US20220305275A1 - Device and method for unattended treatment of a patient - Google Patents
Device and method for unattended treatment of a patient Download PDFInfo
- Publication number
- US20220305275A1 US20220305275A1 US17/518,243 US202117518243A US2022305275A1 US 20220305275 A1 US20220305275 A1 US 20220305275A1 US 202117518243 A US202117518243 A US 202117518243A US 2022305275 A1 US2022305275 A1 US 2022305275A1
- Authority
- US
- United States
- Prior art keywords
- range
- pad
- electrode
- treatment
- energy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/0613—Apparatus adapted for a specific treatment
- A61N5/0616—Skin treatment other than tanning
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
- A61B18/203—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser applying laser energy to the outside of the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/0404—Electrodes for external use
- A61N1/0408—Use-related aspects
- A61N1/0452—Specially adapted for transcutaneous muscle stimulation [TMS]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/36014—External stimulators, e.g. with patch electrodes
- A61N1/3603—Control systems
- A61N1/36031—Control systems using physiological parameters for adjustment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/36014—External stimulators, e.g. with patch electrodes
- A61N1/3603—Control systems
- A61N1/36034—Control systems specified by the stimulation parameters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/40—Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/40—Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals
- A61N1/403—Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals for thermotherapy, e.g. hyperthermia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N2/00—Magnetotherapy
- A61N2/004—Magnetotherapy specially adapted for a specific therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/0613—Apparatus adapted for a specific treatment
- A61N5/0622—Optical stimulation for exciting neural tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00005—Cooling or heating of the probe or tissue immediately surrounding the probe
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00005—Cooling or heating of the probe or tissue immediately surrounding the probe
- A61B2018/00011—Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/0016—Energy applicators arranged in a two- or three dimensional array
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00452—Skin
- A61B2018/00458—Deeper parts of the skin, e.g. treatment of vascular disorders or port wine stains
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00452—Skin
- A61B2018/00458—Deeper parts of the skin, e.g. treatment of vascular disorders or port wine stains
- A61B2018/00464—Subcutaneous fat, e.g. liposuction, lipolysis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00452—Skin
- A61B2018/0047—Upper parts of the skin, e.g. skin peeling or treatment of wrinkles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00642—Sensing and controlling the application of energy with feedback, i.e. closed loop control
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00791—Temperature
- A61B2018/00797—Temperature measured by multiple temperature sensors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00791—Temperature
- A61B2018/00821—Temperature measured by a thermocouple
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00994—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combining two or more different kinds of non-mechanical energy or combining one or more non-mechanical energies with ultrasound
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/1206—Generators therefor
- A61B2018/1246—Generators therefor characterised by the output polarity
- A61B2018/1253—Generators therefor characterised by the output polarity monopolar
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/1206—Generators therefor
- A61B2018/1246—Generators therefor characterised by the output polarity
- A61B2018/126—Generators therefor characterised by the output polarity bipolar
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/1206—Generators therefor
- A61B2018/1273—Generators therefor including multiple generators in one device
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/0404—Electrodes for external use
- A61N1/0408—Use-related aspects
- A61N1/0464—Specially adapted for promoting tissue growth
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/0404—Electrodes for external use
- A61N1/0472—Structure-related aspects
- A61N1/0484—Garment electrodes worn by the patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/0404—Electrodes for external use
- A61N1/0472—Structure-related aspects
- A61N1/0492—Patch electrodes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/20—Applying electric currents by contact electrodes continuous direct currents
- A61N1/205—Applying electric currents by contact electrodes continuous direct currents for promoting a biological process
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/20—Applying electric currents by contact electrodes continuous direct currents
- A61N1/28—Apparatus for applying thermoelectric currents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/328—Applying electric currents by contact electrodes alternating or intermittent currents for improving the appearance of the skin, e.g. facial toning or wrinkle treatment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/36003—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of motor muscles, e.g. for walking assistance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N2005/002—Cooling systems
- A61N2005/007—Cooling systems for cooling the patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/0601—Apparatus for use inside the body
- A61N5/0603—Apparatus for use inside the body for treatment of body cavities
- A61N2005/0605—Ear
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/0601—Apparatus for use inside the body
- A61N5/0603—Apparatus for use inside the body for treatment of body cavities
- A61N2005/0606—Mouth
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/0601—Apparatus for use inside the body
- A61N5/0603—Apparatus for use inside the body for treatment of body cavities
- A61N2005/0608—Rectum
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/0601—Apparatus for use inside the body
- A61N5/0603—Apparatus for use inside the body for treatment of body cavities
- A61N2005/0611—Vagina
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/0626—Monitoring, verifying, controlling systems and methods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/0635—Radiation therapy using light characterised by the body area to be irradiated
- A61N2005/0642—Irradiating part of the body at a certain distance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/0635—Radiation therapy using light characterised by the body area to be irradiated
- A61N2005/0643—Applicators, probes irradiating specific body areas in close proximity
- A61N2005/0645—Applicators worn by the patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/0635—Radiation therapy using light characterised by the body area to be irradiated
- A61N2005/0643—Applicators, probes irradiating specific body areas in close proximity
- A61N2005/0645—Applicators worn by the patient
- A61N2005/0647—Applicators worn by the patient the applicator adapted to be worn on the head
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
- A61N2007/0004—Applications of ultrasound therapy
- A61N2007/0034—Skin treatment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/0601—Apparatus for use inside the body
- A61N5/0603—Apparatus for use inside the body for treatment of body cavities
Definitions
- the present invention relates to methods and apparatus for patient treatment by means of active elements delivering electromagnetic energy and/or secondary energy in such a way that the treatment area is treated homogeneously without the need for manipulation of the active elements during the therapy.
- Facial unattended application is, besides the complications introduced by attachment to rugged areas and necessity of adaptation to the shapes of different patients, specific by its increased need for protection against burns and other side effects.
- the face heals more easily than other body areas, it is also more exposed, leading to much higher requirements for treatment downtime.
- Another important aspect of a facial procedure is that the face hosts the most important human senses, whose function must not be compromised during treatment. Above all, eye safety must be ensured throughout the entire treatment.
- the current aesthetic market offers either traditional manually controlled radiofrequency or light devices enabling facial tissue heating to a target temperature in the range of 40° C.-100° C. or unattended LED facial masks whose operation is based on light effects (phototherapy) rather than thermal effects. These masks are predominantly intended for home use and do not pose a risk to patients of burns, overheating or overtreating. The variability in facial shapes of individual patients does not represent any issue for these masks as the delivered energy and attained temperatures are so low that the risk of thermal tissue damage is minimized and there is no need for homogeneous treatment.
- the aesthetic market feels the needs of the combination of the heating treatment made by electromagnetic energy delivered to the epidermis, dermis, hypodermis or adipose tissue with the secondary energy providing muscle contraction or muscle stimulation in the field of improvement of visual appearance of the patient.
- the actual devices is adapted to treat the uneven rugged areas like the face.
- the commercially available devices are usually handheld devices that need to be operated by the medical professional during the whole treatment.
- the applicator or pad of the device needs to be attached to the patient which allows unattended treatment of the patient and the applicator or pad needs to be made of flexible material allowing sufficient contact with the uneven treatment area of the body part of the patient.
- the patient may include skin and a body part, wherein a body part may refer to a body area.
- the desired effect of the improvement of visual appearance of the patient may include tissue (e.g. skin) heating in the range of 37.5° C. to 55° C., tissue coagulation at temperatures of 50° C. to 70° C. or tissue ablation at temperatures of 55° C. to 130° C. depending on the patient.
- tissue e.g. skin
- tissue coagulation at temperatures of 50° C. to 70° C.
- tissue ablation at temperatures of 55° C. to 130° C. depending on the patient.
- Various patients and skin conditions may require different treatment approaches—higher temperatures allow better results with fewer sessions but require longer healing times while lower temperatures enable treatment with no downtime but limited results within more sessions.
- Another effect of the heating may lead to decreasing the number of the fat cells.
- Another desired effect may be muscle contraction causing muscle stimulation (e.g. strengthening or toning) for improving the visual appearance of the patient.
- the proposed device and methods comprise at least one electromagnetic energy generator inside a main unit that generates an electromagnetic energy which is delivered to the treatment area via at least one active element attached to the skin.
- At least one active element may be embedded in a pad made of flexible material that adapts to the shape of the rugged surface.
- An underside of the pad may include of an adhesive layer allowing the active elements to adhere to the treatment area and to maintain necessary tissue contact.
- the device may employ a safety system capable of adjusting one or more therapy parameters based on the measured values from at least one sensor, e.g. thermal sensors or impedance measurement sensors capable of measuring quality of contact with the treated tissue.
- the proposed device and methods comprise at least one electromagnetic energy generator inside a main unit that generates an electromagnetic energy which is delivered to the treatment area via at least one active element located at a defined distance from the tissue to be treated.
- a distance of at least one active element from the treatment area may be monitored before, throughout the entire treatment or post-treatment.
- the device may employ a safety system capable of adjusting one or more therapy parameters based on the measured values from at least one sensor, for example one or more distance sensors.
- Energy may be delivered by a single or a plurality of static active elements or by moving a single or a plurality of active elements throughout the entire treatment area, for example via a built-in automatic moving system, e.g. an integrated scanner.
- Treatment areas may be set by means of laser sight—the operator may mark the area to be treated prior to the treatment.
- the active element may deliver energy through its entire surface or by means of a so-called fractional arrangement when the active part includes a matrix formed by points of defined size. These points may be separated by inactive (and therefore untreated) areas that allow faster tissue healing. The points surface may make up from 1% to 99% of the active element area.
- the electromagnetic energy may be primarily generated by a laser, laser diode module, LED, flash lamp or incandescent light bulb or by radiofrequency generator for causing the heating of the patient. Additionally, an acoustic energy or electric or electromagnetic energy, which does not heat the patient, may be delivered simultaneously, alternately or in overlap with the primary electromagnetic energy.
- the active element may deliver more than one energy simultaneously (at the same time), successively or in overlap.
- the active element may deliver a radiofrequency energy and subsequently an electric energy (electric current).
- the active element may deliver the radiofrequency energy and the electric energy at the same time.
- the device may be configured to deliver the electromagnetic field by at least one active element and simultaneously (at the same time) to deliver e.g. electric energy by a different elements.
- the proposed methods and devices may lead to improvement of a visual appearance including, but by no means limited to a proper skin rejuvenation, wrinkle removal, skin tightening and lifting, cellulite and fat reduction, treatment of pigmented lesions, rhytides, tattoo removal, soft tissue coagulation and ablation, vascular lesions reduction, temporary relief of pain, muscle spasms, increase in local circulation, etc. of uneven rugged areas without causing further harm to important parts of the patient's body, e.g. nerves or internal organs.
- the proposed method and devices may lead to an adipose tissue reduction, e.g. by fat cells lipolysis or apoptosis.
- the proposed methods and devices may lead to improvement of a visual appearance, e.g. tissue rejuvenation via muscle strengthening or muscle toning through muscle contractions caused by electric current or electromagnetic energy and via elastogenesis and/or neocolagenesis and/or relief of pain and/or muscle spasms and/or increase in local circulation through heating by radiofrequency energy.
- tissue rejuvenation via muscle strengthening or muscle toning through muscle contractions caused by electric current or electromagnetic energy and via elastogenesis and/or neocolagenesis and/or relief of pain and/or muscle spasms and/or increase in local circulation through heating by radiofrequency energy.
- the proposed devices and methods may be used for post-surgical treatment, e.g. after liposuction, e.g. for treatment and/or healing of the wounds caused by surgery.
- FIG. 1 shows a block diagram of an apparatus for contact therapy.
- FIG. 2 is an illustration of an apparatus for contact therapy.
- FIG. 3A represents pad shapes and layout.
- FIG. 3B represents pad shapes and layout.
- FIG. 3C represents one possible pad shape and layout for treatment of a forehead.
- FIG. 3D represent one possible pad shape and layout for treatment of a cheek.
- FIG. 4A , FIG. 4B , FIG. 4C , and FIG. 4D represent side views of the pad intended for contact therapy.
- FIG. 5A represents a top view of one variant of the pad.
- FIG. 5B represents a detail view of one possible arrangement of the slot in the substrate.
- FIG. 6 shows one variant of energy delivery by switching multiple active elements.
- FIG. 7 shows a block diagram of an apparatus for contactless therapy.
- FIG. 8 is an illustration of an apparatus for contactless therapy.
- FIG. 9A is an illustration of the framed grated electrode.
- FIG. 9B is an illustration of another framed grated electrode.
- FIG. 9C is an illustration of a framed grated electrode with thinning conductive lines.
- FIG. 9D is an illustration of a non-framed grated electrode.
- FIG. 9E is an illustration of an electrode with openings.
- FIG. 9F is one possible illustration of an electrode.
- FIG. 9G is another illustration of an electrode.
- FIG. 9H is another illustration of an electrode.
- FIG. 10 is an illustration of a forehead pad treatment.
- the presented methods and devices may be used for stimulation and/or treatment of a tissue, including but not limited to skin, epidermis, dermis, hypodermis or muscles.
- the proposed apparatus is designed for minimally to non-invasive treatment of one or more areas of the tissue to enable well defined unattended treatment of the uneven, rugged areas (e.g. facial area) by electromagnetic energy delivery via a single or a plurality of active elements without causing further harm to important parts of the patient's body, e.g. nerves or internal organs.
- the presented methods and devices may be used to stimulate body parts or body areas like head, neck, bra fat, love handles, torso, back, abdomen, buttocks, thighs, calves, legs, arms, forearms, hands, fingers or body cavities (e.g. vagina, anus, mouth, inner ear etc.).
- body cavities e.g. vagina, anus, mouth, inner ear etc.
- the proposed methods and devices may include a several protocols improving of visual appearance, which may be preprogramed in the control unit (e.g. CPU—central processing unit, which may include a flex circuit or a printed circuit board and may include a microprocessor or memory for controlling the device).
- control unit e.g. CPU—central processing unit, which may include a flex circuit or a printed circuit board and may include a microprocessor or memory for controlling the device.
- the desired effect may include tissue (e.g. a surface of the skin) heating (thermal therapy) in the range of 37.5° C. to 55° C. or in the range of 38° C. to 53° C. or in the range of 39° C. to 52° C. or in the range of 40° C. to 50° C. or in the range of 41° C. to 45° C., tissue coagulation at temperatures in the range of 50° C. to 70° C. or in the range of 51° C. to 65° C. or in the range of 52° C. to 62° C. or in the range of 53° C. to 60° C. or tissue ablation at temperatures in the range of 55° C. to 130° C. or in the range of 58° C. to 120° C.
- tissue e.g. a surface of the skin
- heating in the range of 37.5° C. to 55° C. or in the range of 38° C. to 53° C. or in the range of 39° C. to 52° C. or in the range
- a target temperature of the skin may be typically within the range of 37.5° C. to 95° C. or in the range of 38° C. to 90° C. or in the range of 39° C. to 85° C. or in the range of 40° C. to 80° C. while for contactless therapy a target temperature of the skin may be in the range of 37.5° C. to 130° C. or in the range of 38° C. to 120° C. or in the range of 39° C. to 110° C. or in the range of 40° C. to 100° C. The temperature within the range of 37.5° C.
- to 130° C. or in the range of 38° C. to 120° C. or in the range of 39° C. to 110° C. or in the range of 40° C. to 100° C. may lead to stimulation of fibroblasts and formation of connective tissue—e.g. collagen, elastin, hyaluronic acid etc.
- connective tissue e.g. collagen, elastin, hyaluronic acid etc.
- controlled tissue damage is triggered, physiological repair processes are initiated, and new tissue is formed.
- Temperatures within the range of 37.5° C. to 130° C. or in the range of 38° C. to 120° C. or in the range of 39° C. to 110° C. or in the range of 40° C. to 100° C. may further lead to changes in the adipose tissue.
- fat cells come apart into apoptotic bodies and are further removed via the process of phagocytosis.
- necrosis fat cells are ruptured due to high temperatures, and their content is released into an extracellular matrix. Both processes may lead to a reduction of fat layers enabling reshaping of the face. Removing fat from the face may be beneficial for example in areas like submentum or cheeks.
- Another desired effect may include tissue rejuvenation, e. g. muscle strengthening through the muscle contraction caused by electric or electromagnetic energy, which doesn't heat the patient, or the muscle relaxation caused by a pressure massage.
- tissue rejuvenation e. g. muscle strengthening through the muscle contraction caused by electric or electromagnetic energy, which doesn't heat the patient, or the muscle relaxation caused by a pressure massage.
- the combined effect of muscle contractions via electric energy and tissue (e.g. skin) heating by electromagnetic field in accordance to the description may lead to significant improvement of visual appearance.
- FIG. 1 shows a block diagram of an apparatus 1 for contact therapy.
- FIG. 2 is an illustration of an apparatus 1 for contact therapy.
