[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2008072400A1 - 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子 - Google Patents

芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2008072400A1
WO2008072400A1 PCT/JP2007/067495 JP2007067495W WO2008072400A1 WO 2008072400 A1 WO2008072400 A1 WO 2008072400A1 JP 2007067495 W JP2007067495 W JP 2007067495W WO 2008072400 A1 WO2008072400 A1 WO 2008072400A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
organic
unsubstituted
layer
Prior art date
Application number
PCT/JP2007/067495
Other languages
English (en)
French (fr)
Inventor
Nobuhiro Yabunouchi
Yoshiaki Aoyama
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Publication of WO2008072400A1 publication Critical patent/WO2008072400A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/008Triarylamine dyes containing no other chromophores
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom

Definitions

  • Aromatic amine amine derivatives and organic electoluminescence devices using them are aromatic amine amine derivatives and organic electoluminescence devices using them.
  • the present invention relates to aromatic amine derivatives and organic electoluminescence using them (especially regarding EU elements, particularly when used as a material for organic EL elements, the drive voltage is reduced and even during continuous driving for a long time.
  • the present invention relates to a novel aromatic amine derivative that realizes a long-life organic EL device with little increase in drive voltage and an organic EL device using them.
  • An organic EL element is a self-luminous element that utilizes the principle that a fluorescent substance emits light by recombination energy of holes injected from an anode and electrons injected from a cathode by applying an electric field. .
  • the device structure of the organic EL device is a two-layer type of a hole transport (injection) layer, an electron transport light-emitting layer, or a hole transport (injection) layer, a light-emitting layer, and an electron transport (injection) layer.
  • the three-layer type is well known. In such a multilayer structure element, the element structure and the formation method have been devised in order to increase the recombination efficiency of injected holes and electrons.
  • Organic EL elements are expected to have longer light emission lifetime, lower drive voltage, and less increase in drive voltage even during long-time continuous drive.
  • Materials have been proposed.
  • Patent Document 1 an alkyl group is substituted with phenyl.
  • Amine derivatives having a substituent of the group are disclosed.
  • Patent Document 2 discloses an amine derivative having various substituents at the terminal amino group.
  • Patent Document 3 discloses an amine derivative having a condensed ring.
  • these amine derivatives have not been fully satisfied with the above demand.
  • Patent Document 1 Japanese Patent No. 3650218
  • Patent Document 2 Pamphlet of International Publication No. 98/30071
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2000-309566
  • the present invention has been made in view of the above circumstances, and by using it as a material for an organic EL element, the drive voltage is lowered and the drive voltage is hardly increased even in continuous driving for a long time and has a long life. It is an object of the present invention to provide novel aromatic amine derivatives that realize organic EL devices and organic EL devices using them.
  • I ⁇ to R 7 are each independently a hydrogen atom, a substituted or unsubstituted aryl group having 5 to 50 nuclear atoms, a substituted or unsubstituted carbon number;! To 50 alkoxy group.
  • a is an integer of 1 or more.
  • b, c, g and h are integers of 1-5.
  • d, e and f are integers from!
  • Ar 1 and Ar 2 are groups represented by the following general formulas (2) and (3), respectively, and Ar 1 and Ar 2 are not the same.
  • R 8 to R U are each independently selected from the same group as R ⁇ R 7 in general formula (1).
  • I and m are integers from;!
  • To 5 J and k are integers of 1 to 4.
  • n and p are integers of 0 or more and n ⁇ p.
  • an organic electoluminescence device in which an organic thin film layer composed of one or more layers including at least a light-emitting layer is sandwiched between a cathode and an anode, at least one layer of the organic thin film layer is the above;
  • the organic EL device using the aromatic amine derivative of the present invention has a long drive life and a small increase in drive voltage even in continuous driving for a long time as well as a decrease in drive voltage.
  • the aromatic amine derivative of the present invention is represented by the following general formula (1).
  • I ⁇ to R 7 are each independently a hydrogen atom, a substituted or unsubstituted aryl group having 5 to 50 nuclear atoms, a substituted or unsubstituted carbon atom having 1 to 50 carbon atoms.
  • Alkoxy group substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, substituted Alternatively, it is an unsubstituted alkoxycarbonyl group having 2 to 50 carbon atoms, a substituted or unsubstituted amino group, a halogen atom, a cyano group, a nitro group, a hydroxyl group, or a carboxyl group.
  • a phenyl group, a biphenyl group, a terphenyl group, more preferably a phenyl group, a biphenyl group, a terphenyl group, a fluorenyl group, and a naphthyl group are more preferable.
  • the substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms of I ⁇ to R 7 is a group represented by OY, and examples of Y include, for example, a methyl group, an ethyl group, a propyl group, and an isopropyl group.
  • Examples of the substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms of I ⁇ to R 7 include, for example, benzyl group, 1 phenylethyl group, 2-phenylethyl group, 1 phenylisopropynole group, and 2-phenylisopropyl.
  • the 1 to! ⁇ 7 substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms is represented as OY ', and examples of Y' include the same examples as those described for the aryl group.
  • Ariruchio group of a substituted or unsubstituted 5 to 50 ring atoms of the I ⁇ to R 7 is 'expressed as, Y' SY examples similar to those described for the Ariru group Examples of.
  • the substituted or unsubstituted alkoxycarbonyl group having 2 to 50 carbon atoms of I ⁇ to R 7 is a group represented by COOY, and examples of Y include the aryl group or the alkyl group having 1 to 6 carbon atoms.
  • Noralkyl group eg, ethyl group, methyl group, isopropyl group, n propyl group, s butyl group, t butyl group, pentyl group, hexyl group, cyclopentyl group, cyclohexyl group, etc.
  • Examples of the substituent in the substituted or unsubstituted amino group of I ⁇ to R 7 include an alkyl group having 1 to 6 carbon atoms (ethyl group, methyl group, isopropyl group, n propyl group, s butyl group, t butyl group, Pentyl group, hexyl group, cyclopentyl group, cyclohexyl group, etc.), C1-C6 alkoxy group (ethoxy group, methoxy group, isopropoxy group, n-propoxy group, s-butoxy group, t-butoxy group, pentoxy group) Group, hexyloxy group, cyclopentoxy group, cyclohexyloxy group, etc.), aryl group having 5 to 40 nuclear atoms, amino group substituted with aryl group having 5 to 40 nuclear atoms, nuclear atom number 5 to 40 An ester group having an aryl group, an ester group having an alkyl group having 1
  • halogen atom of I ⁇ to R 7 examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • a is an integer of 1 or more.
  • a is preferably 1 to 3, more preferably 2.
  • b, c, g and h are integers of 1-5.
  • d, e and f are integers from!
  • Ar 1 and Ar 2 are groups represented by the following general formulas (2) and (3), respectively, and Ar 1 and Ar 2 are not the same.
  • R 8 to R U are independently selected from the same group as R ⁇ R 7 in the general formula (1).
  • i and m are integers from ! j and k are integers of 1 to 4.
  • the phenyl group has a bonding position S para position.
  • Examples of the aromatic amine derivative represented by the general formula (1) include the following, but are not limited to these exemplified compounds.
  • the aromatic amine derivative of the present invention is suitable as a material for an organic EL device, and particularly suitable as a hole injection material and a hole transport material for an organic EL device.
  • the organic EL device of the present invention is an organic EL device in which an organic thin film layer composed of one or more layers including at least a light emitting layer is sandwiched between a cathode and an anode, and at least one layer of the organic thin film layer is
  • the organic thin film layer has a hole injection layer, and the hole injection layer contains the aromatic amine derivative of the present invention alone. Or it is preferable to contain as a component of a mixture.
  • the organic thin film layer preferably has a hole transport layer, and the aromatic amine derivative of the present invention is contained alone or as a component of the mixture in the hole transport layer.
  • the aromatic amine derivative of the present invention is particularly preferably used for an organic EL device emitting blue light.
  • Anode / organic semiconductor layer / insulating layer / light emitting layer / insulating layer / cathode (12) Anode / insulating layer / hole injection layer / hole transport layer / light emitting layer / insulating layer / cathode
  • the force for which the configuration of (8) is preferably used is not limited to these.
  • the aromatic amine derivative of the present invention may be used in any organic thin film layer of an organic EL device, and can be used in a light emission band or a hole transport band, preferably a hole transport band, particularly preferably a hole injection layer. Alternatively, by using it in the hole transport layer, the yield in manufacturing an organic EL device in which molecules are difficult to crystallize is improved.
  • the amount of the aromatic amine derivative of the present invention contained in the organic thin film layer is preferably 30 to 100 mol%.
  • the organic EL device of the present invention is manufactured on a light-transmitting substrate.
  • the translucent substrate referred to here is a substrate that supports the organic EL element, and is preferably a smooth substrate having a light transmittance in the visible region of 400 to 700 nm of 50% or more.
  • a glass plate, a polymer plate, etc. are mentioned.
  • the glass plate include soda-lime glass, norlium strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, norium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyethersulfide, and polysulfone.
  • the anode of the organic EL device of the present invention has a function of injecting holes into the hole transport layer zone or the light emitting layer, and it is effective to have a work function of 4.5 eV or more.
  • Specific examples of the anode material used in the present invention include indium tin oxide alloy (ITO), tin oxide (NESA), indium-zinc oxide (IZO), gold, silver, platinum, copper, and the like.
  • ITO indium tin oxide alloy
  • NESA tin oxide
  • IZO indium-zinc oxide
  • gold silver, platinum, copper, and the like.
  • a reflective electrode that does not require transparency is used, a metal or an alloy such as aluminum, molybdenum, chromium, or nickel can be used in addition to these metals.
  • the anode can be manufactured with a force S by forming these electrode materials by forming a thin film by a method such as vapor deposition or sputtering.
  • the transmittance of the anode for light emission is greater than 10%.
  • the sheet resistance of the anode is preferably several hundred ⁇ / mouth or less.
  • the film thickness of the anode is a force depending on the material, and is usually selected in the range of 10 nm to 111, preferably 10 to 200 nm.
  • the light emitting layer of the organic EL device has the following functions (1) to (3).
  • Injection function A function capable of injecting holes from the anode or hole injection layer when an electric field is applied, and a function of injecting electrons from the cathode or electron injection layer
  • Transport function Function to move injected charges (electrons and holes) by the force of electric field
  • Light-emitting function A function that provides a field for recombination of electrons and holes and connects it to light emission.
  • ease of hole injection the ease of electron injection.
  • transport capability expressed by the mobility of holes and electrons may be large or small, it is preferable to move one of the charges.
  • the light emitting layer is particularly preferably a molecular deposited film.
  • the molecular deposition film is a thin film formed by deposition from a material compound in a gas phase state or a film formed by solidification from a material compound in a solution state or a liquid phase state.
  • a film can be classified from a thin film (accumulated film) formed by the LB method by the difference in aggregated structure and higher-order structure and functional differences resulting from it.
  • a binder such as a resin and a material compound are dissolved in a solvent to form a solution, which is then thinned by a spin coating method or the like. By doing so, the light emitting layer can be formed.
  • a known light emitting material other than a light emitting material composed of an aromatic ammine derivative may be included in the light emitting layer as desired.
  • Other known light-emitting materials in a light-emitting layer containing a light-emitting material made of a derivative A light emitting layer containing a material may be laminated.
  • Examples of the light emitting material or doping material that can be used in the light emitting layer together with the aromatic amine derivative include, for example, anthracene, naphthalene, phenanthrene, pyrene, tetracene, coronene, chrysene, fluorescein, perylene, lidar perylene, naphthaperic perylene, Perinone, phthaloperinone, naphthaperinone, diphenylbutadiene, tetraphenylbutadiene, coumarin, oxazirazole, aldazine, bisbenzoxazoline, bisstyryl, pyrazine, cyclopentagen, quinoline metal complex, aminoquinoline metal complex, benzoquinoline metal complex, imine , Diphenylethylene, buranthracene, diaminocarbazole, pyran, thiopyran, polymethine, merocyanine, imidazole
  • Asymmetric anthracene represented by the following general formula ⁇ .
  • Ar is a substituted or unsubstituted condensed aromatic group having 10 to 50 nuclear carbon atoms.
  • Ar ′ is a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms.
  • to X 3 are independently a substituted or unsubstituted aromatic group having 6 to 50 ring carbon atoms, an aromatic heterocyclic group having 5 to 50 ring atoms substituted or unsubstituted, substituted or unsubstituted C 1 Alkyl group having ⁇ 50, substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, substituted or unsubstituted aryloxy group having 5 to 50 nucleus atoms, Substituted or unsubstituted aryloxy group having 5 to 50 nucleus atoms, substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon
  • Ar 1 and Ar 2 are each independently a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms, and m and n are each an integer of 1 to 4)
  • R ⁇ R 1 is independently a hydrogen atom, a substituted or unsubstituted aromatic ring group having 6-50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5-50 nuclear atoms, substituted Or an unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, and a substituted or unsubstituted aranolenoquinol having 6 to 50 carbon atoms.
  • a substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms a substituted or unsubstituted arylthio group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, Substituted or unsubstituted silyl group, carboxyl group, halogen atom, cyano group, nitro group, hydroxy group.
  • Ar and Ar ′ each represent a substituted or unsubstituted aromatic group having 6 to 50 nuclear carbon atoms.
  • L and L ′ are a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthalenylene group, a substituted or unsubstituted fluorenylene group, or a substituted or unsubstituted dibenzosilolylene group, respectively.
  • n is an integer from 1 to 4
  • s is an integer from 0 to 2
  • t is an integer from 0 to 4.
  • L or Ar is bonded to any of the 1-5 positions of pyrene, and L or Ar, is bonded to any of the 6-10 positions of pyrene.
  • Ar, Ar ′, L, and L ′ satisfy the following (1) or (2).
  • a 1 and A 2 are each independently a substituted or unsubstituted condensed aromatic ring group having 10 to 20 nuclear carbon atoms.
  • Ar 1 and Ar 2 are each independently a hydrogen atom or a substituted or unsubstituted aromatic ring group having 6 to 50 nuclear carbon atoms.
  • R ⁇ R 1 is independently a hydrogen atom, a substituted or unsubstituted aromatic ring group having 6-50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5-50 nuclear atoms, substituted Or an unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, and a substituted or unsubstituted aranolenoquinol having 6 to 50 carbon atoms.
  • a substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms a substituted or unsubstituted arylthio group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkoxycarbonyl group having 1 to 50 carbon atoms, Substituted or unsubstituted silyl group, carboxyl group, halogen atom, cyano group, nitro group or hydroxy group.
  • Ar 2 , R 9 and R 1Q may be plural or adjacent to each other to form a saturated or unsaturated cyclic structure.
  • 1 ⁇ to 1 ⁇ ° are each independently a hydrogen atom, an alkyl group, a cycloalkyl group, an optionally substituted aryl group, an alkoxyl group, an aryloxy group, an anolequinolamino group, an alkeni group.
  • a group, an arylamino group or a heterocyclic group which may be substituted, a and b each represent an integer of;!
  • R 1 or R 2 are each In this connection, they may be the same or different, and R 1 or R 2 may be bonded to each other to form a ring, or R 3 and R 4 , R 5 and R 6 , R 7 and R 8 , R 9 and R 1Q may be bonded to each other to form a ring, L 1 is a single bond, —O—, —S—, —N (R) — (R is an alkyl group or Or an alkylene group or an arylene group.)
  • R u to! ⁇ Each independently represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an alkoxyl group, an aryloxy group, an anolequinolamino group, an arylamino group, or conversion and shows good a heterocyclic group which may, c, d, e and f are each an integer of 1 to 5, when it al is 2 or more, R 11 together, R 12 together, R 16 s or each other R 17, at each Yogumata R U each other be the same or different, R 12 to each other, and bonded to each other R 16 s or R 17 A ring may be formed, or R 13 and R 14 , R 18 and R 19 may be bonded to each other to form a ring.
  • L 2 represents a single bond, —O—, —S—, —N (R) — (R is an alkyl group or an aryl group which may be substituted), an alky
  • a 5 to A 8 each independently represents a substituted or unsubstituted biphenylyl group or a substituted or unsubstituted naphthyl group.
  • a 9 to A 14 are the same as defined above; R 21 to R 23 each independently represent a hydrogen atom, a carbon number of 1 to
  • R and R are a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or
  • R and R bonded to may be the same or different.
  • R and R are hydrogen atoms
  • R and R bonded to the funolene group may be the same or different.
  • Ar is bonded to a fluorene group by a substituted or unsubstituted condensed polycyclic aromatic group having a total of 3 or more benzene rings, or a substituted or unsubstituted carbon having a total of 3 or more benzene rings and heterocyclic rings.
  • Ar and Ar may be the same or different.
  • n an integer of 1 to 10.
  • anthracene derivatives are preferred, monoanthracene derivatives are more preferred, and asymmetric anthracenes are particularly preferred.
  • a phosphorescent compound can be used as the light emitting material.
  • a host material of the phosphorescent compound a compound containing a strong rubazole ring is preferable.
  • a suitable host for phosphorescence emission comprising a compound containing a strong rubazole ring is a compound having a function of emitting a phosphorescent compound as a result of energy transfer to its excited state force phosphorescent compound.
  • the host compound is not particularly limited as long as it is a compound that can transfer the exciton energy to the phosphorescent compound, and can be appropriately selected according to the purpose.
  • the strong rubazole ring it may have an arbitrary heterocyclic ring.
  • host compounds include force rubazole derivatives and triazole derivatives.
  • a phosphorescent dopant is a compound that can emit light from triplet excitons. Although it is not particularly limited as long as it emits light from triplet exciton, Ir, Ru, Pd, Pt, Os and Re It is preferably a metal complex containing at least one metal selected from the group consisting of force and a porphyrin metal complex or orthometalated metal complex.
  • the porphyrin metal complex is preferably a porphyrin platinum complex.
  • the phosphorescent compounds may be used alone or in combination of two or more.
  • ligands that form ortho-metalated metal complexes
  • preferred ligands include 2 phenyl pyridine derivatives, 7, 8 benzoquinoline derivatives, 2- (2 phenyl) pyridine derivatives, 2 —Naphthyl) pyridine derivatives, 2- phenylquinoline derivatives, and the like. These derivatives may have a substituent if necessary. In particular, fluorinated compounds and trifluoromethyl groups introduced are preferred as blue dopants. Furthermore, it has ligands other than the above ligands such as acetylylacetonate and picric acid as auxiliary ligands!
  • the content of the phosphorescent dopant in the light-emitting layer is not particularly limited, and can be appropriately selected according to the purpose. For example, 0.;! To 70% by mass, and! To 30 mass. % Is preferred.
  • the content of the phosphorescent compound is less than 0.1% by mass, the light emission is weak and the effect of the content is not fully exhibited.
  • the content exceeds 70% by mass a phenomenon called concentration quenching becomes prominent and the element becomes prominent. Performance decreases.
  • the light emitting layer may contain a hole transport material, an electron transport material, and a polymer binder as necessary. Furthermore, the thickness of the light emitting layer is preferably 5 to 50 nm, more preferably 7 to 50 nm, and most preferably 10 to 50 nm. If the thickness is less than 5 nm, it is difficult to form a light emitting layer, and it may be difficult to adjust the chromaticity. If it exceeds 50 nm, the driving voltage may increase. (5) Hole injection 'transport layer (hole transport zone)
  • the hole injection / transport layer helps to inject holes into the light-emitting layer and transports them to the light-emitting region, and the ionization energy with high hole mobility is usually as low as 5.6 eV or less.
  • a hole injecting / transporting layer a material that transports holes to the light emitting layer with a lower electric field strength is preferable.
  • the mobility of holes is, for example, 10 4 to 10 6 V / cm. at the time of application, preferably if 10_ 4 cm 2 / V. seconds and at least! /,.
  • the aromatic amine derivative of the present invention when used in a hole transport zone, the aromatic amine derivative of the present invention alone may be used as a hole injection or transport layer, or may be mixed with other materials. Yes.
  • the material for forming the hole injection / transport layer by mixing with the aromatic amine derivative of the present invention is not particularly limited as long as it has the above-mentioned preferred properties.
  • a material that is commonly used as a transport material or a known medium force used for a hole injection / transport layer of an organic EL device can be selected and used. Specific examples include triazole derivatives (see US Pat. No. 3,112,197), oxadiazole derivatives (see US Pat. No. 3,189,447 etc.), imidazole derivatives (Japanese Patent Publication No. 37-16096).
  • Polyarylalkane derivatives US Pat. No. 3,615,402 Meitoda » 820, 989 Meitoda», f3 542,544 Meitoda » Ushidera Kimiaki 45-555, 555 -10983, JP 51-93224, 55
  • JP-B 51-10105 JP-B 46-3712, JP-B 47-25336, JP-A 54-119925, etc.
