9—イノレ基、 1, 8—フエナント口リン一 10—イノレ基、 1, 9—フエナン トロリン一 2—イノレ基、 1, 9 フエナント口リン一 3—イノレ基、 1, 9 フエナント口リン一 4ーィノレ基、 1, 9 フエナント口リン 5—ィノレ基、 1, 9 フエナント口リン 6—ィノレ基 、 1, 9 フエナント口リン 7—ィノレ基、 1, 9 フエナント口リン 8—ィノレ基、 1, 9 フエナント口リン 10—ィノレ基、 1, 10—フエナント口リン 2—ィノレ基、 1, 10—フエ ナント口リン一 3—イノレ基、 1, 10—フエナント口リン一 4—イノレ基、 1, 10—フエナント 口リン一 5—ィル基、 2, 9 フエナント口リン一 1—ィル基、 2, 9 フエナント口リン一 3 —ィル基、 2, 9 フエナント口リン一 4—ィル基、 2, 9 フエナント口リン一 5—ィル基 、 2, 9 フエナント口リン 6—ィノレ基、 2, 9 フエナント口リン 7—ィノレ基、 2, 9— フエナント口リン一 8—ィル基、 2, 9 フエナント口リン一 10—ィル基、 2, 8 フエナン トロリン _1_イノレ基、 2, 8_フエナント口リン一 3—ィノレ基、 2, 8_フエナント口リン一
4 ィノレ基、 2, 8_フエナント口リン一 5—ィノレ基、 2, 8_フエナント口リン一 6—ィノレ基 、 2, 8_フエナント口リン一 7—ィノレ基、 2, 8_フエナント口リン一 9—ィノレ基、 2, 8_ フエナント口リン一 10 ィル基、 2, 7 フエナント口リン一 1—ィル基、 2, 7 フエナン トロリン一 3—ィノレ基、 2, 7_フエナント口リン一 4—ィノレ基、 2, 7_フエナント口リン一
5 ィノレ基、 2, 7_フエナント口リン一 6—ィノレ基、 2, 7_フエナント口リン一 8—ィノレ基 、 2, 7 フエナント口リン一 9—ィル基、 2, 7 フエナント口リン一 10—ィル基、 1—フ ェナジニル基、 2—フエナジニル基、 1ーフエノチアジニル基、 2—フエノチアジニル基 、 3—フエノチアジニル基、 4—フエノチアジニル基、 10—フエノチアジニル基、 1—フ エノキサジニル基、 2 _フエノキサジニル基、 3 _フエノキサジニル基、 4_フエノキサ ジニル基、 10—フエノキサジニル基、 2—ォキサゾリル基、 4—ォキサゾリル基、 5—ォ キサゾリル基、 2 _ォキサジァゾリル基、 5 _ォキサジァゾリル基、 3—フラザニル基、 2 —チェニル基、 3 _チェニル基、 2 メチルピロール— 1—ィル基、 2 _メチルピロ一 ノレ _ 3 _イノレ基、 2 メチルピロール一 4—ィル基、 2 メチルビロール一 5—ィル基、 3 メチルピロール— 1—ィル基、 3 メチルビロール— 2—ィル基、 3 _メチルピロ一 ノレ一 4—ィノレ基、 3 メチルピロール一 5—ィル基、 2 _t—ブチルピロール一 4—ィル 基、 3 _ (2—フエニルプロピル)ピロール— 1—ィル基、 2 _メチル_ 1 _ィンドリル基 、 4_メチル _ 1 _インドリル基、 2 _メチル _ 3 _インドリル基、 4 メチノレ _ 3 _インド リル基、 2— t ブチル 1 インドリル基、 4 t ブチル 1 インドリル基、 2— tーブチ ノレ 3—インドリル基、 4 t ブチル 3—インドリル基等が挙げられる。
これらの中で、好ましくはフエ二ル基、ナフチル基、ビフヱニル基、アントラニル基、 フエナントリル基、ピレニル基、クリセ二ル基、フルオランテニル基、フルォレニル基で ある。
一般式(1)における Rのアルキル基としては例えば、メチル基、ェチル基、プロピル
1
基、イソプロピル基、 n ブチル基、 s ブチル基、イソブチル基、 t ブチル基、 n— ペンチル基、 n—へキシル基、 n へプチル基、 n—ォクチル基、ヒドロキシメチル基、 1ーヒドロキシェチル基、 2—ヒドロキシェチル基、 2—ヒドロキシイソブチル基、 1 , 2— ジヒドロキシェチル基、 1, 3—ジヒドロキシイソプロピル基、 2, 3—ジヒドロキシ一 t_ ブチル基、 1, 2, 3 _トリヒドロキシプロピル基、クロロメチル基、 1 _クロ口ェチル基、 2 —クロ口ェチル基、 2 _クロ口イソブチル基、 1 , 2—ジクロ口ェチル基、 1 , 3—ジクロ口 イソプロピル基、 2, 3—ジクロ口— _ブチル基、 1 , 2, 3 _トリクロ口プロピル基、ブロ モメチル基、 1 _ブロモェチル基、 2 _ブロモェチル基、 2 _ブロモイソブチル基、 1 , 2 _ジブロモェチル基、 1 , 3 _ジブロモイソプロピル基、 2, 3 _ジブロモ_セ_ブチル 基、 1 , 2, 3 _トリブロモプロピル基、ョードメチル基、 1—ョードエチル基、 2 _ョード ェチル基、 2—ョードイソブチル基、 1, 2—ジョードエチル基、 1, 3—ジョードイソプロ ピノレ基、 2, 3 ジョードー tーブチノレ基、 1, 2, 3 トリョードプロピノレ基、アミノメチノレ 基、 1 了ミノェチノレ基、 2—了ミノェチノレ基、 2—了ミノイソブチノレ基、 1, 2—ジ了ミノ ェチノレ基、 1, 3 _ジァミノイソプロピノレ基、 2, 3_ジァミノ_セ_ブチノレ基、 1, 2, 3- トリアミノプロピル基、シァノメチノレ基、 1—シァノエチル基、 2—シァノエチル基、 2- シァノイソブチル基、 1, 2 _ジシァノエチル基、 1, 3—ジシァノイソプロピル基、 2, 3 —ジシァノ一 t_ブチル基、 1, 2, 3_トリシアノプロピル基、ニトロメチル基、 1_ニトロ ェチル基、 2_ニトロェチノレ基、 2_ニトロイソブチル基、 1, 2—ジニトロェチル基、 1, 3—ジニトロイソプロピル基、 2, 3—ジニトロ— _ブチル基、 1, 2, 3_トリニトロプロピ ル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基、 4_ メチルシクロへキシル基、 1—ァダマンチル基、 2—ァダマンチル基、 1_ノルボル二 ル基、 2 _ノルボルニル基等が挙げられる。
一般式(1)における Rのアルコキシ基は OYで表される基であり、 Yの例としては
1
、前記アルキル基で説明したものと同様の例が挙げられる。
一般式(1)における Rのァラルキル基としては例えば、ベンジル基、 1 フエニルェ
1
チル基、 2—フエニルェチル基、 1 フエニルイソプロピル基、 2—フエニルイソプロピ ル基、フエ二ルー t ブチル基、 α ナフチルメチル基、 1 α ナフチルェチル基 、 2 a ナフチルェチル基、 1 α ナフチルイソプロピル基、 2 a ナフチルイ ソプロピル基、 β ナフチルメチル基、 1— β ナフチルェチル基、 2— ナフチ ノレェチノレ基、 1— β ナフチルイソプロピル基、 2 β ナフチルイソプロピル基、 1 ピロリルメチル基、 2—(1 ピロリル)ェチル基、 ρ メチルベンジル基、 m—メチノレ ベンジノレ基、 o—メチノレべンジノレ基、 p—クロ口べンジノレ基、 m—クロ口べンジノレ基、 o —クロ口べンジル基、 p_ブロモベンジル基、 m_ブロモベンジル基、 o_ブロモベン ジノレ基、 p_ョードベンジル基、 m_ョードベンジル基、 o_ョードベンジル基、 p—ヒ ドロキシベンジル基、 m—ヒドロキシベンジル基、 o—ヒドロキシベンジル基、 ρ—アミノ ベンジル基、 m—ァミノべンジル基、 o—ァミノべンジル基、 p ニトロべンジル基、 m —ニトロべンジル基、 o_ニトロべンジル基、 p_シァノベンジル基、 m_シァノベンジ ノレ基、 o_シァノベンジル基、 1—ヒドロキシ _2—フエ二ルイソプロピル基、 1_クロ口 2—フエニルイソプロピル基等が挙げられる。
[0013] 一般式(1)における Rのァリールォキシ基は OY'と表され、 Y'の例としては前記
1
のァリール基で説明したものと同様の例が挙げられる。
一般式(1)における Rのァリールチオ基は SY'と表され、 Y'の例としては前記ァ
1
リール基で説明したものと同様の例が挙げられる。
一般式(1)における Rのアルコキシカルボ二ル基は _C〇OYで表される基であり、
1
Yの例としては、前記アルキル基で説明したものと同様の例が挙げられる。
一般式(1)における Rのァリール基で置換されたァミノ基におけるァリール基の例と
1
しては前記ァリール基で説明したものと同様の例が挙げられる。
一般式(1)における Rのハロゲン原子としては、フッ素原子、塩素原子、臭素原子
1
、ヨウ素原子等が挙げられる。
[0014] 一般式(1)において、 aは 0〜4の整数であり、 aが 2以上のとき複数の Rは、互いに
1 結合して、飽和もしくは不飽和の置換されてもよい 5員環又は 6員環の環状構造を形 成してもよい。
bは 1〜3の整数であり、 aが 1以上でかつ bが 2以上のとき複数の Rは、互いに結合
1
して、飽和もしくは不飽和の置換されてもよい 5員環又は 6員環の環状構造を形成し てもよい。
この形成してもよい 5員環又は 6員環の環状構造としては、例えば、シクロペンタン、 シクロへキサン、ァダマンタン、ノルボルナン等の炭素数 5〜12のシクロアルカン、シ クロペンテン、シクロへキセン等の炭素数 5〜 12のシクロアルケン、シクロペンタジェ ン、シクロへキサジェン等の炭素数 6〜 12のシクロアルカジエン、ベンゼン、ナフタレ ン、フエナントレン、アントラセン、ピレン、タリセン、ァセナフチレン等の炭素数 6〜50 の芳香族環などが挙げられる。
[0015] 本発明の芳香族ァミン誘導体は、前記一般式(1)において Arと Arが前記一般式
1 2
(2)であると、芳香族ァミン誘導体は非対称構造となり、結晶化抑制あるいは蒸着の 容易性の点で好ましい。
本発明の芳香族ァミン誘導体は、前記一般式(1)において Arと Arが前記一般式
1 3
(2)であると、芳香族ァミン誘導体の製造が容易となり好ましい。 本発明の芳香族ァミン誘導体は、前記一般式(1)において Arが前記一般式(2)
1
であると、芳香族ァミン誘導体は非対称構造となり、結晶化抑制あるいは蒸着の容易 性の点で好ましい。
[0016] 前記一般式(2)における Arである縮合芳香族環の例としては、ナフタレン、フヱナ
5
ントレン、又はピレンの 2価の残基が挙げられ、好ましくはナフタレンの 2価の残基で ある。また、前記一般式(2)における Arである置換もしくは無置換の核炭素数 10〜
5
20の縮合芳香族環基としては例えば、 Rのァリール基として示された基のうち、フエ
1
ニル基および芳香族複素環基以外の基をァリーレン基としたものを挙げることができ る。
前記一般式(2)における Arとしては例えば、前記一般式(1)における Rのァリー
6 1 ル基として挙げられたものと同様の例が挙げられる。
[0017] 本発明の芳香族ァミン誘導体は、前記一般式(2)において Arが下記一般式(3)
5
であると、芳香族ァミン誘導体の製造が容易となり、また、溶解性に優れる化合物が 得られるため、精製が容易となり高純度の芳香族ァミン誘導体が得られるため好まし レ、。
Figure imgf000013_0001
一般式(3)において Rは、前記一般式(1)における Rと同じ基の中から選ばれる。
2 1
cは 0〜6の整数である。 cが 2以上のとき複数の Rは互いに結合して飽和もしくは不
2
飽和の置換されてもよい 5員環又は 6員環の環状構造を形成してもよレ、。
Rの各置換基の例は前記一般式(1)における Rで挙げたものと同様である。 Rの 5
2 1 2 員環又は 6員環の環状構造の例は一般式(1)で挙げたものと同様である。
さらに Ar〜Arへの置換基としては、置換もしくは無置換の核原子数 5〜50のァリ
1 6
ール基、置換もしくは無置換の炭素数 1〜50のアルキル基、置換もしくは無置換の 炭素数 1〜50のアルコキシ基、置換もしくは無置換の炭素数 6〜50のァラルキル基 、置換もしくは無置換の核原子数 5〜50のァリールォキシ基、置換もしくは無置換の 核原子数 5〜50のァリールチオ基、置換もしくは無置換の炭素数 2〜50のアルコキ シカルボニル基、置換もしくは無置換の核原子数 5〜50のァリール基で置換された アミノ基、ハロゲン基、シァノ基、ニトロ基、ヒドロキシル基、又はカルボキシル基である 。また、この Ar〜Arへのアルキル基、アルコキシ基、ァラルキル基、ァリールォキシ
1 6
基、ァリールチオ基、アルコキシカルボニル基、及びァリール基で置換されたァミノ基 の具体例としては、 Rで説明したものと同様の例が挙げられる。
1
本発明の芳香族ァミン誘導体は、前記一般式(2)における Arがフエニル基、ビフ
6
ヱニル基、ナフチル基であると好ましい。
本発明の芳香族ァミン誘導体は、前記一般式(1)において Arが下記一般式 (4)
2
の基であると好ましい。
[化 6]
Figure imgf000014_0001
[式中、 Rは前記一般式(1)における Rと同じ基の中から選ばれる。
3 1
dは 0〜4の整数であり、 dが 2以上のとき複数の Rは互いに結合して飽和もしくは不
3
飽和の置換されてもよい 5員環又は 6員環の環状構造を形成してもよレ、。
eは:!〜 3の整数であり、 dが 1以上でかつ eが 2以上のとき複数の Rは互いに結合し
3
て飽和もしくは不飽和の置換されてもよい 5員環又は 6員環の環状構造を形成しても よい。
Ar及び Arは、一般式(2)の基又は、それぞれ独立に、置換もしくは無置換の核
7 8
炭素数 6〜50のァリール基又は置換もしくは無置換の核炭素数 5〜50の芳香族複 素環基である。 ]
一般式 (4)において Rは前記一般式(1)における Rと同じ基の中から選ばれるが、
3 1
具体例も前記一般式(1)における Rについて記載したものと同じである。
1
一般式 (4)において dが 2以上のとき並びに dが 1以上でかつ eが 2以上のとき複数 の Rは互いに結合して飽和もしくは不飽和の置換されてもよい 5員環又は 6員環の環
3
状構造を形成してもよいが、この形成してもよい 5員環又は 6員環の環状構造として は、例えば、シクロペンタン、シクロへキサン、ァダマンタン、ノルボルナン等の炭素数 4〜 12のシクロアルカン、シクロペンテン、シクロへキセン等の炭素数 4〜 12のシクロ アルケン、シクロペンタジェン、シクロへキサジェン等の炭素数 6〜 12のシクロアルカ ジェン、ベンゼン、ナフタレン、フエナントレン、アントラセン、ピレン、タリセン、ァセナ フチレン等の炭素数 6〜50の芳香族環などが挙げられる。
一般式 (4)において Ar及び Arは、一般式(2)の基又は、それぞれ独立に、置換
7 8
もしくは無置換の核炭素数 6〜50のァリール基又は置換もしくは無置換の核炭素数 5〜50の芳香族複素環基である力 これらの置換基としては前記 Ar〜Arへの置換
1 6 基として説明したものと同じものが挙げられる。また、 Ar及び Arへのアルキル基、ァ
7 8
ルコキシ基、ァラルキル基、ァリールォキシ基、ァリールチオ基、アルコキシカルボ二 ル基、及びァリール基で置換されたァミノ基の具体例としては、 Rで説明したものと同
1
様の例が挙げられる。
本発明の芳香族ァミン誘導体は、前記一般式(1)において Ar及び Ar力 それぞ
2 4 れ独立に、前記一般式 (4)の基であると好ましい。
[0019] 本発明の芳香族ァミン誘導体は、有機エレクト口ルミネッセンス素子用材料であると 好ましい。
本発明の芳香族ァミン誘導体は、有機エレクト口ルミネッセンス正孔輸送材料であ ると好ましい。
[0020] 本発明の有機エレクト口ルミネッセンス素子は、陰極と陽極間に少なくとも発光層を 含む一層又は複数層からなる有機薄膜層が挟持されている有機エレクト口ルミネッセ ンス素子において、該有機薄膜層の少なくとも 1層が、本発明の前記芳香族ァミン誘 導体を単独もしくは混合物の成分として含有すると好ましい。
本発明の有機エレクト口ルミネッセンス素子は、本発明の前記芳香族ァミン誘導体 が正孔輸送層に含有されてレ、ると好ましレ、。
また本発明の有機エレクト口ルミネッセンス素子は、有機薄膜層が正孔輸送層と、電 子輸送層もしくは電子注入層を有し、該正孔輸送層に本発明の前記芳香族ァミン誘 導体が含有され、該電子輸送層もしくは電子注入層に含窒素複素環化合物が含有 されていると好ましい。
本発明の有機エレクト口ルミネッセンス素子は、青色系発光すると好ましい。
本発明の有機エレクト口ルミネッセンス素子は、発光層にスチリルアミン及び/又は ァリールアミンを含有すると好ましレ、。
[0021] 本発明の一般式(1)で表される芳香族ァミン誘導体の具体例を以下に示すが、こ れら例示化合物に限定されるものではない。
[0022] [化 7]
Figure imgf000016_0001
次に、本発明の有機 EL素子について説明する。
本発明の有機 EL素子は、陰極と陽極間に少なくとも発光層を含む一層又は複数 層力 なる有機薄膜層が挟持されている有機 EL素子において、該有機薄膜層の少 なくとも 1層が、前記芳香族ァミン誘導体を単独もしくは混合物の成分として含有する 本発明の有機 EL素子は、前記有機薄膜層が正孔輸送層を有し、該正孔輸送層が 、本発明の芳香族ァミン誘導体を単独もしくは混合物の成分として含有すると好まし レ、。さらに、前記正孔輸送層が、主成分として本発明の芳香族ァミン誘導体を含有す ると好ましい。