- the apparatus 1 for contact therapy may comprise two main blocks: main unit 2 and a pad 4 .
- the apparatus 1 may comprise interconnecting block 3 or neutral electrode 7 .
- the components of interconnecting block 3 may be implemented into the main unit 2 .
- Main unit 2 may include one or more generators: a primary electromagnetic generator 6 , which may preferably deliver radiofrequency energy in the range of 10 kHz to 300 GHz or 300 kHz to 10 GHz or 400 kHz to 6 GHz, or in the range of 100 kHz to 550 MHz or 250 kHz to 500 MHz or 350 kHz to 100 MHz or 400 kHz to 80 MHz, a secondary generator 9 which may additionally deliver electromagnetic energy, which does not heat the patient, or deliver electric current in the range of 1 Hz to 10 MHz or 5 Hz to 5 MHz or in the range of 10 Hz to 1 MHz or in the range of 20 Hz to 1 kHz or in the range of 40 Hz to 500 Hz or in the range of 50 Hz to 300 Hz and/or an ultrasound emitter 10 which may furthermore deliver an acoustic energy with a frequency in the range of 20 kHz to 25 GHz or 20 kHz to 1 GHz or 50 kHz to 250 MHz or 100 kHz to 100 MHz
- the output power of the radiofrequency energy may be less than or equal to 450, 300, 250 or 220 W.
- the radiofrequency energy on the output of the primary electromagnetic generator 6 (e.g. radiofrequency generator) may be in the range of 0.1 W to 400 W, or in the range of 0.5 W to 300 W or in the range of 1 W to 200 W or in the range of 10 W to 150 W.
- the radiofrequency energy may be applied in or close to the ISM bands of 6.78 MHz, 13.56 MHz, 27.12 MHz, 40.68 MHz, 433.92 MHz, 915 MHz, 2.45 GHz and 5.8 GHz.
- Main unit 2 may further comprise a human machine interface 8 represented by a display, buttons, a keyboard, a touchpad, a touch panel or other control members enabling an operator to check and adjust therapy and other device parameters. For example, it may be possible to set the power, treatment time or other treatment parameters of each generator (primary electromagnetic generator 6 , secondary generator 9 and ultrasound emitter 10 ) independently.
- the human machine interface 8 may be connected to control unit 11 (e.g. CPU).
- the power supply 5 located in the main unit 2 may include a transformer, disposable battery, rechargeable battery, power plug or standard power cord. The output power of the power supply 5 may be in the range of 10 W to 600 W, or in the range of 50 W to 500 W, or in the range of 80 W to 450 W.
- human machine interface 8 may also display information about the applied therapy type, remaining therapy time and main therapy parameters.
- Interconnecting block 3 may serve as a communication channel between the main unit 2 and the pad 4 . It may be represented by a simple device containing basic indicators 17 and mechanisms for therapy control. Indicators 17 may be realized through the display, LEDs, acoustic signals, vibrations or other forms capable of providing adequate notice to an operator and/or the patient. Indicators 17 may indicate actual patient temperature, contact information or other sensor measurements as well as a status of a switching process between the active elements, quality of contact with the treated tissue, actual treatment parameters, ongoing treatment, etc. Indicators 17 may be configured to warn the operator in case of suspicious therapy behavior, e.g. temperature out of range, improper contact with the treated tissue, parameters automatically adjusted etc. Interconnecting block 3 may be used as an additional safety feature for heat-sensitive patients.
- Switching circuitry 14 may be responsible for switching between active elements or for regulation of energy delivery from primary electromagnetic generator 6 , secondary generator 9 or ultrasound emitter 10 .
- the rate of switching between active elements 13 may be dependent on the amount of delivered energy, pulse length etc, and/or on the speed of switching circuitry 14 and control unit 11 (e.g. CPU).
- the switching circuitry 14 may include relay switch, transistor (bipolar, PNP, NPN, FET, JFET, MOSFET) thyristor, diode or opto-mechanical switch or any other suitable switch know in the prior art.
- the switching circuitry in connection with the control unit e.g. CPU
- the switching circuitry in connection with the control unit may control the switching between the primary electromagnetic energy generated by the primary electromagnetic generator 6 and the secondary energy generated by the secondary generator 9 on the at least one active element 13 .
- the interconnecting block 3 may contain the primary electromagnetic generator 6 , the secondary generator 9 or ultrasound emitter 10 or only one of them or any combination thereof.
- the main unit 2 may comprise the primary electromagnetic generator 6
- the interconnecting block 3 may comprise the secondary generator 9
- ultrasound emitter 10 may not be present at all.
- the control unit 11 controls the primary electromagnetic generator 6 such that the primary electromagnetic energy may be delivered in a continuous mode (CM) or a pulse mode to the at least one active element, having a fluence in the range of 10 mJ/cm 2 to 50 kJ/cm 2 or in the range of 100 mJ/cm 2 to 10 kJ/cm 2 or in the range of 0.5 J/cm 2 to 1 kJ/cm 2 .
- the electromagnetic energy may be primarily generated by a laser, laser diode module, LED, flash lamp or incandescent light bulb or by radiofrequency generator for causing the heating of the patient.
- the CM mode may be operated for a time interval in the range of 0.05 s to 60 min or in the range of 0.1 s to 45 min or in the range of 0.2 s to 30 min.
- the pulse duration of the energy delivery operated in the pulse regime may be in the range of 0.1 ms to 10 s or in the range of 0.2 ms to 7 s or in the range of 0.5 ms to 5 s.
- the primary electromagnetic generator 6 in the pulse regime may be operated by a control unit 11 (e.g. CPU) in a single shot mode or in a repetition mode.
- the frequency of the repetition mode may be in the range of 0.05 to 10 000 Hz or in the range of 0.1 to 5000 Hz or in the range of 0.3 to 2000 Hz or in the range of 0.5 to 1000 Hz.
- the frequency of the repetition mode may be in the range of 0.1 kHz to 200 MHz or in the range of 0.5 kHz to 150 MHz or in the range of 0.8 kHz to 100 MHz or in the range of 1 kHz to 80 MHz.
- the single shot mode may mean generation of just one electromagnetic pulse of specific parameters (e.g. intensity, duration, etc.) for delivery to a single treatment area.
- the repetition mode may mean generation of an electromagnetic pulses, which may have the specific parameters (e.g.
- the control unit (e.g. CPU) 11 may provide treatment control such as stabilization of the treatment parameters including treatment time, power, duty cycle, time period regulating switching between multiple active elements, temperature of the device 1 and temperature of the primary electromagnetic generator 6 and secondary generator 9 or ultrasound emitter 10 .
- the control unit 11 e.g. CPU
- the control unit 11 may drive and provide information from the switching circuitry 14 .
- the control unit 11 e.g. CPU
- the control unit 11 may also receive and provide information from sensors located on or in the pad 4 or anywhere in the device 1 .
- the control unit (e.g. CPU) 11 may include a flex circuit or a printed circuit board and may include a microprocessor or memory for controlling the device.
- the control unit (e.g. CPU) 11 may control the secondary generator 9 such that secondary energy (e.g electric current or magnetic field) may be delivered in a continuous mode (CM) or a pulse mode to the at least one active element, having a fluence in the range of 10 mJ/cm 2 to 50 kJ/cm 2 or in the range of 100 mJ/cm 2 to 10 kJ/cm 2 or in the range of 0.5 J/cm 2 to 1 kJ/cm 2 on the surface of the at least one active element.
- CM continuous mode
- a pulse mode to the at least one active element
- the CM mode may be operated for a time interval in the range of 0.05 s to 60 min or in the range of 0.1 s to 45 min or in the range of 0.2 s to 30 min.
- the pulse duration of the delivery of the secondary energy operated in the pulse regime may be in the range of 0.1 ⁇ s to 10 s or in the range of 0.2 ⁇ s to 1 s or in the range of 0.5 ⁇ s to 500 ms, or in the range of 0.5 to 10 s or in the range of 1 to 8 s or in the range of 1.5 to 5 s or in the range of 2 to 3 s.
- the secondary generator 9 in the pulse regime may be operated by a control unit 11 (e.g. CPU) in a single shot mode or in a repetition mode.
- the frequency of the repetition mode may be in the range of 0.1 to 12 000 Hz or in the range of 0.1 to 8000 Hz or in the range of 0.1 to 5000 Hz or in the range of 0.5 to 1000 Hz.
- the proposed device may be multichannel device allowing the control unit (e.g. CPU) 11 to control the treatment of more than one treated area at once.
- control unit e.g. CPU
- the interconnecting block 3 may not be a part of the device 1 , and the control unit (e.g. CPU) 11 , switching circuitry 14 , indicators 17 and emergency stop button 16 may be a part of the main unit 2 or pad 4 .
- some of the control unit (e.g. CPU) 11 , switching circuitry 14 , indicators 17 and emergency stop button 16 may be a part of the main unit 2 and some of them part of pad 4 , e.g. control unit (e.g. CPU) 11 , switching circuitry 14 and emergency stop button 16 may be part of the main unit 2 and indicators 17 may be a part of the pad 4 .
- Pad 4 represents the part of the device which may be in contact with the patient's skin during the therapy.
- the pads 4 may be made of flexible substrate material—for example polymer-based material, polyimide (PI) films, Teflon®, epoxy, polyethylene terephthalate (PET), polyamide or PE foam with an additional adhesive layer on an underside, e.g. a hypoallergenic adhesive gel (hydrogel) or adhesive tape that may be bacteriostatic, non-irritating, or water-soluble.
- the substrate may also be a silicone-based substrate.
- the substrate may also be made of a fabric, e.g. non-woven fabric.
- the adhesive layer may have the impedance for a current at a frequency of 500 kHz in the range of 1 to 150 ⁇ or in the range of 5 to 130 ⁇ or in the range of 10 to 100 ⁇ , and the impedance for a current at a frequency of 100 Hz or less is three times or more the impedance for a current at a frequency of 500 kHz.
- the adhesive hydrogel may be made of a polymer matrix or mixture containing water, a polyhydric alcohol, a polyvinylpyrrolidone, a polyisocyanate component, a polyol component or has a methylenediphenyl structure in the main chain.
- a conductive adhesive may be augmented with metallic fillers, such as silver, gold, copper, aluminum, platinum or titanium or graphite that make up 1 to 90% or 2 to 80% or 5 to 70% of adhesive.
- the adhesive layer may be covered by “ST-gel®” or “Tensive®” conductive adhesive gel which is applied to the body to reduce its impedance, thereby facilitating the delivery of an electric shock.
- the adhesive layer e.g. hydrogel may cover exactly the whole surface of the pad facing the body area of the patient.
- the thickness of the hydrogel layer may be in the range of 0.1 to 3 mm or in the range of 0.3 to 2 mm or in the range of 0.4 to 1.8 mm or in the range of 0.5 to 1.5 mm.
- the adhesive layer under the pad 4 may mean that the adhesive layer is between the surface of the pad facing the patient and the body of the patient.
- the adhesive layer may have impedance 1.1 times, 2 times, 4 times or up to 10 times higher than the impedance of the skin of the patient under the pad 4 .
- a definition of the skin impedance may be that it is a portion of the total impedance, measured between two equipotential surfaces in contact with the epidermis, that is inversely proportional to the electrode area, when the internal current flux path is held constant. Data applicable to this definition would be conveniently recorded as admittance per unit area to facilitate application to other geometries.
- the impedance of the adhesive layer may be set by the same experimental setup as used for measuring the skin impedance.
- the impedance of the adhesive layer may be higher than the impedance of the skin by a factor in the range of 1.1 to 20 times or 1.2 to 15 times or 1.3 to 10 times.
- the impedance of the adhesive layer may have different values for the different types of energy delivered to the patient, e.g. the impedance may be different for radiofrequency and for electric current delivery.
- the impedance of the hydrogel may be in the range of 100 to 2000 Ohms or in the range of 150 to 1800 Ohms or 200 to 1500 Ohms or 300 to 1200 Ohms in case of delivery of the electric current (e.g. during electrotherapy).
- the impedance of an adhesive layer (e.g. hydrogel) for AC current at 1 kHz may be in the range of 1000 to 3000 Ohms, or of 1200 to 2800 Ohms, or of 1500 to 2500 Ohms.
- the impedance of the adhesive layer (e.g. hydrogel) for AC current at 10 Hz may be in the range of 2000 to 4000 Ohms, or of 2300 to 3700 Ohms, or of 2500 to 3500 Ohms.
- the electric conductivity of the adhesive layer at radiofrequency of 3.2 MHz may be in the range of 20 to 200 mS/m or in the range of 50 to 140 mS/m or in the range of 60 to 120 mS/m or in the range of 70 to 100 mS/m.
- the adhesive layer may be a composition of more elements, wherein some elements may have suitable physical properties (referred to herein as adhesive elements), e.g. proper adhesive and/or conductivity and/or impedance and/or cooling properties and so on; and some elements may have nourishing properties (referred to herein as nourishing elements), e.g. may contain nutrients, and/or vitamins, and/or minerals, and/or organic and/or inorganic substances with nourishing effect, which may be delivered to the skin of the patient during the treatment.
- the volumetric ratio of adhesive elements to nourishing elements may be in the range of 1:1 to 20:1, or of 2:1 to 10:1, or of 3:1 to 5:1, or of 5:1 to 50:1, or of 10:1 to 40:1, or of 15:1.
- the adhesive layer composition may contain a hydrogel as an adhesive element and a hyaluronic acid as a nourishing element. In another aspect, the adhesive layer composition may contain a hydrogel as an adhesive element and one or more vitamins as nourishing elements. In another aspect, the adhesive layer composition may contain a hydrogel as an adhesive element and one or more minerals as nourishing elements. In another aspect, the adhesive layer composition may contain a hydrogel as an adhesive element and one or more minerals as nourishing elements.
- the nourishing element may be released continuously by itself during the treatment.
- the nourishing element may be released due to delivery of a treatment energy (e.g. radiofrequency, light, electric current or ultrasound), which may pass through the nourishing element and thus cause its release to the skin of the patient.
- a treatment energy e.g. radiofrequency, light, electric current or ultrasound
- the pad 4 may also have a sticker on a top side of the pad.
- the top side is the opposite side from the underside (the side where the adhesive layer may be deposited) or in other words the top side is the side of the pad that is facing away from the patient during the treatment.
- the sticker may have a bottom side and a top side, wherein the bottom side of the sticker may comprise a sticking layer and the top side of the sticker may comprise non-sticking layer (eg. polyimide (PI) films, Teflon®, epoxy, polyethylene terephthalate (PET), polyamide or PE foam, PE film or PVC foam).
- the sticker covers the top side of the pad and may also cover some sensors situated on the top side of the pad (e.g. thermal sensors).
- the sticker may have the same shape as the pad 4 or may have additional overlap over the pad.
- the sticker may be bonded to the pad such that the sticking layer of the bottom side of the sticker is facing toward the top side of the pad 4 .
- the top side of the sticker facing away from the pad 4 may be made of a non-adhesive layer.
- the linear dimension of the sticker with additional overlap may exceed the corresponding dimension of the pad in the range of 0.1 to 10 cm, or in the range of 0.1 to 7 cm, or in the range of 0.2 to 5 cm, or in the range of 0.2 to 3 cm, or in the range of 0.3 to 1 cm.
- This overlap may also comprise an adhesive layer and may be used to form additional and more proper contact of the pad with the patient.
- the thickness of the sticker may be in the range of 0.05 to 3 mm or in the range of 0.1 to 2 mm or in the range of 0.5 to 1.5 mm.
- the top side of the sticker may have a printed inscription for easy recognition of the pad, e.g. the brand of the manufacturer or the proposed treated body area.
- the adhesive layer, e.g. hydrogel, on the underside of the pad facing the body area of the patient may cover the whole surface of the pad and even overlap the surface of the pad and cover at least partially the overlap of the sticking layer.
- the underside of the adhesive layer and/or the overlap of the sticker (both parts facing towards the patient) may be covered by a liner, which may be removed just before the treatment. The liner protects the adhesive layer and/or the overlap of the sticker, thus when the liner is removed the proper adhesion to the body area of the patient is ensured.
- the pad 4 may comprise at least one suction opening, e.g. small cavities or slits adjacent to active elements or the active element may be embedded inside a cavity.
- the suction opening may be connected via connecting tube to a pump which may be part of the main unit 2 .
- the suction opening When the suction opening is brought into contact with the skin, the air sucked from the suction opening flows toward the connecting tube and the pump and the skin may be slightly sucked into the suction opening.
- the pad 4 may comprise the adhesive layer and the suction openings for combined stronger adhesion.
- the pump may also provide a positive pressure by pumping the fluid to the suction opening.
- the positive pressure is pressure higher than atmospheric pressure and the negative pressure or vacuum is lower than atmospheric pressure.
- Atmospheric pressure is a pressure of the air in the room during the therapy.