  • allylamamine derivatives Kokuushiji Temple Nori 567, 450 Akita » 240, 597 Akito » f 3, 658, 52 0 specification, 4, 232, 103 specification, 4, 175, 961 specification, 4, 01 No. 2, 376, Shoko 49 JP 35702, 39-27577, JP 55
  • the above-described materials can be used.
  • S volphiline compounds (disclosed in JP-A-63-295695, etc.), aromatic tertiary amines Compounds and styrylamine compounds (US Pat. No. 4,127,412, JP-A-53-27033, 54-58445, 55-79450, 55-144250, 56-119132, 61-295558, 61-98353, 63-295695, etc.), and it is particularly preferable to use an aromatic tertiary amine compound.
  • inorganic compounds such as p-type Si and p-type SiC can be used as the material for the hole injecting / transporting layer in addition to the above-mentioned aromatic dimethylidin compounds shown as the material for the light emitting layer.
  • the hole injection 'transport layer is formed by thinning the aromatic amine derivative of the present invention by a known method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method. it can.
  • the thickness of the hole injection / transport layer is not particularly limited, but is usually 51 111 to 5 111.
  • This hole injecting / transporting layer contains the aromatic amine derivative of the present invention in the hole transporting zone! /, So long as it is composed of one or more of the above materials.
  • the hole injection / transport layer made of a compound different from the hole injection / transport layer is laminated. It may be.
  • an organic semiconductor layer may be provided as a layer for assisting hole injection or electron injection into the light emitting layer, and a layer having a conductivity of 10-1 Q S / cm or more is preferable.
  • Examples of the material of such an organic semiconductor layer include thiophene oligomers, conductive oligomers such as allylamin oligomers disclosed in JP-A-8-193191, and conductive properties such as allylamin dendrimers. Dendrimers and the like can be used.
  • the electron injection layer 'transport layer is a layer that assists the injection of electrons into the light emitting layer and transports it to the light emitting region, and has a high electron mobility.
  • it is a layer made of a material with good adhesion to the cathode.
  • the electron transport layer is appropriately selected with a film thickness of several nm to several in. Especially when the film thickness is thick, 10 4 to 10 6 V / electron mobility when an electric field is applied in cm is preferably a on at least 10- 5 cm 2 / Vs or more.
  • 8-hydroxyquinoline or a metal complex of its derivative, oxadiazole derivative is suitable.
  • metal complexes of the above 8-hydroxyquinoline or its derivatives include metal chelate oxinoid compounds containing a chelate of oxine (generally 8-quinolinol or 8-hydroxyquinoline) such as tris (8-quinolinol) aluminum. It can be used as a material.
  • examples of the oxadiazole derivative include an electron transfer compound represented by the following general formula.
  • Ar 1 , Ar 2 , Ar 3 , Ar 5 , Ar 6 , Ar 9 each represents a substituted or unsubstituted aryl group, and may be the same or different from each other.
  • Ar 4 , Ar 7 and Ar 8 represent a substituted or unsubstituted arylene group, and may be the same or different.
  • the aryl group is a phenyl group, a biphenylyl group, an anthryl group, or a perylenyl group. And pyrenyl group.
  • Examples of the arylene group include a phenylene group, a naphthylene group, a biphenylene group, an anthrylene group, a peryleneylene group, and a pyrenylene group.
  • examples of the substituent include an alkyl group having a carbon number of !! to 10 and an alkoxy group having a carbon number of !! to 10 or a cyan group.
  • This electron transfer compound is preferably a film-forming compound.
  • electron transfer compound examples include the following.
  • Ai to A 3 are each independently a nitrogen atom or a carbon atom.
  • Ar 1 is a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, or a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms
  • Ar 2 is a hydrogen atom, substituted or unsubstituted Aryl group having 6 to 60 nuclear carbon atoms, substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms, substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or substituted or unsubstituted carbon number 1 to 20 alkoxy groups, or these divalent groups.
  • Ar 1 or Ar 2 is a substituted or unsubstituted condensed ring group having 10 to 60 nuclear carbon atoms, a substituted or unsubstituted monoheterocondensed ring group having 3 to 60 nuclear carbon atoms, or These are divalent groups.
  • ⁇ L 2 and L are each independently a single bond, a substituted or unsubstituted arylene group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroarylene group having 3 to 60 nuclear carbon atoms, or a substituted or unsubstituted group. It is a substituted fluorenylene group.
  • R is a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms, or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms.
  • is an integer of 0 to 5, and when ⁇ is 2 or more, a plurality of Rs may be the same or different and adjacent to each other
  • a plurality of R groups may be bonded to each other to form a carbocyclic aliphatic ring or a carbocyclic aromatic ring.
  • R 1 represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms, a substituted or unsubstituted carbon number of 1 to 2
  • HAr is a nitrogen-containing heterocycle having 3 to 40 carbon atoms which may have a substituent
  • L is a single bond and having 6 to 60 carbon atoms which may have a substituent.
  • Ar 1 is a divalent aromatic hydrocarbon group having 6 to 60 carbon atoms which may have a substituent
  • Ar 2 is an aryl having 6 to 60 carbon atoms which may have a substituent.
  • X and Y are each independently a saturated or unsaturated hydrocarbon group having 1 to 6 carbon atoms, an alkoxy group, an alkenyloxy group, an alkynyloxy group, a hydroxy group, a substituted or substituted It is an unsubstituted aryl group, a substituted or unsubstituted heterocycle, or a structure in which X and Y are combined to form a saturated or unsaturated ring, and R to R are independently hydrogen, halogen, or halogen.
  • Atoms substituted or unsubstituted alkyl groups having 1 to 6 carbon atoms, alkoxy groups, aryloxy groups, perfluoroalkyl groups, perfluoroalkoxy groups, amino groups, alkylcarbonyl groups, aryls.
  • R to R and Z are each independently a hydrogen atom, saturated or unsaturated carbonization
  • a hydrogen group, an aromatic group, a heterocyclic group, a substituted amino group, a substituted boryl group, an alkoxy group or an aryloxy group, and X, Y and Z are each independently a saturated or unsaturated carbonization.
  • Z and Z substituents may be bonded to each other to form a condensed ring.
  • N is 1.
  • R 1 is a hydrogen atom or a substituted boryl group, and n is 3 and Z is a methyl group
  • Q 1 and Q 2 each independently represent a ligand represented by the following general formula (G), and L represents a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted group.
  • L represents a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted group.
  • OR ⁇ R 1 is a hydrogen atom, substituted or unsubstituted alkyl group, substituted or unsubstituted cycloalkyl group, substituted Or an unsubstituted aryl group or a substituted or unsubstituted heterocyclic group.
  • rings A 1 and A 2 are each a 6-membered aryl ring structure condensed with each other, which may have a substituent. ]
  • This metal complex is strong as an n-type semiconductor and has a high electron injection capability. Furthermore, since the generation energy at the time of complex formation is low, the bond between the metal and the ligand of the formed metal complex is strengthened, and the fluorescence quantum efficiency as a light emitting material is also increasing.
  • substituents of the rings A 1 and A 2 forming the ligand of the general formula (G) include chlorine, bromine, iodine, halogen atoms of fluorine, methyl group, ethyl group, propyl group, A substituted or unsubstituted alkyl group such as a pentynol group, a s-butyl group, a t-butyl group, a pentyl group, a hexyl group, a heptyl group, an octynol group, a stearyl group or a trichloromethyl group, a phenyl group, a naphthyl group, 3- Substituted or unsubstituted aryl groups such as methylphenyl group, 3-methoxyphenyl group, 3-fluorophenylene group, 3-trichloromethylphenyl group, 3-trifluoromethylphenyl group, and 3-diphen
  • Substituted or unsubstituted arylothio group such as phenylthio group, pentafluorophenylthio group, 3-trifunoleolomethylphenylthio group Shi Anomoto, nitro group, amino group, Mechiruamino group, Jechiruamino group, Echiruamino group, Jechi Ruamino group, dipropylamino group, Jibuchiruamino group, mono- or such Jifueniruamino group Di-substituted amino groups, bis (acetoxymethyl) amino groups, bis (acetoxetyl) amino groups, bis (acetooxypropyl) amino groups, bis (acetoxybutyl) amino groups, and the like, hydroxyl groups, siloxy groups, acyl groups, methylcarbamoyl groups , Dimethylcarbamoyl group, ethylcarbamoyl group, jetylcarbamoyl group
  • a preferred form of the organic EL device of the present invention is a device containing a reducing dopant in a region for transporting electrons or an interface region between the cathode and the organic layer.
  • the reducing dopant is defined as a substance capable of reducing the electron transporting compound. Accordingly, various materials can be used as long as they have a certain reducibility, such as alkali metals, alkaline earth metals, rare earth metals, alkali metal oxides, alkali metal halides, alkaline earths.
  • preferable reducing dopants include Na (work function: 2.36 eV), K (work function: 2.28 eV), Rb (work function: 2.16 eV) and Cs (work function: 1). 95eV) At least one alkali metal selected from the group of forces, Ca (work function: 2.9 eV), Sr (work function: 2.0 to 2.5 eV), and Ba (work function: 2.52 eV) ) It is particularly preferred that the work function is at least 2.9 eV, including at least one alkaline earth metal. Of these, a more preferred reducing dopant is at least one alkali metal selected from the group consisting of K, Rb and Cs, more preferably Rb or Cs, and most preferably Cs.
  • alkali metals can improve emission brightness and extend the lifetime of organic EL devices by adding a relatively small amount to the electron injection region, which has a particularly high reducing ability.
  • a combination of two or more alkali metals is also preferable.
  • a combination containing Cs for example, Cs and Na, Cs and K Cs and Rb or a combination of Cs, Na and ⁇ are preferred.
  • an electron injection layer made of an insulator or a semiconductor may be further provided between the cathode and the organic layer.
  • an insulator it is preferable to use at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides. Good. If the electron injection layer is composed of these alkali metal chalcogenides or the like, it is preferable in that the electron injection property can be further improved.
  • preferred alkali metal chalcogenides include, for example, Li 0, K 0, Na S, Na Se and Na 2 O
  • preferred alkaline earth metal chalcogenides include, for example, CaO, BaO, SrO, BeO, BaS, and CaSe.
  • preferable alkali metal halides include LiF, NaF, KF, LiCl, KC1, and NaCl.
  • preferable alkaline earth metal halides include fluorides such as CaF, BaF, SrF, MgF and BeF, and halides other than fluorides.
  • the inorganic compound constituting the electron transport layer may be a microcrystalline or amorphous insulating thin film. preferable. If the electron transport layer is composed of these insulating thin films, a more uniform thin film is formed, and pixel defects such as dark spots can be reduced. Examples of such inorganic compounds include the alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides described above.
  • a material having a low work function (4 eV or less) metal, an alloy, an electrically conductive compound, and a mixture thereof is used as an electrode material.
  • electrode materials include sodium, sodium / potassium alloys, magnesium, lithium, magnesium'silver alloys, aluminum / anolymium oxide, aluminum'lithium alloys, indium, and rare earth metals.
  • This cathode can be manufactured with a force S by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the transmittance of the light emitted from the cathode is larger than 10%! /.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / mouth or less.
  • the film thickness is usually 10 nm to 1 ⁇ m, preferably 50 to 200.
  • organic EL devices apply an electric field to ultra-thin films, pixel defects are likely to occur due to leaks and shorts. In order to prevent this, it is preferable to insert an insulating thin film layer between the pair of electrodes.
  • Examples of the material used for the insulating layer include aluminum oxide, lithium fluoride, lithium oxide, cesium fluoride, cesium oxide, magnesium oxide, magnesium fluoride, oxidizing power, ruthenium, calcium fluoride, aluminum nitride, titanium oxide, Examples thereof include silicon oxide, germanium oxide, silicon nitride, boron nitride, molybdenum oxide, ruthenium oxide, and vanadium oxide, and a mixture or laminate thereof may be used.
  • Anode, luminescent layer, hole injection as required It is possible to produce an organic EL device by forming a transport layer and, if necessary, an electron injection / transport layer and further forming a cathode.
  • An organic EL element can also be fabricated from the cathode to the anode in the reverse order.
  • a thin film made of an anode material is formed on a suitable translucent substrate by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 10 to 200 nm, to produce an anode.
  • a hole injection layer is provided on the anode.
  • the hole injection layer can be formed by a method such as a vacuum deposition method, a spin coating method, a casting method, or an LB method. A homogeneous film can be obtained immediately and pinholes are not easily generated. In view of the above, it is preferable to form the film by a vacuum evaporation method.
  • the deposition conditions vary depending on the compound used (material of the hole injection layer), the crystal structure and recombination structure of the target hole injection layer, etc.
  • deposition source temperature 50 to 450 ° C, vacuum degree of 10- 7 ⁇ ; 10- 3 Torr, the deposition rate of 0. 0;! ⁇ 50nm / sec, a substrate temperature of 50 to 300 ° C, film thickness 5 nm to 5, 1 m of It is preferable to select the appropriate range!
  • the formation of a light-emitting layer in which a light-emitting layer is provided on the hole injection layer is also performed using a desired organic light-emitting material to reduce the thickness of the organic light-emitting material by methods such as vacuum deposition, sputtering, spin coating, and casting.
  • a vacuum evaporation method it is preferable to form the film by a vacuum evaporation method from the viewpoint that a homogeneous film can be obtained and pinholes are not easily generated.
  • the deposition conditions vary depending on the compound used, but can generally be selected from the same condition range as the hole injection layer.
  • an electron injection layer is provided on the light emitting layer.
  • the hole injection layer and the light emitting layer it is preferable to form it by vacuum evaporation because it is necessary to obtain a homogeneous film.
  • the vapor deposition conditions can be selected from the same condition ranges as those for the hole injection layer and the light emitting layer.
  • the aromatic amine derivative of the present invention has a different force S depending on which layer in the emission band or the hole transport band is contained, and the ability to co-deposit with other materials when using the vacuum evaporation method. S can. In addition, when using the spin coating method, it is necessary to include it by mixing it with other materials. Finally, a cathode can be stacked to obtain an organic EL device.
  • the cathode is made of metal, and vapor deposition or sputtering can be used. In order to protect the underlying organic layer from damage during film formation, vacuum deposition is preferred. It is preferable to fabricate this organic EL device from the anode to the cathode consistently by a single vacuum.
  • the method for forming each layer of the organic EL device of the present invention is not particularly limited. Conventionally known methods such as vacuum deposition and spin coating can be used.
  • the organic thin film layer containing the compound represented by the general formula (1) used in the organic EL device of the present invention is prepared by vacuum evaporation, molecular beam evaporation (MBE), or dipping of a solution dissolved in a solvent. It can be formed by a known method such as a coating method such as a coating method, a spin coating method, a casting method, a bar coating method, or a roll coating method.
  • each organic layer of the organic EL device of the present invention is not particularly limited. In general, however, if the film thickness is too thin, defects such as pinholes are generated. Usually, the range of several nm to 1 ⁇ m is preferable because of worsening.
  • a direct current voltage When a direct current voltage is applied to the organic EL element, light emission can be observed by applying a voltage of 5 to 40 V with the anode set to + and the cathode set to one polarity. In addition, even when a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Furthermore, when AC voltage is applied, uniform light emission is observed only when the anode is + and the cathode is of the same polarity.
  • the alternating current waveform to be applied may be arbitrary.
  • the present invention also provides a device having the organic electoluminescence element. That is, the organic EL element of the present invention can be used as a device for various apparatuses.
  • the organic EL device of the present invention can be applied to products that require high luminance and high luminous efficiency even at a low voltage.
  • Application examples include display devices, displays, lighting devices, printer light sources, backlights for liquid crystal display devices, etc., and can also be applied to fields such as signs, signboards, and interiors.
  • Examples of display devices include flat panel displays with energy saving and high visibility.
  • As a printer light source it can be used as a light source for laser beam printers.
  • the volume of the apparatus can be greatly reduced by using the element of the present invention.
  • the organic EL of the present invention Energy saving effect can be expected by using the element.
  • the intermediates used in the synthesis examples or the intermediates synthesized in the synthesis examples are as follows.
  • Compound (1) was synthesized according to the following scheme.
  • intermediate 1 (5.7 g), intermediate 2 (10.0 g), K 2 CO (11.8 g), N, N, dimethylethylenediamine (0 ⁇ 86 g), CuI (0.82 g) ) And 100 ml of dehydrated xylene were allowed to react for 3 days under reflux with heating. After the reaction, the reaction mixture was cooled and insoluble matter was collected by filtration. The insoluble matter was washed with methyl chloride and toluene to obtain 10.3 g of intermediate 3 (yield 79%). It was identified as Intermediate 3 by FD-MS (field desorption mass spectrum) analysis.
  • intermediate 12 (4.89 g), intermediate 15 (8. 17 g), sodium t-butoxy (3.3 g), tri-t-butylphosphine (72 mg), tris (dibenzylideneacetone) diparadium (0) (0.22 g) and 100 ml of dehydrated toluene were charged and reacted at 80 ° C. for 8 hours.
  • 500 ml of water was added, the mixture was filtered through Celite, and the filtrate was extracted with toluene and dried over anhydrous magnesium sulfate. This was concentrated under reduced pressure, and the resulting crude product was purified through a column, recrystallized from toluene, filtered, and dried to obtain 9.9 g of powder.
  • the compound (1) represented by the following formula was identified by FD-MS analysis.
  • Synthesis Example 1 (5) 8.9 g of powder was obtained in the same manner as Synthesis Example 1 (5) 5 except that Intermediate 14 was used instead of Intermediate 12.
  • the compound (2) represented by the following formula was identified by FD-MS analysis.
  • Example 1 Manufacture of organic EL elements
  • the glass substrate with the transparent electrode line after washing is mounted on the substrate holder of the vacuum deposition apparatus, and the compound (1) having a film thickness of 60 nm is first covered on the surface on the side where the transparent electrode line is formed.
  • This HI film functions as a hole injection layer.
  • the following compound layer TBDB having a thickness of 20 nm was formed.
  • This film functions as a hole transport layer.
  • the following compound EM 1 having a film thickness of 40 nm was deposited to form a film.
  • the following amine compound D1 having a styryl group was deposited as a luminescent molecule so that the mass ratio of EM1 to D1 was 40: 2. This film functions as a light emitting layer.
  • Alq film having a thickness of 10 nm was formed. This functions as an electron injection layer.
  • Li Li source: manufactured by SAES Getter Co., Ltd.
  • Alq Alq
  • metal A1 was deposited to form a metal cathode to form an organic EL device.
  • the emission color of the obtained organic EL device was observed.
  • the half life of light emission was measured at an initial luminance of 5000 cd / m 2 , room temperature, and DC constant current drive.
  • the initial drive voltage and the drive voltage that has risen from the initial level after 100 hours have elapsed are shown as the voltage rise value ( ⁇ ). The results are shown in Table 1.
  • Example 1 an organic EL device was produced in the same manner as in Example 1 except that the compound shown in Table 1 was used instead of the compound (1) as the hole transport material.
  • the obtained organic EL device was observed for luminescent color, and the results of measuring the half-life of light emission with an initial luminance of 5000 cd / m 2 , room temperature, and DC constant current drive, and the initial drive voltage and voltage rise were displayed. Shown in 1.
  • Example 1 an organic EL device was produced in the same manner as in Example 1 except that the following comparative compounds (1) to (3) were used as the hole transport material instead of the compound (1).
  • the obtained organic EL device was observed for emission color, and the results of measuring the half-life of light emission with an initial luminance of 5000 cd at room temperature and DC constant current drive, as well as the initial drive voltage and voltage rise values are shown in Table 1. Show.
  • An organic EL device was produced in the same manner as in Example 1 except that the following arylamine compound D2 was used instead of the amine compound D1 having a styryl group.
  • Me is a methyl group.
  • the obtained organic EL device was observed for emission color, and the results of measuring the half-life of light emission with an initial luminance of 5000 cd at room temperature and DC constant current drive, as well as the initial drive voltage and voltage rise values are shown in Table 1. Show.
  • Example 4 an organic EL device was produced in the same manner as in Example 4 except that the comparative compound (1) was used instead of the compound (1) as the hole transport material.
  • the obtained organic EL device was observed for emission color, and the results of measuring the half-life of light emission with an initial luminance of 5000 cd at room temperature and DC constant current drive, as well as the initial drive voltage and voltage rise values are shown in Table 1. Show.
  • the driving voltage is lowered and the lifetime with a small increase in the driving voltage is prolonged even in continuous driving for a long time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 本発明は、駆動電圧を低下させるとともに長時間の連続駆動においても駆動電圧の上昇が少なく、且つ寿命の長い有機EL素子を実現する新規な芳香族アミン誘導体を提供する。本発明の芳香族アミン誘導体は下記一般式(1)で表される。式中、R1~R7は、例えば、水素原子、置換もしくは無置換の核原子数5~50のアリール基である。aは1以上の整数である。b、c、g及びhは1~5の整数である。d、e及びfは1~4の整数である。Ar1及びAr2は、それぞれ下記一般式(2)及び(3)で表される基であり、Ar1とAr2は同一ではない。R8~R11は、例えば水素原子である。i及びmは1~5の整数である。j及びkは1~4の整数である。n及びpは0以上の整数で且つn≠pである。