本発明の芳香族ァミン誘導体は、特に青色系発光する有機 EL素子に用いると好 ましい。
[0024] また、本発明の有機 EL素子は、発光層が、ァリールァミン化合物及び/又はスチリ ルァミン化合物を含有すると、青色発光が得られやすくなるため好ましレ、。
スチリルァミン化合物としては下記一般式 (I)で表される化合物などが挙げられ、ァ リールアミンィ匕合物としては下記一般式 (II)で表される化合物などが挙げられる。
[化 8]
Figure imgf000017_0001
Ρ'
( I )
[0025] [一般式(I)中、 Arは、フエニル、ビフエニル、テルフエニル、スチルベン、ジスチリル
9
ァリールから選ばれる基であり、 Ar 及び Ar は、それぞれ水素原子又は炭素数が 6
10 11
〜20の芳香族基であり、 Ar 〜Ar は置換されていてもよい。 p'は、 1〜4の整数で
10 11
ある。さらに好ましくは Ar 及び/又は Ar はスチリル基が置換されている。 ]
10 11
ここで、炭素数が 6〜20の芳香族基としては、フエニル基、ナフチル基、アントラニ ル基、フエナントリル基、テルフエニル基等が好ましい。
[0026] [化 9]
Figure imgf000017_0002
q,
( I I )
[一般式 (II)中、 Ar 〜Ar は、置換されていてもよい核炭素数 5〜40のァリール基
12 14
である。 q'は、:!〜 4の整数である。 ]
ここで、核原子数が 5〜40のァリール基としては、フエニル、ナフチル、アントラニル 、フエナントリル、ピレニル、コロニノレ、ビフエニル、テルフエニル、ピロ一リル、フラニノレ 、チォフエニル、ベンゾチォフエニル、ォキサジァゾリル、ジフエ二ルアントラニル、ィ ンドリノレ、カノレバゾリノレ、ピリジノレ、ベンゾキノリル、フルオランテュル、ァセナフトフル オランテュル、スチルベン等が好ましレ、。なお、核原子数が 5〜40のァリール基は、 さらに置換基により置換されていてもよぐ好ましい置換基としては、炭素数:!〜 6のァ ルキル基(ェチル基、メチノレ基、 i—プロピル基、 n—プロピル基、 s_ブチル基、 t—ブ チノレ基、ペンチル基、へキシル基、シクロペンチル基、シクロへキシル基等)、炭素数 :!〜 6のアルコキシ基(エトキシ基、メトキシ基、 i—プロポキシ基、 n—プロポキシ基、 s —ブトキシ基、 t—ブトキシ基、ペントキシ基、へキシルォキシ基、シクロペントキシ基、 シクロへキシルォキシ基等)、核原子数 5〜40のァリール基、核原子数 5〜40のァリ ール基で置換されたァミノ基、核原子数 5〜40のァリール基を有するエステル基、炭 素数 1〜6のアルキル基を有するエステル基、シァノ基、ニトロ基、ハロゲン原子(塩 素、臭素、ヨウ素等)が挙げられる。
以下、本発明の有機 EL素子の素子構成について説明する。
(1)有機 EL素子の構成
本発明の有機 EL素子の代表的な素子構成としては、
(1)陽極/ z発光層/陰極
(2)陽極/ z正孔注入層/発光層/陰極
(3)陽極/ z発光層/電子注入層/陰極
(4)陽極/ z正孔注入層/発光層/電子注入層/陰極
(5)陽極/有機半導体層/発光層/陰極
(6)陽極/ /有機半導体層 z電子障壁層/発光層 /陰極
(7)陽極/ /有機半導体層 z発光層 Z付着改善層 /陰極
(8)陽極/ /正孔注入層 Z正孔輸送層 Z発光層/電子注入層/陰極
(9)陽極 Z絶縁層 Z発光層 Z絶縁層 Z陰極
(10)陽極 Z無機半導体層 Z絶縁層 Z発光層/絶縁層/陰極
(11)陽極 Z有機半導体層 Z絶縁層 Z発光層/絶縁層/陰極
(12)陽極 Z絶縁層 Z正孔注入層 Z正孔輸送層/発光層/絶縁層/陰極 (13)陽極/絶縁層/正孔注入層/正孔輸送層/発光層/電子注入層/陰極 などの構造を挙げることができる。
これらの中で通常 (8)の構成が好ましく用いられる力 これらに限定されるものではな レ、。
本発明の芳香族ァミン誘導体は、有機 EL素子のどの有機薄膜層に用いてもよい 、発光帯域又は正孔輸送帯域に用レ、ることができ、好ましくは正孔輸送帯域、特に 好ましくは正孔輸送層に用いることにより、分子が結晶化しにくぐ有機 EL素子を製 造する際の歩留りが向上する。
本発明の芳香族ァミン誘導体を、有機薄膜層に含有させる量としては、 30〜: 100 モル%が好ましい。また、本発明の芳香族ァミン誘導体を、正孔輸送層含有させる場 合も、含有量が 30モル%未満であると、正孔輸送性能が低下する尾恐れがあるため 、含有量は 30〜: 100モル0 /0であることが好ましい。
[0029] (2)透光性基板
本発明の有機 EL素子は、透光性の基板上に作製する。ここでいう透光性基板は 有機 EL素子を支持する基板であり、 400〜700nmの可視領域の光の透過率が 50 %以上で平滑な基板が好ましレ、。
具体的には、ガラス板、ポリマー板等が挙げられる。ガラス板としては、特にソーダ 石灰ガラス、ノくリウム 'ストロンチウム含有ガラス、鉛ガラス、アルミノケィ酸ガラス、ホウ ケィ酸ガラス、ノくリウムホウケィ酸ガラス、石英等が挙げられる。またポリマー板として は、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルフアイ ド、ポリサルフォン等を挙げることができる。
[0030] (3)陽極
本発明の有機 EL素子の陽極は、正孔を正孔輸送層又は発光層に注入する機能 を有するものであり、 4. 5eV以上の仕事関数を有することが効果的である。本発明に 用いられる陽極材料の具体例としては、酸化インジウム錫合金 (ITO)、酸化錫 (NE SA)、インジウム—亜鉛酸化物(IZ〇)、金、銀、白金、銅等が挙げられる。
陽極は、これらの電極物質を蒸着法やスパッタリング法等の方法で薄膜を形成させ ることにより作製すること力 Sできる。 このように発光層からの発光を陽極力 取り出す場合、陽極の発光に対する透過率 を 10%より大きくすることが好ましい。また、陽極のシート抵抗は、数百 Ω /口以下が 好ましレ、。陽極の膜厚は材料にもよる力 通常1011111〜1 /1 111、好ましくは 10〜200n mの範囲で選択される。
[0031] (4)発光層
有機 EL素子の発光層は以下 (1)〜(3)の機能を併せ持つものである。
(1)注入機能;電界印加時に陽極又は正孔注入層より正孔を注入することができ、 陰極又は電子注入層より電子を注入することができる機能
(2)輸送機能;注入した電荷 (電子と正孔)を電界の力で移動させる機能
(3)発光機能;電子と正孔の再結合の場を提供し、これを発光につなげる機能 ただし、正孔の注入されやすさと電子の注入されやすさに違いがあってもよぐまた
、正孔と電子の移動度で表される輸送能に大小があってもよいが、どちらか一方の電 荷を移動することが好ましレ、。
この発光層を形成する方法としては、例えば蒸着法、スピンコート法、 LB法等の公 知の方法を適用することができる。発光層は、特に分子堆積膜であることが好ましレ、 。ここで分子堆積膜とは、気相状態の材料化合物から沈着され形成された薄膜や、 溶液状態又は液相状態の材料ィヒ合物から固体化され形成された膜のことであり、通 常この分子堆積膜は、 LB法により形成された薄膜 (分子累積膜)とは凝集構造、高 次構造の相違や、それに起因する機能的な相違により区分することができる。
また、特開昭 57— 51781号公報に開示されているように、樹脂等の結着剤と材料 化合物とを溶剤に溶かして溶液とした後、これをスピンコート法等により薄膜ィヒするこ とによっても、発光層を形成することができる。
本発明においては、本発明の目的が損なわれない範囲で、所望により発光層に本 発明の芳香族ァミン誘導体からなる発光材料以外の他の公知の発光材料を含有さ せてもよぐまた、本発明の芳香族ァミン誘導体からなる発光材料を含む発光層に、 他の公知の発光材料を含む発光層を積層してもよい。
[0032] 本発明の芳香族ァミン誘導体と共に発光層に使用できる発光材料又はドーピング 材料としては、例えば、アントラセン、ナフタレン、フエナントレン、ピレン、テトラセン、 コロネン、タリセン、フルォレセイン、ペリレン、フタ口ペリレン、ナフタ口ペリレン、ぺリノ ン、フタ口ペリノン、ナフタ口ペリノン、ジフエ二ルブタジエン、テトラフェニルブタジエン 、クマリン、ォキサジァゾール、アルダジン、ビスベンゾキサゾリン、ビススチリル、ピラ ジン、シクロペンタジェン、キノリン金属錯体、ァミノキノリン金属錯体、ベンゾキノリン 金属錯体、ィミン、ジフエニルエチレン、ビュルアントラセン、ジァミノカルバゾール、ピ ラン、チォピラン、ポリメチン、メロシアニン、イミダゾールキレートィ匕ォキシノイド化合 物、キナクリドン、ルブレン及び蛍光色素等が挙げられるが、これらに限定されるもの ではない。
本発明の芳香族ァミン誘導体と共に発光層に使用できるホスト材料としては、下記( i)〜(ix)で表される化合物が好ましレ、。
下記一般式 (i)で表される非対称アントラセン。
[化 10]
Figure imgf000021_0001
(式中、 Arは置換もしくは無置換の核炭素数 10〜50の縮合芳香族基である。
Ar'は置換もしくは無置換の核炭素数 6〜50の芳香族基である。
Xは、置換もしくは無置換の核炭素数 6〜50の芳香族基、置換もしくは無置換の核 原子数 5〜50の芳香族複素環基、置換もしくは無置換の炭素数:!〜 50のアルキル 基、置換もしくは無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置換の炭素 数 6〜50のァラノレキノレ基、置換もしくは無置換の核原子数 5〜50のァリールォキシ 基、置換もしくは無置換の核原子数 5〜50のァリールチオ基、置換もしくは無置換の 炭素数 1〜50のアルコキシカルボニル基、カルボキシル基、ハロゲン原子、シァノ基 、 ニトロ基、ヒドロキシル基である。
a、 b及び cは、それぞれ 0〜4の整数である。
nは:!〜 3の整数である。また、 nが 2以上の場合は、 [ ]内は、同じでも異なってい てあよレヽ。 )
下記一般式 (ii)で表される非対称モノアントラセン誘導体。
[化 11]
Figure imgf000022_0001
(式中、 Ar1及び Ar2は、それぞれ独立に、置換もしくは無置換の核炭素数 6〜50の 芳香族環基であり、 m及び nは、それぞれ 1〜4の整数である。ただし、 m=n= lでか つ Ar1と Ar2のベンゼン環への結合位置が左右対称型の場合には、 Ar1と Ar2は同一 ではなぐ m又は nが 2〜4の整数の場合には mと nは異なる整数である。
R -R10^,それぞれ独立に、水素原子、置換もしくは無置換の核炭素数 6〜50の 芳香族環基、置換もしくは無置換の核原子数 5〜50の芳香族複素環基、置換もしく は無置換の炭素数 1〜50のアルキル基、置換もしくは無置換のシクロアルキル基、 置換もしくは無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置換の炭素数 6 〜50のァラノレキノレ基、置換もしくは無置換の核原子数 5〜50のァリールォキシ基、 置換もしくは無置換の核原子数 5〜50のァリールチオ基、置換もしくは無置換の炭 素数 1〜50のアルコキシカルボニル基、置換もしくは無置換のシリル基、カルボキシ ル基、ハロゲン原子、シァノ基、ニトロ基、ヒドロキシル基である。 )
下記一般式 (m)で表される非対称ピレン誘導体。
[化 12]
Figure imgf000023_0001
[式中、 Ar及び Ar'は、それぞれ置換もしくは無置換の核炭素数 6〜50の芳香族基 である。
L及び L'は、それぞれ置換もしくは無置換のフエ二レン基、置換もしくは無置換の ナフタレニレン基、置換もしくは無置換のフルォレニレン基又は置換もしくは無置換 のジベンゾシロリレン基である。
mは 0〜2の整数、 nは 1〜4の整数、 sは 0〜2の整数、 tは 0〜4の整数である。 また、 L又は Arは、ピレンの 1〜5位のいずれかに結合し、 L'又は Ar,は、ピレンの 6〜: 10位のいずれかに結合する。
ただし、 n+tが偶数の時、 Ar, Ar' , L, L'は下記 (1)又は (2)を満たす。
(1) Ar≠Ar '及び/又は L≠L' (ここで≠は、異なる構造の基であることを示す。)
(2) Ar=Ar'かつ L=L'の時
(2-l)m≠s及び Z又は n≠t、又は
(2- 2)m=sかつ n=tの時、
(2_2_1)L及び L'、又はピレンが、それぞれ Ar及び Ar'上の異なる結合位置に 結合している力、、(2_2_2)L及び L'、又はピレン力 Ar及び Ar'上の同じ結合位置で 結合している場合、 L及び L'又は Ar及び Ar,のピレンにおける置換位置力 S1位と 6位 、又は 2位と 7位である場合はなレ、。 ]
下記一般式 (iv)で表される非対称アントラセン誘導体。
[化 13]
Figure imgf000024_0001
Figure imgf000024_0002
(式中、 A1及び A2は、それぞれ独立に、置換もしくは無置換の核炭素数 10〜20の 縮合芳香族環基である。
Ar1及び Ar2は、それぞれ独立に、水素原子、又は置換もしくは無置換の核炭素数 6〜50の芳香族環基である。
〜!^は、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数 6〜50の 芳香族環基、置換もしくは無置換の核原子数 5〜50の芳香族複素環基、置換もしく は無置換の炭素数 1〜50のアルキル基、置換もしくは無置換のシクロアルキル基、 置換もしくは無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置換の炭素数 6 〜50のァラルキル基、置換もしくは無置換の核原子数 5〜50のァリールォキシ基、 置換もしくは無置換の核原子数 5〜50のァリールチオ基、置換もしくは無置換の炭 素数 1〜50のアルコキシカルボニル基、置換もしくは無置換のシリル基、カルボキシ ル基、ハロゲン原子、シァノ基、ニトロ基又はヒドロキシル基である。
Figure imgf000024_0003
R9及び R1Qは、それぞれ複数であってもよぐ隣接するもの同士で飽和も しくは不飽和の環状構造を形成してレ、てもよレ、。
ただし、一般式(1)において、中心のアントラセンの 9位及び 10位に、該アントラセ ン上に示す X_Y軸に対して対称型となる基が結合する場合はなレ、。 )
下記一般式 (V)で表されるアントラセン誘導体。
[化 14]
Figure imgf000025_0001
(式中、 ^〜 °は、それぞれ独立に水素原子,アルキル基,シクロアルキル基,置換 しても良いァリール基,アルコキシル基,ァリーロキシ基,アルキルアミノ基,アルケニ ル基,ァリールアミノ基又は置換しても良い複素環式基を示し、 a及び bは、それぞれ 1〜5の整数を示し、それらが 2以上の場合、 R1同士又は R2同士は、それぞれにおい て、同一でも異なっていてもよぐまた R1同士または R2同士が結合して環を形成して いてもよいし、 R3と R4, R5と R6, R7と R8, R9と R1Qがたがいに結合して環を形成していて もよレ、。 L1は単結合、—O—, -S - , N (R)—(Rはアルキル基又は置換しても良 ぃァリール基である)、アルキレン基又はァリーレン基を示す。)
下記一般式 (vi)で表されるアントラセン誘導体。
[化 15]
Figure imgf000025_0002
(式中、 Ru〜 "は、それぞれ独立に水素原子, 基,シクロアルキル基,ァリ ール基,アルコキシル基,ァリ一口キシ基 ミノ基,了リーノレ了ミノ基又 ίま置 換しても良い複数環式基を示し、 c, d, e及び fは、それぞれ 1〜5の整数を示し、それ らが 2以上の場合、 R11同士, R12同士, R16同士又は R17同士は、それぞれにおいて、 同一でも異なっていてもよぐまた R11同士, R12同士, R16同士又は R17同士が結合して 環を形成していてもよいし、 R13と R14, R18と R19がたがいに結合して環を形成していて もよレ、。 L2は単結合、 -0- , -S - , _N (R) _ (Rはアルキル基又は置換しても良 ぃァリール基である)、アルキレン基又はァリーレン基を示す。)
下記一般式 (vii)で表されるスピロフルオレン誘導体。
[化 16]
Figure imgf000026_0001
(式中、 A5〜A8は、それぞれ独立に、置換もしくは無置換のビフエニル基又は置換も しくは無置換のナフチル基である。 )
下記一般式 (viii)で表される縮合環含有化合物。
[化 17]
Figure imgf000026_0002
(式中、 A9〜A14は前記と同じ、 R21〜R23は、それぞれ独立に、水素原子、炭素数 1〜 6のァノレキノレ基、炭素数 3〜6のシクロアルキル基、炭素数 1〜6のアルコキシル基、 炭素数 5〜 18のァリールォキシ基、炭素数 7〜 18のァラルキルォキシ基、炭素数 5 〜16のァリーノレアミノ基、ニトロ基、シァノ基、炭素数 1〜6のエステル基又はハロゲ ン原子を示し、 A9〜A14のうち少なくとも 1つは 3環以上の縮合芳香族環を有する基で ある。 )