- the pressure may be applied to the treatment area in pulses providing a massage treatment.
- the massage treatment may be provided by one or more suction openings changing pressure value to the patient's soft tissue in the meaning that the suction opening apply different pressure to patient tissue.
- the suction openings may create a pressure gradient in the soft tissue without touching the skin. Such pressure gradients may be targeted on the soft tissue layer, under the skin surface and/or to different soft tissue structure.
- Massage accelerates and improves treatment therapy by electromagnetic energy, electric energy or electromagnetic energy which does not heat the patient, improves blood and/or lymph circulation, angioedema, erythema effect, accelerates removing of the fat, accelerate metabolism, accelerates elastogenesis and/or neocolagenesis.
- Each suction opening may provide pressure by a suction mechanism, airflow or gas flow, liquid flow, pressure provided by an object included in the suction opening (e.g. massaging object, pressure cells etc.) and/or in other ways.
- a suction mechanism airflow or gas flow, liquid flow, pressure provided by an object included in the suction opening (e.g. massaging object, pressure cells etc.) and/or in other ways.
- Pressure value applied on the patient's tissue means that a suction opening providing massaging effect applies positive, negative and/or sequentially changing positive and negative pressure on the treated and/or adjoining patient's tissue structures and/or creates a pressure gradient under the patient's tissue surface
- Massage applied in order to improve body liquid flow (e.g. lymph drainage) and/or relax tissue in the surface soft tissue layers may be applied with pressure lower than during the massage of deeper soft tissue layers.
- Such positive or negative pressure compared to the atmospheric pressure may be in a range of 10 Pa to 30 000 Pa, or in a range of 100 Pa to 20 000 Pa or in a range of 0.5 kPa to 19 kPa or in a range of 1 kPa to 15 kPa.
- Such positive or negative pressure may be in a range from 12 kPa to 400 kPa or from 15 kPa to 300 kPa or from 20 kPa to 200 kPa.
- An uncomfortable feeling of too high applied pressure may be used to set a pressure threshold according to individual patient feedback.
- Negative pressure may stimulate body liquid flow and/or relaxation of the deep soft tissue layers (0.5 cm to non-limited depth in the soft tissue) and/or layers of the soft tissue near the patient surface (0.1 mm to 0.5 cm). In order to increase effectiveness of the massage negative pressure treatment may be used followed by positive pressure treatment.
- a number of suction openings changing pressure values on the patient's soft tissue in one pad 4 may be between 1 to 100 or between 1 to 80 or 1 to 40 or between 1 to 10.
- suction openings may be different according to treated area.
- One suction opening may cover an area on the patient surface between 0.1 mm 2 to 1 cm 2 or between 0.1 mm 2 to 50 mm 2 or between 0.1 mm 2 to 40 mm 2 or between 0.1 mm 2 to 20 mm 2 .
- Another suction opening may cover an area on the patient surface between 1 cm 2 to 1 m 2 or between 1 cm 2 to 100 cm 2 or between 1 cm 2 to 50 cm 2 or between 1 cm 2 to 40 cm 2 .
- suction openings may work simultaneously or switching between them may be in intervals between 1 ms to 10 s or in intervals between 10 ms to 5 s or in intervals between 0.5 s to 2 s.
- Suction openings in order to provide massaging effect may be guided according to one or more predetermined massage profile included in the one or more treatment protocols.
- the massage profile may be selected by the operator and/or by a control unit (e.g. CPU) with regard to the patient's condition.
- a control unit e.g. CPU
- a patient with lymphedema may require a different level of compression profile and applied pressure than a patient with a healed leg ulcer.
- Pressure applied by one or more suction openings may be gradually applied preferably in the positive direction of the lymph flow and/or the blood flow in the veins. According to specific treatment protocols the pressure may be gradually applied in a direction opposite or different from ordinary lymph flow. Values of applied pressure during the treatment may be varied according to the treatment protocol.
- a pressure gradient may arise between individual suction openings. Examples of gradients described are not limited for this method and/or device.
- the setting of the pressure gradient between at least two previous and successive suction openings may be: 0%, i.e.
- the applied pressure by suction openings is the same (e.g. pressure in all suction openings of the pad is the same);
- 1% i.e.
- the applied pressure between a previous and a successive suction opening decreases and/or increases with a gradient of 1% (e.g. the pressure in the first suction opening is 5 kPa and the pressure in the successive suction opening is 4.95 kPa);
- the pressure decreases or increases with a gradient of 2%.
- the pressure gradient between two suction openings may be in a range 0% to 100% where 100% means that one suction openings is not active and/or does not apply any pressure on the patient's soft tissue.
- a treatment protocol that controls the application of the pressure gradient between a previous and a successive suction opening may be in a range between 0.1% to 95%, or in a range between 0.1% to 70%, or in a range between 1% to 50%.
- the suction opening may also comprise an impacting massage object powered by a piston, massage object operated by filling or sucking out liquid or air from the gap volume by an inlet/outlet valve or massage object powered by an element that creates an electric field, magnetic field or electromagnetic field.
- the massage may be provided by impacting of multiple massage objects.
- the multiple massage objects may have the same or different size, shape, weight or may be created from the same or different materials.
- the massage objects may be accelerated by air or liquid flowing (through the valve) or by an electric, magnetic or electromagnetic field. Trajectory of the massage objects may be random, circular, linear and/or massage objects may rotate around one or more axes, and/or may do other types of moves in the gap volume.
- the massage unit may also comprise a membrane on the side facing the patient which may be accelerated by an electric, magnetic, electromagnetic field or by changing pressure value in the gap volume between wall of the chamber and the membrane. This membrane may act as the massage object.
- pads with adhesive layer and pads with suction openings it may be convenient to use a combination of pads with adhesive layer and pads with suction openings.
- at least one pad used during the treatment may comprise adhesive layer and at least additional one pad used during the treatment may comprise suction opening.
- pad with adhesive layer may be suited for treatment of more uneven areas, e.g. periorbital area, and pad with suction openings for treatment of smoother areas, e.g. cheeks.
- the advantage of the device where the attachment of the pads may be provided by an adhesion layer or by a suction opening or their combination is that there is no need of any additional gripping system which would be necessary to hold the pads on the treatment area during the treatment, e.g. a band or a felt, which may cause a discomfort of the patient.
- the flexible pads 4 fasten the flexible pads 4 to the face by at least one band or felt which may be made from an elastic material and thus adjusted for an individual face.
- the flexible pads which may have not the adhesive layer or suction opening, are placed on the treatment area of the patient and their position is then fastened by a band or felt to avoid deflection of the pads from the treatment areas.
- the band may be replaced by a mask, e.g. an elastic mask that covers from 5% to 100% or from 30% to 99% or from 40% to 95% or from 50% to 90% of the face and may serve to secure the flexible pads on the treatment areas.
- the mask may be rigid or semi rigid.
- the mask may contain one connecting part comprising conductive leads which then distributes the conductive leads to specific pads. Furthermore, it may be possible to use the combination of the pad with adhesive layer or suction opening and the fastening band, felt or mask to ensure strong attachment of the pads on the treatment areas.
- the fastening mechanism may be in the form of a textile or a garment which may be mountable on a user's body part.
- a surface of the active element or pad 4 lays along an inner surface of the garment, while the opposite surface of the active element or pad 4 is in contact with the user's skin, preferably by means of a skin-active element hydrogel interface.
- the garment may be fastened for securement of the garment to or around a user's body part, e.g. by hook and loop fastener, button, buckle, stud, leash or cord, magnetic-guided locking system or clamping band and the garment may be manufactured with flexible materials or fabrics that adapt to the shape of the user's body or limb.
- the pad 4 may be in the same way configured to be fastened to the inner surface of the garment.
- the garment is preferably made of breathable materials. Non limiting examples of such materials are soft Neoprene, Nylon, polyurethane, polyester, polyamide, polypropylene, silicone, cotton or any other material which is soft and flexible. All named materials could be used as woven, non-woven, single use fabric or laminated structures.
- the garment and the pad may be modular system, which means module or element of the device (pad, garment) and/or system is designed separately and independently from the rest of the modules or elements, at the same time that they are compatible with each other.
- the pad 4 may be designed to be attached to or in contact with the garment, thus being carried by the garment in a stationary or fixed condition, in such a way that the pads are disposed on fixed positions of the garment.
- the garment ensures the correct adhesion or disposition of the pad to the user's skin.
- the surface of one or more active elements not in contact with the garment is in contact with the patient's skin, preferably by means of a hydrogel layer that acts as pad-skin interface. Therefore, the active elements included in the pad are in contact with the patient's skin.
- the optimal placement of the pad on the patient's body part, and therefore the garment which carries the pad having the active elements, is determined by a technician or clinician helping the patient.
- the garment may comprise more than one pad or the patient may wear more than one garment comprising one or more pads during one treatment session.
- the pad 4 may contain at least one active element 13 capable of delivering energy from primary electromagnetic generator 6 or secondary generator 9 or ultrasound emitter 10 .
- the active element is an electrode, an optical element, an acoustic window, an ultrasound emitter, or other energy delivering elements known in the art.
- the electrode may be a radiofrequency (RF) electrode.
- the RF electrode may be a dielectric electrode coated with insulating (e.g. dielectric) material.
- the RF electrode may be monopolar, bipolar, unipolar or multipolar.
- the bipolar arrangement may consist of electrodes that alternate between active and return function and where the thermal gradient beneath electrodes is almost the same during treatment. Bipolar electrodes may form circular or ellipsoidal shapes, where electrodes are concentric to each other.
- a group of bipolar electrode systems may be used as well.
- a unipolar electrode or one or more multipolar electrodes may be used as well.
- the system may alternatively use monopolar electrodes, where the so-called return electrode (or neutral electrode or ground electrode or grounding electrode) has larger area than so-called active electrode. The thermal gradient beneath the active electrode is therefore higher than beneath the return electrode.
- the active electrode may be part of the pad and the passive electrode having larger surface area may be located at least 5 cm, 10 cm, or 20 cm from the pad.
- a neutral electrode may be used as the passive electrode.
- the neutral electrode may be on the opposite side of the patient's body than the pad is attached.
- a unipolar electrode may also optionally be used.
- Radiofrequency energy may provide energy flux on the surface of the RF electrode or on the surface of the treated tissue (e.g. skin) in the range of 0.001 W/cm 2 to 1500 W/cm 2 or 0.01 W/cm 2 to 1000 W/cm 2 or 0.5 W/cm 2 to 500 W/cm 2 or 0.5 W/cm 2 to 100 W/cm 2 or 1 W/cm 2 to 50 W/cm 2 .
- the energy flux on the surface of the RF electrode may be calculated from the size of the RF electrode and its output value of the energy.
- the energy flux on the surface of the treated tissue may be calculated from the size of the treated tissue exactly below the RF electrode and its input value of the energy provided by the RF electrode.
- the RF electrode positioned in the pad 4 may act as an acoustic window for ultrasound energy.
- the active element 13 may provide a secondary energy from secondary generator 9 in the form of an electric current or a magnetic field.
- muscle fibers stimulation e.g. muscle contractions
- muscle fibers stimulation may be achieved and thus increasing muscle tone, muscle strengthening, restoration of feeling the muscle, relaxation of the musculature and/or stretching musculature.
- the proposed device may provide an electrotherapy in case that the secondary energy delivered by the active element 13 (e.g a radiofrequency electrode or simply referred just as an electrode) is the electric current generated by the secondary generator 9 .
- the main effects of electrotherapy are: analgesic, myorelaxation, iontophoresis, anti-edematous effect or muscle stimulation causing a muscle fiber contraction.
- Each of these effects may be achieved by one or more types of electrotherapy: galvanic current, pulse direct current and alternating current.
- Galvanic current is a current that may have constant electric current and/or absolute value of the electric current is in every moment higher than 0. It may be used mostly for iontophoresis, or its trophic stimulation (hyperemic) effect is utilized. At the present invention this current may be often substituted by galvanic intermittent current. Additionally, galvanic component may be about 95% but due to interruption of the originally continuous intensity the frequency may reach 5-12 kHz or 5-10 kHz or 5-9 kHz or 5-8 kHz.
- the pulse direct current (DC) is of variable intensity but only one polarity.
- the basic pulse shape may vary. It includes e.g. diadynamics, rectangular, triangular and exponential pulse of one polarity. Depending on the used frequency and intensity it may have stimulatory, tropic, analgesic, myorelaxation, iontophoresis, at least partial muscle contraction and anti-edematous effect and/or other.
- Alternating Current where the basic pulse shape may vary—rectangular, triangular, harmonic sinusoidal, exponential and/or other shapes and/or combination of mentioned above. It can be alternating, symmetric and/or asymmetric. Use of alternating currents in contact electrotherapy implies much lower stress on the tissue under the electrode. For these types of currents the capacitive component of skin resistance is involved, and due to that these currents are very well tolerated by the patients.
- AC therapies may be differentiated into five subtypes: TENS, Classic (four-pole) Interference, Two-pole Interference, Isoplanar Interference and Dipole Vector Field. It also exist some specific electrotherapy energy variants and modularity of period, shape of the energy etc.
- different nerves and tissue structures by medium frequency may be stimulated in a range of 500 Hz to 12 kHz or in a range of 500 Hz to 8 kHz, or 500 Hz to 6 kHz, creating pulse envelopes with frequencies for stimulation of the nerves and tissues e.g. sympathetic nerves (0.1-5 Hz), parasympathetic nerves (10-150 Hz), motor nerves (10-50 Hz), smooth muscle (0.1-10 Hz), sensor nerves (90-100 Hz) nociceptive fibers (90-150 Hz).
- sympathetic nerves 0.1-5 Hz
- parasympathetic nerves (10-150 Hz
- motor nerves (10-50 Hz
- smooth muscle 0.1-10 Hz
- sensor nerves 90-100 Hz
- nociceptive fibers 90-150 Hz
- Electrotherapy may provide stimulus with currents of frequency in the range from 0.1 Hz to 12 kHz or in the range from 0.1 Hz to 8 kHz or in the range from 0.1 Hz to 6 kHz.
- Muscle fiber stimulation by electrotherapy may be important during and/or as a part of the RF treatment. Muscle stimulation increases blood flow and lymph circulation. It may improve removing of treated cells and/or prevent of hot spots creation. Moreover internal massage stimulation of adjoining tissues improves homogeneity of tissue and dispersing of the delivered energy.
- the muscle fiber stimulation by electrotherapy may cause muscle contractions, which may lead to improvement of a visual appearance of the patient through muscle firming and strenghtening, Another beneficial effect is for example during fat removing with the RF therapy.
- RF therapy may change structure of the fat tissue.
- the muscle fiber stimulation may provide internal massage, which may be for obese patient more effective than classical massage.
- Muscle stimulation may be provided by e.g. intermittent direct currents, alternating currents (medium-frequency and TENS currents), faradic current as a method for multiple stimulation and/or others.
- Frequency of the currents may be in the range from 0.1 Hz to 1500 Hz or from 0.1 to 1000 Hz or from 0.1 Hz to 500 Hz or from 0.1 to 300 Hz.
- Frequency of the current envelope is typically in the range from 0.1 Hz to 500 Hz or from 0.1 to 250 Hz or from 0.1 Hz to 150 Hz or from 0.1 to 140 Hz.
- the electrostimulation may be provided in a combined manner where various treatments with various effects may be achieved.
- the electromagnetic energy with the electrostimulation may be dosed in trains of pulses of electric current where the first train of electrostimulation may achieve different effect than second or other successive train of stimulation. Therefore, the treatment may provide muscle fibers stimulation or muscle contractions followed by relaxation, during continual or pulsed radiofrequency thermal heating provided by electromagnetic energy provided by electromagnetic energy generator.
- the electrostimulation may be provided by monopolar, unipolar, bipolar or multipolar mode.
- Absolute value of voltage between the electrotherapy electrodes operated in bipolar, multipolar mode (electric current flow between more than two electrodes) and/or provided to at least one electrotherapy electrode may be in a range between 0.8 V and 10 kV; or in a range between 1 V and 1 kV; or in a range between 1 V and 300 V or in a range between 1 V and 100 V or in a range between 10 V and 80 V or in a range between 20 V and 60 V or in a range between 30 V and 50 V.
- the absolute value of voltage between the electrotherapy electrodes operated in bipolar, multiplar mode and/or provided to at least one electrotherapy electrode may be determined based on a measurement across a 500 Ohm load.
- Current density of electrotherapy for a non-galvanic current may be in a range between 0.1 mA/cm 2 and 150 mA/cm 2 , or in a range between 0.1 mA/cm 2 and 100 mA/cm 2 , or in a range between 0.1 mA/cm 2 and 50 mA/cm 2 , or in a range between 0.1 mA/cm 2 and 20 mA/cm 2 ; for a galvanic current may be preferably in a range between 0.05 mA/cm 2 and 3 mA/cm 2 , or in a range between 0.1 mA/cm 2 and 1 mA/cm 2 , or in a range between 0.01 mA/cm 2 and 0.5 mA/cm 2 .