Description

明 細 書
芳香族ァミン誘導体及びそれらを用いた有機エレクト口ルミネッセンス素 子
技術分野
[0001] 本発明は、芳香族ァミン誘導体及びそれらを用いた有機エレクト口ルミネッセンス( EU素子に関し、特に、有機 EL素子用材料として用いることにより、駆動電圧を低下 させるとともに長時間の連続駆動においても駆動電圧の上昇が少なぐ且つ長寿命 の有機 EL素子を実現する新規な芳香族ァミン誘導体及びそれらを用いた有機 EL 素子に関する。
背景技術
[0002] 有機 EL素子は、電界を印加することより、陽極より注入された正孔と陰極より注入さ れた電子の再結合エネルギーにより蛍光性物質が発光する原理を利用した自発光 素子である。イーストマン 'コダック社の C. W. Tangらによる積層型素子による低電 圧駆動有機 EL素子の報告(C.W. Tang, S.A. Vanslyke,アプライドフィジックスレター ズ (Applied Physics Letters), 51巻、 913頁、 1987年等)がなされて以来、有機材料 を構成材料とする有機 EL素子に関する研究が盛んに行われている。 Tangらは、トリ ス(8—キノリノラト)アルミニウムを発光層に、トリフエ二ルジァミン誘導体を正孔輸送 層に用いている。積層構造の利点としては、発光層への正孔の注入効率を高めるこ と、陰極より注入された電子をブロックして再結合により生成する励起子の生成効率 を高めること、発光層内で生成した励起子を閉じ込めること等が挙げられる。この例 のように有機 EL素子の素子構造としては、正孔輸送(注入)層、電子輸送発光層の 2 層型、又は正孔輸送 (注入)層、発光層、電子輸送 (注入)層の 3層型等がよく知られ てレ、る。こうした積層型構造素子では注入された正孔と電子の再結合効率を高める ため、素子構造や形成方法の工夫がなされている。
[0003] 有機 EL素子は、その発光寿命をより長ぐまた、駆動電圧を低下させ、且つ長時間 の連続駆動においても駆動電圧の上昇が少ないことが望まれ、このため種々の有機 EL素子用材料が提案されている。例えば、特許文献 1には、アルキル基をフエニル 基の置換基として有するァミン誘導体が開示されている。また、種々の置換基を末端 ァミノ基に有するァミン誘導体が、特許文献 2に開示されている。さらに、縮合環を有 するアミン誘導体が、特許文献 3に開示されている。し力もながら、これらのアミン誘 導体は、上記要望に対して充分に満足し得るものではなかった。
[0004] 特許文献 1 :特許第 3650218号公報
特許文献 2:国際公開第 98/30071号パンフレット
特許文献 3:特開 2000— 309566号公報
発明の開示
発明が解決しょうとする課題
[0005] 本発明は上記事情に鑑みなされたもので、有機 EL素子用材料として用いることに より、駆動電圧を低下させるとともに長時間の連続駆動においても駆動電圧の上昇 が少なぐ且つ寿命の長い有機 EL素子を実現する新規な芳香族ァミン誘導体及び それらを用いた有機 EL素子を提供することを目的とする。
課題を解決するための手段
[0006] 本発明者らは、鋭意研究を重ねた結果、特定の芳香族ァミン誘導体を有機 EL素 子用材料として用いることにより、前記目的が達成されることを見出した。この芳香族 ァミン誘導体は、後述する一般式(1)で表されるものである力 一般式(1)において、 Ar1と Ar2を非対称にすることやそのフエニル基の置換位置をパラ位にすることにより 、蒸着温度の低下、及び芳香族ァミン誘導体を含む材料の熱安定性の向上を図るこ と力 Sできることも見出した。本発明は力、かる知見に基づいて完成したものである。 すなわち本発明は、以下の芳香族ァミン誘導体及び有機エレクト口ルミネッセンス 素子を提供するものである。
1. 下記一般式(1)で表される芳香族ァミン誘導体。
[0007] [化 1]
Figure imgf000005_0001
[0008] [式中、 I^〜R7は、それぞれ独立に、水素原子、置換もしくは無置換の核原子数 5〜 50のァリール基、置換もしくは無置換の炭素数;!〜 50のアルコキシ基、置換もしくは 無置換の炭素数 6〜50のァラルキル基、置換もしくは無置換の核原子数 5〜50のァ リールォキシ基、置換もしくは無置換の核原子数 5〜50のァリールチオ基、置換もし くは無置換の炭素数 2〜50のアルコキシカルボニル基、置換もしくは無置換のァミノ 基、ハロゲン原子、シァノ基、ニトロ基、ヒドロキシル基、又はカルボキシル基である。 a は 1以上の整数である。 b、 c、 g及び hは 1〜5の整数である。 d、 e及び fは;!〜 4の整 数である。 Ar1及び Ar2は、それぞれ下記一般式(2)及び(3)で表される基であり、 Ar 1と Ar2は同一ではない。
[0009] [化 2]
Figure imgf000005_0002
[0010] (式中、 R8〜RUは、一般式(1)中の R^R7と同一の群から、それぞれ独立に選択さ れる。 i及び mは;!〜 5の整数である。 j及び kは 1〜4の整数である。 n及び pは 0以上 の整数で且つ n≠pである。 ) ]
2. 前記一般式(1)において、 a = 2である前記 1記載の芳香族ァミン誘導体。
3. 前記一般式(2)及び(3)において、 n= l及び p = 0である前記 1又は 2記載の芳 香族ァミン誘導体。
4. 前記一般式(2)又は(3)において、フエニル基の結合位置がパラ位である前記 ;!〜 3のいずれかに記載の芳香族ァミン誘導体。
5. 有機エレクト口ルミネッセンス素子用材料である前記 1〜4のいずれかに記載の 芳香族ァミン誘導体。
6. 有機エレクト口ルミネッセンス素子用の正孔注入材料又は正孔輸送材料である 前記;!〜 4のいずれかに記載の芳香族ァミン誘導体。
7. 陰極と陽極間に少なくとも発光層を含む一層又は複数層からなる有機薄膜層が 挟持されている有機エレクト口ルミネッセンス素子において、該有機薄膜層の少なくと も 1層が、前記;!〜 4のいずれかに記載の芳香族ァミン誘導体を単独もしくは混合物 の成分として含有する有機エレクト口ルミネッセンス素子。
8. 有機薄膜層が正孔注入層を有し、前記;!〜 4のいずれかに記載の芳香族ァミン 誘導体が該正孔注入層に含有されて!/、る前記 7記載の有機エレクト口ルミネッセンス 素子。
9. 有機薄膜層が正孔輸送層を有し、前記;!〜 4のいずれかに記載の芳香族ァミン 誘導体が該正孔輸送層に含有されてレ、る前記 7記載の有機エレクト口ルミネッセンス 素子。
10. 前記 7〜9のいずれかに記載の有機エレクト口ルミネッセンス素子を有する装置
発明の効果
[0011] 本発明の芳香族ァミン誘導体を用いた有機 EL素子は、駆動電圧を低下させるとと もに長時間の連続駆動においても駆動電圧の上昇が少なぐ且つ長寿命である。 発明を実施するための最良の形態
[0012] 本発明の芳香族ァミン誘導体は、下記一般式(1)で表されるものである。
[0013] [化 3]
Figure imgf000007_0001
[0014] 一般式(1)において、 I^〜R7は、それぞれ独立に、水素原子、置換もしくは無置換 の核原子数 5〜50のァリール基、置換もしくは無置換の炭素数 1〜50のアルコキシ 基、置換もしくは無置換の炭素数 6〜50のァラルキル基、置換もしくは無置換の核原 子数 5〜50のァリールォキシ基、置換もしくは無置換の核原子数 5〜50のァリール チォ基、置換もしくは無置換の炭素数 2〜50のアルコキシカルボニル基、置換もしく は無置換のアミノ基、ハロゲン原子、シァノ基、ニトロ基、ヒドロキシル基、又はカルボ キシル基である。
[0015] 前記 I^〜R7の置換もしくは無置換の核原子数 5〜50のァリール基としては、例えば 、フ: 二ノレ基、 1 ナフチノレ基、 2—ナフチノレ基、 1 7"ン卜リノレ基、 2 7"ン卜リノレ基、 9 7 "ントリノレ基、 1 フエナントリノレ基、 2 フエナントリノレ基、 3 フエナントリノレ基、 4 フエナントリノレ基、 9 フエナントリノレ基、 1 ナフタセニル基、 2 ナフタセニル基、 9 ナフタセニル基、 1ーピレニル基、 2 ピレニル基、 4ーピレニル基、 2 ビフエ二 ノレイノレ基、 3—ビフエ二ルイル基、 4—ビフエ二ルイル基、 p テルフエ二ノレ一 4—ィノレ 基、 p—テルフエ二ルー 3 ィル基、 p—テルフエ二ルー 2 ィル基、 m—テルフエ二 ノレ 4ーィノレ基、 m—テルフエ二ルー 3 ィル基、 m テルフエ二ルー 2 ィル基、 o トリノレ基、 m—トリノレ基、 p トリノレ基、 p— t ブチルフエニル基、 p— (2—フエ二ノレ プロピル)フエニル基、 3 メチルー 2 ナフチル基、 4ーメチルー 1 ナフチル基、 4 ーメチノレー 1 アントリノレ基、 4,ーメチルビフエ二ルイル基、 4"—tーブチルー p テ ノレフエ二ルー 4ーィル基、フルオランテュル基、フルォレニル基、 1 ピロリル基、 2— ピロリル基、 3 ピロリル基、ピラジュル基、 2 ピリジニル基、 3 ピリジニル基、 4 ピリジニル基、 1 インドリノレ基、 2 インドリノレ基、 3 インドリノレ基、 4 インドリノレ基、 5 インドリル基、 6—インドリル基、 7 インドリル基、 1—イソインドリル基、 2 イソィ ンドリル基、 3—イソインドリル基、 4 イソインドリル基、 5—イソインドリル基、 6—イソ インドリノレ基、 7 イソインドリル基、 2 フリノレ基、 3 フリノレ基、 2 ベンゾフラニル基 、 3—べンゾフラニル基、 4一べンゾフラニル基、 5—べンゾフラニル基、 6—べンゾフ ラニル基、 7 べンゾフラニル基、 1 イソべンゾフラニル基、 3—イソべンゾフラニル 基、 4 イソべンゾフラニル基、 5—イソべンゾフラニル基、 6—イソべンゾフラニル基、 7—イソべンゾフラニル基、キノリル基、 3—キノリル基、 4ーキノリノレ基、 5—キノリノレ基 、 6—キノリル基、 7—キノリル基、 8—キノリル基、 1 イソキノリル基、 3—イソキノリル 基、 4—イソキノリノレ基、 5—イソキノリノレ基、 6—イソキノリノレ基、 7—イソキノリノレ基、 8 イソキノリル基、 2 キノキサリニル基、 5 キノキサリニル基、 6 キノキサリニル基 、 1一力ルバゾリル基、 2 力ルバゾリル基、 3 力ルバゾリル基、 4一力ルバゾリル基、 9 カノレバゾリノレ基、 1 フエナントリジニル基、 2 フエナントリジニル基、 3 フエナ ントリジニル基、 4—フエナントリジニル基、 6—フエナントリジニル基、 7—フエナントリ ジニル基、 8 フエナントリジニル基、 9 フエナントリジニル基、 10 フエナントリジニ ル基、 1 アタリジニル基、 2 アタリジニル基、 3 アタリジニル基、 4 アタリジニル 基、 9 クリジ二ノレ基、 1 , 7 フエナント口リン 2 ィノレ基、 1 , 7 フエナント口リン —3—イノレ基、 1 , 7 フエナント口リン一 4—イノレ基、 1 , 7 フエナント口リン一 5—ィノレ 基、 1 , 7 フエナント口リン 6 ィノレ基、 1 , 7 フエナント口リン 8—ィノレ基、 1 , 7 —フエナント口リン一 9 イノレ基、 1 , 7 フエナント口リン一 10 イノレ基、 1 , 8 フエナ ントロリン一 2 ィル基、 1 , 8 フエナント口リン一 3 ィル基、 1 , 8 フエナント口リン —4—イノレ基、 1 , 8—フエナント口リン一 5—イノレ基、 1 , 8—フエナント口リン一 6—ィノレ 基、 1 , 8—フエナント口リン 7—ィノレ基、 1 , 8—フエナント口リン 9ーィノレ基、 1 , 8 —フエナント口リン一 10 イノレ基、 1 , 9 フエナント口リン一 2 イノレ基、 1 , 9 フエナ ントロリン一 3—ィル基、 1 , 9 フエナント口リン一 4—ィル基、 1 , 9 フエナント口リン —5—イノレ基、 1 , 9 フエナント口リン一 6—イノレ基、 1 , 9 フエナント口リン一 7—ィノレ 基、 1 , 9 フエナント口リン 8—ィノレ基、 1 , 9 フエナント口リン 10—ィノレ基、 1 , 1 0—フエナント口リン一 2—ィル基、 1 , 10—フエナント口リン一 3—ィル基、 1 , 10—フ ェナント口リン一 4 ィル基、 1 , 10 フエナント口リン一 5 ィル基、 2, 9 フエナント 口リン一 1—ィル基、 2, 9 フエナント口リン一 3 ィル基、 2, 9 フエナント口リン一 4 ーィノレ基、 2, 9 フエナント口リンー5 ィル基、 2, 9 フエナント口リンー6 ィノレ基 、 2, 9 フエナント口リン 7—ィノレ基、 2, 9 フエナント口リン 8—ィノレ基、 2, 9— フエナント口リン一 10—ィル基、 2, 8 フエナント口リン一 1—ィル基、 2, 8 フエナン トロリン一 3—ィル基、 2, 8 フエナント口リン一 4—ィル基、 2, 8 フエナント口リン一 5—ィノレ基、 2, 8 フエナント口リン 6—ィノレ基、 2, 8 フエナント口リン 7—ィノレ基 、 2, 8 フエナント口リン 9ーィノレ基、 2, 8 フエナント口リン 10—ィノレ基、 2, 7— フエナント口リン 1ーィノレ基、 2, 7 フエナント口リンー3—ィノレ基、 2, 7 フエナント 口リン 4ーィノレ基、 2, 7 フエナント口リン一 5 ィル基、 2, 7 フエナント口リン一 6 ーィノレ基、 2, 7 フエナント口リンー8 ィノレ基、 2, 7 フエナント口リンー9ーィノレ基 、 2, 7 フエナント口リン 10 ィル基、 1 フエナジニル基、 2 フエナジニル基、 1 ーフエノチアジニル基、 2 フエノチアジニル基、 3 フエノチアジニル基、 4ーフエノ チアジニル基、 10—フエノチアジニル基、 1 フエノキサジニル基、 2—フエノキサジ ニル基、 3—フエノキサジニル基、 4 フエノキサジニル基、 10—フエノキサジニル基 、 2 ォキサゾリル基、 4ーォキサゾリル基、 5 ォキサゾリル基、 2 ォキサジァゾリル 基、 5 ォキサジァゾリル基、 3 フラザニル基、 2 チェニル基、 3 チェニル基、 2 メチルピロ一ルー 1ーィル基、 2—メチルピロ一ルー 3—ィル基、 2—メチルピロ一 ノレ 4ーィノレ基、 2 メチルピロ一ルー 5 ィル基、 3 メチルピロ一ルー 1ーィル基、 3 メチルピロ一ルー 2 ィル基、 3 メチルピロ一ルー 4ーィル基、 3 メチルピロ一 ノレ 5 ィノレ基、 2— t ブチルビロール一 4 ィル基、 3— (2 フエニルプロピノレ)ピ ロール 1ーィル基、 2 メチルー 1 インドリル基、 4ーメチルー 1 インドリル基、 2 ーメチルー 3 インドリル基、 4ーメチルー 3 インドリル基、 2— t ブチル 1 インドリ ル基、 4 t ブチル 1 インドリル基、 2— t ブチル 3 インドリル基、 4 t ブチル 3—インドリル基等が挙げられる。
これらの中でも、フエニル基、ビフエ二ル基、テルフエニル基、フルォレニル基、ナフ チル基が好ましぐフエニル基、ビフエ二ル基、テルフエニル基がさらに好ましい。 前記 I^〜R7の置換もしくは無置換の炭素数 1〜 50のアルコキシ基は OYで表さ れる基であり、 Yの例としては、例えば、メチル基、ェチル基、プロピル基、イソプロピ ル基、 n ブチル基、 s ブチル基、イソブチル基、 t ブチル基、 n ペンチル基、 n 一へキシル基、 n へプチル基、 n ォクチル基、ヒドロキシメチル基、 1ーヒドロキシ ェチル基、 2—ヒドロキシェチル基、 2—ヒドロキシイソブチル基、 1 , 2—ジヒドロキシ ェチル基、 1 , 3—ジヒドロキシイソプロピル基、 2, 3—ジヒドロキシー t ブチル基、 1 , 2, 3—トリヒドロキシプロピル基、クロロメチル基、 1 クロ口ェチル基、 2—クロロェチ ル基、 2—クロ口イソブチル基、 1 , 2—ジクロ口ェチル基、 1 , 3—ジクロ口イソプロピル 基、 2, 3 ジクロロー t ブチル基、 1 , 2, 3 トリクロ口プロピル基、ブロモメチル基、 1 ブロモェチル基、 2—ブロモェチル基、 2—ブロモイソブチル基、 1 , 2—ジブロモ ェチル基、 1 , 3 ジブロモイソプロピル基、 2, 3 ジブ口モー t ブチル基、 1 , 2, 3 トリブロモプロピル基、ョードメチル基、 1ーョードエチル基、 2—ョードエチル基、 2 ョードイソフ、、チノレ基、 1 , 2 ジョードエチノレ基、 1 , 3 ジョードイソプロピノレ基、 2, 3—ジョードー tープ、チノレ基、 1 , 2, 3—トリョードプロピノレ基、アミノメチノレ基、 1 アミ ノエチル基、 2—アミノエチル基、 2—ァミノイソブチル基、 1 , 2—ジアミノエチル基、 1 , 3 ジァミノイソプロピノレ基、 2, 3 ジアミノー tーフ、、チノレ基、 1 , 2, 3 トリアミノプロ ピル基、シァノメチノレ基、 1—シァノエチル基、 2—シァノエチル基、 2—シァノイソブ チル基、 1 , 2—ジシァノエチル基、 1 , 3—ジシァノイソプロピル基、 2, 3—ジシァノー tープ、チノレ基、 1 , 2, 3 卜リシァノプロピノレ基、二卜ロメチノレ基、 1一二卜ロェチノレ基、 2 一二トロェチル基、 2 二トロイソブチル基、 1 , 2 ジニトロェチル基、 1 , 3 ジニトロ イソプロピノレ基、 2, 3 ジニ卜ロー tーフ"チノレ基、 1 , 2, 3 卜リニ卜口プロピノレ基、シク 口プロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基、 4ーメチルシク 口へキシル基、 1—ァダマンチル基、 2—ァダマンチル基、 1ーノノレボノレニノレ基、 2—ノ ルボルニル基等が挙げられる。