[0041] 下記一般式 (ix)で表されるフルオレン化合物。
[化 18]
Figure imgf000027_0001
(式中、 Rおよび Rは、水素原子、置換あるいは無置換のアルキル基、置換あるいは
1 2
無置換のァラルキル基、置換あるいは無置換のァリール基,置換あるいは無置換の 複素環基、置換アミノ基、シァノ基またはハロゲン原子を表わす。異なるフルオレン基 に結合する R同士、 R同士は、同じであっても異なっていてもよぐ同じフルオレン基
1 2
に結合する Rおよび Rは、同じであっても異なっていてもよい。 Rおよび Rは、水素
1 2 3 4 原子、置換あるいは無置換のアルキル基、置換あるいは無置換のァラルキル基、置 換あるいは無置換のァリール基または置換あるいは無置換の複素環基を表わし、異 なるフルオレン基に結合する R同士、 R同士は、同じであっても異なっていてもよく、
3 4
同じフルオレン基に結合する Rおよび Rは、同じであっても異なっていてもよい。 Ar
3 4 1 および Arは、ベンゼン環の合計が 3個以上の置換あるいは無置換の縮合多環芳香
2
族基またはベンゼン環と複素環の合計力 ¾個以上の置換あるいは無置換の炭素でフ ルオレン基に結合する縮合多環複素環基を表わし、 Arおよび Arは、同じであって
1 2
も異なっていてもよレ、。 nは、 1乃至 10の整数を表す。 )
[0042] 以上のホスト材料の中でも、好ましくはアントラセン誘導体、さらに好ましくはモノア ントラセン誘導体、特に好ましくは非対称アントラセンである。
また、ドーパントの発光材料としては、りん光発光性の化合物を用いることもできる。 りん光発光性の化合物としては、ホスト材料に力ルバゾール環を含む化合物が好まし レ、。ドーパントとしては三重項励起子から発光することのできる化合物であり、三重項 励起子から発光する限り特に限定されないが、 Ir、 Ru、 Pd、 Pt、〇s及び Reからなる 群から選択される少なくとも一つの金属を含む金属錯体であることが好ましぐボルフ ィリン金属錯体又はオルトメタルイ匕金属錯体が好ましい。
力ルバゾール環を含む化合物からなるりん光発光に好適なホストは、その励起状態 力 りん光発光性化合物へエネルギー移動が起こる結果、りん光発光性化合物を発 光させる機能を有する化合物である。ホストイ匕合物としては励起子エネルギーをりん 光発光性化合物にエネルギー移動できる化合物ならば特に制限はなぐ 目的に応じ て適宜選択することができる。力ルバゾール環以外に任意の複素環などを有してレ、 ても良い。
[0043] このようなホストイ匕合物の具体例としては、力ルバゾール誘導体、トリァゾール誘導 体、ォキサゾール誘導体、ォキサジァゾール誘導体、イミダゾール誘導体、ポリアリー ルアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フヱニレンジァミン誘導体、 ァリールァミン誘導体、ァミノ置換カルコン誘導体、スチリルアントラセン誘導体、フル ォレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三 ァミン化合物、スチリルァミン化合物、芳香族ジメチリデン系化合物、ポルフィリン系 化合物、アントラキノジメタン誘導体、アントロン誘導体、ジフヱ二ルキノン誘導体、チ オビランジオキシド誘導体、カルポジイミド誘導体、フルォレニリデンメタン誘導体、ジ スチリルビラジン誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フ タロシアニン誘導体、 8-キノリノール誘導体の金属錯体ゃメタルフタロシアニン、ベン ゾォキサゾールやべンゾチアゾールを配位子とする金属錯体に代表される各種金属 錯体ポリシラン系化合物、ポリ(N-ビュルカルバゾール)誘導体、ァニリン系共重合体 、チォフェンオリゴマー、ポリチォフェン等の導電性高分子オリゴマー、ポリチォフェン 誘導体、ポリフエ二レン誘導体、ポリフエ二レンビニレン誘導体、ポリフルオレン誘導 体等の高分子化合物等が挙げられる。ホストイ匕合物は単独で使用しても良いし、 2種 以上を併用しても良い。
具体例としては、以下のような化合物が挙げられる。
[0044] [化 19]
Figure imgf000029_0001
りん光発光性のドーパントは三重項励起子から発光することのできる化合物である 。三重項励起子から発光する限り特に限定されないが、 Ir、 Ru、 Pd、 Pt、 Os及び Re 力 なる群から選択される少なくとも一つの金属を含む金属錯体であることが好ましく 、ポルフィリン金属錯体又はオルトメタル化金属錯体が好ましい。ポルフィリン金属錯 体としては、ポルフィリン白金錯体が好ましい。りん光発光性化合物は単独で使用し ても良いし、 2種以上を併用しても良い。
オルトメタルイ匕金属錯体を形成する配位子としては種々のものがあるが、好ましい 配位子としては、 2 フエ二ルビリジン誘導体、 7, 8 べンゾキノリン誘導体、 2—(2 チェニル)ピリジン誘導体、 2—(1 ナフチル)ピリジン誘導体、 2—フエ二ルキノリ ン誘導体等が挙げられる。これらの誘導体は必要に応じて置換基を有しても良い。特 に、フッ素化物、トリフルォロメチル基を導入したもの力 青色系ドーパントとしては好 ましレ、。さらに補助配位子としてァセチルァセトナート、ピクリン酸等の上記配位子以 外の配位子を有してレ、ても良い。
りん光発光性のドーパントの発光層における含有量としては、特に制限はなぐ 目 的に応じて適宜選択することができる力 S、例えば、 0. :!〜 70質量%であり、:!〜 30質 量%が好ましい。りん光発光性化合物の含有量が 0. 1質量%未満では発光が微弱 でありその含有効果が十分に発揮されず、 70質量%を超える場合は、濃度消光と言 われる現象が顕著になり素子性能が低下する。
また、発光層は、必要に応じて正孔輸送材、電子輸送材、ポリマーバインダーを含 有しても良い。
さらに、発光層の膜厚は、好ましくは 5〜50nm、より好ましくは 7〜50nm、最も好ま しくは 10〜50nmである。 5nm未満では発光層形成が困難となり、色度の調整が困 難となる恐れがあり、 50nmを超えると駆動電圧が上昇する恐れがある。
[0046] (5)正孔注入'輸送層(正孔輸送帯域)
正孔注入 ·輸送層は発光層への正孔注入を助け、発光領域まで輸送する層であつ て、正孔移動度が大きぐイオンィ匕エネルギーが通常 5. 5eV以下と小さレ、。このよう な正孔注入'輸送層としては、より低い電界強度で正孔を発光層に輸送する材料が 好ましぐさらに正孔の移動度力 例えば 104〜106VZcmの電界印加時に、少なくと も 10— 4cm2/V ·秒であれば好ましレヽ。
本発明の芳香族ァミン誘導体を正孔輸送帯域に用いる場合、本発明の芳香族アミ ン誘導体単独で正孔注入、輸送層を形成してもよぐ他の材料と混合して用いてもよ レ、。
本発明の芳香族ァミン誘導体と混合して正孔注入 ·輸送層を形成する材料としては 、前記の好ましい性質を有するものであれば特に制限はなぐ従来、光導伝材料に おいて正孔の電荷輸送材料として慣用されているものや、有機 EL素子の正孔注入' 輸送層に使用される公知のものの中力 任意のものを選択して用いることができる。
[0047] 具体例としては、トリァゾール誘導体 (米国特許 3, 112, 197号明細書等参照)、ォ キサジァゾール誘導体 (米国特許 3, 189, 447号明細書等参照)、イミダゾール誘導 体 (特公昭 37— 16096号公報等参照)、ポリアリールアルカン誘導体 (米国特許 3, 615, 402 明糸田 ·、同 ^3, 820, 989 明糸田 ·、同 ^3, 542, 544 明糸田 、 公昭 45— 555号公報、同 51— 10983号公報、特開昭 51 _ 93224号公報、同 55 — 17105号公報、同 56— 4148号公報、同 55— 108667号公報、同 55— 156953 号公報、同 56— 36656号公報等参照)、ピラゾリン誘導体及びピラゾロン誘導体 (米 国 言午 3, 180, 729 明糸田 ·、同 4, 278, 746 明糸田 ·、 開日召 55— 8806 4号公報、同 55— 88065号公報、同 49— 105537号公報、同 55— 51086号公報、 同 56— 80051号公報、同 56— 88141号公報、同 57— 45545号公報、同 54— 11 2637号公報、同 55— 74546号公報等参照)、フエ二レンジァミン誘導体(米国特許 第 3, 615, 404号明糸田書、特公昭 51— 10105号公報、同 46— 3712号公報、同 4 7— 25336号公報、特開昭 54— 53435号公報、同 54— 110536号公報、同 54— 1 19925号公報等参照)、ァリールァミン誘導体 (米国特許第 3, 567, 450号明細書、 同 3, 180, 703 明糸田 ·、同 3, 240, 597 明糸田 ·、同 ^3, 658, 520 明 糸田 ·、 232, 103 明糸田 、 4, 175, 961 明糸田 ·、 4, 012, 37
6号明細書、特公昭 49— 35702号公報、同 39— 27577号公報、特開昭 55— 144 250号公報、同 56— 119132号公報、同 56— 22437号公報、西独特許第 1, 110 , 518号明細書等参照)、ァミノ置換カルコン誘導体 (米国特許第 3, 526, 501号明 細書等参照)、ォキサゾール誘導体 (米国特許第 3, 257, 203号明細書等に開示の もの)、スチリルアントラセン誘導体 (特開昭 56— 46234号公報等参照)、フルォレノ ン誘導体 (特開昭 54— 110837号公報等参照)、ヒドラゾン誘導体 (米国特許第 3, 7 17, 462号明細書、特開昭 54— 59143号公報、同 55— 52063号公報、同 55— 52 064号公報、同 55— 46760号公報、同 55— 85495号公報、同 57— 11350号公報 、同 57— 148749号公報、特開平 2— 311591号公報等参照)、スチルベン誘導体( 特開昭 61— 210363号公報、同第 61— 228451号公報、同 61— 14642号公報、 同 61— 72255号公報、同 62— 47646号公報、同 62— 36674号公報、同 62— 10 652号公報、同 62— 30255号公報、同 60— 93455号公報、同 60— 94462号公報 、同 60— 174749号公報、同 60— 175052号公報等参照)、シラザン誘導体(米国 特許第 4, 950, 950号明細書)、ポリシラン系(特開平 2— 204996号公報)、ァニリ ン系共重合体 (特開平 2— 282263号公報)、特開平 1— 211399号公報に開示され ている導電性高分子オリゴマー(特にチォフェンオリゴマー)等を挙げることができる。 正孔注入 ·輸送層の材料としては上記のものを使用することができる力 S、ポノレフイリ ン化合物(特開昭 63— 2956965号公報等に開示のもの)、芳香族第三級アミンィ匕 合物及びスチリルァミン化合物(米国特許第 4, 127, 412号明細書、特開昭 53— 2 7033号公報、同 54— 58445号公報、同 54— 149634号公報、同 54— 64299号 公報、同 55— 79450号公報、同 55— 144250号公報、同 56— 119132号公報、同 61— 295558号公報、同 61— 98353号公報、同 63— 295695号公報等参照)、特 に芳香族第三級アミンィ匕合物を用いることが好ましい。
また、米国特許第 5, 061 , 569号に記載されている 2個の縮合芳香族環を分子内 に有する、例えば、 4, 4'—ビス(N_ (1—ナフチル)一N—フエニルァミノ)ビフエ二 ノレ (以下 NPDと略記する)、また特開平 4— 308688号公報に記載されているトリフエ ニルァミンユニットが 3つスターバースト型に連結された 4, 4,, 4',一トリス(N— (3—メ チルフヱニル) _N_フエニルァミノ)トリフエニルァミン(以下 MTDATAと略記する) 等を挙げることができる。
[0049] この他に、正孔注入'輸送層の材料としては、特開 2001— 143871号公報で開示 されてレヽる下記式(a)で表される化合物や、特表 2006 - 503443号公報に記載され ている下記式 (b)で表される化合物等のァクセプター性化合物も用いることができる
[化 20]
Figure imgf000032_0001
(式中、 R〜Rは置換または無置換のアルキル基、置換または無置換のァリール基
1 6
、置換または無置換の複素環基のいずれかを示す。但し、 R〜Rは同じでも異なつ
1 6
ていてもよい。また、 Rと R、 Rと R、 Rと Rまたは Rと R、 Rと R、 Rと Rが縮合環を
1 2 3 4 5 6 1 6 2 3 4 5 形成していてもよい。 )
[0050] [化 21]
Figure imgf000033_0001
(式中、 R 〜Rは置換基であり、好ましくは二トリル基、ニトロ基、スルホニル基、トリフ
1 6
ルォロメチル基、ハロゲン等の電子吸引性基である。 )
[0051] さらに、発光層の材料として示した前述の芳香族ジメチリディン系化合物の他、 p型 Si、 p型 SiC等の無機化合物も正孔注入 ·輸送層の材料として使用することができる。
[0052] 正孔注入'輸送層は本発明の芳香族ァミン誘導体を、例えば、真空蒸着法、スピン コート法、キャスト法、 LB法等の公知の方法により薄膜ィヒすることにより形成すること ができる。正孔注入'輸送層としての膜厚は特に制限はないが、通常は 5nm〜5 / m である。この正孔注入'輸送層は、正孔輸送帯域に本発明の芳香族ァミン誘導体を 含有していれば、上述した材料の一種又は二種以上からなる一層で構成されてもよ く、前記正孔注入 ·輸送層とは別種の化合物からなる正孔注入 ·輸送層を積層したも のであってもよい。
また、発光層への正孔注入又は電子注入を助ける層として有機半導体層を設けて もよぐ 10— 1QSZcm以上の導電率を有するものが好適である。このような有機半導体 層の材料としては、含チォフェンオリゴマーゃ特開平 8— 193191号公報に開示して ある含ァリールァミンオリゴマー等の導電性オリゴマー、含ァリールァミンデンドリマー 等の導電性デンドリマー等を用いることができる。
[0053] (6)電子注入'輸送層
次に、電子注入層'輸送層は、発光層への電子の注入を助け、発光領域まで輸送 する層であって、電子移動度が大きぐまた付着改善層は、この電子注入層の中で 特に陰極との付着が良い材料からなる層である。 また、有機 EL素子は発光した光が電極 (この場合は陰極)により反射するため、直 接陽極から取り出される発光と、電極による反射を経由して取り出される発光とが干 渉することが知られている。この干渉効果を効率的に利用するため、電子輸送層は 数 nm〜数 x mの膜厚で適宜選ばれるが、特に膜厚が厚いとき、電圧上昇を避ける ために、 104〜: !OV/cmの電界印加時に電子移動度が少なくとも 10— 5cm2/Vs以 上であることが好ましい。
電子注入層に用いられる材料としては、 8—ヒドロキシキノリンまたはその誘導体の 金属錯体ゃォキサジァゾール誘導体が好適である。上記 8—ヒドロキシキノリンまたは その誘導体の金属錯体の具体例としては、ォキシン (一般に 8 _キノリノール又は 8 _ ヒドロキシキノリン)のキレートを含む金属キレートォキシノイド化合物、例えばトリス(8 —キノリノール)アルミニウムを電子注入材料として用いることができる。
一方、ォキサジァゾール誘導体としては、以下の一般式で表される電子伝達化合 物が挙げられる。
[化 22]
Figure imgf000034_0001
(式中、 Ar1, Ar2, Ar3, Ar5, Ar6, Ar9はそれぞれ置換または無置換のァリール基を 示し、それぞれ互いに同一であっても異なっていてもよレ、。また Ar4, Ar7, Ar8は置換 または無置換のァリーレン基を示し、それぞれ同一であっても異なっていてもよい) ここでァリール基としてはフエニル基、ビフエ二ル基、アントラニル基、ペリレニル基、 ピレニル基が挙げられる。また、ァリーレン基としてはフエ二レン基、ナフチレン基、ビ フエ二レン基、アントラニレン基、ペリレニレン基、ピレニレン基などが挙げられる。また 、置換基としては炭素数 1〜: 10のアルキル基、炭素数 1〜: 10のアルコキシ基または シァノ基等が挙げられる。この電子伝達化合物は薄膜形成性のものが好ましい。 上記電子伝達性化合物の具体例としては下記のものを挙げることができる。
[化 23]
Figure imgf000035_0001
さらに、電子注入層及び電子輸送層に用いられる材料として、下記一般式 (A)〜( F)で表されるちのも用レ、ること力 Sできる。
[化 24]
Figure imgf000035_0002
(一般式 (A)及び (B)中、 〜 は、それぞれ独立に、窒素原子又は炭素原子であ る。