- the current density may be calculated on the surface of the electrode providing the electrotherapy to the patient.
- the current density of electrotherapy for a non-galvanic current may be in a range between 0.1 mA/cm 2 and 200 mA/cm 2 , or in a range between 0.5 mA/cm 2 and 150 mA/cm 2 , or in a range between 1 mA/cm 2 and 120 mA/cm 2 , or in a range between 5 mA/cm 2 and 100 mA/cm 2 .
- two or more electrodes may be used. If polarity of at least one electrode has a non-zero value in a group of the electrodes during bipolar mode, the group of the electrodes has to include at least one electrode with opposite polarity value. Absolute values of both electrode polarities may or may not be equal.
- bipolar electrostimulation mode stimulating signal passes through the tissue between electrodes with opposite polarities.
- a distance between two electrodes operating in bipolar mode may be in a range between 0.1 mm and 4 cm or in a range between 0.2 mm to 3 cm or in a range between 0.5 mm and 2 cm or in a range between 1 mm and 1 cm or in the range of 0.1 cm and 40 cm or in a range between 1 cm and 30 cm, or in the range between 1 cm and 20 cm, wherein the distance is between the two closest points of two electrodes operating in bipolar mode.
- During monopolar electrotherapy mode stimulating signal may be induced by excitement of action potential by changing polarity of one electrode that change polarization in the nerve fiber and/or neuromuscular plague.
- one of the bipolar or monopolar electrotherapy mode may be used or bipolar or monopolar electrotherapy mode may be combined.
- the ultrasound emitters may provide focused or defocused ultrasound energy.
- the ultrasound energy may be transferred to the tissue through an acoustic window.
- the output power of the ultrasound energy on the surface of the active element 13 may be less than or equal to 20 W or 15 W or 10 W or 5 W.
- Ultrasound energy may provide energy flux on the surface of the active element 13 or on the surface of the treated tissue (e.g. skin) in the range of 0.001 W/cm 2 to 250 W/cm 2 , or in the range of 0.005 W/cm 2 to 50 W/cm 2 , or in the range of 0.01 W/cm 2 to 25 W/cm 2 , or in the range of 0.05 W/cm 2 to 20 W/cm 2 .
- the treatment depth of ultrasound energy may be in the range of 0.1 mm to 100 mm or 0.2 mm to 50 mm or 0.25 mm to 25 mm or 0.3 mm to 15 mm. At a depth of 5 mm the ultrasound energy may provide an energy flux in the range of 0.01 W/cm 2 to 20 W/cm 2 or 0.05 W/cm 2 to 15 W/cm 2 .
- An ultrasound beam may have a beam non-uniformity ratio (RBN) in the range of 0.1 to 20 or 2 to 15 to 4 to 10. In addition, an ultrasound beam may have a beam non-uniformity ratio below 15 or below 10.
- An ultrasound beam may be divergent, convergent and/or collimated.
- the ultrasound energy may be transferred to the tissue through an acoustic window. It is possible that the electrode may act as the acoustic window. Furthermore, the ultrasound emitter 10 may be a part of the active element 13 , thus ultrasound emitter 10 may be a part of the pad 4 .
- the active elements 13 may be capable of delivering energy from primary electromagnetic generator 6 or secondary generator 9 or ultrasound emitter 10 simultaneously (at the same time) successively or in an overlapping method or in any combination thereof.
- the active element 13 e.g. electrode
- the active element 13 may be capable of delivering radiofrequency energy and electric current sequentially, which may mean that firstly the active element 13 may provide primary electromagnetic energy generated by the primary electromagnetic generator 6 and subsequently the active element 13 may provide the secondary energy generated by the secondary generator 9 .
- the active element 13 may e.g. apply radiofrequency energy to the tissue of the patient and then the same active element 13 may apply e.g. electrical current to the tissue of the patient.
- Pad 4 may further comprise thermal sensors 15 enabling temperature control during the therapy, providing feedback to control unit (e.g. CPU) 11 , enabling adjustment of treatment parameters of each active element and providing information to the operator.
- the thermal sensor 15 may be a contact sensor, contactless sensor (e.g. infrared temperature sensor) or invasive sensor (e.g. a thermocouple) for precise temperature measurement of deep layers of skin, e.g. epidermis, dermis or hypodermis.
- the control unit (e.g. CPU) 11 may also use algorithms to calculate the deep or upper-most temperatures.
- a temperature feedback system may control the temperature and based on set or pre-set limits alert the operator in human perceptible form, e.g. on the human machine interface 8 or via indicators 17 .
- the device may be configured to adjust one or more treatment parameters, e.g. output power, switching mode, pulse length, etc. or stop the treatment.
- a human perceptible alert may be a sound, alert message shown on human machine interface 8 or indicators 17 or change of color of any part of the interconnecting block 3 or pad 4 .
- the pad may comprise at least one electromyography (EMG) sensing electrode configured to monitor, to record or to evaluate the electrical activity produced by skeletal muscles (e.g. twitch or contraction) in response to delivered energy (e.g. electric current).
- EMG electromyography
- the at least one EMG sensing electrode being disposed on the pad may be electrically insulated from the active elements (e.g. electrodes used for treatment).
- An electromyograph detects the electric potential generated by muscle cells when these cells are electrically or neurologically activated.
- the signals can be analyzed to detect abnormalities, activation level, or recruitment order, or to analyze the biomechanics of the patient's movement.
- the EMG may be one of a surface EMG or an intramuscular EMG.
- the surface EMG can be recorded by a pair of electrodes or by a more complex array of multiple electrodes. EMG recordings display the potential difference (voltage difference) between two separate electrodes. Alternatively the active elements, e.g. electrodes, may be used for EMG.
- the intramuscular EMG may be recorded by one (monopolar) or more needle electrodes. This may be a fine wire inserted into a muscle with a surface electrode as a reference; or more fine wires inserted into muscle referenced to each other. Muscle tissue at rest is normally electrically inactive. After the electrical activity caused by delivered energy (e.g. electric current), action potentials begin to appear. As the strength of a muscle contraction is increased, more and more muscle fibers produce action potentials. When the muscle is fully contracted, a disorderly group of action potentials of varying rates and amplitudes should appear (a complete recruitment and interference pattern).
- delivered energy e.g. electric current
- the pad may also comprise at least one capacitive sensor for measurement of the proper contact of the pad with the patient.
- the capacitive sensor may be connected to at least two complementary metal-oxide-semiconductor (CMOS) integrated circuit (IC) chips, an application-specific integrated circuit (ASIC) controller and a digital signal processor (DSP) which may be part of the control unit.
- CMOS complementary metal-oxide-semiconductor
- ASIC application-specific integrated circuit
- DSP digital signal processor
- the capacitive sensor may detect and measure the skin based on the different dielectric properties than the air, thus when the pad is detached from the patient a change in the signal may be detected and further processed by the control unit.
- the capacitance sensor may be configured in a surface capacitance or in a projected capacitance configuration. For better information about the contact and for higher safety, a single pad may comprise 3 to 30 or 4 to 20 or 5 to 18 or 6 to 16 or 7 to 14 capacitance sensors.
- Memory 12 may include, for example, information about the type and shape of the pad 4 , its remaining lifetime, or the time of therapy that has already been performed with the pad.
- the memory may also provide information about the manufacturer of the pad or information about the designated area of use on the body of the patient.
- the memory may include RFID, MRAM, resistors, or pins.
- Neutral electrode 7 may ensure proper radiofrequency energy distribution within the patient's body for mono-polar radiofrequency systems.
- the neutral electrode 7 is attached to the patient's skin prior to each therapy so that the energy may be distributed between active element 13 (e.g. electrode) and neutral electrode 7 .
- active element 13 e.g. electrode
- neutral electrode 7 represents an optional block of the apparatus 1 as any type of radiofrequency system can be integrated.
- device 1 may include one or more sensors.
- the sensor may provide information about at least one physical quantity and its measurement may lead to feedback which may be displayed by human machine interface 8 or indicators 17 .
- the one or more sensors may be used for sensing delivered electromagnetic energy, impedance of the skin, resistance of the skin, temperature of the treated skin, temperature of the untreated skin, temperature of at least one layer of the skin, water content of the device, the phase angle of delivered or reflected energy, the position of the active elements 13 , the position of the interconnecting block 3 , temperature of the cooling media, temperature of the primary electromagnetic generator 6 and secondary generator 9 and ultrasound emitter 10 or contact with the skin.
- the sensor may be a thermal, acoustic, vibration, electric, magnetic, flow, positional, optical, imaging, pressure, force, energy flux, impedance, current, Hall or proximity sensor.
- the sensor may be a capacitive displacement sensor, acoustic proximity sensor, gyroscope, accelerometer, magnetometer, infrared camera or thermographic camera.
- the sensor may be invasive or contactless.
- the sensor may be located on or in the pad 4 , in the main unit 2 , in the interconnecting block 3 or may be a part of a thermal sensor 15 .
- One sensor may measure more than one physical quantity.
- the sensor may include a combination of a gyroscope, an accelerometer and/or a magnetometer. Additionally, the sensor may measure one or more physical quantities of the treated skin or untreated skin.
- a resistance sensor may measure skin resistance, because skin resistance may vary for different patients, as well as the humidity—wetness and sweat may influence the resistance and therefore the behavior of the skin in the energy field. Based on the measured skin resistance, the skin impedance may also be calculated.
- Information from one or more sensors may be used for generation of a pathway on a model e.g. a model of the human body shown on a display of human machine interface 8 .
- the pathway may illustrate a surface or volume of already treated tissue, presently treated tissue, tissue to be treated, or untreated tissue.
- a model may show a temperature map of the treated tissue providing information about the already treated tissue or untreated tissue.
- the sensor may provide information about the location of bones, inflamed tissue or joints. Such types of tissue may not be targeted by electromagnetic energy due to the possibility of painful treatment. Bones, joints or inflamed tissue may be detected by any type of sensor such as an imaging sensor (ultrasound sensor, IR sensor), impedance sensor, and the like. A detected presence of these tissue types may cause general human perceptible signals or interruption of generation of electromagnetic energy. Bones may be detected by a change of impedance of the tissue or by analysis of reflected electromagnetic energy.
- the patient's skin over at least one treatment portion may be pre-cooled to a selected temperature for a selected duration, the selected temperature and duration for pre-cooling may be sufficient to cool the skin to at least a selected temperature below normal body temperature.
- the skin may be cooled to at least the selected temperature to a depth below the at least one depth for the treatment portions so that the at least one treatment portion is substantially surrounded by cooled skin.
- the cooling may continue during the application of energy, and the duration of the application of energy may be greater than the thermal relaxation time of the treatment portions.
- Cooling may be provided by any known mechanism including water cooling, sprayed coolant, presence of an active solid cooling element (e.g. thermoelectric cooler) or air flow cooling.
- a cooling element may act as an optical element.
- the cooling element may be a spacer. Cooling may be provided during, before or after the treatment with electromagnetic energy. Cooling before treatment may also provide an environment for sudden heat shock, while cooling after treatment may provide faster regeneration after heat shock.
- the temperature of the coolant may be in the range of ⁇ 200° C. to 36° C.
- the temperature of the cooling element during the treatment may be in the range of ⁇ 80° C. to 36° C. or ⁇ 70° C. to 35° C. or ⁇ 60° C. to 34° C. or ⁇ 20° C. to 30° C. or 0° C. to 27° C. or 5° C. to 25° C.
- cryogenic spray cooling gas flow or other non-contact cooling techniques may be utilized.
- a cooling gel on the skin surface might also be utilized, either in addition to or instead of, one of the cooling techniques indicated above.
- FIG. 3A and FIG. 3B show different shapes and layouts of pad 4 used by an apparatus for contact therapy.
- Pads 4 comprise at least one active element 13 (e.g. electrode) and may be available in various shapes and layouts so that they may cover a variety of different treatment areas and accommodate individual patient needs, e.g. annular, semicircular, elliptical, oblong, square, rectangular, trapezoidal, polygonal or formless (having no regular form or shape).
- the shapes and layouts of the pad 4 may be shaped to cover at least part of one or more of the periorbital area, the forehead (including frown lines), the jaw line, the perioral area (including Marionette lines, perioral lines—so called smoker lines, nasolabial folds, lips and chin), cheeks or submentum, etc.
- the shape of the pad 4 and distribution, size and number of active elements 13 may differ depending on the area being treated, e.g. active elements 13 inside the pad 4 may be in one line, two lines, three lines, four lines or multiple lines.
- the pad 4 with active elements 13 may be arranged into various shapes, e.g. in a line, where the centers of at least two active elements 13 lie in one straight line, while any additional center of an active element 13 may lie in the same or different lines inside the pad 4 .
- the pad 4 may be used to treat at least partially neck, bra fat, love handles, torso, back, abdomen, buttocks, thighs, calves, legs, arms, forearms, hands, fingers or body cavities (e.g. vagina, anus, mouth, inner ear etc.).
- body cavities e.g. vagina, anus, mouth, inner ear etc.
- the pad 4 may have a rectangular, oblong, square, trapezoidal form, or of the form of a convex or concave polygon wherein the pad 4 may have at least two different inner angles of the convex or concave polygon structure. Additionally, the pad 4 may form at least in part the shape of a conic section (also called conic), e.g. circle, ellipse, parabola or hyperbola.
- a conic section also called conic
- the pad 4 may have at least in part one, two, three, four, five or more curvatures of a shape of an arc with the curvature k in the range of 0.002 to 10 mm ⁇ 1 or in the range of 0.004 to 5 mm ⁇ 1 or in the range of 0.005 to 3 mm ⁇ 1 or in the range of 0.006 to 2 mm ⁇ 1 .
- the pad 4 may have at least one, two, three, four, five or more arcs with the curvature k or may have at least two different inner angles of a convex or concave polygon structure, and may be suitable for the treatment of chin, cheeks, submental area (e.g. “banana shape 1” 4 .
- the “banana shape” pad 4 . 2 or 4 . 4 may have a convex-concave shape, which means that one side is convex and the opposite side is concave, that occupies at least 5% to 50% or 10% to 60% or 15% to 70% or 20% to 90% of a total circumference of the pad 4 seen from above, wherein the shortest distance between the endpoints 4 . 21 a and 4 .
- the “horseshoe shape” 4 . 3 seen from above may have the convex-concave shape that occupies at least 15% to 50% or 20% to 60% or 25% to 70% or 30% to 90% of its total circumference, wherein the shortest distance between the endpoints 4 . 31 a and 4 . 31 b of the “horseshoe shape” pad 4 . 3 (dashed line in FIG.
- the total length of the center curve may be in the range of 0.1 to 30 cm or in the range of 0.5 to 25 cm or in the range of 1 to 20 cm.
- the center curve may have at least in part circular, elliptical, parabolic, hyperbolic, exponential, convex or concave curve such that the straight line connecting endpoint of the pad 4 with the middle point of the center curve forms an angle alpha with the tangent of the middle of the center curve.
- the angle alpha may be in a range of 0.1° to 179° or in a range of 0.2° to 170° or in a range of 0.5° to 160° or in a range of 10 to 150°.
- the pad 4 whose shape has at least two concave arcs with the curvature k or has at least two concave inner angles of the polygon structure may be suitable for the treatment of the forehead like the “T shape” 4 . 1 in FIG. 3A .
- the “T shape” 4 . 1 may be also characterized by the arrangement of the active elements 13 where the centers of at least two active elements 13 lie in one straight line and center of at least one additional element 13 lies in a different line.
- FIG. 3C Another possible non-limiting configuration of the pad 4 used for the treatment of the forehead is depicted in FIG. 3C .
- a forehead pad (pad 4 used for treatment of the forehead) my contain two lines of active elements 13 (e.g. electrodes)—active elements 13 a - 13 f as shown in FIG. 3C , wherein the active elements 13 a - 13 f in one line may be at least partially separated by slots 43 for better flexibility of the pad 4 .
- a first line of active elements comprises active elements (e.g. electrodes) depicted in the dotted box 131 a in FIG. 3C —active elements 13 d , 13 e and 13 f .
- the second line of active elements (e.g.
- Such pad 4 may have a shape that has a total number of convex and/or concave arcs in a range of 14 to 36 or in a range of 18 to 32 or in a range of 20 to 30 or in a range of 22 to 28 with a curvature k.
- the pad 4 may have a number of concave inner angles in a range of 2 to 20 or in a range of 5 to 17 or in a range of 7 to 15 or in a range of 9 to 13, or the pad 4 may have a number of convex inner angles in a range of 2 to 20 or in a range of 5 to 17 or in a range of 10 to 16 or in a range of 11 to 15.
- FIG. 3C also shows the sticker 44 on a top side of the pad 4 .