前記 I^〜R7の置換もしくは無置換の炭素数 6〜50のァラルキル基としては、例え ば、ベンジル基、 1 フエニルェチル基、 2—フエニルェチル基、 1 フエニルイソプロ ピノレ基、 2—フエニルイソプロピル基、フエ二ルー t ブチル基、 α ナフチルメチル 基、 1 α ナフチルェチル基、 2— α ナフチルェチル基、 1 α ナフチルイソ プロピル基、 2— α ナフチルイソプロピル基、 β ナフチルメチル基、 1 /3—ナフ チルェチル基、 2 /3—ナフチルェチル基、 1— /3 ナフチルイソプロピル基、 2— β ナフチルイソプロピル基、 1 ピロリルメチル基、 2 (1 ピロリル)ェチル基、 ρ メチルベンジル基、 m メチルベンジル基、 o メチルベンジル基、 p クロ口ベン ジノレ基、 m—クロ口べンジノレ基、 o クロ口べンジノレ基、 p ブロモベンジノレ基、 m ブ ロモベンジル基、 o ブロモベンジル基、 p ョードベンジル基、 m ョードベンジル 基、 o ョードベンジル基、 p ヒドロキシベンジル基、 m ヒドロキシベンジル基、 o— ヒドロキシベンジル基、 p ァミノべンジル基、 m—ァミノべンジル基、 o ァミノべンジ ノレ基、 p 二トロべンジル基、 m 二トロべンジル基、 o 二トロべンジル基、 p シァノ ベンジル基、 m シァノベンジル基、 o シァノベンジル基、 1ーヒドロキシー2—フエ ニルイソプロピル基、 1 クロロー 2—フエニルイソプロピル基等が挙げられる。
前記 1〜!^7の置換もしくは無置換の核原子数 5〜50のァリールォキシ基は OY' と表され、 Y'の例としては前記ァリール基で説明したものと同様の例が挙げられる。 前記 I^〜R7の置換もしくは無置換の核原子数 5〜50のァリールチオ基は SY'と 表され、 Y'の例としては前記ァリール基で説明したものと同様の例が挙げられる。 前記 I^〜R7の置換もしくは無置換の炭素数 2〜 50のアルコキシカルボ二ル基は COOYで表される基であり、 Yの例としては、前記ァリール基又は炭素数 1〜6のァ ノレキル基(ェチル基、メチル基、イソプロピル基、 n プロピル基、 s ブチル基、 t ブチル基、ペンチル基、へキシル基、シクロペンチル基、シクロへキシル基等)が挙 げられる。
前記 I^〜R7の置換もしくは無置換のアミノ基における置換基としては、炭素数 1〜6 のアルキル基(ェチル基、メチル基、イソプロピル基、 n プロピル基、 s ブチル基、 t ブチル基、ペンチル基、へキシル基、シクロペンチル基、シクロへキシル基等)、 炭素数 1〜6のアルコキシ基(エトキシ基、メトキシ基、イソプロポキシ基、 n プロポキ シ基、 s ブトキシ基、 t ブトキシ基、ペントキシ基、へキシルォキシ基、シクロペント キシ基、シクロへキシルォキシ基等)、核原子数 5〜40のァリール基、核原子数 5〜4 0のァリール基で置換されたァミノ基、核原子数 5〜40のァリ一ル基を有するエステ ル基、炭素数 1〜6のアルキル基を有するエステル基、シァノ基、ニトロ基、ハロゲン 原子 (塩素、臭素、ヨウ素等)が挙げられる。
前記 I^〜R7のハロゲン原子の例としては、フッ素原子、塩素原子、臭素原子、ヨウ 素原子等が挙げられる。 [0019] 前記一般式(1)において、 aは 1以上の整数である。 aは 1〜3であることが好ましぐ さらに好ましくは 2である。 b、 c、 g及び hは 1〜5の整数である。 d、 e及び fは;!〜 4の整 数である。前記一般式(1)において、 Ar1及び Ar2は、それぞれ下記一般式(2)及び (3)で表される基であり、 Ar1と Ar2は同一ではない。
[0020] [化 4]
Figure imgf000012_0001
[0021] 式中、 R8〜RUは、一般式(1)中の R^R7と同一の群から、それぞれ独立に選択さ れる。 i及び mは;!〜 5の整数である。 j及び kは 1〜4の整数である。 n及び pは 0以上 の整数で且つ n≠pである。本発明においては、 n= l且つ p = 0が好ましい。また、前 記一般式(2)又は(3)において、フエニル基の結合位置力 Sパラ位であることが好まし い。このように、 Ar1と Ar2を非対称にすることやそのフエニル基の置換位置をパラ位 にすることにより、蒸着温度の低下、及び一般式(1)で表される芳香族ァミン誘導体 を含む材料の熱安定性の向上を図ることができる。
一般式(1)で表される芳香族ァミン誘導体としては、下記のものが挙げられるが、こ れら例示化合物に限定されるものではない。
[0022] [化 5]
Figure imgf000013_0001
S6l7.90/.00Zdf/X3d 00 薦 OOZ OAV
[O] [ 00]
Figure imgf000014_0001
S6 L90/L00ZdT/13d 00 薦 00Z OAV
[ 00]
Figure imgf000015_0001
S6 L90/L00ZdT/13d ει. 00 薦 00Z OAV [0026] 本発明の芳香族ァミン誘導体は、有機 EL素子用材料として好適であり、特に有機 EL素子用の正孔注入材料及び正孔輸送材料として好適である。
本発明の有機 EL素子は、陰極と陽極間に少なくとも発光層を含む一層又は複数 層からなる有機薄膜層が挟持されている有機 EL素子において、該有機薄膜層の少 なくとも 1層が、前記芳香族ァミン誘導体を単独もしくは混合物の成分として含有する 本発明の有機 EL素子は、前記有機薄膜層が正孔注入層を有し、該正孔注入層が 、本発明の芳香族ァミン誘導体を単独又は混合物の成分として含有することが好まし い。
本発明の有機 EL素子は、前記有機薄膜層が正孔輸送層を有し、該正孔輸送層に 本発明の芳香族ァミン誘導体が単独もしくは混合物の成分として含有されていること が好ましい。
また、本発明の芳香族ァミン誘導体は、特に青色系発光する有機 EL素子に用いる と好ましい。
[0027] 以下、本発明の有機 EL素子の素子構成について説明する。
(1)有機 EL素子の構成
本発明の有機 EL素子の代表的な素子構成としては、
(1)陽極/発光層/陰極
(2)陽極/正孔注入層/発光層/陰極
(3)陽極/発光層/電子注入層/陰極
(4)陽極/正孔注入層/発光層/電子注入層/陰極
(5)陽極/有機半導体層/発光層/陰極
(6)陽極/有機半導体層/電子障壁層/発光層/陰極
(7)陽極/有機半導体層/発光層/付着改善層/陰極
(8)陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極
(9)陽極/絶縁層/発光層/絶縁層/陰極
(10)陽極/無機半導体層/絶縁層/発光層/絶縁層/陰極
(11)陽極/有機半導体層/絶縁層/発光層/絶縁層/陰極 (12)陽極/絶縁層/正孔注入層/正孔輸送層/発光層/絶縁層/陰極
(13)陽極/絶縁層/正孔注入層/正孔輸送層/発光層/電子注入層/陰極 などの構造を挙げることができる。
これらの中で通常 (8)の構成が好ましく用いられる力 これらに限定されるものでは ない。
本発明の芳香族ァミン誘導体は、有機 EL素子のどの有機薄膜層に用いてもよい 、発光帯域又は正孔輸送帯域に用いることができ、好ましくは正孔輸送帯域、特に 好ましくは正孔注入層又は正孔輸送層に用いることにより、分子が結晶化しにくぐ 有機 EL素子を製造する際の歩留りが向上する。
本発明の芳香族ァミン誘導体を、有機薄膜層に含有させる量としては、 30〜; 100 モル%が好ましい。
[0028] (2)透光性基板
本発明の有機 EL素子は、透光性の基板上に作製する。ここでいう透光性基板は 有機 EL素子を支持する基板であり、 400〜700nmの可視領域の光の透過率が 50 %以上で平滑な基板が好ましレ、。
具体的には、ガラス板、ポリマー板等が挙げられる。ガラス板としては、特にソーダ 石灰ガラス、ノ リウム 'ストロンチウム含有ガラス、鉛ガラス、アルミノケィ酸ガラス、ホウ ケィ酸ガラス、ノ リウムホウケィ酸ガラス、石英等が挙げられる。またポリマー板として は、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルフアイ ド、ポリサルフォン等を挙げることができる。
[0029] (3)陽極
本発明の有機 EL素子の陽極は、正孔を正孔輸送層帯域又は発光層に注入する 機能を有するものであり、 4. 5eV以上の仕事関数を有することが効果的である。本 発明に用いられる陽極材料の具体例としては、酸化インジウム錫合金 (ITO)、酸化 錫 (NESA)、インジウム—亜鉛酸化物(IZO)、金、銀、白金、銅、等が挙げられる。 また、透明性を必要としない、反射型電極とする場合には、それらの金属の他に、ァ ルミ、モリブデン、クロム、ニッケル等の金属や合金を使用することもできる。
これら材料は単独で用いることもできるカ、これら材料同士の合金や、その他の元 素を添加した材料も適宜選択して用いることができる。
陽極は、これらの電極物質を蒸着法やスパッタリング法等の方法で薄膜を形成させ ることにより作製すること力 Sでさる。
このように発光層からの発光を陽極から取り出す場合、陽極の発光に対する透過率 が 10%より大きくすることが好ましい。また、陽極のシート抵抗は、数百 Ω /口以下が 好ましい。陽極の膜厚は材料にもよる力 通常 10nm〜l 111、好ましくは 10〜200n mの範囲で選択される。
(4)発光層
有機 EL素子の発光層は以下 (1)〜(3)の機能を併せ持つものである。
(1)注入機能;電界印加時に陽極または正孔注入層より正孔を注入することができ 、陰極または電子注入層より電子を注入することができる機能
(2)輸送機能;注入した電荷 (電子と正孔)を電界の力で移動させる機能
(3)発光機能;電子と正孔の再結合の場を提供し、これを発光につなげる機能 ただし、正孔の注入されやすさと電子の注入されやすさに違いがあってもよぐまた 正孔と電子の移動度で表される輸送能に大小があってもよいが、どちらか一方の電 荷を移動することが好ましレ、。
この発光層を形成する方法としては、例えば蒸着法、スピンコート法、 LB法等の公 知の方法を適用することができる。発光層は、特に分子堆積膜であることが好ましい 。ここで分子堆積膜とは、気相状態の材料化合物から沈着され形成された薄膜や、 溶液状態又は液相状態の材料化合物から固体化され形成された膜のことであり、通 常この分子堆積膜は、 LB法により形成された薄膜 (分子累積膜)とは凝集構造、高 次構造の相違や、それに起因する機能的な相違により区分することができる。
また、特開昭 57— 51781号公報に開示されているように、樹脂等の結着剤と材料 化合物とを溶剤に溶力、して溶液とした後、これをスピンコート法等により薄膜化するこ とによっても、発光層を形成することができる。
本発明においては、本発明の目的が損なわれない範囲で、所望により発光層に芳 香族ァミン誘導体からなる発光材料以外の他の公知の発光材料を含有させてもよく 、また、芳香族ァミン誘導体からなる発光材料を含む発光層に、他の公知の発光材 料を含む発光層を積層してもよい。
[0031] 芳香族ァミン誘導体と共に発光層に使用できる発光材料又はドーピング材料として は、例えば、アントラセン、ナフタレン、フエナントレン、ピレン、テトラセン、コロネン、ク リセン、フノレォレセイン、ペリレン、フタ口ペリレン、ナフタ口ペリレン、ペリノン、フタロぺ リノン、ナフタ口ペリノン、ジフエニルブタジエン、テトラフェニルブタジエン、クマリン、 ォキサジァゾール、アルダジン、ビスべンゾキサゾリン、ビススチリル、ピラジン、シクロ ペンタジェン、キノリン金属錯体、ァミノキノリン金属錯体、ベンゾキノリン金属錯体、ィ ミン、ジフエニルェチレン、ビュルアントラセン、ジァミノカルバゾール、ピラン、チォピ ラン、ポリメチン、メロシアニン、イミダゾールキレート化ォキシノイド化合物、キナタリド ン、ルブレン及びこれらの誘導体や蛍光色素等が挙げられるが、これらに限定される ものではない。
[0032] 芳香族ァミン誘導体と共に発光層に使用できるホスト材料としては、下記 (i)〜(ix) で表される化合物が好ましレ、。
下記一般式 ωで表される非対称アントラセン。
[0033] [化 9]
Figure imgf000019_0001
[0034] (式中、 Arは置換もしくは無置換の核炭素数 10〜50の縮合芳香族基である。 Ar'は 置換もしくは無置換の核炭素数 6〜50の芳香族基である。 ^〜X3は、それぞれ独立 に置換もしくは無置換の核炭素数 6〜50の芳香族基、置換もしくは無置換の核原子 数 5〜50の芳香族複素環基、置換もしくは無置換の炭素数 1〜50のアルキル基、置 換もしくは無置換の炭素数 1〜50のアルコキシ基、置換もしくは無置換の炭素数 6〜 50のァラルキル基、置換もしくは無置換の核原子数 5〜50のァリールォキシ基、置 換もしくは無置換の核原子数 5〜50のァリールチオ基、置換もしくは無置換の炭素 数 1〜50のアルコキシカルボニル基、カルボキシル基、ハロゲン原子、シァノ基、ニト 口基、ヒドロキシ基である。 a、 b及び cは、それぞれ 0〜4の整数である。 nは 1 数である。また、 nが 2以上の場合は、 [ ]内は、同じでも異なっていてもよい
[0035] 下記一般式 (ii)で表
[0036] [化 10]
Figure imgf000020_0001
[0037] (式中、 Ar1及び Ar2は、それぞれ独立に、置換もしくは無置換の核炭素数 6〜50の 芳香族環基であり、 m及び nは、それぞれ 1〜4の整数である。ただし、 m = n= lでか つ Ar1と Ar2のベンゼン環への結合位置が左右対称型の場合には、 Ar1と Ar2は同一 ではなぐ m又は nが 2〜4の整数の場合には mと nは異なる整数である。
R^R1"は、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数 6〜50の 芳香族環基、置換もしくは無置換の核原子数 5〜50の芳香族複素環基、置換もしく は無置換の炭素数 1〜50のアルキル基、置換もしくは無置換のシクロアルキル基、 置換もしくは無置換の炭素数 1〜 50のアルコキシ基、置換もしくは無置換の炭素数 6 〜50のァラノレキノレ基、置換もしくは無置換の核原子数 5〜50のァリールォキシ基、 置換もしくは無置換の核原子数 5〜 50のァリ一ルチオ基、置換もしくは無置換の炭 素数 1〜50のアルコキシカルボニル基、置換もしくは無置換のシリル基、カルボキシ ル基、ハロゲン原子、シァノ基、ニトロ基、ヒドロキシ基である。 )
[0038] 下記一般式 (iii)で表される非対称ピレン誘導体。
[0039] [化 11]
Figure imgf000021_0001
[0040] [式中、 Ar及び Ar'は、それぞれ置換もしくは無置換の核炭素数 6〜50の芳香族基 である。 L及び L'は、それぞれ置換もしくは無置換のフエ二レン基、置換もしくは無置 換のナフタレニレン基、置換もしくは無置換のフルォレニレン基又は置換もしくは無 置換のジベンゾシロリレン基である。
mは 0〜2の整数、 nは 1〜4の整数、 sは 0〜2の整数、 tは 0〜4の整数である。 また、 L又は Arは、ピレンの 1〜5位のいずれかに結合し、 L,又は Ar,は、ピレンの 6〜10位のいずれかに結合する。ただし、 n + tが偶数の時、 Ar, Ar' , L, L'は下記 (1)又は (2)を満たす。
(1) Ar≠Ar,及び/又は L≠L' (ここで≠は、異なる構造の基であることを示す。 )
(2) Ar=Ar,かつ L = L,の時
(2-1) m≠s及び/又は n≠t、又は
(2-2) m = sかつ n = tの時、