Ar1は、置換もしくは無置換の核炭素数 6〜60のァリール基、又は置換もしくは無 置換の核炭素数 3〜60のへテロアリール基であり、 Ar2は、水素原子、置換もしくは 無置換の核炭素数 6〜60のァリール基、置換もしくは無置換の核炭素数 3〜60のへ テロアリール基、置換もしくは無置換の炭素数 1〜20のアルキル基、又は置換もしく は無置換の炭素数 1〜20のアルコキシ基、あるいはこれらの 2価の基である。ただし 、 Ar1及び Ar2のいずれか一方は、置換もしくは無置換の核炭素数 10〜60の縮合環 基、又は置換もしくは無置換の核炭素数 3〜60のモノへテロ縮合環基である。
ΐΛ L2及び Lは、それぞれ独立に、単結合、置換もしくは無置換の核炭素数 6〜60 のァリーレン基、置換もしくは無置換の核炭素数 3〜60のへテロアリーレン基、又は 置換もしくは無置換のフルォレニレン基である。
Rは、水素原子、置換もしくは無置換の核炭素数 6〜60のァリール基、置換もしくは 無置換の核炭素数 3〜60のへテロアリール基、置換もしくは無置換の炭素数:!〜 20 のアルキル基、又は置換もしくは無置換の炭素数 1〜20のアルコキシ基であり、 ηは 0〜5の整数であり、 ηが 2以上の場合、複数の Rは同一でも異なっていてもよぐまた 、隣接する複数の R基同士で結合して、炭素環式脂肪族環又は炭素環式芳香族環 を形成してレ、てもよレ、。 )で表される含窒素複素環誘導体。
[0057] HAr-L-Ar'-Ar2 (C)
(式中、 HArは、置換基を有していてもよい炭素数 3〜40の含窒素複素環であり、 L は、単結合、置換基を有していてもよい炭素数 6〜60のァリーレン基、置換基を有し てレ、てもよレ、炭素数 3〜60のへテロアリーレン基又は置換基を有してレ、てもよレ、フル ォレニレン基であり、 Ar1は、置換基を有していてもよい炭素数 6〜60の 2価の芳香族 炭化水素基であり、 Ar2は、置換基を有していてもよい炭素数 6〜60のァリール基又 は置換基を有していてもよい炭素数 3〜60のへテロアリール基である。)で表される 含窒素複素環誘導体。
[0058] [化 25]
Figure imgf000036_0001
[0059] (式中、 X及び Yは、それぞれ独立に炭素数:!〜 6の飽和若しくは不飽和の炭化水素 基、アルコキシ基、アルケニルォキシ基、アルキニルォキシ基、ヒドロキシ基、置換若 しくは無置換のァリール基、置換若しくは無置換のへテロ環又は Xと Yが結合して飽 和又は不飽和の環を形成した構造であり、 R それぞれ独立に水素、ハロゲ
1〜Rは、
4
ン原子、置換もしくは無置換の炭素数 1から 6までのアルキル基、アルコキシ基、ァリ ールォキシ基、パーフルォロアルキル基、パーフルォロアルコキシ基、アミノ基、アル キルカルボニル基、ァリールカルボニル基、アルコキシカルボニル基、ァリールォキ シカルボニル基、ァゾ基、アルキルカルボニルォキシ基、ァリールカルボニルォキシ 基、アルコキシカルボニルォキシ基、ァリールォキシカルボニルォキシ基、スノレフィニ ノレ基、スルフォニル基、スルファニル基、シリノレ基、力ルバモイル基、ァリール基、へ テロ環基、アルケニル基、アルキニル基、ニトロ基、ホルミノレ基、ニトロソ基、ホルミル ォキシ基、イソシァノ基、シァネート基、イソシァネート基、チオシァネート基、イソチォ シァネート基もしくはシァノ基又は隣接した場合には置換若しくは無置換の環が縮合 した構造である。 )で表されるシラシクロペンタジェン誘導体。
[0060] [化 26]
Figure imgf000037_0001
[0061] (式中、 R〜R及び Zは、それぞれ独立に、水素原子、飽和もしくは不飽和の炭化
1 8 2
水素基、芳香族基、ヘテロ環基、置換アミノ基、置換ボリル基、アルコキシ基又はァリ 一ルォキシ基を示し、 X、 Y及び Zは、それぞれ独立に、飽和もしくは不飽和の炭化
1
水素基、芳香族基、ヘテロ環基、置換アミノ基、アルコキシ基またはァリールォキシ基 を示し、 Zと Zの置換基は相互に結合して縮合環を形成してもよぐ nは 1
1 2 〜3の整数 を示し、 nが 2以上の場合、 Zは異なってもよレ、。但し、 nが 1
1 、 X、 Y及び R力 Sメチル基
2 であって、 R力 水素原子又は置換ボリル基の場合、及び nが 3で Z力 Sメチル基の場
8 1
合を含まない。)で表されるボラン誘導体。
[0062] [化 27]
Figure imgf000038_0001
[0063] [式中、 Q及び Qは、それぞれ独立に、下記一般式 (G)で示される配位子を表し、 L
1 2
は、ハロゲン原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロア ルキル基、置換もしくは無置換のァリール基、置換もしくは無置換の複素環基、 O R1 (R1は、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロ アルキル基、置換もしくは無置換のァリール基、置換もしくは無置換の複素環基であ る。)または—〇_Ga_Q (Q ) (Q及び Qは、 Q及び Qと同じ)で示される配位子
3 4 3 4 1 2
を表す。 ]
[0064] [化 28]
Figure imgf000038_0002
[式中、環 A1および A2は、置換基を有してよい互いに縮合した 6員ァリール環構造で ある。 ]
[0065] この金属錯体は、 n型半導体としての性質が強ぐ電子注入能力が大きい。さらに は、錯体形成時の生成エネルギーも低いために、形成した金属錯体の金属と配位子 との結合性も強固になり、発光材料としての蛍光量子効率も大きくなつている。
一般式 (G)の配位子を形成する環 A1及び A2の置換基の具体的な例を挙げると、 塩素、臭素、ヨウ素、フッ素のハロゲン原子、メチノレ基、ェチル基、プロピル基、ブチ ル基、 s-ブチル基、 t一ブチル基、ペンチル基、へキシル基、ヘプチル基、ォクチル 基、ステアリル基、トリクロロメチル基等の置換もしくは無置換のアルキル基、フエエル 基、ナフチル基、 3 _メチルフエニル基、 3—メトキシフエ二ル基、 3 _フルオロフェニ ノレ基、 3 _トリクロロメチルフエニル基、 3 _トリフルォロメチルフエニル基、 3 _ニトロフ ェニル基等の置換もしくは無置換のァリール基、メトキシ基、 n—ブトキシ基、 t—ブト キシ基、トリクロロメトキシ基、トリフルォロエトキシ基、ペンタフルォロプロポキシ基、 2 , 2, 3, 3—テトラフノレ才ロプロポキシ基、 1 , 1 , 1, 3, 3, 3—へキサフノレ才ロー 2—プ 口ポキシ基、 6—(パーフルォロェチル)へキシルォキシ基等の置換もしくは無置換の アルコキシ基、フエノキシ基、 p—ニトロフエノキシ基、 p_t_ブチルフエノキシ基、 3 _ フルオロフエノキシ基、ペンタフルオロフヱニル基、 3 _トリフルォロメチルフエノキシ基 等の置換もしくは無置換のァリールォキシ基、メチルチオ基、ェチルチオ基、 t—プチ ルチオ基、へキシルチオ基、ォクチルチオ基、トリフルォロメチルチオ基等の置換もし くは無置換のアルキルチオ基、フエ二ルチオ基、 p—ニトロフエ二ルチオ基、 p_t—ブ チルフヱ二ルチオ基、 3 _フルオロフヱ二ルチオ基、ペンタフルオロフヱ二ルチオ基、 3 _トリフルォロメチルフヱ二ルチオ基等の置換もしくは無置換のァリールチオ基、シ ァノ基、ニトロ基、アミノ基、メチルァミノ基、ジメチルァミノ基、ェチルァミノ基、ジェチ ノレアミノ基、ジプロピルアミノ基、ジブチルァミノ基、ジフエニルァミノ基等のモノまたは ジ置換アミノ基、ビス(ァセトキシメチル)アミノ基、ビス(ァセトキシェチル)アミノ基、ビ スァセトキシプロピル)アミノ基、ビス(ァセトキシブチル)アミノ基等のアシノレアミノ基、 水酸基、シロキシ基、ァシル基、メチルカルバモイル基、ジメチルカルバモイル基、ェ チルカルバモイル基、ジェチルカルバモイル基、プロイビルカルバモイル基、ブチル 力ルバモイル基、フエ二ルカルバモイル基等の力ルバモイル基、カルボン酸基、スル フォン酸基、イミド基、シクロペンタン基、シクロへキシル基等のシクロアルキル基、フ ェニル基、ナフチル基、ビフエ二ル基、アントラニル基、フエナントリル基、フルォレニ ル基、ピレニル基等のァリール基、ピリジニル基、ビラジニル基、ピリミジニル基、ピリ ダジニル基、トリアジニル基、インドリニル基、キノリニル基、アタリジニル基、ピロリジニ ル基、ジォキサニル基、ピペリジニル基、モルフオリジニル基、ピペラジニル基、トリア チュル基、カルバゾリル基、フラニル基、チオフェニル基、ォキサゾリル基、ォキサジ ァゾリル基、ベンゾォキサゾリル基、チアゾリル基、チアジアゾリル基、ベンゾチアゾリ ル基、トリァゾリル基、イミダゾリル基、ベンゾイミダゾリル基、プラニル基等の複素環基 等がある。また、以上の置換基同士が結合してさらなる 6員ァリール環もしくは複素環 を形成しても良い。
本発明の有機 EL素子の好ましい形態に、電子を輸送する領域または陰極と有機 層の界面領域に、還元性ドーパントを含有する素子がある。ここで、還元性ドーパント とは、電子輸送性化合物を還元ができる物質と定義される。したがって、一定の還元 性を有するものであれば、様々なものが用いられ、例えば、アルカリ金属、アルカリ土 類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アル力 リ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物また は希土類金属のハロゲンィ匕物、アルカリ金属の有機錯体、アルカリ土類金属の有機 錯体、希土類金属の有機錯体からなる群から選択される少なくとも一つの物質を好 適に使用することができる。
また、より具体的に、好ましい還元性ドーパントとしては、 Na (仕事関数: 2. 36eV) 、K (仕事関数: 2. 28eV)、Rb (仕事関数: 2. 16eV)および Cs (仕事関数: 1. 95eV )からなる群から選択される少なくとも一つのアルカリ金属や、 Ca (仕事関数: 2. 9eV )、 Sr (仕事関数: 2. 0〜2. 5eV)、および Ba (仕事関数: 2. 52eV)力、らなる群から 選択される少なくとも一つのアルカリ土類金属が挙げられる仕事関数が 2. 9eV以下 のものが特に好ましい。これらのうち、より好ましい還元性ドーパントは、 K、 Rbおよび Csからなる群から選択される少なくとも一つのアルカリ金属であり、さらに好ましくは、 Rbまたは Csであり、最も好ましいのは、 Csである。これらのアルカリ金属は、特に還 元能力が高ぐ電子注入域への比較的少量の添加により、有機 EL素子における発 光輝度の向上や長寿命化が図られる。また、仕事関数が 2. 9eV以下の還元性ドー パントとして、これら 2種以上のアルカリ金属の組合せも好ましぐ特に、 Csを含んだ 組み合わせ、例えば、 Csと Na、 Csと K、 Csと Rbあるいは Csと Naと Κとの組み合わせ であることが好ましい。 Csを組み合わせて含むことにより、還元能力を効率的に発揮 することができ、電子注入域への添加により、有機 EL素子における発光輝度の向上 や長寿命化が図られる。
本発明においては陰極と有機層の間に絶縁体や半導体で構成される電子注入層 をさらに設けても良レ、。この時、電流のリークを有効に防止して、電子注入性を向上さ せること力 Sできる。このような絶縁体としては、アルカリ金属カルコゲナイド、アルカリ土 類金属カルコゲナイド、アルカリ金属のハロゲン化物およびアルカリ土類金属のハロ ゲンィ匕物からなる群から選択される少なくとも一つの金属化合物を使用するのが好ま しい。電子注入層がこれらのアルカリ金属カルコゲナイド等で構成されていれば、電 子注入性をさらに向上させることができる点で好ましい。具体的に、好ましいアルカリ 金属カルコゲナイドとしては、例えば、 Li〇、 K 0、 Na S、 Na Seおよび Na Oが挙 げられ、好ましいアルカリ土類金属カルコゲナイドとしては、例えば、 Ca〇、 Ba〇、 Sr 0、 Be〇、 BaS、および CaSeが挙げられる。また、好ましいアルカリ金属のハロゲン 化物としては、例えば、 LiF、 NaF、 KF、 LiCl、 KC1および NaCl等が挙げられる。ま た、好ましいアルカリ土類金属のハロゲン化物としては、例えば、 CaF、 BaF、 SrF
、 MgFおよび BeFといったフッ化物や、フッ化物以外のハロゲン化物が挙げられる また、電子輸送層を構成する半導体としては、 Ba、 Ca、 Sr、 Yb、 Al、 Ga、 In、 Li、 Na、 Cd、 Mg、 Si、 Ta、 Sbおよび Znの少なくとも一つの元素を含む酸化物、窒化物 または酸化窒化物等の一種単独または二種以上の組み合わせが挙げられる。また、 電子輸送層を構成する無機化合物が、微結晶または非晶質の絶縁性薄膜であるこ とが好ましい。電子輸送層がこれらの絶縁性薄膜で構成されていれば、より均質な薄 膜が形成されるために、ダークスポット等の画素欠陥を減少させることができる。なお 、このような無機化合物としては、上述したアルカリ金属カルコゲナイド、アルカリ土類 金属カルコゲナイド、アルカリ金属のハロゲン化物およびアルカリ土類金属のハロゲ ン化物等が挙げられる。
(7)陰極
陰極としては、電子注入'輸送層又は発光層に電子を注入するため、仕事関数の 小さい(4eV以下)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質 とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム •カリウム合金、マグネシウム、リチウム、マグネシウム '銀合金、アルミニウム/酸化ァ ノレミニゥム、アルミニウム 'リチウム合金、インジウム、希土類金属などが挙げられる。 この陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成さ せることにより、作製することができる。
ここで発光層からの発光を陰極から取り出す場合、陰極の発光に対する透過率は 1 0°/oより大きくすることが好ましい。 また、陰極としてのシート抵抗は数百 Ω /口以下が好ましぐ膜厚は通常 10nm 1 /i m、好ましくは 50 200 である。
[0069] (8)絶縁層
有機 EL素子は超薄膜に電界を印可するために、リークやショートによる画素欠陥 が生じやすい。これを防止するために、一対の電極間に絶縁性の薄膜層を揷入する ことが好ましい。
絶縁層に用いられる材料としては例えば酸化アルミニウム、弗化リチウム、酸化リチ ゥム、弗化セシウム、酸化セシウム、酸化マグネシウム、弗化マグネシウム、酸化カル シゥム、弗化カルシウム、窒化アルミニウム、酸化チタン、酸化珪素、酸化ゲルマニウ ム、窒化珪素、窒化ホウ素、酸化モリブデン、酸化ルテニウム、酸化バナジウム等が 挙げられ、これらの混合物や積層物を用いてもよい。
[0070] (9)有機 EL素子の製造方法
以上例示した材料及び形成方法により陽極、発光層、必要に応じて正孔注入 '輸 送層、及び必要に応じて電子注入 ·輸送層を形成し、さらに陰極を形成することによ り有機 EL素子を作製することができる。また陰極から陽極へ、前記と逆の順序で有 機 EL素子を作製することもできる。
以下、透光性基板上に陽極/正孔注入層/発光層/電子注入層/陰極が順次 設けられた構成の有機 EL素子の作製例を記載する。
まず、適当な透光性基板上に陽極材料力 なる薄膜を 1 μ m以下、好ましくは 10 200nmの範囲の膜厚になるように蒸着やスパッタリング等の方法により形成して陽極 を作製する。次に、この陽極上に正孔注入層を設ける。正孔注入層の形成は、前述 したように真空蒸着法、スピンコート法、キャスト法、 LB法等の方法により行うことがで きる力 均質な膜が得られやすぐかつピンホールが発生しにくい等の点から真空蒸 着法により形成することが好ましい。真空蒸着法により正孔注入層を形成する場合、 その蒸着条件は使用する化合物(正孔注入層の材料)、 目的とする正孔注入層の結 晶構造や再結合構造等により異なるが、一般に蒸着源温度 50 450°C、真空度 10— 7〜: 10— 3Torr、蒸着速度 0. 01 50nmZ秒、基板温度— 50 300°C、膜厚 5nm 5 μ mの範囲で適宜選択することが好ましい。 [0071] 次に、正孔注入層上に発光層を設ける発光層の形成も、所望の有機発光材料を 用いて真空蒸着法、スパッタリング、スピンコート法、キャスト法等の方法により有機発 光材料を薄膜ィ匕することにより形成できるが、均質な膜が得られやすぐかつピンホ ールが発生しにくい等の点力 真空蒸着法により形成することが好ましい。真空蒸着 法により発光層を形成する場合、その蒸着条件は使用する化合物により異なるが、 一般的に正孔注入層と同じような条件範囲の中力 選択することができる。
次に、この発光層上に電子注入層を設ける。正孔注入層、発光層と同様、均質な 膜を得る必要力 真空蒸着法により形成することが好ましレ、。蒸着条件は正孔注入 層、発光層と同様の条件範囲から選択することができる。
本発明の芳香族ァミン誘導体は、発光帯域ゃ正孔輸送帯域のいずれの層に含有 させるかによつて異なるが、真空蒸着法を用いる場合は他の材料との共蒸着をするこ とができる。また、スピンコート法を用いる場合は、他の材料と混合することによって含 有させることができる。
最後に陰極を積層して有機 EL素子を得ることができる。