- the top side is the opposite side from the underside (the side where the adhesive layer or the active elements may be deposited on the substrate of the pad 4 ) or in other words, the top side is the side of the pad 4 that is facing away from the patient during the treatment.
- the sticker may have a bottom side and a top side, wherein the bottom side of the sticker may comprise a sticking layer and the top side of the sticker may comprise a non-sticking layer (eg. polyimide (PI) films, Teflon®, epoxy, polyethylene terephthalate (PET), polyamide or PE foam).
- PI polyimide
- PET polyethylene terephthalate
- PE foam polyamide
- the sticker may have the same shape as the pad 4 with an additional overlap over the pad 4 .
- the overlap is hatched in FIG. 3C .
- the sticker may be bonded to the pad 4 such that the sticking layer of the bottom side of the sticker is facing toward the top side of the pad 4 .
- the overlap of the sticker may exceed the pad 4 in the range of 0.1 to 10 cm, or in the range of 0.1 to 7 cm, or in the range of 0.2 to 5 cm, or in the range of 0.2 to 3 cm, or in the range of 0.3 to 1 cm.
- This overlap may also comprise an adhesive layer and may be used to form additional and more proper contact of the pad 4 with the patient.
- the forehead pad may comprise edge active elements (e.g. electrodes)— 13 a , 13 c , 13 d and 13 f in FIG. 3C and middle active elements (e.g. electrodes)— 13 b and 13 e in FIG. 3C .
- the forehead pad 4 may be divided into an upper side —active elements (e.g. electrodes) in box 131 a ; and bottom side—active elements (e.g. electrodes) in box 131 b as well as a left side—active elements (e.g. electrodes) 13 a and 13 f , and a right side—active elements (e.g. electrodes) 13 c and 13 d .
- Edge active elements e.g.
- Electrodes)— 13 a , 13 c , 13 d and 13 f in the forehead pad 4 depicted in FIG. 3C may have a surface area in the range of 1 to 10 cm 2 or in the range of 2 to 6.5 cm 2 or in the range of 2.3 to 6 cm 2 or in the range of 2.5 to 5.5 cm 2 , which may be the same for all edge active elements.
- the middle active elements (e.g. electrodes) 13 b and 13 e in FIG. 3C may have a larger surface area than the edge active elements (e.g. electrodes), wherein the surface area of the middle active elements (e.g.
- each active element e.g. electrode
- each active element may have a different surface area.
- the ratio of a surface area of one middle active element (e.g. electrode) to a surface area of one edge active element (e.g. electrode) on the forehead pad may be in a range of 0.8 to 2.5 or in a range of 1 to 2.3 or in a range of 1.1 to 2.2.
- the distance d edge between the closest points of the bottom edge active elements (e.g. electrodes)—active elements 13 a and 13 c in the FIG. 3C or the upper edge active elements (e.g. electrodes)— 13 d and 13 f in the FIG. 3C may be in the range of 2 to 8 cm or in the range of 3 to 7 cm or in the range of 4 to 6 cm or in the range of 4.5 to 5.5 cm.
- the distance between the upper edge active elements (e.g. electrodes) and the distance between the bottom edge active elements (e.g. electrodes) may be the same.
- the distance d vert between the closest points of the upper active elements (e.g. electrodes) and the bottom active elements (e.g. electrodes) on one side (left, middle, right)—active elements 13 a and 13 f or active elements 13 b and 13 e or active elements 13 c and 13 d in FIG. 3C may be in the range of 0.5 to 20 mm or in the range of 1 to 10 mm or in the range of 1.5 to 6 mm or in the range of 2 to 5 mm.
- the distance d vert may be the same for the left, middle and right active elements.
- Such distances are optimized to effectively treat the Frontalis muscle or Procerus muscle during the treatment.
- the edge active elements e.g. electrodes— 13 a , 13 c , 13 d and 13 f in FIG. 3C are used for treatment of Frontalis muscle and/or Corrugator supercilii and the middle active elements (e.g. electrodes)— 13 b and 13 e in FIG. 3C are used for treatment of Procerus muscle.
- the forehead pad (pad 4 used for treatment of the forehead) in FIG. 3C also shows a possible arrangement of the bottom middle part of the pad 4 comprising the bottom middle active element (e.g. electrode)— 13 b .
- the pad 4 may comprise a convex protrusion 4 p and/or concave depression in the bottom middle part.
- the active element 13 b may be designed in a shape proximate to an oblong or rectangular shape with a convex protrusion 13 p and/or concave depression in the middle of the bottom part of the active element 13 b copying a shape of the pad 4 with the protrusion 4 p and/or depression of the pad.
- This protrusion 4 p and/or depression may serve as a focus point for a correct coupling of the pad 4 to the forehead area of the patient, wherein the protrusion 4 p and/or depression should be aligned with the middle of the nose of the patient (e.g. in the middle of Procerus muscle) and at the same time the bottom edge of the pad 4 should be coupled slightly over the eyebrows of the patient.
- middle active elements e.g. electrodes
- active elements 13 g , 13 h , 13 i and 13 j may be separated on the substrate and the distance d mid between the closest points of two neighboring middle active elements (e.g. electrodes) may be in the range of 0.5 to 5 mm or in the range of 0.8 to 3 mm or in the range of 1 to 2.5 mm or in the range of 1.2 to 2.3 mm.
- the left cheek pad (the pad 4 used for the treatment of the left cheek) depicted in FIG.
- the middle active elements (e.g. electrodes) 13 g , 13 h , 13 i and 13 j in FIG. 3D may have a surface area in the range of 1 to 15 cm 2 or in the range of 2 to 8 cm 2 or in the range of 2.5 to 6 cm 2 or in the range of 3 to 5 cm 2 .
- the edge active elements e.g.
- electrodes 13 k , 13 l and 13 m may have a surface area in the range of 1 to 20 cm 2 or in the range of 2 to 10 cm 2 or in the range of 2.5 to 8 cm 2 or in the range of 3.5 to 7 cm 2 .
- the ratio of a surface area of the edge active element (e.g. electrode)—one of 13 k , 13 l or 13 m , to a surface area of the middle active element (e.g. electrode)—one of 13 g , 13 h , 13 i or 13 j in FIG. 3D may be in a range of 0.5 to 3 or in a range of 0.8 to 2.5 or in a range of 1 to 2 or in a range of 1 to 1.8.
- the middle active elements (e.g. electrodes) 13 g , 13 h , 13 i and 13 j in FIG. 3D are optimally configured to treat the Buccinator, Risorius, Zygomaticus and/or Masseter muscle.
- the middle active elements (e.g. electrodes) 13 g , 13 h , 13 i and 13 j in FIG. 3D are optimally configured to treat the Platysma, Depressor and/or Lavator labii superioris muscles.
- the pad 4 used for the treatment of the right cheek may be symmetrically arranged to the left cheek pad 4 depicted in FIG. 3D .
- Pads may have different sizes with the surface areas ranging from 0.1 to 150 cm 2 or from 0.2 to 125 cm 2 or from 0.5 to 100 cm 2 or in the range of 1 to 50 cm 2 or in the range of 10 to 50 cm 2 or in the range of 15 to 47 cm 2 or in the range of 18 to 45 cm 2 .
- the pad may occupy approximately 1 to 99% or 1 to 80% or 1 to 60% or 1 to 50% of the face.
- the number of active elements 13 (e.g. electrodes) within a single pad 4 ranges from 1 to 100 or from 1 to 80 or from 1 to 60 or from 2-20 or from 3 to 10 or from 4 to 9.
- a thickness at least in a part of the pad 4 may be in the range of 0.01 to 15 mm or in the range of 0.02 to 10 mm or in the range of 0.05 to 7 mm or in the range of 0.1 to 2 mm.
- the pads 4 may have a shape that at least partially replicates the shape of galea aponeurotica, procerus, levatar labii superioris alaeque nasi, nasalis, lavator labii superioris, zygomaticus minor, zygomaticus major, levator angulis oris, risorius, platysma, depressor anguli oris, depressor labii inferioris, occipitofrontalis (frontal belly), currugator supercilii, orbicularis oculi, buccinator, masseter, orbicularis oris or mentalis muscle when the pad 4 is attached to the surface of the patient skin.
- the pad 4 may be characterized by at least one aforementioned aspect or by a combination of more than one aforementioned aspect or by a combination of all aforementioned aspects.
- the electromagnetic energy generator 6 or the secondary generator 9 inside the main case may generate an electromagnetic or secondary energy (e.g. electric current) which may be delivered via a conductive lead to at least one active element 13 (e.g. electrode) attached to the skin, respectively.
- the active element 13 may deliver energy through its entire surface or by means of a so-called fractional arrangement.
- Active element 13 may be an active electrode in a monopolar, unipolar, bipolar or multipolar radiofrequency system. In the monopolar radiofrequency system, energy is delivered between an active electrode (active element 13 ) and a neutral electrode 7 with a much larger surface area. Due to mutual distance and difference between the surface area of the active and neutral electrode, energy is concentrated under the active electrode enabling it to heat the treated area.
- the energy may be delivered with the frequency in the range of 100 kHz to 550 MHz or in the range of 200 kHz to 300 MHz or in the range of 250 kHz to 100 MHz or in the range of 300 kHz to 50 MHz or in the range of 350 kHz to 14 MHz.
- the unipolar, bipolar or multipolar radiofrequency system there is no need for neutral electrode 7 .
- energy is delivered between two and multiple active electrodes with similar surface area, respectively. The distance between these electrodes determines the depth of energy penetration.
- the unipolar radiofrequency system only a single active electrode is incorporated and energy is delivered to the tissue and environment surrounding the active electrode.
- the distance between the two nearest active elements 13 (e.g. the nearest neighboring sides of electrodes) in one pad 4 may be in the range of 0.1 to 100 mm or in the range of 0.3 to 70 mm or in the range of 0.5 to 60 mm or in the range of 0.7 to 30 mm or in the range of 1 to 10 mm or in the range of 1 to 5 mm.
- the distance between the two nearest neighboring sides of the electrodes may mean the distance between the two nearest points of neighboring electrodes.
- a distance between the nearest point of the active element 13 (e.g. electrode) and the nearest edge of the pad 4 may be in the range of 0.1 to 10 mm or in the range of 0.5 to 5 mm or in the range of 1 to 4 mm or in the range of 1 to 3 mm.
- FIG. 4A-D represents a side view of possible configurations of the pad 4 configured for contact therapy.
- Pads 4 may be made of flexible substrate material 42 —polyimide (PI) films, teflon, PET, epoxy or PE foam with an additional adhesive layer 40 on the underside. They may be of different shapes to allow the operator to choose according to the area to be treated.
- Active elements 13 e.g. electrodes
- the material used for active elements may be copper, aluminum, lead or any other conductive medium that can be deposited or integrated in the pad 4 .
- the active elements 13 e.g. electrodes
- Electrodes in the pad 4 may be printed by means of biocompatible ink, such as silver ink, graphite ink or a combination of inks of different conductive materials.
- the electrodes may have a sandwich structure where multiple conductive materials are deposited gradually on each other, e.g. a copper-nickel-gold structure.
- the copper may be deposited on the substrate with a thickness in the range of 5 to 100 ⁇ m or in the range of 15 to 55 ⁇ m or in the range of 25 to 45 ⁇ m.
- the nickel may be deposited on the copper with a thickness in the range of 0.1 to 15 ⁇ m or in the range of 0.5 to 8 ⁇ m or in the range of 1 to 6 ⁇ m.
- the gold may be deposited on the nickel with a thickness in the range of 25 to 200 nm or in the range of 50 to 100 nm or in the range of 60 to 90 nm.
- Such a sandwich structure may be made for example by an ENIG process.
- the electrodes may be made of copper and covered with another conductive layer, e.g. silver or silver-chloride ink, carbon paste, or aluminum segments coupled to the copper by conductive glue.
- another conductive layer e.g. silver or silver-chloride ink, carbon paste, or aluminum segments coupled to the copper by conductive glue.
- the active element 13 may have a shape that has a total number of convex or concave arcs in a range of 1 to 12 or in a range of 2 to 10 or in a range of 3 to 9 or in a range of 4 to 8. Additionally, the active element (e.g. electrode) may have a number of concave inner angles in a range of 1 to 7 or in a range of 1 to 6 or in a range of 1 to 5 or in a range of 2 to 4, or the active element (e.g. electrode) may have a number of convex inner angles in a range of 1 to 10 or in a range of 1 to 9 or in a range of 2 to 8 in a range of 3 to 7.
- a possible arrangement of convex-concave active elements 13 is depicted in FIG. 3C .
- the active element 13 may be full-area electrode that has a full active surface. This means that the whole surface of the electrode facing the patient is made of conductive material deposited or integrated in the pad 4 as mentioned above.
- the electrode (made of conductive material) facing the patient may be with e.g. one or more apertures, cutouts and/or protrusions configured for example to improve flexibility of the electrode and/or pad, and/or reduce the edge effects and/or improve homogeneity of delivered energy density and/or improve homogeneity of provided treatment.
- Apertures may be an opening in the body of the electrode.
- a cutout may be an opening in the body of the electrode along the border of the electrode. Openings in the body of the electrode may be defined by view from floor projections, which shows a view of the electrode from above. The openings, e.g.
- apertures, cutouts and/or areas outside of protrusions may be filed by air, dielectric material, insulation material, substrate of the pad, air or hydrogel.
- the electrode is therefore segmented in comparison to a regular electrode by disruption of the surface area (i.e., an electrode with no apertures or cutouts).
- the two or more apertures or cutouts of the one electrode may be asymmetrical.
- the one or more aperture and cutout may have e.g. rectangular or circular shape.
- the apertures and/or cutouts may have regular, irregular, symmetrical and/or asymmetrical shapes.
- the apertures or cutouts may have the same point of symmetry and/or line of symmetry.
- the distance between two closest points located on the borders of two different apertures and/or cutouts of the electrode may be in a range from 1 ⁇ m to 10 mm or from 10 ⁇ m to 8 mm or from 20 ⁇ m to 5 mm or from 50 ⁇ m to 3 mm or from 100 ⁇ m to 2 mm.
- the electrode with one or more openings (e.g. apertures and/or cutouts) and/or protrusions may be framed by the conductive material and the inside of the frame may have a combination of conductive material and the openings.
- the frame may create the utmost circumference of the electrode from the side facing the patient.
- the frame may have a form of annular, semicircular, elliptical, oblong, square, rectangular, trapezoidal or polygonal shape.
- the inside of the frame 801 may have a structure of a grid 802 as shown in FIGS. 9A and 9B with the apertures 803 .
- the frame 801 and the grid lines 802 are made of conductive material and are parts of the electrode 800 .
- the frame 801 may be of the same thickness as the thickness of the grid lines 802 or the thickness of the frame 801 may be thicker than the grid lines 802 in the range of 1% to 2000% or in the range of 10% to 1000% or in the range of 20% to 500% or in the range of 50% to 200%. Additionally the frame 801 may be thinner than the grid lines 802 in the range of 0.01 times to 20 times or in the range of 0.1 times to 10 times or in the range of 0.2 times to 5 times or in the range of 0.5 times to 2 times. It may be also possible to design the electrode such that the conductive material of the electrode is getting thinner from the center 804 of the electrode 800 as shown in FIG. 9C .
- the thinning step between adjacent grid lines 802 in the direction from the center 804 may be in the range of 0.1 times to 10 times or in the range of 0.2 times to 5 times or in the range of 0.5 times to 2 times with the frame 801 having the thinnest line of conductive material.
- the total area of the electrode 800 (comprising the frame 801 and the grid lines 802 ) and all apertures 803 inside the frame 801 of said electrode 800 may be in the range of 1 to 15 cm 2 or in the range of 2 to 8 cm 2 or in the range of 2.5 to 6 cm 2 or in the range of 3 to 5 cm 2 .
- the total area of the electrode 800 (comprising the frame 801 and the grid lines 802 ) and all apertures 803 inside the frame 801 of said electrode 800 may be in the range of 1 to 20 cm 2 or in the range of 2 to 10 cm 2 or in the range of 2.5 to 8 cm 2 or in the range of 3.5 to 7 cm 2 .
- the total area of the electrode 800 (comprising the frame 801 and the grid lines 802 ) and all apertures 803 inside the frame 801 of said electrode 800 may be in the range of 1 to 10 cm 2 or in the range of 2 to 6.5 cm 2 or in the range of 2.3 to 6 cm 2 or in the range of 2.5 to 5.5 cm 2 .
- the total area of the electrode 800 (comprising the frame 801 and the grid lines 802 ) and all apertures 803 inside the frame 801 of said electrode 800 may be in the range of 1 to 20 cm 2 or in the range of 2 to 15 cm 2 or in the range of 3 to 12 cm 2 or in the range of 4 to 10 cm 2 .