(2-2-1) L及び L'、又はピレン力 それぞれ Ar及び Ar'上の異なる結合位置に 結合している力、、 (2-2-2) L及び L'、又はピレンが、 Ar及び Ar'上の同じ結合位置で 結合している場合、 L及び L'又は Ar及び Ar'のピレンにおける置換位置力 位と 6位 、又は 2位と 7位である場合はない。 ]
[0041] 下記一般式 (iv)で表される非対称アントラセン誘導体。
[0042] [化 12]
Figure imgf000022_0001
[0043] (式中、 A1及び A2は、それぞれ独立に、置換もしくは無置換の核炭素数 10〜20の 縮合芳香族環基である。
Ar1及び Ar2は、それぞれ独立に、水素原子、又は置換もしくは無置換の核炭素数 6〜50の芳香族環基である。
R^R1"は、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数 6〜50の 芳香族環基、置換もしくは無置換の核原子数 5〜50の芳香族複素環基、置換もしく は無置換の炭素数 1〜50のアルキル基、置換もしくは無置換のシクロアルキル基、 置換もしくは無置換の炭素数 1〜 50のアルコキシ基、置換もしくは無置換の炭素数 6 〜50のァラノレキノレ基、置換もしくは無置換の核原子数 5〜50のァリールォキシ基、 置換もしくは無置換の核原子数 5〜 50のァリ一ルチオ基、置換もしくは無置換の炭 素数 1〜50のアルコキシカルボニル基、置換もしくは無置換のシリル基、カルボキシ ル基、ハロゲン原子、シァノ基、ニトロ基又はヒドロキシ基である。
Ar2, R9及び R1Qは、それぞれ複数であってもよぐ隣接するもの同士で飽和も しくは不飽和の環状構造を形成してレ、てもよレ、。
ただし、一般式(1)において、中心のアントラセンの 9位及び 10位に、該 ン上に示す X— Y軸に対して対称型となる基が結合する場合はない。 )
[0044] 下記一般式 (V)で表されるアントラセン誘導体。
[0045] [化 13]
Figure imgf000023_0001
[0046] (式中、 1^〜1^°は、それぞれ独立に水素原子,アルキル基,シクロアルキル基,置換 してもよいァリール基,アルコキシル基,ァリーロキシ基,ァノレキノレアミノ基,アルケニ ル基,ァリールアミノ基又は置換してもよい複素環式基を示し、 a及び bは、それぞれ ;!〜 5の整数を示し、それらが 2以上の場合、 R1同士又は R2同士は、それぞれにおい て、同一でも異なっていてもよぐまた、 R1同士又は R2同士が結合して環を形成して いてもよいし、 R3と R4, R5と R6, R7と R8, R9と R1Qがたがいに結合して環を形成していて もよい。 L1は単結合、— O—, — S—, — N (R)— (Rはアルキル基又は置換してもよ ぃァリール基である)、アルキレン基又はァリーレン基を示す。)
[0047] 下記一般式 (vi)で表されるアントラセン誘導体。
[0048] [化 14]
Figure imgf000023_0002
[0049] (式中、 Ru〜! ^は、それぞれ独立に水素原子,アルキル基,シクロアルキル基,ァリ ール基,アルコキシル基,ァリーロキシ基,ァノレキノレアミノ基,ァリールアミノ基又は置 換してもよい複数環式基を示し、 c, d, e及び fは、それぞれ 1〜5の整数を示し、それ らが 2以上の場合、 R11同士, R12同士, R16同士又は R17同士は、それぞれにおいて、 同一でも異なっていてもよぐまた RU同士, R12同士, R16同士又は R17同士が結合して 環を形成していてもよいし、 R13と R14, R18と R19がたがいに結合して環を形成していて もよい。 L2は単結合、— O— , — S— , — N (R)— (Rはアルキル基又は置換してもよ ぃァリール基である)、アルキレン基又はァリーレン基を示す。)
[0050] 下記一般式 (vii)で表されるスピロフルオレン誘導体。
[0051] [化 15]
Figure imgf000024_0001
[0052] (式中、 A5〜A8は、それぞれ独立に、置換もしくは無置換のビフエ二リル基又は置換 もしくは無置換のナフチル基である。 )
[0053] 下記一般式 (viii)で表される縮合環含有化合物。
[0054] [化 16]
Figure imgf000024_0002
[0055] (式中、 A9〜A14は前記と同じ、 R21〜R23は、それぞれ独立に、水素原子、炭素数 1〜
6のァノレキノレ基、炭素数 3〜6のシクロアルキル基、炭素数 1〜6のアルコキシル基、 炭素数 5〜; 18のァリールォキシ基、炭素数 7〜; 18のァラルキルォキシ基、炭素数 5 〜; 16のァリールアミノ基、ニトロ基、シァノ基、炭素数 1〜6のエステル基又はハロゲ ン原子を示し、 A9〜A14のうち少なくとも 1つは 3環以上の縮合芳香族環を有する基で ある。 )
[0056] 下記一般式(ix)で表されるフルオレン化合物。
[0057] [化 17]
Figure imgf000025_0001
[0058] (式中、 R及び Rは、水素原子、置換あるいは無置換のアルキル基、置換あるいは
1 2
無置換のァラルキル基、置換あるいは無置換のァリール基,置換あるいは無置換の 複素環基、置換アミノ基、シァノ基またはハロゲン原子を表わす。異なるフルオレン基 に結合する R同士、 R同士は、同じであっても異なっていてもよく、同じフルオレン基
1 2
に結合する R及び Rは、同じであっても異なっていてもよい。 R及び Rは、水素原子
1 2 3 4
、置換あるいは無置換のアルキル基、置換あるいは無置換のァラルキル基、置換あ るいは無置換のァリール基または置換あるいは無置換の複素環基を表わし、異なる フルオレン基に結合する R同士、 R同士は、同じであっても異なっていてもよく、同じ
3 4
フノレオレン基に結合する R及び Rは、同じであっても異なっていてもよい。 Ar及び
3 4 1
Arは、ベンゼン環の合計が 3個以上の置換あるいは無置換の縮合多環芳香族基ま たはベンゼン環と複素環の合計が 3個以上の置換あるいは無置換の炭素でフルォレ ン基に結合する縮合多環複素環基を表わし、 Ar及び Arは、同じであっても異なつ
1 2
ていてもよい。 nは、 1乃至 10の整数を表す。 )
[0059] 以上のホスト材料の中でも、好ましくはアントラセン誘導体、さらに好ましくはモノア ントラセン誘導体、特に好ましくは非対称アントラセンである。
また、発光材料としては、りん光発光性の化合物を用いることもできる。りん光発光 性の化合物のホスト材料としては力ルバゾール環を含む化合物が好ましい。
力ルバゾール環を含む化合物からなるりん光発光に好適なホストは、その励起状態 力 りん光発光性化合物へエネルギー移動が起こる結果、りん光発光性化合物を発 光させる機能を有する化合物である。ホスト化合物としては励起子エネルギーをりん 光発光性化合物にエネルギー移動できる化合物ならば特に制限はなぐ 目的に応じ て適宜選択することができる。力ルバゾール環以外に任意の複素環などを有してレ、 てもよい。
[0060] このようなホスト化合物の具体例としては、力ルバゾール誘導体、トリァゾール誘導 体、ォキサゾール誘導体、ォキサジァゾール誘導体、イミダゾール誘導体、ポリアリー ルアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フエ二レンジァミン誘導体、 ァリールァミン誘導体、ァミノ置換カルコン誘導体、スチリルアントラセン誘導体、フル ォレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三 ァミン化合物、スチリルァミン化合物、芳香族ジメチリデン系化合物、ポルフィリン系 化合物、アントラキノジメタン誘導体、アントロン誘導体、ジフヱ二ルキノン誘導体、チ オビランジオキシド誘導体、カルポジイミド誘導体、フルォレニリデンメタン誘導体、ジ スチリルビラジン誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フ タロシアニン誘導体、 8—キノリノール誘導体の金属錯体ゃメタルフタロシアニン、ベ ンゾォキサゾールやべンゾチアゾールを配位子とする金属錯体に代表される各種金 属錯体ポリシラン系化合物、ポリ(N—ビュルカルバゾール)誘導体、ァニリン系共重 合体、チォフェンオリゴマー、ポリチォフェン等の導電性高分子オリゴマー、ポリチォ フェン誘導体、ポリフエ二レン誘導体、ポリフエ二レンビニレン誘導体、ポリフルオレン 誘導体等の高分子化合物等が挙げられる。ホスト化合物は単独で使用してもよいし、 2種以上を併用してもよい。
具体例としては、以下のような化合物が挙げられる。
[化 18]
Figure imgf000026_0001
りん光発光性のドーパントは三重項励起子から発光することのできる化合物である 。三重項励起子から発光する限り特に限定されないが、 Ir、 Ru、 Pd、 Pt、 Os及び Re 力、らなる群から選択される少なくとも一つの金属を含む金属錯体であることが好ましく 、ポルフィリン金属錯体又はオルトメタル化金属錯体が好ましい。ポルフィリン金属錯 体としては、ポルフィリン白金錯体が好ましい。りん光発光性化合物は単独で使用し てもよいし、 2種以上を併用してもよい。
オルトメタル化金属錯体を形成する配位子としては種々のものがあるが、好ましい 配位子としては、 2 フエ二ルビリジン誘導体、 7, 8 ベンゾキノリン誘導体、 2— (2 チェニル)ピリジン誘導体、 2 —ナフチル)ピリジン誘導体、 2 フエ二ルキノリ ン誘導体等が挙げられる。これらの誘導体は必要に応じて置換基を有してもよい。特 に、フッ素化物、トリフルォロメチル基を導入したもの力 青色系ドーパントとしては好 ましい。さらに補助配位子としてァセチルァセトナート、ピクリン酸等の上記配位子以 外の配位子を有して!/、てもよ!/、。
りん光発光性のドーパントの発光層における含有量としては、特に制限はなぐ 目 的に応じて適宜選択することができる力 例えば、 0. ;!〜 70質量%であり、;!〜 30質 量%が好ましい。りん光発光性化合物の含有量が 0. 1質量%未満では発光が微弱 でありその含有効果が十分に発揮されず、 70質量%を超える場合は、濃度消光と言 われる現象が顕著になり素子性能が低下する。
また、発光層は、必要に応じて正孔輸送材、電子輸送材、ポリマーバインダーを含 有してもよい。さらに、発光層の膜厚は、好ましくは 5〜50nm、より好ましくは 7〜50n m、最も好ましくは 10〜50nmである。 5nm未満では発光層形成が困難となり、色度 の調整が困難となる恐れがあり、 50nmを超えると駆動電圧が上昇する恐れがある。 (5)正孔注入'輸送層(正孔輸送帯域)
正孔注入 ·輸送層は発光層への正孔注入を助け、発光領域まで輸送する層であつ て、正孔移動度が大きぐイオン化エネルギーが通常 5. 6eV以下と小さい。このよう な正孔注入 ·輸送層としては、より低い電界強度で正孔を発光層に輸送する材料が 好ましぐさらに正孔の移動度が、例えば 104〜; 106V/cmの電界印加時に、少なくと も 10_4cm2/V .秒であれば好まし!/、。
本発明の芳香族ァミン誘導体を正孔輸送帯域に用いる場合、本発明の芳香族アミ ン誘導体単独で正孔注入、輸送層を形成してもよぐ他の材料と混合して用いてもよ い。
本発明の芳香族ァミン誘導体と混合して正孔注入 ·輸送層を形成する材料としては 、前記の好ましい性質を有するものであれば特に制限はなぐ従来、光導伝材料に おいて正孔の電荷輸送材料として慣用されているものや、有機 EL素子の正孔注入' 輸送層に使用される公知のものの中力 任意のものを選択して用いることができる。 具体例としては、トリァゾール誘導体 (米国特許 3, 112, 197号明細書等参照)、ォ キサジァゾール誘導体 (米国特許 3, 189, 447号明細書等参照)、イミダゾール誘導 体(特公昭 37— 16096号公報等参照)、ポリアリールアルカン誘導体 (米国特許 3, 615, 402 明糸田 »、 820, 989 明糸田 »、同 f 3, 542, 544 明糸田 »、牛寺 公昭 45— 555号公報、同 51— 10983号公報、特開昭 51— 93224号公報、同 55
— 17105号公報、同 56— 4148号公報、同 55— 108667号公報、同 55— 156953 号公報、同 56— 36656号公報等参照)、ピラゾリン誘導体及びピラゾロン誘導体( 米国特許第 3, 180, 729号明細書、同第 4, 278, 746号明細書、特開昭 55— 880 64号公報、同 55— 88065号公報、同 49— 105537号公報、同 55— 51086号公報 、同 56— 80051号公報、同 56— 88141号公報、同 57— 45545号公報、同 54— 1 12637号公報、同 55— 74546号公報等参照)、フヱュレンジアミン誘導体(米国特 許第 3, 615, 404号明細書、特公昭 51— 10105号公報、同 46— 3712号公報、同 47— 25336号公報、特開昭 54— 119925号公報等参照)、ァリールァミン誘導体( 国牛寺言午 567, 450 明糸田 »、 240, 597 明糸田 »、同 f 3, 658, 52 0号明細書、同第 4, 232, 103号明細書、同第 4, 175, 961号明細書、同第 4, 01 2, 376号明細書、特公昭 49 35702号公報、同 39— 27577号公報、特開昭 55
— 144250号公報、同 56— 119132号公報、同 56— 22437号公報、西独特許第 1 , 110, 518号明細書等参照)、ァミノ置換カルコン誘導体 (米国特許第 3, 526, 50 1号明細書等参照)、ォキサゾール誘導体 (米国特許第 3, 257, 203号明細書等に 開示のもの)、スチリルアントラセン誘導体(特開昭 56— 46234号公報等参照)、フル ォレノン誘導体 (特開昭 54— 110837号公報等参照)、ヒドラゾン誘導体 (米国特許 第 3, 717, 462号明細書、特開昭 54— 59143号公報、同 55— 52063号公報、同 55— 52064号公報、同 55— 46760号公報、同 57— 11350号公報、同 57— 1487 49号公報、特開平 2— 311591号公報等参照)、スチルベン誘導体(特開昭 61— 2 10363号公報、同第 61— 228451号公報、同 61— 14642号公報、同 61— 72255 号公報、同 62— 47646号公報、同 62— 36674号公報、同 62— 10652号公報、同 62— 30255号公報、同 60— 93455号公報、同 60— 94462号公報、同 60— 1747 49号公報、同 60— 175052号公報等参照)、シラザン誘導体 (米国特許第 4, 950, 950号明細書)、ポリシラン系(特開平 2— 204996号公報)、ァニリン系共重合体(特 開平 2— 282263号公報)等を挙げることができる。
[0065] 正孔注入 ·輸送層の材料としては上記のものを使用することができる力 S、ボルフイリ ン化合物(特開昭 63— 295695号公報等に開示のもの)、芳香族第三級ァミン化合 物及びスチリルァミン化合物(米国特許第 4, 127, 412号明細書、特開昭 53— 270 33号公報、同 54— 58445号公報、同 55— 79450号公報、同 55— 144250号公報 、同 56— 119132号公報、同 61— 295558号公報、同 61— 98353号公報、同 63 — 295695号公報等参照)、特に芳香族第三級ァミン化合物を用いることが好ましい
また、米国特許第 5, 061 , 569号に記載されている 2個の縮合芳香族環を分子内 に有する、例えば、 4, 4,一ビス(N— (1—ナフチル) N フエニルァミノ)ビフエ二 ノレ (以下 NPDと略記する)、また特開平 4— 308688号公報に記載されているトリフエ ニルァミンユニットが 3つスターバースト型に連結された 4, 4,, 4"—トリス(N— (3—メ チルフエニル) N フエニルァミノ)トリフエニルァミン(以下 MTDATAと略記する) 等を挙げること力 Sでさる。
さらに、発光層の材料として示した前述の芳香族ジメチリディン系化合物の他、 p型 Si、 p型 SiC等の無機化合物も正孔注入 ·輸送層の材料として使用することができる。