陰極は金属から構成されるもので、蒸着法、スパッタリングを用いることができる。し 力 下地の有機物層を製膜時の損傷から守るためには真空蒸着法が好ましい。 この有機 EL素子の作製は一回の真空引きで一貫して陽極から陰極まで作製する ことが好ましい。
[0072] 本発明の有機 EL素子の各層の形成方法は特に限定されない。従来公知の真空 蒸着法、スピンコーティング法等による形成方法を用いることができる。本発明の有 機 EL素子に用いる、前記一般式(1)で示される化合物を含有する有機薄膜層は、 真空蒸着法、分子線蒸着法 (MBE法)あるいは溶媒に解力 た溶液のデイツビング 法、スピンコーティング法、キャスティング法、バーコート法、ロールコート法等の塗布 法による公知の方法で形成することができる。
本発明の有機 EL素子の各有機層の膜厚は特に制限されないが、一般に膜厚が薄 すぎるとピンホール等の欠陥が生じやすぐ逆に厚すぎると高い印加電圧が必要とな り効率が悪くなるため、通常は数 nmから l x mの範囲が好ましい。
なお、有機 EL素子に直流電圧を印加する場合、陽極を +、陰極を—の極性にして 、 5〜40Vの電圧を印加すると発光が観測できる。また、逆の極性で電圧を印加して も電流は流れず、発光は全く生じない。さらに交流電圧を印加した場合には陽極が +、陰極が一の極性になった時のみ均一な発光が観測される。印加する交流の波形 は任意でよい。
実施例
以下、本発明を合成例及び実施例に基づいてさらに詳細に説明する。
合成例 1 (中間体 1の合成)
アルゴン気流下、三つ口フラスコにフエニルボロン酸を 81 · 9g、ジブ口モナフタレン を 200g、テトラキス(トリフエニルホスフィン)パラジウム(Pd (PPh ) )を 16. 2g、 2M
3 4
の Na CO溶液を 1050ml、ジメトキシェタンを 3· 4L、トルエン 3L入れた後、 8時間
2 3
還流した。反応液をトルエン/水で抽出し、無水硫酸ナトリウムで乾燥した。
これを減圧下で濃縮し、得られた粗生成物をカラム精製することで 70gの白色粉末 として下記中間体 1を得た。 FD-MS (フィールドディソープシヨンマススペクトル)の 分析により、 C H Br= 283に対し、 m/z = 282と 284に主ピーク力 S得られたので、
16 11
下記中間体 1と同定した。
[化 29]
Figure imgf000044_0001
中間体 1
合成例 2 (中間体 2の合成)
合成例 1において、フエニルボロン酸を 81. 9gの代わりに 4—ビフエニルボロン酸を 138. 5g用いた以外は同様に反応を行ったところ、 90gの白色粉末として下記中間 体 2を得た。 FD— MSの分析により、 C H Br = 359に対し、 m/z = 358と 360に
22 15
主ピークが得られたので、下記中間体 2と同定した。
[化 30]
Figure imgf000045_0001
中間体 2
[0075] 合成例 3 (中間体 3の合成)
アルゴン気流下、 500mlの三つ口フラスコに 1 _ナフチルボロン酸(アルドリッチ社 製)を 9. 7g、 4—ョードブロムベンゼンを 13. 3g、テトラキス(トリフエニルホスフィン) パラジウム(Pd (PPh ) )を 1. 9g、 2Mの Na CO溶液を 50ml、ジメトキシェタンを 80
3 4 2 3
ml入れた後、 8時間還流した。反応液をトルエン/水で抽出し、無水硫酸ナトリウム で乾燥した。これを減圧下で濃縮し、得られた粗生成物をカラム精製することで 8. 8g の白色粉末として下記中間体 3を得た。 FD— MSの分析により、 C H Br= 283に
16 11
対し、 m/z = 282と 284の主ピークが得られたので、下記中間体 3と同定した。
[化 31]
Figure imgf000045_0002
中間体 3
[0076] 合成例 4 (中間体 4の合成)
合成例 22において、 1 _ナフチルボロン酸を 9. 7gの代わりに 2_ナフチルボロン 酸 (アルドリッチ社製)を 9. 7g用いた以外は同様に反応を行ったところ、 7. 6gの白 色粉末として下記中間体 4を得た。 FD— MSの分析により、 C H Br = 283に対し、
16 11
m/z = 284の主ピークが得られたので、下記中間体 4と同定した。
[化 32]
Figure imgf000046_0001
合成例 5 (中間体 5の合成)
アルゴン気流下、 300mlの三つ口フラスコに 1—ァミノ一 4—ブロモナフタレンを 25 • 0g、フエ二ノレボロン酸を 16. 5g、トリス(ジベンジリデンアセトン)ジノヽ。ラジウム(0) 1. 04g (アルドリッチ社製)、フツイ匕カリウム 19. 7g、トリ一 t—ブチルホスフィン 593mg及 び脱水テトラヒドロフラン 100mlを入れ、 80°Cにて 8時間反応した。
冷却後、水 500mlをカ卩え、混合物をセライト濾過し、濾液をトルエンで抽出し、無水 硫酸マグネシウムで乾燥させた。これを減圧下で濃縮し、得られた粗生成物をカラム 精製し、トルエンで再結晶し、それを濾取した後、乾燥したところ、 13. 2gの淡黄色 粉末を得た。 FD— MSの分析により、 C H N = 219に対し、 m/z = 219の主ピー
16 13
クが得られたので、下記中間体 5と同定した。
[化 33]
Figure imgf000046_0002
中間体 5
合成例 6 (中間体 6の合成)
アルゴン気流下、中間体 5を 21 · 9g、 4ーブロモビフエニルを 23· 4g、t—ブトキシ ナトリウム 13. 4g (広島和光社製)、トリス (ジベンジリデンアセトン)ジパラジウム(0) 0 • 92g (アルドリッチ社製)、トリー t—ブチルホスフィン 400mg及び脱水トルエン 300 mlを入れ、 80°Cにて 8時間反応した。
冷却後、水 500mlをカ卩え、混合物をセライト濾過し、濾液をトルエンで抽出し、無水 硫酸マグネシウムで乾燥させた。これを減圧下で濃縮し、得られた粗生成物をカラム 精製し、トルエンで再結晶し、それを濾取した後、乾燥したところ、 21. 2gの淡黄色 粉末を得た。 FD— MSの分析により、 C H N = 371に対し、 m/z = 371の主ピー クが得られたので、下記中間体 6と同定した。
[化 34]
Figure imgf000047_0001
中間体 6
中間体 6
合成例 7 (中間体 7の合成)
合成例 6において、 4ーブロモビフエニルを 23· 4gの代わりに中間体 3を 28. 2g用 いた以外は同様に反応を行ったところ、 28. 5gの白色粉末として下記中間体 7を得 た。 FD— MSの分析により、 C H N = 421に対し、 m/z =421の主ピークが得ら れたので、下記中間体 7と同定した。
[化 35]
Figure imgf000047_0002
中間体 7 合成例 8 (中間体 8の合成)
合成例 6において、 4ーブロモビフエニルを 23· 4gの代わりに中間体 4を 28. 2g用 いた以外は同様に反応を行ったところ、 23. lgの白黄色粉末として下記中間体 8を 得た。 FD— MSの分析により、 C H N
られたので、下記中間体 8と同定した。
[化 36]
Figure imgf000048_0001
中間体 8
合成例 9 (中間体 9の合成)
合成例 6において、 4—ブロモビフエニルを 23. 4gの代わりに 4_ブロモベンゼンを 15. 7g用いた以外は同様に反応を行ったところ、 21. lgの白色粉末として下記中間 体 9を得た。 FD— MSの分析により、 C H N = 295に対し、 mZz = 295の主ピーク が得られたので、下記中間体 9と同定した。
[化 37]
Figure imgf000048_0002
中間体 9 合成実施例 1 (化合物 HIの合成)
アルゴン気流下、 N, N,ージフエニルベンジジンを 16. 7g、中間体 1を 28. 2g、 t —ブトキシナトリウム 13. 4g (広島和光社製)、トリス(ジベンジリデンアセトン)ジパラジ ゥム(0) 0· 92g (ァノレドリツチ社製)、トリ一 t—ブチルホスフィン 400mg及び脱水トノレ ェン 300mlを入れ、 80°Cにて 8時間反応した。 冷却後、水 500mlをカ卩え、混合物をセライト濾過し、濾液をトルエンで抽出し、無水 硫酸マグネシウムで乾燥させた。これを減圧下で濃縮し、得られた粗生成物をカラム 精製し、トルエンで再結晶し、それを濾取した後、乾燥したところ、 26. 7gの淡黄色 粉末を得た。 FD— MSの分析により、 C H N = 740に対し、 m/z = 740の主ピー クが得られたので、下記化合物 HIと同定した。
[化 38]
Figure imgf000049_0001
化合物 H 1 合成実施例 2 (化合物 H2の合成)
合成実施例 1において、中間体 1の代わりに中間体 2を 35. 8g用いた以外は同様 に反応を行ったところ、 31. 4gの淡黄色粉末を得た。 FD— MSの分析により、 C H
N = 892に対し、 m/z = 892の主ピークが得られたので、下記化合物 H2と同定し た。
[化 39]
Figure imgf000049_0002
化合物 H 2
合成実施例 3 (化合物 H3の合成)
アルゴン気流下、 4— 4,—ジョードビフエニルを 20· 3g、中間体 6を 37· lg、 t—ブ トキシナトリウム 13. 4g (広島和光社製)、トリス(ジベンジリデンアセトン)ジパラジウム (0) 0. 92g (ァノレドリツチ社製)、トリ— _ブチルホスフィン 400mg及び脱水トルエン 300mlを入れ、 80。Cにて 8時間反応した。 冷却後、水 500mlをカ卩え、混合物をセライト濾過し、濾液をトルエンで抽出し、無水 硫酸マグネシウムで乾燥させた。これを減圧下で濃縮し、得られた粗生成物をカラム 精製し、トルエンで再結晶し、それを濾取した後、乾燥したところ、 22. 9gの淡黄色 粉末を得た。 FD— MSの分析により、 C H N =892に対し、 m/z = 892の主ピー クが得られたので、下記化合物 H3と同定した。
[化 40]
Figure imgf000050_0001
化合物 H 3 合成実施例 4 (化合物 H4の合成)
合成実施例 3において、中間体 6の代わりに中間体 7を 42. lg用いた以外は同様 に反応を行ったところ、 30. 4gの淡黄色粉末を得た。 FD— MSの分析により、 C H
N = 992に対し、 m/z = 992の主ピークが得られたので、下記化合物 H4と同定し た。
[化 41]
Figure imgf000050_0002
化合物 H 4
合成実施例 5 (化合物 H5の合成)
合成実施例 3において、中間体 6の代わりに中間体 8を 42. lg用いた以外は同様 に反応を行ったところ、 38. 9gの淡黄色粉末を得た。 FD— MSの分析により、 C H
N = 992に対し、 m/z = 992の主ピークが得られたので、下記化合物 H5と同定し た。 [化 42]
Figure imgf000051_0001
化合物 H 5 合成実施例 6 (化合物 H6の合成)
合成実施例 3において、 4—4'ージョードビフエニルを 20. 3gの代わりに 4— 4" ジョウドー p—テルフエニルを 24. lg、中間体 6の代わりに中間体 9を 29· 5g用いた 以外は同様に反応を行ったところ、 38. 9gの淡黄色粉末を得た。 FD— MSの分析 により、 C H N =816に対し、 m/z = 816の主ピークが得られたので、下記化合 物 H6と同定した。
[化 43]
Figure imgf000051_0002
化合物 H 6
実施例 1 (有機 EL素子の製造)
25mm X 75mm X l . 1mm厚の IT〇透明電極付きガラス基板(ジォマティック社製 )をイソプロピルアルコール中で超音波洗浄を 5分間行なった後、 UVオゾン洗浄を 3 0分間行なった。
洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し 、まず透明電極ラインが形成されている側の面上に前記透明電極を覆うようにして膜 厚 60nmの下記化合物 Η232を成膜した。この H232膜は、正孔注入層として機能 する。この H232膜上に正孔輸送材料として膜厚 20nmの上記化合物 HI層を成膜 した。この膜は正孔輸送層として機能する。さらに膜厚 40nmの下記化合物 EM1を 蒸着し成膜した。同時に発光分子として、下記のスチリル基を有するァミン化合物 D1 を、 EM1と D1の重量比が 40 : 2になるように蒸着した。この膜は、発光層として機能 する。
この膜上に膜厚 lOnmの下記 Alq膜を成膜した。これは、電子注入層として機能す る。この後、還元性ドーパントである Li (Li源:サエスゲッタ一社製)と Alqを二元蒸着 させ、電子注入層(陰極)として Alq: Li膜 (膜厚 lOnm)を形成した。この Alq: Li膜上 に金属 A1を蒸着させ金属陰極を形成し有機 EL素子を形成した。
また、得られた有機 EL素子について、発光効率を測定し、発光色を観察した。発 光効率はミノルタ製 CS 1000を用レ、て輝度を測定し、電流密度 1 OmA/cm2におけ る発光効率を算出した。さらに、初期輝度 5000nit、室温、 DC定電流駆動での発光 の半減寿命を測定した結果を表 1に示す。
[化 44]
Figure imgf000052_0001
D 1 A 1 q
[0089] 実施例 2〜6 (有機 EL素子の製造)
実施例 1におレ、て、正孔輸送材料として化合物 HIの代わりに表 1に記載の化合物 を用いた以外は同様にして有機 EL素子を作製した。
得られた有機 EL素子について、発光効率を測定し、発光色を観察し、さらに、初期 輝度 5000nit、室温、 DC定電流駆動での発光の半減寿命を測定した結果を表 1に 示す。
[0090] 比較例 1 実施例 1において、正孔輸送材料として化合物 HIの代わりに比較化合物 1 (比較 例 1)、を用いた以外は同様にして有機 EL素子を作製した。比較化合物 1は蒸着時 に結晶化し、正常な素子が作成できなかった。
また、得られた有機 EL素子について、発光効率を測定し、発光色を観察し、さらに 、初期輝度 5000nit、室温、 DC定電流駆動での発光の半減寿命を測定した結果を 表 1に示す。
[0091] 比較例 2 (有機 EL素子の製造)
実施例 1におレ、て、正孔輸送材料として化合物 HIの代わりに比較化合物 2を用い た以外は同様にして有機 EL素子を作製した。
得られた有機 EL素子について、発光効率を測定し、発光色を観察し、さらに、初期 輝度 5000nit、室温、 DC定電流駆動での発光の半減寿命を測定した結果を表 1に 示す。
[化 45]
Figure imgf000053_0001
比較化合物 1 比較化合物 2
Figure imgf000053_0002
比較化合物 3 比較化合物 4
[0092] [表 1] 実施例 正孔輸送材料 発光効率 発光色 半減寿命
(cd/A) (時間)
1 H1 5.1 青色 390
2 H2 5.1 青色 440
3 H3 4.9 青色 410
4 H4 5 青色 400
5 H5 5.1 青色 410
6 H6 5 青色 320 比較例 1 比較化合物 1 5.1 青色 280 比較例 2 比較化合物 2 4.9 青色 170 比較例 4 比較化合物 3 4.7 青色 110 比較例 5 比較化合物 4 4.9 青色 270 実施例 7 (有機 EL素子の製造)
実施例 1におレ、て、スチリル基を有するァミン化合物 D1の代わりに下記ァリールァ ミンィ匕合物 D2を用いた以外は同様にして有機 EL素子を作製した。 Meはメチル基。 得られた有機 EL素子について、発光効率を測定したところ 5.2cd/Aであり、発 光色は青色であった。さらに、初期輝度 5000nit、室温、 DC定電流駆動での発光の 半減寿命を測定したところ 400時間であった。
[化 46]
Figure imgf000054_0001
D 2 比較例 3 実施例 7において、正孔輸送材料として化合物 HIの代わりに上記比較化合物 1を 用いた以外は同様にして有機 EL素子を作製した。
得られた有機 EL素子について、発光効率を測定したところ 4. 9cd/Aであり、発 光色は青色であった。さらに、初期輝度 5000nit、室温、 DC定電流駆動での発光の 半減寿命を測定したところ 260時間であった。
[0095] 比較例 4及び 5
実施例 1において、正孔輸送材料として化合物 HIの代わりにそれぞれ上記比較化 合物 3及び 4を用いた以外は同様にして有機 EL素子を作製した。
得られた有機 EL素子について、発光効率を測定し、発光色を観察し、さらに、初期 輝度 5000nit、室温、 DC定電流駆動での発光の半減寿命を測定した結果を表 1に 示す。
産業上の利用可能性
[0096] 以上詳細に説明したように、本発明の芳香族ァミン誘導体は、立体障害性があるた め分子間の相互作用が小さいことから、結晶化が抑制され、有機 EL素子を製造する 歩留を向上させ、さらには、低い昇華温度で蒸着できるため、蒸着時の分子の分解 が抑制され、長寿命の有機 EL素子が得られる。