- a ratio of the area of the conductive material of the electrode 800 (i.e. the frame 801 and the gridlines 802 ) to the total area of all apertures inside the frame 801 of the electrode 800 may be in the range of 1% to 50%, or in the range of 2% to 45% or in the range of 5% to 40% or in the range of 8% to 35% or in the range of 10% to 33%. Additionally the ratio may be in the range of 1% to 20%, or in the range of 10% to 40% or in the range of 33% to 67% or in the range of 50% to 70% or in the range of 66% to 100%.
- the electrode 800 may not be framed, e.g. it may have a form of a grid with no boundaries formed by openings 803 as shown in FIG. 9D .
- a ratio of conductive material to cutouts and/or apertures of the electrode may be in the range of 1% to 50%, or in the range of 2% to 45% or in the range of 5% to 40% or in the range of 8% to 35% or in the range of 10% to 33%.
- the ratio of conductive material to openings of the electrode may be in the range of 1% to 20%, or in the range of 10% to 40% or in the range of 33% to 67% or in the range of 50% to 70% or in the range of 66% to 100%.
- Such a grated electrode may be very advantageous. It may be much more flexible, it may ensure contact with the patient that is more proper and it may have much better self-cooling properties than full-area electrode.
- a distance between the two closest parallel grid lines 802 a and 802 b may be illustrated by at least one circle 820 , which may be hypothetically inscribed into an aperture and/or cutout 803 and between the two closest parallel grid lines 802 a and 802 b and have at least one tangential point located on the first grid line 802 a and at least one tangential point located on the second grid line 802 b , thus having a diameter equal to the distance between the two closest parallel grid lines 802 a and 802 b .
- the at least one hypothetical circle 820 may have a diameter in a range from 0.001 to 10 mm or 0.005 mm to 9 mm, or from 0.01 mm to 8 mm or 0.05 mm to 7 mm or from 0.1 mm to 6 mm, or from 0.2 mm to 5 mm or from 0.3 mm to 5 mm or from 0.5 mm to 5 mm.
- an electrode 800 may have multiple protrusions in the form of radial conductive lines 808 separated by cutouts 803 , wherein the multiple radial conductive lines 808 are projected from one point of the electrode 805 .
- the multiple radial conductive lines 808 are merged near the point 805 of the electrode and together create a full conductive surface 810 around the point of the electrode 805 .
- the radial conductive lines 808 projected from the point 805 may have the same length or may have different lengths. Additionally, some of the radial conductive lines 808 projected from the point 805 may have the same length and some may have different lengths.
- the electrode 800 may have a base part 806 of a defined shape and protrusions (radial conductive lines) 808 separated by cutouts 803 .
- the base part 806 may have a shape of annular, semicircular, elliptical, oblong, square, rectangular, trapezoidal or polygonal.
- the base part 806 may be connected to the conductive leads.
- the electrode 800 may have a base conductive line 807 and multiple protrusions (radial conductive lines) 808 separated by cutouts 803 .
- the base conductive line 807 is connected to all the radial conductive lines 808 as shown in FIG. 9H .
- the base conductive line may also be connected to the conductive lead.
- the radial conductive lines 808 emerging from the base conductive line 807 may have the same lengths and/or may have different lengths.
- the distance between two closest protrusions 808 may be illustrated as at least one circle (similarly to the circle 820 in FIG. 9E ), which may be hypothetically inscribed into an aperture and/or cutout 803 and between two closest protrusions 808 and have at least one tangential point located on the first protrusion and at least one tangential point located on the second protrusion, thus having a diameter equal to the distance between the two closest protrusions.
- the at least one circle may have a diameter in a range from 0.001 to 10 mm or 0.005 mm to 9 mm, or from 0.01 mm to 8 mm or 0.05 mm to 7 mm or from 0.1 mm to 6 mm, or from 0.2 mm to 5 mm or from 0.3 mm to 5 mm or from 0.5 mm to 5 mm.
- the protrusions 808 or cutouts 803 may have a symmetrical, asymmetrical, irregular and/or regular shape.
- the size, shape and/or symmetry of individual radial conductive lines may be the same and/or different across the electrode.
- each protrusion 808 may have the same shape, the same dimension, the same direction and/or symmetry.
- the protrusions 808 may be characterized by a thickness and a length of the protrusion, wherein the length is larger than the thickness by factor in the range of 2 to 100, or in the range of 4 to 80, or in the range of 5 to 70.
- the thickness of a protrusion may be in the range of 1 ⁇ m to 5 mm or in the range of 20 ⁇ m to 4 mm or in the range of 50 ⁇ m to 3 mm or in the range of 100 ⁇ m to 2.5 mm or in the range of 120 ⁇ m to 2 mm or in the range of 150 ⁇ m to 1.5 mm or in the range of 200 ⁇ m to 1 mm.
- the length of the protrusions may be in the range of 0.05 to 50 mm or in the range of 0.1 to 30 mm or in the range of 0.5 to 20 mm.
- the number of protrusions that one electrode may comprise may be in a range of 1 to 1000, or of 5 to 500, or of 10 to 300, or of 15 to 250, or of 20 to 240.
- the surface area of the electrode 800 with the protrusions 808 may be in the range of 0.1 to 10 cm 2 or in the range of 0.3 to 9.5 cm 2 or in the range of 0.4 to 9 cm 2 or in the range of 0.5 to 8.5 cm 2 .
- all the possible electrode arrangements depicted in FIG. 9F-H may be framed with a conductive frame 801 , e.g. as shown in FIG. 9A , wherein the frame 801 is also a part of the electrode.
- the total number of apertures and/or cutouts in one electrode regardless of the parallel cuts may be in a range of 5 to 250, or of 10 to 200, or of 15 to 170, or of 20 to 150, or of 300 to 1500, or of 400 to 1400, or of 500 to 1300, or of 600 to 1200.
- the energy flux of one or more grated electrodes may be calculated as an energy flux of the grid 802 and/or the frame 801 of the active element and may be in the range of 0.001 W/cm 2 to 1500 W/cm 2 or 0.01 W/cm 2 to 1000 W/cm 2 or 0.5 W/cm 2 to 500 W/cm 2 or 0.5 W/cm 2 to 200 W/cm 2 or 0.5 W/cm 2 to 100 W/cm 2 or 1 W/cm 2 to 70 W/cm 2 .
- the energy flux of one or more protruded electrodes may be calculated as an energy flux of the base part 806 or base conductive line 807 and the protrusions 808 of the active element and may be in the range of 0.001 W/cm 2 to 1500 W/cm 2 or 0.01 W/cm 2 to 1000 W/cm 2 or 0.5 W/cm 2 to 500 W/cm 2 or 0.5 W/cm 2 to 200 W/cm 2 or 0.5 W/cm 2 to 100 W/cm 2 or 1 W/cm 2 to 70 W/cm 2 .
- the active elements 13 may be partially embedded within the flexible substrate layer 42 or adhesive layer 40 or in the interface of the flexible substrate layer 42 and adhesive layer 40 .
- the active elements 13 e.g. electrode
- the active elements 13 may be supplied and controlled independently by multiple conductive leads 41 a ( FIG. 4A ) or they may be conductively interconnected and supplied/controlled via a single conductive lead 41 b ( FIG. 4B ).
- the multiple conductive leads 41 a may be connected to the active elements 13 (e.g. electrode) via a free space (e.g. hole) in the flexible substrate layer 42 .
- the free space e.g.
- each conductive lead 41 a may fit tightly into the substrate layer 42 , e.g. the conductive lead 41 a may be encapsulated by a flexible substrate layer 42 .
- the free space e.g. hole
- the active elements 13 e.g. electrodes
- the active elements 13 may also be deposited on the underside of the flexible substrate 42 and may be covered by the adhesive layer 40 on the sides, which are not coupled to the substrate 42 .
- the active elements 13 may be embedded in the flexible substrate 42 such, that the underside of the substrate 401 and the underside of the active elements 13 A-D are in one plane, as shown in FIG. 4C .
- the flexible substrate 42 is hatched in FIG. 4C .
- the substrate 42 may have no free space for conductive leads 41 a , as the conductive lead may be directly coupled to the top side of the active element (e.g. electrode) as shown in active elements 13 A and 13 B in FIG. 4C .
- the flexible substrate may have a free space (e.g. hole or metalized hole) for coupling the conductive leads 41 a to the active elements (e.g. electrodes), which may be thinner than the substrate, as shown in active elements 13 C and 13 D in FIG. 4C .
- the active element 13 E may be deposited on the top side of the substrate 402 such, that the underside of the active element 13 E is deposited on the top side of the substrate 402 , creating an interface of the active element 13 E and substrate 42 on the top side of the substrate 402 .
- the active element 13 F may be embedded in the substrate 42 from the top side of the substrate 402 , such that the top side of the active element (e.g. electrode) and the top side of the substrate 402 lies in one plane. In this case, the thickness of the active element 13 F is less than thickness of the substrate 42 .
- the active element 13 G may be deposited on the top side of the surface 402 similarly to the active element 13 E but even more, the active element 13 G is partially embedded in the substrate 42 from the top side of the substrate. In all these cases (active elements 13 E-G), the substrate 42 is perforated allowing the coupling of adhesive layer 40 with the active elements 13 E-G through the perforations 403 .
- the active element e.g. electrode
- the active element may be fully embedded in the substrate and protrude from its top side or underside.
- the thickness of the active element e.g. electrode
- the thickness of the substrate may be bigger than the thickness of the substrate.
- pad 4 structures mentioned above may be possible, e.g. one active element (e.g. first electrode) is deposited on the underside of the pad 4 and another active element (e.g. second electrode) is embedded in the pad 4 .
- one active element e.g. first electrode
- another active element e.g. second electrode
- the active elements 13 may be partially embedded inside the flexible substrate 42 or adhesive layer 40 or in the interface of the flexible substrate layer 42 and adhesive layer 40 , and the active elements 13 (e.g. electrode) may be connected via single conductive lead 41 b which may be situated in the flexible substrate 42 or at the interface of the flexible substrate 42 and adhesive layer 40 , as shown in FIG. 4B .
- the single conductive lead 41 b may leave the pad 4 on its lateral or top side in a direction away from the patient. In both cases the conductive lead 41 a or 41 b does not come into contact with the treatment area.
- the active elements 13 may be partially embedded within the flexible substrate 42 and the adhesive layer 40 may surround the active elements 13 such that a surface of active elements 13 may be at least partially in direct contact with the surface of a treatment area.
- top side of the pad 4 may be protected by a cover layer 410 , which is shown for simplicity only in FIG. 4C .
- a pad 4 may include flexible substrate 500 , which may comprise a central part 501 and one or more segments 502 , which may move at least partially independently from each other as shown in FIG. 5A .
- the flexible substrate may have a thickness in a range of 1 to 200 ⁇ m or in a range of 5 to 100 ⁇ m or in a range of 10 to 75 ⁇ m or in a range of 15 to 65 ⁇ m.
- the central part or the segments may include a sensor 15 .
- the number of segments on the pad 4 may be in the range of 1 to 100, or in the range of 1 to 80 or in the range of 1 to 60 or in the range of 2 to 20 or in the range of 3 to 10 or in the range of 4 to 9, wherein each segment may comprise at least one active element 13 (e.g. electrode).
- the neighboring segments may be at least partially separated by slots 503 .
- Conventional therapy pads have routinely been made on a single non-segmented substrate which in some cases includes a flexible metal material or a polymeric material with a layer of metallic material deposited thereon.
- the proposed segmented pad 4 may be more flexible and may provide a greater amount of contact with the patient than conventional pads routinely used.
- the substrate 500 of the pad 4 is divided into central part 501 and a plurality of connected segments 502 .
- the plurality of segments 502 may move at least partially independently from one another.
- the individual segments 502 may be at least partially physically detached from one another by, for example, one or more slots 503 , or other open area between neighboring segments 502 .
- the plurality of segments 502 may be physically coupled together by a central part 501 including one or more conductive leads 506 .
- the central part 501 may also include one or more active elements 13 (e.g. electrodes).
- each active element 13 e.g.
- Electrode may be partially deposited in the central part 501 and partially in the corresponding segment 502 .
- some active elements e.g. electrodes
- some active elements e.g. electrodes
- some active elements e.g. electrodes
- the slots 503 may extend from the central part 501 of the substrate 500 of the pad 4 proximate to a conductive lead 508 and between neighboring segments 502 to an edge of the substrate 500 .
- Providing for the plurality of segments 502 of the pad 4 to move at least partially independently from one another may facilitate conformance of the pad 4 to curves or contours of a patient's body.
- a segmented pad 4 as illustrated in FIG. 5A may provide for a greater area, or a greater percentage of the total area, of the pad 4 portion to be in contact with the patient's body than if the pad 4 were formed as a single, non-segmented substrate.
- the segments 502 may comprise a perforated gap 503 ′ shown in FIG. 5A , which also provides greater conformance of the pad 4 to curves or contours of a patient's body.
- the shapes and positions of the segments 502 and/or the slots 503 may be provided in different configurations from those illustrated in FIG. 5A .
- the segments 502 may include rounded or squared ends or have different dimensional ratios than illustrated.
- the slots 503 may be curved, squared, triangular, oblong, polygonal or may include re-entrant portions extending between one of the segments 502 and the central part 501 .
- the slots 503 may also be a combination of the shapes mentioned above, e.g. a combination of a triangular slot with the curved end as illustrated in FIG. 5B representing a detail of one possible slot arrangement between two neighboring segments 502 ′ and 502 ′′.
- the slots may be very thin or may be wide, wherein the width of the slot ts may be illustrated in one example as follows: First, an imaginary curved or straight line 520 passes through the center of the slot such that it divides the slot into two symmetrical parts 503 a and 503 b , respectively. The width is then given by a second imaginary line 530 which is perpendicular to the first imaginary line 520 and which would connect the edges of the neighboring segments facing towards the slot 502 a and 502 b , and where the second imaginary line 530 is at a distance of at least 1 mm away from the beginning of the slot 503 c .
- the beginning of the slot 503 c is a point in the slot 503 closest to the central part 501 of the substrate 500 of the pad 4 as seen in FIG. 5B .
- the first imaginary line 520 is represented by a dashed line in the FIG. 5B and the second imaginary line 530 is represented as a dotted line in FIG. 5B .
- the width of the slot ws may be in the range of 100 ⁇ m to 10 mm or in the range of 500 ⁇ m to 8 mm or in the range of 600 ⁇ m to 7 mm or in the range of 800 ⁇ m to 5 mm.
- Each segment 502 of the substrate 500 may comprise an active element 13 (e.g. electrode) on a portion of, or the entirety of, the segment 502 .
- an active element 13 e.g. electrode
- the central part 501 may have a proximal end 504 and a distal end 505 , wherein the proximal end 504 of the central part 501 may pass or may be connected to the connecting part 507 .
- the central part 501 is connected to the connecting part 507 in the area of a dotted circle in FIG. 5A .
- Connecting part 507 may comprise a conductive lead 508 for each active element 13 (e.g. electrode)— 13 a - 13 f in FIG. 5A , or sensor(s) 15 included in a pad 4 , wherein all conductive leads of the connecting part are entering the pad 4 in the proximal end of the central part of the pad 4 .
- Conductive leads are mainly led by the central part until they reach the respective segment and its active element(s) or sensor(s), thus there may be no conductive lead at the distal end 505 of the central part 501 as shown in FIG. 5A .
- the conductive leads 506 may be led on the top side of the substrate—side facing away from the patient; and may be covered by a cover layer, e.g. by synthetic polymer like polyimide.
- the underside of the pad 4 (the side facing towards the body area of the patient) may also be at least partially covered by the cover layer, mainly in the area where the pad 4 is coupled to the connecting part 507 —dotted circle in FIG.
- the cover layer e.g. polyimide film or foam
- the cover layer may have a thickness in a range of 5 to 50 ⁇ m or in a range of 7 to 35 ⁇ m or in a range of 10 to 30 ⁇ m.
- the connecting part 507 may be flexible or partially elastic.
- the connecting part may be made of flexible PCB with the cover layer as an isolation layer on the top side and/or the underside of the connecting part 507 .
- the connecting part may have a connector at its ends, which may be rigid.
- the connector may be one of a USB type A, USB type B, USB type C, USB Micro B, DC power cord, AC power cord, computer power cable, firewire, RJ11, fiber connector, USB 3.0, mini display, pin connector, SMA, DVI, BNC, IDE, PS/2, RCA, display port, PSU, SATA, mSATA, DB9, RJ45, RS232 or any other connector know in the art.
- the pin connector may have number of pins in a range of 5 to 60 or in a range of 10 to 44 or in a range of 15 to 36 or in a range of 20 to 34.
- the connector may be made on the flexible PCB with an attached stiffener underneath used to stiffen the connector against out of plane deformation.
- the stiffener may be made of a non-conductive material including but not limited to plastic or fiberglass.