[0066] 正孔注入'輸送層は本発明の芳香族ァミン誘導体を、例えば、真空蒸着法、スピン コート法、キャスト法、 LB法等の公知の方法により薄膜化することにより形成すること 力 Sできる。正孔注入 ·輸送層としての膜厚は特に制限はないが、通常は 51 111〜5 111 である。この正孔注入'輸送層は、正孔輸送帯域に本発明の芳香族ァミン誘導体を 含有して!/、れば、上述した材料の一種又は二種以上からなる一層で構成されてもよ く、前記正孔注入 ·輸送層とは別種の化合物からなる正孔注入 ·輸送層を積層したも のであってもよい。
また、発光層への正孔注入又は電子注入を助ける層として有機半導体層を設けて もよく、 10— 1QS/cm以上の導電率を有するものが好適である。このような有機半導体 層の材料としては、含チォフェンオリゴマーゃ特開平 8— 193191号公報に開示して ある含ァリールァミンオリゴマー等の導電性オリゴマー、含ァリールァミンデンドリマー 等の導電性デンドリマー等を用いることができる。
[0067] (6)電子注入'輸送層
次に、電子注入層'輸送層は、発光層への電子の注入を助け、発光領域まで輸送 する層であって、電子移動度が大きぐまた付着改善層は、この電子注入層の中で 特に陰極との付着がよい材料からなる層である。
また、有機 EL素子は発光した光が電極 (この場合は陰極)により反射するため、直 接陽極から取り出される発光と、電極による反射を経由して取り出される発光とが干 渉することが知られている。この干渉効果を効率的に利用するため、電子輸送層は 数 nm〜数 inの膜厚で適宜選ばれる力 特に膜厚が厚いとき、電圧上昇を避ける ために、 104〜; 106V/cmの電界印加時に電子移動度が少なくとも 10— 5cm2/Vs以 上であることが好ましい。
電子注入層に用いられる材料としては、 8—ヒドロキシキノリンまたはその誘導体の 金属錯体ゃォキサジァゾール誘導体が好適である。上記 8—ヒドロキシキノリンまたは その誘導体の金属錯体の具体例としては、ォキシン (一般に 8—キノリノール又は 8— ヒドロキシキノリン)のキレートを含む金属キレートォキシノイド化合物、例えばトリス(8 キノリノール)アルミニウムを電子注入材料として用いることができる。
[0068] 一方、ォキサジァゾール誘導体としては、以下の一般式で表される電子伝達化合 物が挙げられる。
[0069] [化 19] N- A Ar2
Figure imgf000031_0001
[0070] (式中、 Ar1, Ar2, Ar3, Ar5, Ar6, Ar9はそれぞれ置換または無置換のァリール基を 示し、それぞれ互いに同一であっても異なっていてもよい。また Ar4, Ar7, Ar8は置換 または無置換のァリーレン基を示し、それぞれ同一であっても異なっていてもよい) ここでァリール基としてはフエニル基、ビフエ二リル基、アントリル基、ペリレニル基、 ピレニル基が挙げられる。また、ァリーレン基としてはフエ二レン基、ナフチレン基、ビ フエ二レン基、アントリレン基、ペリレニレン基、ピレニレン基などが挙げられる。また、 置換基としては炭素数;!〜 10のアルキル基、炭素数;!〜 10のアルコキシ基またはシ ァノ基等が挙げられる。この電子伝達化合物は薄膜形成性のものが好ましレ、。
上記電子伝達性化合物の具体例としては下記のものを挙げることができる。
[0071] [化 20]
Figure imgf000031_0002
[0072] さらに、電子注入層及び電子輸送層に用いられる材料として、下記一般式 (A)〜( F)で表されるあのあ用いること力 Sでさる。 [0073] [化 21]
Figure imgf000032_0001
[0074] (一般式 (A)及び (B)中、 Ai〜A3は、それぞれ独立に、窒素原子又は炭素原子であ
Ar1は、置換もしくは無置換の核炭素数 6〜60のァリール基、又は置換もしくは無 置換の核炭素数 3〜60のへテロアリール基であり、 Ar2は、水素原子、置換もしくは 無置換の核炭素数 6〜60のァリール基、置換もしくは無置換の核炭素数 3〜60のへ テロアリール基、置換もしくは無置換の炭素数 1〜20のアルキル基、又は置換もしく は無置換の炭素数 1〜20のアルコキシ基、あるいはこれらの 2価の基である。ただし 、 Ar1及び Ar2のいずれか一方は、置換もしくは無置換の核炭素数 10〜60の縮合環 基、又は置換もしくは無置換の核炭素数 3〜60のモノへテロ縮合環基、あるいはこれ らの 2価の基である。
ΐΛ L2及び Lは、それぞれ独立に、単結合、置換もしくは無置換の核炭素数 6〜60 のァリーレン基、置換もしくは無置換の核炭素数 3〜60のへテロアリーレン基、又は 置換もしくは無置換のフルォレニレン基である。
Rは、水素原子、置換もしくは無置換の核炭素数 6〜60のァリール基、置換もしくは 無置換の核炭素数 3〜60のへテロアリール基、置換もしくは無置換の炭素数 1〜20 のアルキル基、又は置換もしくは無置換の炭素数 1〜20のアルコキシ基であり、 ηは 0〜5の整数であり、 ηが 2以上の場合、複数の Rは同一でも異なっていてもよぐまた 、隣接する複数の R基同士で結合して、炭素環式脂肪族環又は炭素環式芳香族環 を形成していてもよい。
R1は、水素原子、置換もしくは無置換の核炭素数 6〜60のァリール基、置換もしく は無置換の核炭素数 3〜60のへテロアリール基、置換もしくは無置換の炭素数 1〜2 0のアルキル基、又は置換もしくは無置換の炭素数 1〜20のアルコキシ基、又は一 L 一 Ar1— Ar2である。)で表される含窒素複素環誘導体。
[0075] HAr- L -Ar' -Ar2 (C)
(式中、 HArは、置換基を有していてもよい炭素数 3〜40の含窒素複素環であり、 L は、単結合、置換基を有していてもよい炭素数 6〜60のァリーレン基、置換基を有し て!/、てもよ!/、炭素数 3〜60のへテロアリーレン基又は置換基を有して!/、てもよ!/、フル ォレニレン基であり、 Ar1は、置換基を有していてもよい炭素数 6〜60の 2価の芳香族 炭化水素基であり、 Ar2は、置換基を有していてもよい炭素数 6〜60のァリール基又 は置換基を有していてもよい炭素数 3〜60のへテロアリール基である。)で表される 含窒素複素環誘導体。
[0076] [化 22]
Figure imgf000033_0001
[0077] (式中、 X及び Yは、それぞれ独立に炭素数 1〜6の飽和若しくは不飽和の炭化水素 基、アルコキシ基、アルケニルォキシ基、アルキニルォキシ基、ヒドロキシ基、置換若 しくは無置換のァリール基、置換若しくは無置換のへテロ環又は Xと Yが結合して飽 和又は不飽和の環を形成した構造であり、 R〜Rは、それぞれ独立に水素、ハロゲ
1 4
ン原子、置換もしくは無置換の炭素数 1から 6までのアルキル基、アルコキシ基、ァリ ールォキシ基、パーフルォロアルキル基、パーフルォロアルコキシ基、アミノ基、アル キルカルボニル基、ァリールカルボニル基、アルコキシカルボニル基、ァリールォキ シカルボニル基、ァゾ基、アルキルカルボニルォキシ基、ァリールカルボニルォキシ 基、アルコキシカルボニルォキシ基、ァリールォキシカルボニルォキシ基、スルフィニ ノレ基、スルフォニル基、スルファニル基、シリル基、力ルバモイル基、ァリール基、へ テロ環基、アルケニル基、アルキニル基、ニトロ基、ホノレミノレ基、ニトロソ基、ホノレミノレ ォキシ基、イソシァノ基、シァネート基、イソシァネート基、チオシァネート基、イソチォ シァネート基もしくはシァノ基又は隣接した場合には置換若しくは無置換の環が縮合 した構造である。)で表されるシラシクロ'
[0078] [化 23]
Figure imgf000034_0001
[0079] (式中、 R〜R及び Zは、それぞれ独立に、水素原子、飽和もしくは不飽和の炭化
1 8 2
水素基、芳香族基、ヘテロ環基、置換アミノ基、置換ボリル基、アルコキシ基又はァリ 一ルォキシ基を示し、 X、 Y及び Zは、それぞれ独立に、飽和もしくは不飽和の炭化
1
水素基、芳香族基、ヘテロ環基、置換アミノ基、アルコキシ基またはァリールォキシ基 を示し、 Zと Zの置換基は相互に結合して縮合環を形成してもよぐ nは 1
1 2 〜3の整数 を示し、 nが 2以上の場合、 Zは異なってもよい。但し、 nが 1
1 、 X、 Y及び Rがメチル基
2
であって、 R 1 水素原子又は置換ボリル基の場合、及び nが 3で Zがメチル基の場
8 1
合を含まない。)で表されるボラン誘導体。
[0080] [化 24]
Figure imgf000034_0002
[0081] [式中、 Q1及び Q2は、それぞれ独立に、下記一般式 (G)で示される配位子を表し、 L は、ハロゲン原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロア ルキル基、置換もしくは無置換のァリール基、置換もしくは無置換の複素環基、 O R^R1は、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロ アルキル基、置換もしくは無置換のァリール基、置換もしくは無置換の複素環基であ る。)またはー0 0& 03 (04) (Q3及び Q4は、 Q1及び Q2と同じ)で示される配位子 を表す。 ]
[0082] [化 25]
Figure imgf000035_0001
[0083] [式中、環 A1及び A2は、置換基を有してよい互いに縮合した 6員ァリール環構造であ る。 ]
[0084] この金属錯体は、 n型半導体としての性質が強ぐ電子注入能力が大きい。さらに は、錯体形成時の生成エネルギーも低いために、形成した金属錯体の金属と配位子 との結合性も強固になり、発光材料としての蛍光量子効率も大きくなつている。
一般式 (G)の配位子を形成する環 A1及び A2の置換基の具体的な例を挙げると、 塩素、臭素、ヨウ素、フッ素のハロゲン原子、メチル基、ェチル基、プロピル基、プチ ノレ基、 s-ブチル基、 t ブチル基、ペンチル基、へキシル基、ヘプチル基、ォクチノレ 基、ステアリル基、トリクロロメチル基等の置換もしくは無置換のアルキル基、フエニル 基、ナフチル基、 3—メチルフエニル基、 3—メトキシフエ二ル基、 3—フルオロフェニ ノレ基、 3—トリクロロメチルフエニル基、 3—トリフルォロメチルフエニル基、 3—二トロフ ェニル基等の置換もしくは無置換のァリール基、メトキシ基、 n—ブトキシ基、 t—ブト キシ基、トリクロロメトキシ基、トリフルォロエトキシ基、ペンタフルォロプロポキシ基、 2 , 2, 3, 3 テ卜ラフノレ才口プロポキシ基、 1 , 1 , 1 , 3, 3, 3 へキサフノレ才ロー 2 プ 口ポキシ基、 6 - (パーフルォロェチル)へキシルォキシ基等の置換もしくは無置換の アルコキシ基、フエノキシ基、 p 二トロフエノキシ基、 p— t ブチルフエノキシ基、 3— フルオロフエノキシ基、ペンタフルオロフェニル基、 3—トリフルォロメチルフエノキシ基 等の置換もしくは無置換のァリールォキシ基、メチルチオ基、ェチルチオ基、 tーブチ ルチオ基、へキシルチオ基、ォクチルチオ基、トリフルォロメチルチオ基等の置換もし くは無置換のアルキルチオ基、フエ二ルチオ基、 p ニトロフエ二ルチオ基、 p— t ブ チルフエ二ルチオ基、 3—フルオロフェニルチオ基、ペンタフルオロフェニルチオ基、 3—トリフノレオロメチルフエ二ルチオ基等の置換もしくは無置換のァリールチオ基、シ ァノ基、ニトロ基、アミノ基、メチルァミノ基、ジェチルァミノ基、ェチルァミノ基、ジェチ ルァミノ基、ジプロピルアミノ基、ジブチルァミノ基、ジフエニルァミノ基等のモノまたは ジ置換アミノ基、ビス(ァセトキシメチル)アミノ基、ビス(ァセトキシェチル)アミノ基、ビ スァセトキシプロピル)アミノ基、ビス(ァセトキシブチル)アミノ基等のァシルァミノ基、 水酸基、シロキシ基、ァシル基、メチルカルバモイル基、ジメチルカルバモイル基、ェ チルカルバモイル基、ジェチルカルバモイル基、プロィピルカルバモイル基、ブチル 力ルバモイル基、フエ二ルカルバモイル基等の力ルバモイル基、カルボン酸基、スル フォン酸基、イミド基、シクロペンタン基、シクロへキシル基等のシクロアルキル基、フ ェニノレ基、ナフチル基、ビフエ二リル基、アントリノレ基、フエナントリル基、フルォレニル 基、ピレニル基等のァリール基、ピリジニル基、ピラジュル基、ピリミジニル基、ピリダ ジニル基、トリアジニル基、インドリニル基、キノリニル基、アタリジニル基、ピロリジニ ル基、ジォキサニル基、ピペリジニル基、モルフオリジニル基、ピペラジニル基、トリア チュル基、カルバゾリル基、フラニル基、チォフエニル基、ォキサゾリル基、ォキサジ ァゾリル基、ベンゾォキサゾリル基、チアゾリル基、チアジアゾリル基、ベンゾチアゾリ ル基、トリァゾリル基、イミダゾリル基、ベンゾイミダゾリル基、プラニル基等の複素環基 等がある。また、以上の置換基同士が結合してさらなる 6員ァリール環もしくは複素環 を形成してもよい。
本発明の有機 EL素子の好ましい形態に、電子を輸送する領域または陰極と有機 層の界面領域に、還元性ドーパントを含有する素子がある。ここで、還元性ドーパント とは、電子輸送性化合物を還元ができる物質と定義される。したがって、一定の還元 性を有するものであれば、様々なものが用いられ、例えば、アルカリ金属、アルカリ土 類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アル力 リ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物また は希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機 錯体、希土類金属の有機錯体からなる群から選択される少なくとも一つの物質を好 適に使用することができる。
また、より具体的に、好ましい還元性ドーパントとしては、 Na (仕事関数: 2. 36eV) 、K (仕事関数: 2. 28eV)、Rb (仕事関数: 2. 16eV)及び Cs (仕事関数: 1. 95eV) 力もなる群から選択される少なくとも一つのアルカリ金属や、 Ca (仕事関数: 2. 9eV) 、 Sr (仕事関数: 2. 0〜2. 5eV)、及び Ba (仕事関数: 2. 52eV)からなる群から選択 される少なくとも一つのアルカリ土類金属が挙げられる仕事関数が 2. 9eV以下のも のが特に好ましい。これらのうち、より好ましい還元性ドーパントは、 K、 Rb及び Csか らなる群から選択される少なくとも一つのアルカリ金属であり、さらに好ましくは、 Rbま たは Csであり、最も好ましのは、 Csである。これらのアルカリ金属は、特に還元能力 が高ぐ電子注入域への比較的少量の添加により、有機 EL素子における発光輝度 の向上や長寿命化が図られる。また、仕事関数が 2. 9eV以下の還元性ドーパントと して、これら 2種以上のアルカリ金属の組合わせも好ましぐ特に、 Csを含んだ組み合 わせ、例えば、 Csと Na、 Csと K、 Csと Rbあるいは Csと Naと Κとの組み合わせである ことが好ましい。 Csを組み合わせて含むことにより、還元能力を効率的に発揮するこ とができ、電子注入域への添加により、有機 EL素子における発光輝度の向上や長 寿命化が図られる。
本発明にお!/、ては陰極と有機層の間に絶縁体や半導体で構成される電子注入層 をさらに設けてもよい。この時、電流のリークを有効に防止して、電子注入性を向上さ せること力 Sできる。このような絶縁体としては、アルカリ金属カルコゲナイド、アルカリ土 類金属カルコゲナイド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲ ン化物からなる群から選択される少なくとも一つの金属化合物を使用するのが好まし い。電子注入層がこれらのアルカリ金属カルコゲナイド等で構成されていれば、電子 注入性をさらに向上させることができる点で好ましい。具体的に、好ましいアルカリ金 属カルコゲナイドとしては、例えば、 Li 0、 K 0、 Na S、 Na Se及び Na Oが挙げら れ、好ましいアルカリ土類金属カルコゲナイドとしては、例えば、 CaO、 BaO、 SrO、 BeO、 BaS、及び CaSeが挙げられる。また、好ましいアルカリ金属のハロゲン化物と しては、例えば、 LiF、 NaF、 KF、 LiCl、 KC1及び NaCl等が挙げられる。また、好ま しいアルカリ土類金属のハロゲン化物としては、例えば、 CaF、 BaF、 SrF、 MgF 及び BeFといったフッ化物や、フッ化物以外のハロゲン化物が挙げられる。