Claims

請求の範囲 下記一般式(1)で表される芳香族ァミン誘導体。
[化 1]
Figure imgf000056_0001
[式中、 Rは、置換もしくは無置換の核原子数 5〜50のァリール基、置換もしくは無
1
置換の炭素数 1〜50のアルキル基、置換もしくは無置換の炭素数 1〜50のアルコキ シ基、置換もしくは無置換の炭素数 6〜50のァラルキル基、置換もしくは無置換の核 原子数 5〜50のァリールォキシ基、置換もしくは無置換の核原子数 5〜50のァリー ルチオ基、置換もしくは無置換の炭素数 2〜50のアルコキシカルボニル基、置換もし くは無置換の核原子数 5〜50のァリール基で置換されたァミノ基、ハロゲン基、シァ ノ基、ニトロ基、ヒドロキシル基、又はカルボキシル基である。
aは 0〜4の整数であり、 aが 2以上のとき複数の Rは、互いに結合して、飽和もしく
1
は不飽和の置換されてもよい 5員環又は 6員環の環状構造を形成してもよい。
bは 1〜3の整数であり、 aが 1以上でかつ bが 2以上のとき複数の Rは、互いに結合
1
して、飽和もしくは不飽和の置換されてもよい 5員環又は 6員環の環状構造を形成し てもよい。
Ar〜Arのうち少なくとも 1つは下記一般式(2)の基である。
1 4
[化 2] Ar5 Ar6 ( 2 )
{式中、 Arは置換もしくは無置換の核炭素数 10〜20の縮合芳香族環基である。 Ar
5 e は置換もしくは無置換の核炭素数 6〜50のァリール基又は置換もしくは無置換の核 炭素数 5〜50の芳香族複素環基である。 }
一般式(1)において、 Ar〜Arのうち一般式(2)の基でないものは、それぞれ独立
1 4
に、置換もしくは無置換の核炭素数 6〜50のァリール基又は置換もしくは無置換の 核炭素数 5〜50の芳香族複素環基である。 ]
[2] 前記一般式(1)において Arと Arが前記一般式(2)の基である請求項 1に記載の
1 2
芳香族ァミン誘導体。
[3] 前記一般式(1)において Arと Arが前記一般式(2)の基である請求項 1に記載の
1 3
芳香族ァミン誘導体。
[4] 前記一般式(1)におレ、て Arが前記一般式(2)の基である請求項 1に記載の芳香
1
族ァミン誘導体。
[5] 前記一般式(1)において bが 2である請求項 1に記載の芳香族ァミン誘導体。
[6] 前記一般式(2)において Arがナフタレン、フエナントレン、又はピレンの 2価の残
5
基である請求項 1に記載の芳香族ァミン誘導体。
[7] 前記一般式(2)におレ、て Arが下記一般式(3)の基である請求項 1に記載の芳香
5
族ァミン誘導体。
[化 3]
Figure imgf000057_0001
[式中、 Rは前記一般式(1)における Rと同じ基の中から選ばれる。 cは 0〜6の整数
2 1
である。 ]
[8] 前記一般式(2)において Arがフエ二ル基、ビフヱニル基、ナフチル基である請求
6
項 1に記載の芳香族ァミン誘導体。
[9] 前記一般式(1)において Arが下記一般式 (4)の基である請求項 1に記載の芳香
2
族ァミン誘導体。
[化 4]
( 4 )
Figure imgf000057_0002
[式中、 Rは前記一般式(1)における Rと同じ基の中から選ばれる。
3 1
dは 0〜4の整数であり、 dが 2以上のとき複数の Rは互いに結合して飽和もしくは不
3
飽和の置換されてもよい 5員環又は 6員環の環状構造を形成してもよレ、。
eは:!〜 3の整数であり、 dが 1以上でかつ eが 2以上のとき複数の Rは互いに結合し
3
て飽和もしくは不飽和の置換されてもよい 5員環又は 6員環の環状構造を形成しても よい。
Ar及び Arは、一般式(2)の基又は、それぞれ独立に、置換もしくは無置換の核
7 8
炭素数 6〜50のァリール基又は置換もしくは無置換の核炭素数 5〜50の芳香族複 素環基である。 ]
[10] 前記一般式(1)において Ar及び Ar力 それぞれ独立に、前記一般式 (4)の基で
2 4
ある請求項 1に記載の芳香族ァミン誘導体。
[11] 有機エレクト口ルミネッセンス素子用材料である請求項 1〜: 10のいずれかに記載の 芳香族ァミン化合物。
[12] 有機エレクト口ルミネッセンス素子用正孔輸送材料である請求項 1〜: 10のいずれか に記載の芳香族ァミン化合物。
[13] 陰極と陽極間に少なくとも発光層を含む一層又は複数層力 なる有機薄膜層が挟 持されている有機エレクト口ルミネッセンス素子において、該有機薄膜層の少なくとも
1層が、請求項 1〜: 10のいずれかに記載の芳香族ァミン誘導体を単独もしくは混合 物の成分として含有する有機エレクト口ルミネッセンス素子。
[14] 請求項 1〜: 10のいずれかに記載の芳香族ァミン誘導体が正孔輸送層に含有され てレ、る有機エレクト口ルミネッセンス素子。
[15] 有機薄膜層が正孔輸送層と、電子輸送層もしくは電子注入層を有し、該正孔輸送 層に前記芳香族ァミン誘導体が含有され、該電子輸送層もしくは電子注入層に含窒 素複素環化合物が含有されている請求項 13に記載の有機エレクト口ルミネッセンス 素子。
[16] 青色系発光する請求項 13に記載の有機エレクト口ルミネッセンス素子。
[17] 発光層にスチリルァミン及び Z又はァリールアミンを含有する請求項 16に記載の有 機エレクト口ルミネッセンス素子。
PCT/JP2007/053748 2006-03-07 2007-02-28 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子 WO2007102361A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/282,070 US20090066239A1 (en) 2006-03-07 2007-02-28 Aromatic amine derivative and organic electroluminescent device using same
JP2008503792A JPWO2007102361A1 (ja) 2006-03-07 2007-02-28 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
EP07737502A EP1997799A1 (en) 2006-03-07 2007-02-28 Aromatic amine derivative and organic electroluminescent device using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-061313 2006-03-07
JP2006061313 2006-03-07