- the stiffener may have a thickness in a range of 0.1 to 5 mm or in a range of 0.5 to 2 mm or in a range of 1 to 1.5 mm.
- the flexible PCB connector may comprise a number of contacts in the range of 5 to 60 or in a range of 10 to 44 or in a range of 15 to 36 or in a range of 20 to 34.
- the pad 4 , the connecting part 507 and the connector may all be part of the applicator.
- the interconnecting block 3 or the main unit 2 may comprise one or more sockets configured to connect the connecting part via the connector on the opposite side to the side where the pad 4 is situated, wherein the one or more sockets are configured to connect an arbitrary pad and/or applicator.
- the interconnecting block or the main unit may comprise multiple sockets, each socket configured to connect one specific pad and/or applicator for a specific treatment area.
- the socket may be configured such that it will automatically determine a currently connected pad and/or applicator.
- the information about the connected pad and/or applicator may be read out from the memory of the pad.
- the memory may be part of the connector.
- the connector may be linked with the control unit 11 (e.g. CPU).
- the control unit 11 e.g.
- the CPU may provide one or more predetermined treatment protocols to the user via the human machine interface 8 after the detection of the pad in the socket. For example if only a forehead pad is connected, the system may automatically detect this specific pad and propose only a treatment of a forehead of the patient, not allowing the user to set a treatment of other body parts of the patient.
- the connector may comprise cutouts, grooves, slots, holes and/or notches for locking the connector in the socket.
- the socket may also comprise a safeguard preventing unintentional connection of the connector in the socket.
- the connector may comprise a symbol indicating on which body part the pad and/or the applicator is designated to treat.
- a supplementary connection may be used between the main unit 2 and the connecting part; or between the interconnecting block 3 and the connecting part in order to extend the connection between the main unit 3 and the pad 4 or interconnecting block 3 and the pad 4 .
- Average pad thickness may be in the range of 10 ⁇ m to 2000 ⁇ m or in the range of 50 ⁇ m to 1000 ⁇ m or in the range of 80 ⁇ m to 300 ⁇ m or in the range of 100 ⁇ m to 200 ⁇ m.
- the apparatus configured in a fractional arrangement may have the active element 13 (e.g. electrode) comprising a matrix formed by active points of defined size. These points are separated by inactive (and therefore untreated) areas that allow faster tissue healing.
- the surface containing active points may make up from 1 to 99% or from 2 to 90% or from 3 to 80% or from 4 to 75% of the whole active element area (active and inactive area).
- the active points may have blunt ends at the tissue contact side that do not penetrate the tissue, wherein the surface contacting tissue may have a surface area in the range of 500 ⁇ m 2 to 250 000 ⁇ m 2 or in the range of 1000 ⁇ m 2 to 200 000 ⁇ m 2 or in the range of 200 ⁇ m 2 to 180 000 ⁇ m 2 or in the range of 5000 ⁇ m 2 to 160 000 ⁇ m 2 .
- the blunt end may have a radius of curvature of at least 0.05 mm.
- a diameter of the surface contacting tissue of one active point may be in the range of 25 ⁇ m to 1500 ⁇ m or in the range of 50 ⁇ m to 1000 ⁇ m or in the range of 80 ⁇ m to 800 ⁇ m or in the range of 100 ⁇ m to 600 ⁇ m.
- the device may employ a safety system comprising thermal sensors and a circuit capable of adjusting the therapy parameters based on the measured values.
- One or more thermal sensors depending on the number and distribution of active elements 13 (e.g. electrodes), may be integrated onto pad 4 to collect data from different points so as to ensure homogeneity of heating. The data may be collected directly from the treatment area or from the active elements 13 (e.g. electrodes). If uneven heating or overheating is detected, the device may notify the operator and at the same time adjust the therapy parameters to avoid burns to the patient. Treatment parameters of one or more active elements (e.g. electrodes) might be adjusted.
- the main therapy parameters are power, duty cycle and time period regulating switching between multiple active elements 13 (e.g. electrodes). Therapy may be automatically stopped if the temperature rises above the safe threshold.
- impedance measurement may be incorporated in order to monitor proper active element 13 (e.g. electrodes) to skin contact. If the impedance value is outside the allowed limits, the therapy may be automatically suspended and the operator may be informed about potential contact issues.
- active element 13 e.g. electrodes
- Control unit 11 may be incorporated onto the pad 4 itself or it may form a separate part conductively connected to the pad 4 .
- control unit 11 e.g. CPU
- main indicators e.g. ongoing therapy, actual temperature and active element to skin contact.
- FIG. 6 shows some delivery approaches of apparatus for contact therapy.
- both active elements e.g. electrodes
- both active elements are used simultaneously during the time interval e.g., 1-20 s.
- the first active element e.g. first electrode
- the second active element e.g. second electrode
- the first active element e.g. first electrode
- the second active element e.g. second electrode
- Active elements 13 may deliver energy sequentially in predefined switching order or randomly as set by operator via human machine interface 8 .
- Schema I in FIG. 6 represents switching between pairs/groups formed of non-adjacent active elements 13 (e.g. electrodes) located within a pad 4 .
- Every pair/group of active elements 13 is delivering energy for a predefined period of time (dark gray elements in FIG. 6 —in schema I elements 1 and 3 ) while the remaining pairs/groups of active elements 13 (e.g. electrodes) remain inactive in terms of energy delivery (light gray elements in FIG. 6 —in schema I elements 2 and 4 ).
- energy is delivered by another pair/group of active elements 13 (e.g. electrodes) and the initial active elements (e.g. electrodes) become inactive. This is indicated by arrows in FIG. 6 . Switching between pairs/groups of active elements 13 (e.g.
- Electrodes may continue until a target temperature is reached throughout the entire treatment area or a predefined energy is delivered by all active elements 13 (e.g. electrodes).
- Schema II in FIG. 6 represents switching of all active elements 13 (e.g. electrodes) within the pad 4 between state ON when active elements (e.g. electrodes) are delivering energy and OFF when they are not delivering energy. The duration of ON and OFF states may vary depending on predefined settings and/or information provided by sensors, e.g. thermal sensors.
- Schema III in FIG. 6 shows sequential switching of individual active elements 13 (e.g. electrodes) within a pad 4 . Each active element 13 (e.g.
- Schema IV in FIG. 6 represents a zig-zag switching order during which preferably non-adjacent active elements 13 (e.g. electrodes) deliver energy sequentially until all active elements 13 (e.g. electrodes) within a pad 4 have been switched ON.
- Each active element 13 e.g. electrode
- the control unit e.g. CPU
- the control unit may be configured to control the stimulation device and provide treatment by at least one treatment protocol improving of visual appearance.
- Treatment protocol is set of parameters of the primary electromagnetic energy and the secondary energy ensuring the desired treatment effect.
- Each pad may be controlled to provide same or alternatively different protocol. Pair areas or areas where symmetrical effect is desired may be treated by the same treatment protocol.
- Each protocol may include one or several sections or steps.
- the time when one active element (e.g. electrode) delivers the radiofrequency energy to the tissue of the patient may be in the range of 1 ms to 10 s or in the range of 10 ms to 5 s or in the range of 50 ms to 2 s or in the range of 100 ms to 1500 ms.
- Two consecutive elements may be switched ON and OFF in successive or overlapping method.
- the delivery of the radiofrequency energy by two consecutive active elements (e.g. electrodes) may be separated by the time of no or low radiofrequency stimulation, such that non of the two consecutive active elements (e.g.
- the time of no or low radiofrequency stimulation may be in the range of 1 ⁇ s to 1000 ms, or in the range of 500 ⁇ s to 500 ms or in the range of 1 ms to 300 ms or in the range of 10 ms to 250 ms.
- the sequential switching of the active elements (e.g. electrodes) providing radiofrequency treatment may be provided within each pad independently of the other pads or active elements (e.g. electrodes) may deliver energy sequentially through all pads.
- first step the radiofrequency energy may be provided by active element one in the first pad, wherein other active elements are turned off
- second step the active element two of the first pad is turned on and the rest of the active elements are turned off
- third step the active element one of the second pad is turned on and the rest of the active elements are turned off
- fourth step the active element two of the second pad is turned on and the rest of the active elements are turned off
- fifth step the active element one of the third pad is turned on and the rest of the active elements are turned off
- sixth step the active element two of the third pad is turned on and the rest of the active elements are turned off.
- Another non-limiting example may be:
- first step the radiofrequency energy may be provided by active element one in the first pad, wherein other active elements are turned off
- second step the active element one of the second pad is turned on and the rest of the active elements are turned off
- third step the active element one of the third pad is turned on and the rest of the active elements are turned off
- fourth step the active element two of the first pad is turned on and the rest of the active elements are turned off
- fifth step the active element two of the second pad is turned on and the rest of the active elements are turned off
- sixth step the active element two of the third pad is turned on and the rest of the active elements are turned off.
- the pair pads may be driven by the same protocol at the same time.
- the protocol may include a first section where electrodes in one pad may be treated such that the electrodes provide an electric current pulses modulated in an envelope of increasing amplitude modulation (increasing envelope) followed by constant amplitude (rectangle envelope) followed by decreasing amplitude modulation (decreasing envelope), all these three envelopes may create together a trapezoidal amplitude modulation (trapezoidal envelope).
- the trapezoidal envelope may last 1 to 10 seconds or 1.5 to 7 seconds or 2 to 5 seconds.
- the increasing, rectangle, or decreasing envelope may last for 0.1 to 5 seconds or 0.1 to 4 seconds or 0.1 to 3 seconds.
- the increasing and decreasing envelope may last for the same time, thus creating a symmetrical trapezoid envelope.
- the electric current may be modulated to a sinusoidal envelope or rectangular envelope or triangular envelope.
- the respective envelopes causing muscle contractions may be separated by time of no or low current stimulation, such that no muscle contraction is achieved or by a radiofrequency energy causing the heating of the tissue.
- the pressure massage by suction openings may be provided, which may cause the relaxation of the muscles.
- the first section may be preprogrammed such that electrodes on various places of the pad may be switched in time to provide alternating current pulses wherein some other electrodes in the pad may not provide any alternating current pulses but only RF pulses causing heating of the tissue.
- All electrodes in the pad may ensure providing (be switched by the switching circuitry 14 to provide) RF pulses for heating the tissue during the section of protocol or protocol, while only a limited amount of the electrodes may provide (be switched by the switching circuitry 14 to provide) alternating currents for muscle contracting during the section of protocol or protocol.
- the device may be configured such that the first section lasts for 1-5 minutes.
- a second section may follow the first section.
- the second section may be preprogrammed such that different electrodes than the ones used in the first section on various places of the pad may be switched in time to provide alternating current pulses wherein some other electrodes (same or different electrodes than the ones used in the first section) in the pad may not provide any alternating current pulses but only RF pulses causing heating of the tissue.
- a third section may follow the second section.
- the third section may be preprogrammed such that different electrodes than the ones used in the second section on various places of the pad may be switched in time to provide alternating current pulses wherein some other electrodes (same or different electrodes than the ones used in the second section) in the pad may not provide any alternating current pulses but only RF pulses causing heating of the tissue.
- the first pad e.g. for treatment of the forehead
- the second pad e.g. for treatment of the left cheek
- the third pad e.g. for treatment of the right cheek
- Some electrodes may be configured to provide radiofrequency energy and some electrodes may be configured to provide both radiofrequency energy and electric current.
- the radiofrequency energy may be a monopolar radiofrequency energy with a frequency in the range of 100 kHz to 550 MHz or in the range of 250 kHz to 500 MHz or in the range of 350 kHz to 100 MHz or in the range of 350 kHz to 14 MHz.
- the radiofrequency energy may be delivered with a rectangular envelope which may last for 200 to 3000 ms or for 250 to 2000 ms or for 300 to 1800 ms or for 350 to 1500 ms.
- the radiofrequency envelope (hereinafter RF envelope) may be modulated to a sinusoidal envelope or triangular envelope or trapezoidal envelope.
- the electric current may be a bipolar rectangular AC TENS current with a frequency in the range of 10 Hz to 10 kHz or in the range of 25 Hz to 1 kHz or in the range of 50 to 500 Hz or in the range of 100 to 300 Hz modulated to a trapezoidal envelope, which may last 1 to 10 seconds or 1.5 to 7 seconds or 2 to 5 seconds.
- An increasing, rectangular, or decreasing envelope of the trapezoidal envelope may last for 0.1 to 5 seconds or 0.1 to 4 seconds or 0.1 to 3 seconds.
- the increasing and decreasing envelopes may have the same duration, thus creating a symmetrical trapezoidal envelope.
- the electric current envelope (hereinafter EC envelope) may be modulated to a sinusoidal envelope or rectangular envelope or triangular envelope.
- the protocol may have a cycle that includes sections.
- the number of protocol sections in one cycle may be the same number as the total number of used electrodes within all pads used for the treatment or may be different.
- the number of sections per pad may be in the range of 1 to 100, or of 1 to 80, or of 1 to 60, or of 2 to 20, or of 3 to 10, or of 4 to 9.
- the number of sections per cycle may be in the range of 1 to 100, or of 1 to 80, or of 1 to 60, or of 2 to 40, or of 3 to 35, or of 4 to 30.
- Each protocol section may follow the previous protocol section, e.g. the second section follows the first section.
- Each protocol section may last for 200 to 3000 ms or for 250 to 2000 ms or for 300 to 1800 ms or for 350 to 1500 ms.
- the cycle may repeat from 30 to 300, or from 50 to 250, or from 80 to 220, or from 100 to 200, times per treatment.
- the cycle may repeat from 150 to 600, or from 190 to 550, or from 200 to 520, or from 210 to 500, times per treatment.
- the treatment protocol may repeat the same cycle.
- the treatment protocol may repeat different cycles, wherein the cycles may be different in the number of sections, and/or duration of sections, and/or sequence of activating and/or deactivating the electrodes, and/or parameters set for RF and/or EC envelopes (e.g. shape of envelope, amplitude, frequency, duration and so on), and/or parameters set for radiofrequency and/or parameters of electric current.
- the electrode E2 delivers the RF envelope.
- the electrode E7 delivers the RF envelope.
- the electrode E14 delivers the RF envelope.
- the electrode E5 delivers the RF envelope.
- the electrode E8 delivers the RF envelope.
- the electrode pairs E1-E4, E3-E6, E9-E10, E11-E12, E16-E17 and electrode pair E18-E19 deliver the EC envelope causing muscle contractions under the first, second and third pads, e.g. under the forehead pad, the left cheek pad and the right cheek pad.
- the electrode E15 delivers the RF envelope.
- the electrode E13 delivers the RF envelope.
- the electrode E20 delivers the RF envelope.
- the electrode E1 delivers the RF envelope.
- the electrode E3 delivers the RF envelope.
- the electrode pairs E9-E10, E11-E12, E16-E17 and electrode pair E18-E19 deliver the EC envelope causing muscle contractions under the second and third pads, e.g. under the left and right cheek pads.
- the electrode E6 delivers the RF envelope.
- the electrode E4 delivers the RF envelope.
- the electrode E9 delivers the RF envelope.
- the electrode E16 delivers the RF envelope.
- the electrode E12 delivers the RF envelope.
- the electrode E19 delivers the RF envelope.
- the electrode E10 delivers the RF envelope.
- the electrode E17 delivers the RF envelope.
- the electrode E11 delivers the RF envelope.
- the electrode E18 delivers the RF envelope.
- the electrode pairs E1-E4 and E3-E6 deliver the EC envelope causing muscle contractions under the first pad, e.g. under the forehead pad.
- the treatment protocol may be preprogrammed such that each electrode used during the treatment may deliver the RF envelope once per cycle and some electrode pairs (e.g. E1-E4) may deliver EC envelope twice per cycle.
- each electrode may deliver the RF envelope 2 to 10, or 2 to 8, or 2 to 5 times per cycle; and some electrode pairs may deliver the EC envelope 1 to 10, or 1 to 8, or 1 to 5 times per cycle.
- the treatment protocol may be preprogrammed such that only one electrode delivers the RF envelope per section.
- 2 to 20, or 2 to 15, or 2 to 10, or 2 to 5, or 2 to 3 electrodes deliver RF envelopes in each section simultaneously, wherein the RF envelopes may be the same or may be different.
- no RF envelopes may be delivered during at least one section.
- the treatment protocol may be preprogrammed such that during a single treatment the RF envelopes are delivered 25 to 300, or 50 to 250, or 80 to 200, or 100 to 180 times by each electrode with an RF pause time between each delivery of the RF envelope.
- the RF pause time the time during which the electrode is not providing a radiofrequency energy to the patient between two consecutive deliveries of RF envelopes—may be in the range of 0.5 to 20 s, or of 1 to 15 s, or of 1.5 to 12 s, or of 2 to 10 s.