また、電子輸送層を構成する半導体としては、 Ba、 Ca、 Sr、 Yb、 Al、 Ga、 In、 Li、 Na、 Cd、 Mg、 Si、 Ta、 Sb及び Znの少なくとも一つの元素を含む酸化物、窒化物ま たは酸化窒化物等の一種単独または二種以上の組み合わせが挙げられる。また、電 子輸送層を構成する無機化合物が、微結晶または非晶質の絶縁性薄膜であることが 好ましい。電子輸送層がこれらの絶縁性薄膜で構成されていれば、より均質な薄膜 が形成されるために、ダークスポット等の画素欠陥を減少させることができる。なお、こ のような無機化合物としては、上述したアルカリ金属カルコゲナイド、アルカリ土類金 属カルコゲナイド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化 物等が挙げられる。
[0087] (7)陰極
陰極としては、電子注入 ·輸送層又は発光層に電子を注入するため、仕事関数の 小さい(4eV以下)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質 とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム •カリウム合金、マグネシウム、リチウム、マグネシウム '銀合金、アルミニウム/酸化ァ ノレミニゥム、アルミユウム 'リチウム合金、インジウム、希土類金属などが挙げられる。 この陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成さ せることにより、作製すること力 Sでさる。
ここで発光層からの発光を陰極から取り出す場合、陰極の発光に対する透過率は 1 0%より大きくすることが好まし!/、。
また、陰極としてのシート抵抗は数百 Ω /口以下が好ましぐ膜厚は通常 10nm〜 1〃 m、好ましくは 50〜200應である。
[0088] (8)絶縁層
有機 EL素子は超薄膜に電界を印可するために、リークやショートによる画素欠陥 が生じやすい。これを防止するために、一対の電極間に絶縁性の薄膜層を揷入する ことが好ましい。
絶縁層に用いられる材料としては例えば酸化アルミニウム、弗化リチウム、酸化リチ ゥム、弗化セ シゥム、酸化セシウム、酸化マグネシウム、弗化マグネシウム、酸化力 ルシゥム、弗化カルシウム、窒化アルミニウム、酸化チタン、酸化珪素、酸化ゲルマ二 ゥム、窒化珪素、窒化ホウ素、酸化モリブデン、酸化ルテニウム、酸化バナジウム等が 挙げられ、これらの混合物や積層物を用いてもよい。
[0089] (9)有機 EL素子の製造方法
以上例示した材料及び形成方法により陽極、発光層、必要に応じて正孔注入 -輸 送層、及び必要に応じて電子注入 ·輸送層を形成し、さらに陰極を形成することによ り有機 EL素子を作製すること力 Sできる。また陰極から陽極へ、前記と逆の順序で有 機 EL素子を作製することもできる。
以下、透光性基板上に陽極/正孔注入層/発光層/電子注入層/陰極が順次 設けられた構成の有機 EL素子の作製例を記載する。
まず、適当な透光性基板上に陽極材料からなる薄膜を 1 μ m以下、好ましくは 10〜 200nmの範囲の膜厚になるように蒸着やスパッタリング等の方法により形成して陽極 を作製する。次に、この陽極上に正孔注入層を設ける。正孔注入層の形成は、前述 したように真空蒸着法、スピンコート法、キャスト法、 LB法等の方法により行うことがで きる力 均質な膜が得られやすぐかつピンホールが発生しにくい等の点から真空蒸 着法により形成することが好ましい。真空蒸着法により正孔注入層を形成する場合、 その蒸着条件は使用する化合物(正孔注入層の材料)、 目的とする正孔注入層の結 晶構造や再結合構造等により異なるが、一般に蒸着源温度 50〜450°C、真空度 10— 7〜; 10— 3Torr、蒸着速度 0. 0;!〜 50nm/秒、基板温度 50〜300°C、膜厚 5nm〜 5 ,1 mの範囲で適宜選択することが好まし!/、。
次に、正孔注入層上に発光層を設ける発光層の形成も、所望の有機発光材料を 用いて真空蒸着法、スパッタリング、スピンコート法、キャスト法等の方法により有機発 光材料を薄膜化することにより形成できるが、均質な膜が得られやすぐかつピンホ ールが発生しにくい等の点から真空蒸着法により形成することが好ましレ、。真空蒸着 法により発光層を形成する場合、その蒸着条件は使用する化合物により異なるが、 一般的に正孔注入層と同じような条件範囲の中から選択することができる。
次に、この発光層上に電子注入層を設ける。正孔注入層、発光層と同様、均質な 膜を得る必要から真空蒸着法により形成することが好ましレ、。蒸着条件は正孔注入 層、発光層と同様の条件範囲から選択することができる。
本発明の芳香族ァミン誘導体は、発光帯域ゃ正孔輸送帯域のいずれの層に含有 させるかによつて異なる力 S、真空蒸着法を用いる場合は他の材料との共蒸着をするこ と力 Sできる。また、スピンコート法を用いる場合は、他の材料と混合することによって含 有させること力 Sでさる。 最後に陰極を積層して有機 EL素子を得ることができる。
陰極は金属から構成されるもので、蒸着法、スパッタリングを用いることができる。し 力、し下地の有機物層を製膜時の損傷から守るためには真空蒸着法が好ましい。 この有機 EL素子の作製は一回の真空引きで一貫して陽極から陰極まで作製する ことが好ましい。
本発明の有機 EL素子の各層の形成方法は特に限定されない。従来公知の真空 蒸着法、スピンコーティング法等による形成方法を用いることができる。本発明の有 機 EL素子に用いる、前記一般式(1)で示される化合物を含有する有機薄膜層は、 真空蒸着法、分子線蒸着法 (MBE法)あるいは溶媒に解力、した溶液のデイツビング 法、スピンコーティング法、キャスティング法、バーコート法、ロールコート法等の塗布 法による公知の方法で形成することができる。
本発明の有機 EL素子の各有機層の膜厚は特に制限されないが、一般に膜厚が薄 すぎるとピンホール等の欠陥が生じやすぐ逆に厚すぎると高い印加電圧が必要とな り効率が悪くなるため、通常は数 nmから 1 μ mの範囲が好ましい。
なお、有機 EL素子に直流電圧を印加する場合、陽極を +、陰極を一の極性にして 、 5〜40Vの電圧を印加すると発光が観測できる。また、逆の極性で電圧を印加して も電流は流れず、発光は全く生じない。さらに交流電圧を印加した場合には陽極が +、陰極が一の極性になった時のみ均一な発光が観測される。印加する交流の波形 は任意でよい。
本発明は、前記有機エレクト口ルミネッセンス素子を有する装置をも提供する。すな わち、本発明の有機 EL素子は、種々の装置のデバイスとして用いることかできる。 本発明の有機 EL素子は、低電圧であっても高輝度及び高発光効率が求められる 製品に応用が可能である。応用例としては、表示装置、ディスプレイ、照明装置、プリ ンター光源、液晶表示装置のバックライトなどが挙げられ、標識、看板、インテリア等 の分野にも適用できる。表示装置としては、省エネルギーや高視認性のフラットパネ ルディスプレイが挙げられる。また、プリンター光源としては、レーザービームプリンタ の光源として使用すること力できる。また、本発明の素子を用いることで、装置体積を 大幅に減少することもできる。照明装置やバックライトに関しては、本発明の有機 EL 素子を用いることで省エネルギー効果が期待できる。
実施例
[0092] 次に、本発明を実施例によりさらに詳細に説明する力 S、本発明はこれらの例によつ てなんら限定されるものではな!/、。
合成実施例で用いた中間体あるいは合成実施例で合成した中間体は下記のとおり である。
[0093] [化 26]
Figure imgf000041_0001
中間体 1 2 中間体 1 3 中間体 1 4 中間体 1 5
[0094] 合成実施例 1 [化合物(1 )の合成]
以下のスキームによって化合物(1)を合成した。
[0095] [化 27]
Figure imgf000042_0001
(1)中間体 3の合成
アルゴン気流下、中間体 1 (5. 7g)、中間体 2 (10. 0g)、K CO (11. 8g)、 N, N, ジメチルエチレンジァミン(0· 86g)、CuI (0. 82g)及び脱水キシレン 100mlを仕込 み、加熱還流下、 3日間反応させた。反応後冷却し、不溶分を濾取した。塩化メチレ ン及びトルエンにて不溶分を洗浄し、中間体 3を 10. 3g (収率 79%)得た。 FD— MS (フィールドディソープシヨンマススペクトル)分析により、中間体 3と同定した。
(2)中間体 6の合成
アルゴン気流下、ァセトァニリド(2. 8g)、中間体 5 (28· 0g)、 K CO (16. 8g)、 N
, N,ジメチルエチレンジァミン(1. lg)、CuI (l . 2g)及び脱水キシレン 100mlを仕 込み、加熱還流下、 3日間反応させた。反応後冷却し、不溶分を濾取した。塩化メチ レン及びトルエンにて不溶分を洗浄し、中間体 6を 16. lg (収率 72%)得た。 FD— MS分析により、中間体 6と同定した。
(3)中間体 9の合成
アルゴン気流下、中間体 3 (27g)、中間体 6 (40g)、K PO (42g)、 N, N,ジメチル エチレンジァミン(2. 6g)、CuI (3. 8g)及び脱水キシレン 60mlを仕込み、加熱還流 下、 3日間反応させた。反応後冷却し、不溶分を濾取した。塩化メチレン及びトルエン にて不溶分を洗浄し、中間体 9を 51g (収率 91 %)得た。 FD— MS分析により、中間 体 9と同定した。
(4)中間体 12の合成
アルゴン気流下、中間体 9 (51g)、 KOH (61g)、水(66ml)、エタノール(90ml)及 びキシレン 180mlを仕込み、加熱還流下、 2日間反応させた。反応後冷却し、不溶 分を濾取した。水、メタノール及びトルエンにて不溶分を洗浄し、中間体 12を 33g (収 率 89%)得た。 FD— MS分析により、中間体 12と同定した。
(5)化合物(1)の合成
アルゴン気流下、中間体 12 (4. 89g)、中間体 15 (8. 17g)、 t—ブトキシナトリウム (3. 3g)、トリ— t—ブチルホスフィン(72mg)、トリス(ジベンジリデンアセトン)ジパラ ジゥム(0) (0. 22g)及び脱水トルエン 100mlを仕込み、 80°Cにて 8時間反応した。 冷却後、水 500mlを加え、混合物をセライト濾過し、濾液をトルエンで抽出し、無水 硫酸マグネシウムで乾燥させた。これを減圧下で濃縮し、得られた粗生成物をカラム 精製し、トルエンで再結晶し、それを濾取した後、乾燥したところ、 9. 9gの粉末を得 た。 FD— MS分析により、下記式で表される化合物(1)と同定した。
[化 28]
Figure imgf000043_0001
化合物 ( 1 ) 化合物(1)
合成実施例 2 [化合物(2)の合成]
(1)中間体 8の合成
合成実施例 1 (2)において、中間体 5の代わりに中間体 7を使用した以外は合成実 施例 2 (2)と同様にして、中間体 8を合成した。
(2)中間体 11の合成
合成実施例 1 (3)において、中間体 6の代わりに中間体 8を使用した以外は合成実 施例 1 (3)と同様にして、中間体 11を合成した。
(3)中間体 14の合成
合成実施例 1 (4)において、中間体 9の代わりに中間体 11を使用した以外は合成 実施例 1 (4)と同様にして、中間体 14を合成した。
(4)化合物(2)の合成
合成実施例 1 (5)において、中間体 12の代わりに中間体 14を使用した以外は合成 実施例 1 (5) 5と同様にして、 8. 9gの粉末を得た。 FD— MS分析により、下記式で表 される化合物(2)と同定した。
[0099] [化 29]
Figure imgf000044_0001
化合物 (2 )
化合物(2)
[0100] 合成実施例 3 [化合物(3)の合成]
(1)中間体 10の合成
合成実施例 1 (3)において、中間体 3の代わりに中間体 4を使用した以外は合成実 施例 1 (3)と同様にして、中間体 10を合成した。
(2)中間体 13の合成
合成実施例 1 (4)において、中間体 9の代わりに中間体 10を使用した以外は合成 実施例 1 (4)と同様にして、中間体 13を合成した。
(3)化合物(3)の合成
合成実施例 1 (5)において、中間体 12の代わりに中間体 13を使用した以外は合成 実施例 1 (5)と同様にして、 9. lgの粉末を得た。 FD— MS分析により、下記式で表 される化合物(3)と同定した。
[0101] [化 30]
Figure imgf000045_0001
化合物 (3 )
[0102] 実施例 1 (有機 EL素子の製造)
25mm X 75mm X l . 1mm厚の ITO透明電極付きガラス基板(ジォマティック社製 )をイソプロピルアルコール中で超音波洗浄を 5分間行なった後、 UV (紫外線)ォゾ ン洗净を 30分間 fiなった。
洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し 、まず透明電極ラインが形成されている側の面上に前記透明電極を覆うようにして膜 厚 60nmの上記化合物(1)により HI膜を成膜した。この HI膜は、正孔注入層として 機能する。この HI膜上に膜厚 20nmの下記化合物層 TBDBを成膜した。この膜は 正孔輸送層として機能する。さらに膜厚 40nmの下記化合物 EM 1を蒸着し成膜した 。同時に発光分子として、下記のスチリル基を有するァミン化合物 D1を、 EM1と D1 の質量比が 40 : 2になるように蒸着した。この膜は、発光層として機能する。
この膜上に膜厚 10nmの下記 Alq膜を成膜した。これは、電子注入層として機能す る。この後、還元性ドーパントである Li (Li源:サエスゲッタ一社製)と Alqを二元蒸着 させ、電子注入層(陰極)として Alq : Li膜 (膜厚 lOnm)を形成した。この Alq : Li膜上 に金属 A1を蒸着させ金属陰極を形成し有機 EL素子を形成した。
また、得られた有機 EL素子について、発光色を観察した。初期輝度 5000cd/m2 、室温、 DC定電流駆動での発光の半減寿命を測定した。さらに初期駆動電圧及び 100時間経過後において、初期より上昇した駆動電圧を電圧上昇値( Δν)として示 した。結果を表 1に示す。
[0103] [化 31]
Figure imgf000046_0001
D A 1 q
[0104] 実施例 2〜3 (有機 EL素子の製造)
実施例 1において、正孔輸送材料として化合物(1)の代わりに表 1に記載の化合物 を用いた以外は実施例 1と同様にして、有機 EL素子を作製した。
得られた有機 EL素子について、発光色を観察し、さらに、初期輝度 5000cd/m2 、室温、 DC定電流駆動での発光の半減寿命を測定した結果及び初期駆動電圧、電 圧上昇値を表 1に示す。
[0105] 比較例;!〜 3
実施例 1において、正孔輸送材料として化合物( 1 )の代わりに下記比較化合物( 1 ) 〜(3)を用いた以外は実施例 1と同様にして、有機 EL素子を作製した。
また、得られた有機 EL素子について、発光色を観察し、さらに、初期輝度 5000cd 室温、 DC定電流駆動での発光の半減寿命を測定した結果及び初期駆動電 圧、電圧上昇値を表 1に示す。
[0106] [化 32]
Figure imgf000047_0001
比較化合物 (1 ) 比較化合物 (2
Figure imgf000047_0002
比較化合物 (3 )
[0107] 実施例 4 (有機 EL素子の製造)
実施例 1において、スチリル基を有するァミン化合物 D1の代わりに下記ァリールァ ミン化合物 D2を用いた以外は実施例 1と同様にして、有機 EL素子を作製した。 Me はメチル基である。
また、得られた有機 EL素子について、発光色を観察し、さらに、初期輝度 5000cd 室温、 DC定電流駆動での発光の半減寿命を測定した結果及び初期駆動電 圧、電圧上昇値を表 1に示す。
[0108] [化 33]
Figure imgf000047_0003
D 2
[0109] 比較例 4
実施例 4にお!/、て、正孔輸送材料として化合物( 1 )の代わりに上記比較化合物( 1 ) を用いた以外は実施例 4と同様にして、有機 EL素子を作製した。
また、得られた有機 EL素子について、発光色を観察し、さらに、初期輝度 5000cd 室温、 DC定電流駆動での発光の半減寿命を測定した結果及び初期駆動電 圧、電圧上昇値を表 1に示す。
[0110] [表 1] 表 1
Figure imgf000048_0001
産業上の利用可能性
本発明の芳香族ァミン誘導体を有機薄膜層に含有させることにより、駆動電圧を低 下させるとともに長時間の連続駆動においても駆動電圧の上昇が少なぐ寿命が長
V、有機 EL素子を実現することができる。