Publications (1)

Publication Number Publication Date
WO2007102361A1 true WO2007102361A1 (ja) 2007-09-13

Family

ID=38474794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053748 WO2007102361A1 (ja) 2006-03-07 2007-02-28 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子

Country Status (7)

Country Link
US (1) US20090066239A1 (ja)
EP (1) EP1997799A1 (ja)
JP (1) JPWO2007102361A1 (ja)
KR (1) KR20080104293A (ja)
CN (1) CN101395126A (ja)
TW (1) TW200744991A (ja)
WO (1) WO2007102361A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010044130A1 (ja) * 2008-10-17 2010-04-22 三井化学株式会社 芳香族アミン誘導体、及びそれらを用いた有機エレクトロルミネッセンス素子

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8623522B2 (en) 2006-04-26 2014-01-07 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and electroluminescence device using the same
US20090145972A1 (en) * 2007-12-11 2009-06-11 James Douglas Evans Biometric authorization transaction
US8694793B2 (en) * 2007-12-11 2014-04-08 Visa U.S.A. Inc. Biometric access control transactions
TWI526418B (zh) * 2011-03-01 2016-03-21 諾瓦發光二極體股份公司 有機半導體材料及有機組成物
WO2013039073A1 (ja) * 2011-09-15 2013-03-21 出光興産株式会社 芳香族アミン誘導体およびそれを用いた有機エレクトロルミネッセンス素子
US9929361B2 (en) 2015-02-16 2018-03-27 Universal Display Corporation Organic electroluminescent materials and devices
US11056657B2 (en) 2015-02-27 2021-07-06 University Display Corporation Organic electroluminescent materials and devices
US9859510B2 (en) 2015-05-15 2018-01-02 Universal Display Corporation Organic electroluminescent materials and devices
US10418568B2 (en) 2015-06-01 2019-09-17 Universal Display Corporation Organic electroluminescent materials and devices
US11127905B2 (en) 2015-07-29 2021-09-21 Universal Display Corporation Organic electroluminescent materials and devices
US10361381B2 (en) 2015-09-03 2019-07-23 Universal Display Corporation Organic electroluminescent materials and devices
US20170229663A1 (en) 2016-02-09 2017-08-10 Universal Display Corporation Organic electroluminescent materials and devices
US10236456B2 (en) 2016-04-11 2019-03-19 Universal Display Corporation Organic electroluminescent materials and devices
US10672997B2 (en) 2016-06-20 2020-06-02 Universal Display Corporation Organic electroluminescent materials and devices
US11482683B2 (en) 2016-06-20 2022-10-25 Universal Display Corporation Organic electroluminescent materials and devices
US10862054B2 (en) 2016-06-20 2020-12-08 Universal Display Corporation Organic electroluminescent materials and devices
US10608186B2 (en) 2016-09-14 2020-03-31 Universal Display Corporation Organic electroluminescent materials and devices
US10680187B2 (en) 2016-09-23 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US11196010B2 (en) 2016-10-03 2021-12-07 Universal Display Corporation Organic electroluminescent materials and devices
US11011709B2 (en) 2016-10-07 2021-05-18 Universal Display Corporation Organic electroluminescent materials and devices
US20180130956A1 (en) 2016-11-09 2018-05-10 Universal Display Corporation Organic electroluminescent materials and devices
US10680188B2 (en) 2016-11-11 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US11780865B2 (en) 2017-01-09 2023-10-10 Universal Display Corporation Organic electroluminescent materials and devices
JP2020518107A (ja) 2017-04-26 2020-06-18 オーティーアイ ルミオニクス インコーポレーテッドOti Lumionics Inc. 表面上のコーティングをパターン化する方法およびパターン化されたコーティングを含むデバイス
US11744142B2 (en) 2017-08-10 2023-08-29 Universal Display Corporation Organic electroluminescent materials and devices
US20190161504A1 (en) 2017-11-28 2019-05-30 University Of Southern California Carbene compounds and organic electroluminescent devices
EP3492480B1 (en) 2017-11-29 2021-10-20 Universal Display Corporation Organic electroluminescent materials and devices
US11937503B2 (en) 2017-11-30 2024-03-19 Universal Display Corporation Organic electroluminescent materials and devices
CN111278892B (zh) * 2017-12-28 2023-11-28 广州华睿光电材料有限公司 含酰胺键基团的聚合物、混合物、组合物及其应用
US11751415B2 (en) 2018-02-02 2023-09-05 Oti Lumionics Inc. Materials for forming a nucleation-inhibiting coating and devices incorporating same
CN108929234B (zh) * 2018-07-05 2021-12-14 长春海谱润斯科技股份有限公司 一种芳香胺类衍生物及其有机电致发光器件
KR20200050407A (ko) * 2018-11-01 2020-05-11 주식회사 동진쎄미켐 신규한 캡핑층용 화합물 및 이를 포함하는 유기 발광 소자
JP7390739B2 (ja) 2019-03-07 2023-12-04 オーティーアイ ルミオニクス インコーポレーテッド 核生成抑制コーティングを形成するための材料およびそれを組み込んだデバイス
JP7555600B2 (ja) 2019-04-18 2024-09-25 オーティーアイ ルミオニクス インコーポレーテッド 核生成抑制コーティングを形成するための材料およびそれを組み込んだデバイス
KR20220017918A (ko) 2019-05-08 2022-02-14 오티아이 루미오닉스 인크. 핵 생성 억제 코팅 형성용 물질 및 이를 포함하는 디바이스
CN113461548B (zh) * 2020-03-31 2023-12-12 江苏三月科技股份有限公司 一种芳香族胺类衍生物及其应用
JP2023553379A (ja) 2020-12-07 2023-12-21 オーティーアイ ルミオニクス インコーポレーテッド 核形成抑制被膜及び下地金属被膜を用いた導電性堆積層のパターニング

Citations (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1110518B (de) 1959-04-09 1961-07-06 Kalle Ag Material fuer die elektrophotographische Bilderzeugung
US3112197A (en) 1956-06-27 1963-11-26 Azoplate Corp Electrophotographic member
US3180729A (en) 1956-12-22 1965-04-27 Azoplate Corp Material for electrophotographic reproduction
US3180703A (en) 1963-01-15 1965-04-27 Kerr Mc Gee Oil Ind Inc Recovery process
US3189447A (en) 1956-06-04 1965-06-15 Azoplate Corp Electrophotographic material and method
US3240597A (en) 1961-08-21 1966-03-15 Eastman Kodak Co Photoconducting polymers for preparing electrophotographic materials
US3257203A (en) 1958-08-20 1966-06-21 Azoplate Corp Electrophotographic reproduction material
JPS45555B1 (ja) 1966-03-24 1970-01-09
US3526501A (en) 1967-02-03 1970-09-01 Eastman Kodak Co 4-diarylamino-substituted chalcone containing photoconductive compositions for use in electrophotography
US3542544A (en) 1967-04-03 1970-11-24 Eastman Kodak Co Photoconductive elements containing organic photoconductors of the triarylalkane and tetraarylmethane types
JPS463712B1 (ja) 1966-04-14 1971-01-29
US3567450A (en) 1968-02-20 1971-03-02 Eastman Kodak Co Photoconductive elements containing substituted triarylamine photoconductors
US3615402A (en) 1969-10-01 1971-10-26 Eastman Kodak Co Tetra-substituted methanes as organic photoconductors
US3615404A (en) 1968-04-25 1971-10-26 Scott Paper Co 1 3-phenylenediamine containing photoconductive materials
US3658520A (en) 1968-02-20 1972-04-25 Eastman Kodak Co Photoconductive elements containing as photoconductors triarylamines substituted by active hydrogen-containing groups
JPS4725336B1 (ja) 1969-11-26 1972-07-11
US3717462A (en) 1969-07-28 1973-02-20 Canon Kk Heat treatment of an electrophotographic photosensitive member
US3820989A (en) 1969-09-30 1974-06-28 Eastman Kodak Co Tri-substituted methanes as organic photoconductors
JPS4935702B1 (ja) 1969-06-20 1974-09-25
JPS49105537A (ja) 1973-01-15 1974-10-05
JPS5110105B2 (ja) 1972-02-09 1976-04-01
JPS5110983B2 (ja) 1971-09-10 1976-04-08
JPS5193224A (ja) 1974-12-20 1976-08-16
US4012376A (en) 1975-12-29 1977-03-15 Eastman Kodak Company Photosensitive colorant materials
JPS5327033A (en) 1976-08-23 1978-03-13 Xerox Corp Image forming member and image forming method
US4127412A (en) 1975-12-09 1978-11-28 Eastman Kodak Company Photoconductive compositions and elements
JPS5453435A (en) 1977-10-01 1979-04-26 Yoshikatsu Kume Portable bicycle equipped with foldable type triangle frame
JPS5458445A (en) 1977-09-29 1979-05-11 Xerox Corp Electrostatic photosensitive device
JPS5459143A (en) 1977-10-17 1979-05-12 Ibm Electronic photographic material
JPS5464299A (en) 1977-10-29 1979-05-23 Toshiba Corp Beam deflector for charged particles
JPS54110536A (en) 1978-02-20 1979-08-30 Ichikoh Ind Ltd Device for time-lag putting out room lamp for motorcar
JPS54110837A (en) 1978-02-17 1979-08-30 Ricoh Co Ltd Electrophotographic photoreceptor
JPS54112637A (en) 1978-02-06 1979-09-03 Ricoh Co Ltd Electrophotographic photoreceptor
JPS54119925A (en) 1978-03-10 1979-09-18 Ricoh Co Ltd Photosensitive material for electrophotography
JPS54149634A (en) 1978-05-12 1979-11-24 Xerox Corp Image forming member and method of forming image using same
US4175961A (en) 1976-12-22 1979-11-27 Eastman Kodak Company Multi-active photoconductive elements
JPS5517105A (en) 1978-07-21 1980-02-06 Konishiroku Photo Ind Co Ltd Electrophotographic photoreceptor
JPS5546760A (en) 1978-09-29 1980-04-02 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5551086A (en) 1978-09-04 1980-04-14 Copyer Co Ltd Novel pyrazoline compound, its preparation, and electrophotographic photosensitive substance comprising it
JPS5552064A (en) 1978-10-13 1980-04-16 Ricoh Co Ltd Electrophotographic receptor
JPS5552063A (en) 1978-10-13 1980-04-16 Ricoh Co Ltd Electrophotographic receptor
JPS5574546A (en) 1978-11-30 1980-06-05 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5579450A (en) 1978-12-04 1980-06-14 Xerox Corp Image formation device
JPS5585495A (en) 1978-12-18 1980-06-27 Pacific Metals Co Ltd Method of composting organic waste
JPS5588065A (en) 1978-12-12 1980-07-03 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5588064A (en) 1978-12-05 1980-07-03 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS55108667A (en) 1979-02-13 1980-08-21 Ricoh Co Ltd Electrophotographic receptor
US4232103A (en) 1979-08-27 1980-11-04 Xerox Corporation Phenyl benzotriazole stabilized photosensitive device
JPS55144250A (en) 1979-04-30 1980-11-11 Xerox Corp Image formation device
JPS55156953A (en) 1979-05-17 1980-12-06 Mitsubishi Paper Mills Ltd Organic semiconductor electrophotographic material
JPS564148A (en) 1979-06-21 1981-01-17 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5622437A (en) 1979-08-01 1981-03-03 Ricoh Co Ltd Electrophotographic receptor
JPS5636656A (en) 1979-09-03 1981-04-09 Mitsubishi Paper Mills Ltd Electrophotographic material
JPS5646234A (en) 1979-09-21 1981-04-27 Ricoh Co Ltd Electrophotographic receptor
JPS5680051A (en) 1979-12-04 1981-07-01 Ricoh Co Ltd Electrophotographic receptor
US4278746A (en) 1978-06-21 1981-07-14 Konishiroku Photo Industry Co., Ltd. Photosensitive elements for electrophotography
JPS5688141A (en) 1979-12-20 1981-07-17 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS56119132A (en) 1979-11-23 1981-09-18 Xerox Corp Image forming element
JPS5711350A (en) 1980-06-24 1982-01-21 Fuji Photo Film Co Ltd Electrophotographic receptor
JPS5745545A (en) 1980-09-03 1982-03-15 Mitsubishi Paper Mills Ltd Electrophotographic receptor
JPS5751781A (en) 1980-07-17 1982-03-26 Eastman Kodak Co Organic electroluminiscent cell and method
JPS57148749A (en) 1981-03-11 1982-09-14 Fuji Photo Film Co Ltd Electrophotographic receptor
JPS6093445A (ja) 1983-10-28 1985-05-25 Ricoh Co Ltd 電子写真用感光体
JPS6094462A (ja) 1983-10-28 1985-05-27 Ricoh Co Ltd スチルベン誘導体及びその製造法
JPS60175052A (ja) 1984-02-21 1985-09-09 Ricoh Co Ltd 電子写真用感光体
JPS60174749A (ja) 1984-02-21 1985-09-09 Ricoh Co Ltd スチリル化合物及びその製造法
JPS6114642A (ja) 1984-06-29 1986-01-22 Konishiroku Photo Ind Co Ltd 電子写真感光体
JPS6172255A (ja) 1984-09-14 1986-04-14 Konishiroku Photo Ind Co Ltd 電子写真感光体
JPS6198353A (ja) 1984-10-19 1986-05-16 ゼロツクス コーポレーシヨン 芳香族エーテル正孔移送層を含む感光装置
JPS61210363A (ja) 1985-03-15 1986-09-18 Canon Inc 電子写真感光体
JPS61228451A (ja) 1985-04-03 1986-10-11 Canon Inc 電子写真感光体
JPS61295558A (ja) 1985-06-24 1986-12-26 ゼロツクス コ−ポレ−シヨン アルコキシアミン電荷移送分子を含有する光導電性像形成部材
JPS6210652A (ja) 1985-07-08 1987-01-19 Minolta Camera Co Ltd 感光体
JPS6230255A (ja) 1985-07-31 1987-02-09 Minolta Camera Co Ltd 電子写真感光体
JPS6236674A (ja) 1985-08-05 1987-02-17 Fuji Photo Film Co Ltd 電子写真感光体
JPS6247646A (ja) 1985-08-27 1987-03-02 Konishiroku Photo Ind Co Ltd 感光体
US4720432A (en) 1987-02-11 1988-01-19 Eastman Kodak Company Electroluminescent device with organic luminescent medium
JPH01211399A (ja) 1988-02-19 1989-08-24 Toshiba Corp スキャン機能付きダイナミックシフトレジスタ
JPH02204996A (ja) 1989-02-01 1990-08-14 Nec Corp 有機薄膜el素子
US4950950A (en) 1989-05-18 1990-08-21 Eastman Kodak Company Electroluminescent device with silazane-containing luminescent zone
JPH02282263A (ja) 1988-12-09 1990-11-19 Nippon Oil Co Ltd ホール輸送材料
JPH02311591A (ja) 1989-05-25 1990-12-27 Mitsubishi Kasei Corp 有機電界発光素子
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JPH04308688A (ja) 1991-04-08 1992-10-30 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JPH08193191A (ja) 1995-01-19 1996-07-30 Idemitsu Kosan Co Ltd 有機電界発光素子及び有機薄膜
JPH11135261A (ja) 1997-10-27 1999-05-21 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子材料およびそれを使用した有機エレクトロルミネッセンス素子
JPH11149986A (ja) 1997-11-17 1999-06-02 Mitsubishi Chemical Corp 有機電界発光素子
JPH11312586A (ja) 1998-02-26 1999-11-09 Mitsubishi Chemical Corp 有機電界発光素子
JPH11312587A (ja) 1998-02-24 1999-11-09 Mitsubishi Chemical Corp 有機電界発光素子
JP2001143871A (ja) 1999-11-12 2001-05-25 Canon Inc 有機発光素子
JP2001143869A (ja) * 1998-12-25 2001-05-25 Konica Corp エレクトロルミネッセンス材料、エレクトロルミネッセンス素子及び色変換フィルター
JP2005093428A (ja) * 2003-08-14 2005-04-07 Mitsubishi Chemicals Corp 有機電界発光素子用組成物及び有機電界発光素子
JP3716096B2 (ja) 1998-04-02 2005-11-16 三菱重工業株式会社 微粉炭セパレータ装置
JP2006503443A (ja) 2002-12-11 2006-01-26 エルジー・ケム・リミテッド 低い仕事関数の陽極を有する電界発光素子
JP2006504814A (ja) * 2002-10-25 2006-02-09 コビオン オーガニック セミコンダクターズ ゲーエムベーハー アリールアミン単位を含む共役ポリマー、並びにそれらの調製及び使用
WO2006073054A1 (ja) * 2005-01-05 2006-07-13 Idemitsu Kosan Co., Ltd. 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007005227A1 (en) * 2005-06-30 2007-01-11 Eastman Kodak Company Electroluminescent devices containing benzidine derivatives
JP3927577B2 (ja) 1994-11-10 2007-06-13 マイケルスン、ガーリー、ケィー 電動骨鉗子