Claims

請求の範囲
下記一般式(1)で表される芳香族ァミン誘導体。
Figure imgf000049_0001
[式中、 I^〜R7は、それぞれ独立に、水素原子、置換もしくは無置換の核原子数 5〜 50のァリール基、置換もしくは無置換の炭素数;!〜 50のアルコキシ基、置換もしくは 無置換の炭素数 6〜50のァラルキル基、置換もしくは無置換の核原子数 5〜50のァ リールォキシ基、置換もしくは無置換の核原子数 5〜50のァリールチオ基、置換もし くは無置換の炭素数 2〜50のアルコキシカルボニル基、置換もしくは無置換のァミノ 基、ハロゲン原子、シァノ基、ニトロ基、ヒドロキシル基、又はカルボキシル基である。 a は 1以上の整数である。 b、 c、 g及び hは 1〜5の整数である。 d、 e及び fは;!〜 4の整 数である。 Ar1及び Ar2は、それぞれ下記一般式(2)及び(3)で表される基であり、 Ar 1と Ar2は同一ではない。
[化 2]
Figure imgf000049_0002
(式中、 R^R11は、一般式(1)中の R^R7と同一の群から、それぞれ独立に選択さ れる。 i及び mは;!〜 5の整数である。 j及び kは 1〜4の整数である。 n及び pは 0以上 の整数で且つ n≠pである。 ) ] [2] 前記一般式(1)において、 a = 2である請求項 1記載の芳香族ァミン誘導体。
[3] 前記一般式(2)及び(3)において、 n= l及び p = 0である請求項 1又は 2記載の芳 香族ァミン誘導体。
[4] 前記一般式(2)又は(3)において、フエニル基の結合位置力 Sパラ位である請求項 1
〜3の!/、ずれかに記載の芳香族ァミン誘導体。
[5] 有機エレクト口ルミネッセンス素子用材料である請求項 1〜4のいずれかに記載の 芳香族ァミン誘導体。
[6] 有機エレクト口ルミネッセンス素子用の正孔注入材料又は正孔輸送材料である請求 項;!〜 4のいずれかに記載の芳香族ァミン誘導体。
[7] 陰極と陽極間に少なくとも発光層を含む一層又は複数層からなる有機薄膜層が挟 持されている有機エレクト口ルミネッセンス素子において、該有機薄膜層の少なくとも
1層が、請求項;!〜 4のいずれかに記載の芳香族ァミン誘導体を単独もしくは混合物 の成分として含有する有機エレクト口ルミネッセンス素子。
[8] 有機薄膜層が正孔注入層を有し、請求項;!〜 4のいずれかに記載の芳香族ァミン 誘導体が該正孔注入層に含有されて!/、る請求項 7記載の有機エレクト口ルミネッセン ス素子。
[9] 有機薄膜層が正孔輸送層を有し、請求項;!〜 4のいずれかに記載の芳香族ァミン 誘導体が該正孔輸送層に含有されて!/、る請求項 7記載の有機エレクト口ルミネッセン ス素子。
[10] 請求項 7〜9の!/、ずれかに記載の有機エレクト口ルミネッセンス素子を有する装置。
PCT/JP2007/067495 2006-12-15 2007-09-07 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子 WO2008072400A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006338800A JP2008150310A (ja) 2006-12-15 2006-12-15 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
JP2006-338800 2006-12-15

Publications (1)

Publication Number Publication Date
WO2008072400A1 true WO2008072400A1 (ja) 2008-06-19

Family

ID=39511431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067495 WO2008072400A1 (ja) 2006-12-15 2007-09-07 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子

Country Status (4)

Country Link
US (1) US20080145707A1 (ja)
JP (1) JP2008150310A (ja)
TW (1) TW200835671A (ja)
WO (1) WO2008072400A1 (ja)

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9394231B2 (en) * 2011-12-05 2016-07-19 Nissan Chemical Industries, Ltd. Composition for forming antistatic film and oligomer compound
CN103145581B (zh) * 2013-02-27 2016-01-20 中山大学 一种含酰亚胺结构的芳香二胺化合物及其制备方法和应用
US9929361B2 (en) 2015-02-16 2018-03-27 Universal Display Corporation Organic electroluminescent materials and devices
US11056657B2 (en) 2015-02-27 2021-07-06 University Display Corporation Organic electroluminescent materials and devices
US9859510B2 (en) 2015-05-15 2018-01-02 Universal Display Corporation Organic electroluminescent materials and devices
US10418568B2 (en) 2015-06-01 2019-09-17 Universal Display Corporation Organic electroluminescent materials and devices
US11127905B2 (en) 2015-07-29 2021-09-21 Universal Display Corporation Organic electroluminescent materials and devices
US10361381B2 (en) 2015-09-03 2019-07-23 Universal Display Corporation Organic electroluminescent materials and devices
US20170229663A1 (en) 2016-02-09 2017-08-10 Universal Display Corporation Organic electroluminescent materials and devices
US10236456B2 (en) 2016-04-11 2019-03-19 Universal Display Corporation Organic electroluminescent materials and devices
US10862054B2 (en) 2016-06-20 2020-12-08 Universal Display Corporation Organic electroluminescent materials and devices
US11482683B2 (en) 2016-06-20 2022-10-25 Universal Display Corporation Organic electroluminescent materials and devices
US10672997B2 (en) 2016-06-20 2020-06-02 Universal Display Corporation Organic electroluminescent materials and devices
US10608186B2 (en) 2016-09-14 2020-03-31 Universal Display Corporation Organic electroluminescent materials and devices
US10680187B2 (en) 2016-09-23 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US11196010B2 (en) 2016-10-03 2021-12-07 Universal Display Corporation Organic electroluminescent materials and devices
US11011709B2 (en) 2016-10-07 2021-05-18 Universal Display Corporation Organic electroluminescent materials and devices
US20180130956A1 (en) 2016-11-09 2018-05-10 Universal Display Corporation Organic electroluminescent materials and devices
US10680188B2 (en) 2016-11-11 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US11780865B2 (en) 2017-01-09 2023-10-10 Universal Display Corporation Organic electroluminescent materials and devices
US10844085B2 (en) 2017-03-29 2020-11-24 Universal Display Corporation Organic electroluminescent materials and devices
US10944060B2 (en) 2017-05-11 2021-03-09 Universal Display Corporation Organic electroluminescent materials and devices
US12098157B2 (en) 2017-06-23 2024-09-24 Universal Display Corporation Organic electroluminescent materials and devices
US11228010B2 (en) 2017-07-26 2022-01-18 Universal Display Corporation Organic electroluminescent materials and devices
US11744142B2 (en) 2017-08-10 2023-08-29 Universal Display Corporation Organic electroluminescent materials and devices
US20190161504A1 (en) 2017-11-28 2019-05-30 University Of Southern California Carbene compounds and organic electroluminescent devices
EP3492480B1 (en) 2017-11-29 2021-10-20 Universal Display Corporation Organic electroluminescent materials and devices
US11937503B2 (en) 2017-11-30 2024-03-19 Universal Display Corporation Organic electroluminescent materials and devices
US11542289B2 (en) 2018-01-26 2023-01-03 Universal Display Corporation Organic electroluminescent materials and devices
US11426818B2 (en) 2018-08-10 2022-08-30 The Research Foundation for the State University Additive manufacturing processes and additively manufactured products
US20200075870A1 (en) 2018-08-22 2020-03-05 Universal Display Corporation Organic electroluminescent materials and devices
US11737349B2 (en) 2018-12-12 2023-08-22 Universal Display Corporation Organic electroluminescent materials and devices
US11780829B2 (en) 2019-01-30 2023-10-10 The University Of Southern California Organic electroluminescent materials and devices
US20200251664A1 (en) 2019-02-01 2020-08-06 Universal Display Corporation Organic electroluminescent materials and devices
JP2020158491A (ja) 2019-03-26 2020-10-01 ユニバーサル ディスプレイ コーポレイション 有機エレクトロルミネセンス材料及びデバイス
US20210032278A1 (en) 2019-07-30 2021-02-04 Universal Display Corporation Organic electroluminescent materials and devices
JP2021031490A (ja) 2019-08-16 2021-03-01 ユニバーサル ディスプレイ コーポレイション 有機エレクトロルミネセンス材料及びデバイス
US20210135130A1 (en) 2019-11-04 2021-05-06 Universal Display Corporation Organic electroluminescent materials and devices
US20210217969A1 (en) 2020-01-06 2021-07-15 Universal Display Corporation Organic electroluminescent materials and devices
US20220336759A1 (en) 2020-01-28 2022-10-20 Universal Display Corporation Organic electroluminescent materials and devices
EP3937268A1 (en) 2020-07-10 2022-01-12 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
US20220158096A1 (en) 2020-11-16 2022-05-19 Universal Display Corporation Organic electroluminescent materials and devices
US20220162243A1 (en) 2020-11-24 2022-05-26 Universal Display Corporation Organic electroluminescent materials and devices
US20220165967A1 (en) 2020-11-24 2022-05-26 Universal Display Corporation Organic electroluminescent materials and devices
US20220271241A1 (en) 2021-02-03 2022-08-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4059915A3 (en) 2021-02-26 2022-12-28 Universal Display Corporation Organic electroluminescent materials and devices
EP4060758A3 (en) 2021-02-26 2023-03-29 Universal Display Corporation Organic electroluminescent materials and devices
US20220298192A1 (en) 2021-03-05 2022-09-22 Universal Display Corporation Organic electroluminescent materials and devices
US20220298190A1 (en) 2021-03-12 2022-09-22 Universal Display Corporation Organic electroluminescent materials and devices
US20220298193A1 (en) 2021-03-15 2022-09-22 Universal Display Corporation Organic electroluminescent materials and devices
US20220340607A1 (en) 2021-04-05 2022-10-27 Universal Display Corporation Organic electroluminescent materials and devices
EP4075531A1 (en) 2021-04-13 2022-10-19 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
US20220352478A1 (en) 2021-04-14 2022-11-03 Universal Display Corporation Organic eletroluminescent materials and devices
US20230006149A1 (en) 2021-04-23 2023-01-05 Universal Display Corporation Organic electroluminescent materials and devices
US20220407020A1 (en) 2021-04-23 2022-12-22 Universal Display Corporation Organic electroluminescent materials and devices
US20230133787A1 (en) 2021-06-08 2023-05-04 University Of Southern California Molecular Alignment of Homoleptic Iridium Phosphors
EP4151699A1 (en) 2021-09-17 2023-03-22 Universal Display Corporation Organic electroluminescent materials and devices
US20240343970A1 (en) 2021-12-16 2024-10-17 Universal Display Corporation Organic electroluminescent materials and devices
CN114213256A (zh) * 2021-12-27 2022-03-22 苏州久显新材料有限公司 一种二(4-联苯基)胺的制备方法
EP4231804A3 (en) 2022-02-16 2023-09-20 Universal Display Corporation Organic electroluminescent materials and devices
US20230292592A1 (en) 2022-03-09 2023-09-14 Universal Display Corporation Organic electroluminescent materials and devices
US20230337516A1 (en) 2022-04-18 2023-10-19 Universal Display Corporation Organic electroluminescent materials and devices
US20230389421A1 (en) 2022-05-24 2023-11-30 Universal Display Corporation Organic electroluminescent materials and devices
EP4293001A1 (en) 2022-06-08 2023-12-20 Universal Display Corporation Organic electroluminescent materials and devices
US20240016051A1 (en) 2022-06-28 2024-01-11 Universal Display Corporation Organic electroluminescent materials and devices
US20240107880A1 (en) 2022-08-17 2024-03-28 Universal Display Corporation Organic electroluminescent materials and devices
US20240188316A1 (en) 2022-10-27 2024-06-06 Universal Display Corporation Organic electroluminescent materials and devices
US20240188419A1 (en) 2022-10-27 2024-06-06 Universal Display Corporation Organic electroluminescent materials and devices
US20240180025A1 (en) 2022-10-27 2024-05-30 Universal Display Corporation Organic electroluminescent materials and devices
US20240188319A1 (en) 2022-10-27 2024-06-06 Universal Display Corporation Organic electroluminescent materials and devices
US20240196730A1 (en) 2022-10-27 2024-06-13 Universal Display Corporation Organic electroluminescent materials and devices
US20240247017A1 (en) 2022-12-14 2024-07-25 Universal Display Corporation Organic electroluminescent materials and devices

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001006878A (ja) * 1999-06-22 2001-01-12 Matsushita Electric Ind Co Ltd 薄膜el素子およびその駆動方法
JP2004026732A (ja) * 2002-06-26 2004-01-29 Mitsubishi Chemicals Corp 非対称1,4−フェニレンジアミン誘導体、及びこれを用いた有機電界発光素子
JP2005285663A (ja) * 2004-03-30 2005-10-13 Bando Chem Ind Ltd 有機エレクトロルミネッセンス素子
WO2006046441A1 (ja) * 2004-10-29 2006-05-04 Idemitsu Kosan Co., Ltd. 芳香族アミン化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2007079103A2 (en) * 2005-12-28 2007-07-12 E. I. Du Pont De Nemours And Company Compositions comprising novel compounds and electronic devices made with such compositions

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0666298A3 (en) * 1994-02-08 1995-11-15 Tdk Corp Organic electroluminescent element and compound used therein.
JP2007186461A (ja) * 2006-01-13 2007-07-26 Idemitsu Kosan Co Ltd 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001006878A (ja) * 1999-06-22 2001-01-12 Matsushita Electric Ind Co Ltd 薄膜el素子およびその駆動方法
JP2004026732A (ja) * 2002-06-26 2004-01-29 Mitsubishi Chemicals Corp 非対称1,4−フェニレンジアミン誘導体、及びこれを用いた有機電界発光素子
JP2005285663A (ja) * 2004-03-30 2005-10-13 Bando Chem Ind Ltd 有機エレクトロルミネッセンス素子
WO2006046441A1 (ja) * 2004-10-29 2006-05-04 Idemitsu Kosan Co., Ltd. 芳香族アミン化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2007079103A2 (en) * 2005-12-28 2007-07-12 E. I. Du Pont De Nemours And Company Compositions comprising novel compounds and electronic devices made with such compositions

Also Published As

Publication number Publication date
JP2008150310A (ja) 2008-07-03
US20080145707A1 (en) 2008-06-19
TW200835671A (en) 2008-09-01

Similar Documents

Publication Publication Date Title
US8299247B2 (en) Material for organic electroluminescence device and organic electroluminescence device
US8088901B2 (en) Azaindenofluorenedione derivative, material for organic electroluminescence device and organic electroluminescence device
WO2008072400A1 (ja) 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2008032631A1 (fr) Dérivé d'amine aromatique et dispositif électroluminescent organique l'employant
WO2008023549A1 (fr) Dérivés d'amines aromatiques et dispositifs électroluminescents organiques fabriqués à l'aide de ces dérivés
WO2007102361A1 (ja) 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2007080704A1 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007125714A1 (ja) 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2007018004A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007017995A1 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007007463A1 (ja) 電子吸引性置換基を有する含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2006073054A1 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2006114921A1 (ja) 芳香族トリアミン化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2007100010A1 (ja) 有機エレクトロルミネッセンス素子
WO2008062636A1 (en) Aromatic amine derivative and organic electroluminescent element using the same
WO2008001551A1 (fr) Dérivé d'amine aromatique et dispositif a électroluminescence organique utilisant celui-ci
WO2008072586A1 (ja) 有機エレクトロルミネッセンス素子用材料及び有機エレクトロルミネッセンス素子
WO2007063993A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2007142216A1 (ja) 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子用材料
WO2007080801A1 (ja) 新規イミド誘導体、有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2007111263A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2009084268A1 (ja) 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2007007464A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2008059713A1 (en) Fluoranthene compound, organic electroluminescent device using the fluoranthene compound, and organic electroluminescent material-containing solution
WO2007111262A1 (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828204

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07828204

Country of ref document: EP

Kind code of ref document: A1