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060182993A1 (en) * 2004-08-10 2006-08-17 Mitsubishi Chemical Corporation Compositions for organic electroluminescent device and organic electroluminescent device

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3189447A (en) 1956-06-04 1965-06-15 Azoplate Corp Electrophotographic material and method
US3112197A (en) 1956-06-27 1963-11-26 Azoplate Corp Electrophotographic member
US3180729A (en) 1956-12-22 1965-04-27 Azoplate Corp Material for electrophotographic reproduction
US3257203A (en) 1958-08-20 1966-06-21 Azoplate Corp Electrophotographic reproduction material
DE1110518B (de) 1959-04-09 1961-07-06 Kalle Ag Material fuer die elektrophotographische Bilderzeugung
US3240597A (en) 1961-08-21 1966-03-15 Eastman Kodak Co Photoconducting polymers for preparing electrophotographic materials
US3180703A (en) 1963-01-15 1965-04-27 Kerr Mc Gee Oil Ind Inc Recovery process
JPS45555B1 (ja) 1966-03-24 1970-01-09
JPS463712B1 (ja) 1966-04-14 1971-01-29
US3526501A (en) 1967-02-03 1970-09-01 Eastman Kodak Co 4-diarylamino-substituted chalcone containing photoconductive compositions for use in electrophotography
US3542544A (en) 1967-04-03 1970-11-24 Eastman Kodak Co Photoconductive elements containing organic photoconductors of the triarylalkane and tetraarylmethane types
US3567450A (en) 1968-02-20 1971-03-02 Eastman Kodak Co Photoconductive elements containing substituted triarylamine photoconductors
US3658520A (en) 1968-02-20 1972-04-25 Eastman Kodak Co Photoconductive elements containing as photoconductors triarylamines substituted by active hydrogen-containing groups
US3615404A (en) 1968-04-25 1971-10-26 Scott Paper Co 1 3-phenylenediamine containing photoconductive materials
JPS4935702B1 (ja) 1969-06-20 1974-09-25
US3717462A (en) 1969-07-28 1973-02-20 Canon Kk Heat treatment of an electrophotographic photosensitive member
US3820989A (en) 1969-09-30 1974-06-28 Eastman Kodak Co Tri-substituted methanes as organic photoconductors
US3615402A (en) 1969-10-01 1971-10-26 Eastman Kodak Co Tetra-substituted methanes as organic photoconductors
JPS4725336B1 (ja) 1969-11-26 1972-07-11
JPS5110983B2 (ja) 1971-09-10 1976-04-08
JPS5110105B2 (ja) 1972-02-09 1976-04-01
JPS49105537A (ja) 1973-01-15 1974-10-05
JPS5193224A (ja) 1974-12-20 1976-08-16
US4127412A (en) 1975-12-09 1978-11-28 Eastman Kodak Company Photoconductive compositions and elements
US4012376A (en) 1975-12-29 1977-03-15 Eastman Kodak Company Photosensitive colorant materials
JPS5327033A (en) 1976-08-23 1978-03-13 Xerox Corp Image forming member and image forming method
US4175961A (en) 1976-12-22 1979-11-27 Eastman Kodak Company Multi-active photoconductive elements
JPS5458445A (en) 1977-09-29 1979-05-11 Xerox Corp Electrostatic photosensitive device
JPS5453435A (en) 1977-10-01 1979-04-26 Yoshikatsu Kume Portable bicycle equipped with foldable type triangle frame
JPS5459143A (en) 1977-10-17 1979-05-12 Ibm Electronic photographic material
JPS5464299A (en) 1977-10-29 1979-05-23 Toshiba Corp Beam deflector for charged particles
JPS54112637A (en) 1978-02-06 1979-09-03 Ricoh Co Ltd Electrophotographic photoreceptor
JPS54110837A (en) 1978-02-17 1979-08-30 Ricoh Co Ltd Electrophotographic photoreceptor
JPS54110536A (en) 1978-02-20 1979-08-30 Ichikoh Ind Ltd Device for time-lag putting out room lamp for motorcar
JPS54119925A (en) 1978-03-10 1979-09-18 Ricoh Co Ltd Photosensitive material for electrophotography
JPS54149634A (en) 1978-05-12 1979-11-24 Xerox Corp Image forming member and method of forming image using same
US4278746A (en) 1978-06-21 1981-07-14 Konishiroku Photo Industry Co., Ltd. Photosensitive elements for electrophotography
JPS5517105A (en) 1978-07-21 1980-02-06 Konishiroku Photo Ind Co Ltd Electrophotographic photoreceptor
JPS5551086A (en) 1978-09-04 1980-04-14 Copyer Co Ltd Novel pyrazoline compound, its preparation, and electrophotographic photosensitive substance comprising it
JPS5546760A (en) 1978-09-29 1980-04-02 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5552064A (en) 1978-10-13 1980-04-16 Ricoh Co Ltd Electrophotographic receptor
JPS5552063A (en) 1978-10-13 1980-04-16 Ricoh Co Ltd Electrophotographic receptor
JPS5574546A (en) 1978-11-30 1980-06-05 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5579450A (en) 1978-12-04 1980-06-14 Xerox Corp Image formation device
JPS5588064A (en) 1978-12-05 1980-07-03 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5588065A (en) 1978-12-12 1980-07-03 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5585495A (en) 1978-12-18 1980-06-27 Pacific Metals Co Ltd Method of composting organic waste
JPS55108667A (en) 1979-02-13 1980-08-21 Ricoh Co Ltd Electrophotographic receptor
JPS55144250A (en) 1979-04-30 1980-11-11 Xerox Corp Image formation device
JPS55156953A (en) 1979-05-17 1980-12-06 Mitsubishi Paper Mills Ltd Organic semiconductor electrophotographic material
JPS564148A (en) 1979-06-21 1981-01-17 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5622437A (en) 1979-08-01 1981-03-03 Ricoh Co Ltd Electrophotographic receptor
US4232103A (en) 1979-08-27 1980-11-04 Xerox Corporation Phenyl benzotriazole stabilized photosensitive device
JPS5636656A (en) 1979-09-03 1981-04-09 Mitsubishi Paper Mills Ltd Electrophotographic material
JPS5646234A (en) 1979-09-21 1981-04-27 Ricoh Co Ltd Electrophotographic receptor
JPS56119132A (en) 1979-11-23 1981-09-18 Xerox Corp Image forming element
JPS5680051A (en) 1979-12-04 1981-07-01 Ricoh Co Ltd Electrophotographic receptor
JPS5688141A (en) 1979-12-20 1981-07-17 Konishiroku Photo Ind Co Ltd Electrophotographic receptor
JPS5711350A (en) 1980-06-24 1982-01-21 Fuji Photo Film Co Ltd Electrophotographic receptor
JPS5751781A (en) 1980-07-17 1982-03-26 Eastman Kodak Co Organic electroluminiscent cell and method
JPS5745545A (en) 1980-09-03 1982-03-15 Mitsubishi Paper Mills Ltd Electrophotographic receptor
JPS57148749A (en) 1981-03-11 1982-09-14 Fuji Photo Film Co Ltd Electrophotographic receptor
JPS6093445A (ja) 1983-10-28 1985-05-25 Ricoh Co Ltd 電子写真用感光体
JPS6094462A (ja) 1983-10-28 1985-05-27 Ricoh Co Ltd スチルベン誘導体及びその製造法
JPS60175052A (ja) 1984-02-21 1985-09-09 Ricoh Co Ltd 電子写真用感光体
JPS60174749A (ja) 1984-02-21 1985-09-09 Ricoh Co Ltd スチリル化合物及びその製造法
JPS6114642A (ja) 1984-06-29 1986-01-22 Konishiroku Photo Ind Co Ltd 電子写真感光体
JPS6172255A (ja) 1984-09-14 1986-04-14 Konishiroku Photo Ind Co Ltd 電子写真感光体
JPS6198353A (ja) 1984-10-19 1986-05-16 ゼロツクス コーポレーシヨン 芳香族エーテル正孔移送層を含む感光装置
JPS61210363A (ja) 1985-03-15 1986-09-18 Canon Inc 電子写真感光体
JPS61228451A (ja) 1985-04-03 1986-10-11 Canon Inc 電子写真感光体
JPS61295558A (ja) 1985-06-24 1986-12-26 ゼロツクス コ−ポレ−シヨン アルコキシアミン電荷移送分子を含有する光導電性像形成部材
JPS6210652A (ja) 1985-07-08 1987-01-19 Minolta Camera Co Ltd 感光体
JPS6230255A (ja) 1985-07-31 1987-02-09 Minolta Camera Co Ltd 電子写真感光体
JPS6236674A (ja) 1985-08-05 1987-02-17 Fuji Photo Film Co Ltd 電子写真感光体
JPS6247646A (ja) 1985-08-27 1987-03-02 Konishiroku Photo Ind Co Ltd 感光体
US4720432A (en) 1987-02-11 1988-01-19 Eastman Kodak Company Electroluminescent device with organic luminescent medium
JPS63295695A (ja) 1987-02-11 1988-12-02 イーストマン・コダック・カンパニー 有機発光媒体をもつ電場発光デバイス
JPH01211399A (ja) 1988-02-19 1989-08-24 Toshiba Corp スキャン機能付きダイナミックシフトレジスタ
JPH02282263A (ja) 1988-12-09 1990-11-19 Nippon Oil Co Ltd ホール輸送材料
JPH02204996A (ja) 1989-02-01 1990-08-14 Nec Corp 有機薄膜el素子
US4950950A (en) 1989-05-18 1990-08-21 Eastman Kodak Company Electroluminescent device with silazane-containing luminescent zone
JPH02311591A (ja) 1989-05-25 1990-12-27 Mitsubishi Kasei Corp 有機電界発光素子
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JPH04308688A (ja) 1991-04-08 1992-10-30 Pioneer Electron Corp 有機エレクトロルミネッセンス素子
JP3927577B2 (ja) 1994-11-10 2007-06-13 マイケルスン、ガーリー、ケィー 電動骨鉗子
JPH08193191A (ja) 1995-01-19 1996-07-30 Idemitsu Kosan Co Ltd 有機電界発光素子及び有機薄膜
JPH11135261A (ja) 1997-10-27 1999-05-21 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子材料およびそれを使用した有機エレクトロルミネッセンス素子
JPH11149986A (ja) 1997-11-17 1999-06-02 Mitsubishi Chemical Corp 有機電界発光素子
JPH11312587A (ja) 1998-02-24 1999-11-09 Mitsubishi Chemical Corp 有機電界発光素子
JPH11312586A (ja) 1998-02-26 1999-11-09 Mitsubishi Chemical Corp 有機電界発光素子
JP3716096B2 (ja) 1998-04-02 2005-11-16 三菱重工業株式会社 微粉炭セパレータ装置
JP2001143869A (ja) * 1998-12-25 2001-05-25 Konica Corp エレクトロルミネッセンス材料、エレクトロルミネッセンス素子及び色変換フィルター
JP2001143871A (ja) 1999-11-12 2001-05-25 Canon Inc 有機発光素子
JP2006504814A (ja) * 2002-10-25 2006-02-09 コビオン オーガニック セミコンダクターズ ゲーエムベーハー アリールアミン単位を含む共役ポリマー、並びにそれらの調製及び使用
JP2006503443A (ja) 2002-12-11 2006-01-26 エルジー・ケム・リミテッド 低い仕事関数の陽極を有する電界発光素子
JP2005093428A (ja) * 2003-08-14 2005-04-07 Mitsubishi Chemicals Corp 有機電界発光素子用組成物及び有機電界発光素子
WO2006073054A1 (ja) * 2005-01-05 2006-07-13 Idemitsu Kosan Co., Ltd. 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007005227A1 (en) * 2005-06-30 2007-01-11 Eastman Kodak Company Electroluminescent devices containing benzidine derivatives

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
C. W. TANG; S. A. VANSLYKE, APPLIED PHYSICS LETTERS, vol. 51, 1987, pages 913

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010044130A1 (ja) * 2008-10-17 2010-04-22 三井化学株式会社 芳香族アミン誘導体、及びそれらを用いた有機エレクトロルミネッセンス素子
US9139522B2 (en) 2008-10-17 2015-09-22 Mitsui Chemicals, Inc. Aromatic amine derivative and organic electroluminescent device using the same

Also Published As

Publication number Publication date
JPWO2007102361A1 (ja) 2009-07-23
CN101395126A (zh) 2009-03-25
US20090066239A1 (en) 2009-03-12
EP1997799A1 (en) 2008-12-03
KR20080104293A (ko) 2008-12-02
TW200744991A (en) 2007-12-16

Similar Documents

Publication Publication Date Title
KR101551591B1 (ko) 방향족 아민 유도체 및 그들을 이용한 유기 전기 발광 소자
KR101152999B1 (ko) 방향족 아민 유도체 및 이를 이용한 유기 전기 발광 소자
WO2007102361A1 (ja) 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2006073054A1 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2008072400A1 (ja) 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2008032631A1 (fr) Dérivé d'amine aromatique et dispositif électroluminescent organique l'employant
WO2007080704A1 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007017995A1 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007007463A1 (ja) 電子吸引性置換基を有する含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007018004A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2006114921A1 (ja) 芳香族トリアミン化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2008001551A1 (fr) Dérivé d'amine aromatique et dispositif a électroluminescence organique utilisant celui-ci
WO2006046441A1 (ja) 芳香族アミン化合物及びそれを用いた有機エレクトロルミネッセンス素子
KR20100038193A (ko) 방향족 아민 유도체 및 그것을 사용한 유기 전기 발광 소자
WO2007100010A1 (ja) 有機エレクトロルミネッセンス素子
WO2008062636A1 (en) Aromatic amine derivative and organic electroluminescent element using the same
WO2007111263A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2008059713A1 (en) Fluoranthene compound, organic electroluminescent device using the fluoranthene compound, and organic electroluminescent material-containing solution
WO2007114358A1 (ja) ベンズアントラセン誘導体、及びそれを用いた有機エレクトロルミネッセンス素子
WO2008072586A1 (ja) 有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
WO2007111262A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007018007A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007007464A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007116828A1 (ja) ビスアントラセン誘導体及びそれを利用した有機エレクトロルミネッセンス素子
JPWO2007116750A1 (ja) 有機エレクトロルミネッセンス素子用材料、及びこれを用いた有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07737502

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008503792

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 200780007490.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020087021828

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12282070

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007737502

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 5342/CHENP/2008

Country of ref document: IN