- the radiofrequency energy may be controlled by a control unit (e.g. CPU) in order to provide a constant heating radiofrequency power (CHRP) on each electrode, which means that each electrode provides homogenous heating of the patient.
- CHRP constant heating radiofrequency power
- a CRP setting may be preprogrammed in the treatment protocol for each specific electrode in each specific pad based on the dimensions of the electrode and/or its position in the pad and/or its position on the body area of the patient.
- the radio frequency power may be controlled by the control unit based on feedback from at least one thermal sensor measuring the temperature of the treated body area and/or the temperature of the electrode providing the radiofrequency energy such that when the desired temperature is reached, the electrodes are controlled to keep the temperature at this desired level.
- a typical treatment temperature of the body area under the electrode is in the range of 37.5° C. to 55° C. or in the range of 38° C. to 53° C. or in the range of 39° C. to 52° C. or in the range of 40° C. to 50° C. or in the range of 41° C. to 45° C.
- the treatment protocol may be preprogrammed such that during a single treatment the EC envelopes are delivered 25 to 1000, or 50 to 900, or 100 to 750, or 120 to 600, or 150 to 500 times by at least one pair of electrodes with an EC pause time between each delivery of the EC envelope.
- the EC pause time the time when the electrode pair is not providing electric current to the patient between two consecutive deliveries of EC envelopes—may be in the range of 0.5 to 20 s, or of 1 to 15 s, or of 1.5 to 12 s, or of 2 to 10 s.
- the electrode pair may deliver EC envelopes one after another without the EC pause time.
- radiofrequency energy may be delivered constantly through all electrodes during the whole treatment and only the EC envelopes may be delivered sequentially.
- a single treatment may last for 1 to 60 min, or for 5 to 45 min, or for 10 to 30 min, or for 15 to 25 min, or for 18 to 23 min based on the number of pads used during the treatment.
- the number of pads used in single treatment may be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or up to 100.
- the protocol may be preprogrammed such, that the electrodes providing the electric current causing the muscle contractions are switched to provide radiofrequency heating after they produce one, two, three, four or five contractions on maximum.
- the respective sections are assembled by the control unit (CPU) in the treatment protocol to provide at least 60-900 contractions or 90-800 contractions, or 150-700 contractions by a single pad per treatment.
- CPU control unit
- the respective electrode pairs providing electric current to the patient are controlled by the control unit (CPU) to provide at least 50-1000 contractions or 60-900 contractions or 90-800 contractions, or 100-450 contractions per treatment.
- the control unit CPU
- the forehead pad may include a layout of electrodes such that the anatomical area 1 and anatomical area 2 are stimulated by alternating currents which may cause muscle contractions while anatomical area 3 is not stimulated by alternating currents causing muscle contraction as shown in FIG. 10 .
- the control unit (CPU) is configured to provide a treatment protocol energizing by alternating electric currents only those electrodes located in proximity or above the anatomical area 1 and 2 ; and energizing electrode/electrodes in proximity of or above anatomical area 3 by radiofrequency energy only as shown in FIG. 10 .
- the anatomical area 1 and 2 may comprise the Frontalis muscles and the anatomical area 3 may comprise the center of the Procerus muscle.
- the forehead pad may also treat the Corrugator supercilii muscle or Orbicularis oculi with radiofrequency energy.
- the pad used for a treatment of the cheek may include a layout of electrodes such that the anatomical area comprising the Buccinator muscle, the Masseter muscle, the Zygomaticus muscles or the Risorius muscle are stimulated by electrical currents, which may cause muscle contractions, wherein the other anatomical area may be only heated by the radiofrequency energy.
- a cheek pad may also be used for contraction of the Lavator labii superioris.
- the pad may be configured such that the layout of electrodes close to the eyes (e.g. body part comprising Orbicularis oculi muscles) or teeth (e.g. body part comprising Orbicularis oris muscles) may not provide energy causing muscle contractions.
- electrodes close to the eyes e.g. body part comprising Orbicularis oculi muscles
- teeth e.g. body part comprising Orbicularis oris muscles
- the pad used for a treatment of the submentum or submental area may include a layout of electrodes such that the anatomical area comprising the Mylohyoid muscle or the Digastric muscle is stimulated with electrical current, which may cause muscle contractions, wherein the other anatomical area may only be heated by the radiofrequency energy.
- a submentum pad (pad used for treatment of the submentum) may not provide electric current to an Adam's apple, but may provide heating with radiofrequency energy to the Adam's apple.
- the treatment device may be configured such, that in each section or step the impedance sensor provides the information about the contact of the pad or active element (e.g. electrode) with the patient to the control unit (e.g. CPU).
- the control unit e.g. CPU
- the control unit may determine based on the pre-set conditions if the contact of the pad or active element (e.g. electrode) with the patient is sufficient or not. In case of sufficient contact, the control unit (e.g. CPU) may allow the treatment protocol to continue. In case that the contact is inappropriate, the valuated pad or active element (e.g. electrode) is turned off and the treatment protocol continues to consecutive pad or active element (e.g. electrode) or the treatment is terminated.
- the determination of proper contact of the pad or active element (e.g. electrode) may be displayed on the human machine interface 8 .
- the impedance measurement may be made at the beginning of the section/step, during the section/step or at the end of the section/step.
- the impedance measurement and/or the proper contact evaluation may be determined only on the active electrodes for the given section/step or may be made on all electrodes of all pads used during the section/step.
- the impedance may be monitored through all active elements (e.g. electrodes) while the therapy is being provided to the patient.
- the device monitors the impedance between the active element (e.g. electrode) and the skin of the patient while the treatment energy (e.g. radiofrequency or electric current) is being delivered to the patient, analyzes the monitored impedance at two or more different time instances in order to determine a change in the size of the electrode-skin contact area, and if the change in the monitored impedance reaches a pre-determined threshold, alters the stimulation being delivered to the patient or terminates the treatment.
- the active element e.g. electrode
- the treatment energy e.g. radiofrequency or electric current
- the change in the impedance value at a given time may be quantified by an impedance ratio between the impedance value at that time and a baseline impedance, which is a first impedance value from the history of impedance measurement of a given active element (e.g. electrode).
- a baseline impedance which is a first impedance value from the history of impedance measurement of a given active element (e.g. electrode).
- FIG. 7 and FIG. 8 are discussed together.
- FIG. 7 shows a block diagram of an apparatus for contactless therapy 100 .
- FIG. 8 is an illustration of an apparatus for contactless therapy 100 .
- Apparatus for contactless therapy 100 may comprise two main blocks: main unit 2 and a delivery head 19 interconnected via fixed or adjustable arm 21 .
- Main unit 2 may include a primary electromagnetic generator 6 which may generate one or more forms of electromagnetic radiation wherein the electromagnetic radiation may be e.g., in the form of incoherent light or in the form of coherent light (e.g. laser light) of predetermined wavelength.
- the electromagnetic field may be primarily generated by a laser, laser diode module, LED, flash lamp or incandescent light bulb.
- the electromagnetic radiation may be such that it may be at least partially absorbed under the surface of the skin of the patient.
- the wavelength of the applied radiation may be in the range of 100 to 15000 nm or in the range of 200 to 12000 nm or in the range of 300 to 11000 nm or in the range of 400 to 10600 nm or it may be in the form of second, third, fourth, fifth, sixth, seventh or eighth harmonic wavelengths of the above mentioned wavelength ranges.
- Main unit 2 may further comprise a human machine interface 8 represented by display, buttons, keyboard, touchpad, touch panel or other control members enabling an operator to check and adjust therapy and other device parameters.
- the power supply 5 located in the main unit may include a transformer, disposable battery, rechargeable battery, power plug or standard power cord.
- the output power of the power supply 5 may be in the range of 10 W to 600 W, or in the range of 50 W to 500 W, or in the range of 80 W to 450 W.
- Indicators 17 may provide additional information about the current status of the device independently on human machine interface 8 . Indicators 17 may be realized through the display, LEDs, acoustic signals, vibrations or other forms capable of adequate notice.
- Delivery head 19 may be interconnected with the main unit via arm 21 which may form the main optical and electrical pathway.
- Arm 21 may comprise transmission media, for example wires or waveguide, e.g. mirrors or fiber optic cables, for electromagnetic radiation in the form of light or additional electric signals needed for powering the delivery head 19 .
- the control unit e.g.
- CPU 11 controls the primary electromagnetic generator 6 which may generate a continuous electromagnetic energy (CM) or a pulses, having a fluence in the range of 0.1 pJ/cm 2 to 1000 J/cm 2 or in the range of 0.5 pJ/cm 2 to 800 J/cm 2 or in the range of 0.8 pJ/cm 2 to 700 J/cm 2 or in the range of 1 pJ/cm 2 to 600 J/cm 2 on the output of the electromagnetic generator.
- the CM mode may be operated for a time interval in the range of 0.1 s to 24 hours or in the range of 0.2 s to 12 hours or in the range of 0.5 s to 6 hours or in the range of 1 s to 3 hours.
- the pulse duration of the electromagnetic radiation operated in the pulse regime may be in the range of 0.1 fs to 2000 ms or in the range of 0.5 fs to 1500 ms or in the range of 1 fs to 1200 ms or in the range of 1 fs to 1000 ms.
- the pulse duration may be in the range of 0.1 fs to 1000 ns or in the range of 0.5 fs to 800 ns or in the range of 1 fs to 500 ns or in the range of 1 fs to 300 ns.
- the pulse duration may be in the range of 0.3 to 5000 ⁇ s or in the range of 1 to 4000 ⁇ s or in the range of 5 to 3500 ⁇ s or in the range of 10 to 3000 ⁇ s.
- the pulse duration may be in the range of 0.05 to 2000 ms or in the range of 0.1 to 1500 ms or in the range of 0.5 to 1250 ms or in the range of 1 to 1000 ms.
- the primary electromagnetic generator 6 in the pulse regime may be operated by control unit (e.g. CPU) 11 in a single shot mode or in a repetition mode or in a burst mode.
- the frequency of the repetition mode or the burst mode may be in the range of 0.05 to 10 000 Hz or in the range of 0.1 to 5000 Hz or in the range of 0.3 to 2000 Hz or in the range of 0.5 to 1000 Hz.
- the frequency of the repetition mode or the burst mode may be in the range of 0.1 kHz to 200 MHz or in the range of 0.5 kHz to 150 MHz or in the range of 0.8 kHz to 100 MHz or in the range of 1 kHz to 80 MHz.
- the single shot mode may be configured to generate a single electromagnetic energy of specific parameters (e.g. intensity, duration, etc.) for irradiation of a single treatment area.
- the repetition mode may be configured to generate an electromagnetic energy, which may have one or more specific parameters (e.g. intensity, duration, etc.), with a repetition rate of the above-mentioned frequency for irradiation of a single treatment area.
- the burst mode may be configured to generate multiple consecutive electromagnetic energies, which may have variable parameters (e.g. intensity, duration, delay etc.), during one sequence, wherein the sequences are repeated with the above-mentioned frequency and wherein the sequence may include the same or different sets of consecutive electromagnetic energies.
- the device may contain more than one primary electromagnetic generator 6 for generation of the same or a different electromagnetic energy, e.g. one primary electromagnetic generator is for generation of an ablative electromagnetic energy and the other is for generation of a non-ablative electromagnetic energy.
- one primary electromagnetic generator is for generation of an ablative electromagnetic energy and the other is for generation of a non-ablative electromagnetic energy.
- the control unit e.g. CPU
- both primary electromagnetic generators are used simultaneously during a time interval e.g., 1-20 ps.
- the first primary electromagnetic generator is used during the first time interval e.g., from 1 to 10 ps.
- the first primary electromagnetic generator is then stopped and the second primary electromagnetic generator is immediately used in a subsequent time interval e.g., from 10 to 20 ps.
- a sequence of two or more successive steps may be repeated.
- the first primary electromagnetic generator is used during a time interval, e.g., 1-10 ps
- the second primary electromagnetic generator is used in a second overlapping time interval for e.g., 2-11 ps, wherein during the second time interval the first primary electromagnetic generator and the second primary electromagnetic generator are overlapping e.g., with total overlapping method time for 2-10 ps.
- the activating and deactivating of the primary electromagnetic generators in a successive or overlap method may be driven by control unit (e.g. CPU) 11 in the order which is suitable for a given treatment, e.g. first activating the pre-heating primary electromagnetic generator, then the ablation primary electromagnetic generator and then the non-ablative primary electromagnetic generator.
- the active elements 13 in the delivery head 19 may be in the form of optical elements, which may be represented by one or more optical windows, lenses, mirrors, fibers or diffraction elements.
- the optical element representing active element 13 may be connected to or may contain primary electromagnetic generator 6 inside the delivery head 19 .
- the optical element may produce one beam of electromagnetic energy, which may provide an energy spot having an energy spot size defined as a surface of tissue irradiated by one beam of light.
- One optical element may provide one or more energy spots e.g. by splitting one beam into a plurality of beams.
- the energy spot size may be in the range of 0.001 cm 2 to 1000 cm 2 , or in the range of 0.005 cm 2 to 700 cm 2 , or in the range of 0.01 cm 2 to 300 cm 2 , or in the range of 0.03 cm 2 to 80 cm 2 .
- Energy spots of different or the same wavelength may be overlaid or may be separated. Two or more beams of light may be applied to the same spot at the same time or with a time gap ranging from 0.1 s to 30 seconds. Energy spots may be separated by at least 1% of their diameter, and in addition, energy spots may closely follow each other or may be separated by a gap ranging from 0.01 mm to 20 mm or from 0.05 mm to 15 mm or from 0.1 mm to 10 mm.
- the control unit may be further responsible for switching between active elements 13 or for moving the active elements 13 within the delivery head 19 so that the electromagnetic radiation may be delivered homogeneously into the whole treatment area marked with aiming beam 18 .
- the rate of switching between active elements 13 may be dependent on the amount of delivered energy, pulse length, etc. and the speed of control unit (e.g. CPU) or other mechanism responsible for switching or moving the active elements 13 (e.g. scanner).
- a device may be configured to switch between multiple active elements 13 in such a way that they deliver energy simultaneously, successively or in an overlapping method. For example, in the case of two active elements: in the simultaneous method, both active elements are used simultaneously during the time interval e.g., 1-20 ps.
- the first active element is used during the first time interval e.g., from 1 to 10 ps.
- the first active element is then stopped and the second active element is immediately used in a subsequent time interval e.g., from 10 to 20 ps.
- This successive step may be repeated.
- the first active element is used during a time interval for e.g., 1-10 ps
- the second active element is used in a second overlapping time interval for e.g., 2-11 ps, wherein during the second time interval the first active element and the second active element are overlapping e.g., with total overlapping method time for 2-10 ps.
- the aiming beam 18 has no clinical effect on the treated tissue and may serve as a tool to mark the area to be treated so that the operator knows which exact area will be irradiated and the control unit 11 (e.g. CPU) may set and adjust treatment parameters accordingly.
- An aiming beam may be generated by a separate electromagnetic generator or by the primary electromagnetic generator 6 .
- Aiming beam 18 may deliver energy at a wavelength in a range of 300-800 nm and may supply energy at a maximum power of 10 mW.
- the pad may contain a control unit 11 (e.g. CPU) driven distance sensor 22 for measuring a distance from active element 13 to the treated point within the treated area marked by aiming beam 18 .
- the measured value may be used by CPU 11 as a parameter for adjusting one or more treatment parameters which may depend on the distance between the active element and a treating point, e.g. fluence.
- Information from distance sensor 22 may be provided to control unit 11 (e.g. CPU) before every switch/movement of an active element 13 so that the delivered energy will remain the same across the treated area independent of its shape or unevenness.
- the patient's skin may be pre-cooled to a selected temperature for a selected duration over at least one treatment portion, the selected temperature and duration for pre-cooling preferably being sufficient to cool the skin to at least a selected temperature below normal body temperature.
- the skin may be cooled to at least the selected temperature to a depth below the at least one depth for the treatment portions so that the at least one treatment portion is substantially surrounded by cooled skin.
- the cooling may continue during the application of radiation, wherein the duration of the application of radiation may be greater than the thermal relaxation time of the treatment portions. Cooling may be provided by any known mechanism including water cooling, sprayed coolant, presence of an active solid cooling element (e.g. thermoelectric cooler) or air flow cooling.
- a cooling element may act as an optical element.
- a spacer may serve as a cooling element. Cooling may be provided during, before or after the treatment with electromagnetic energy. Cooling before treatment may also provide an environment for sudden heat shock, while cooling after treatment may provide faster regeneration after heat shock.
- the temperature of the coolant may be in the range of ⁇ 200° C. to 36° C.
- the temperature of the cooling element during the treatment may be in the range of ⁇ 80° C. to 36° C. or ⁇ 70° C. to 35° C. or ⁇ 60° C. to 34° C. or ⁇ 20° C. to 30° C. or 0° C. to 27° C. or 5° C. to 25° C.
- cryogenic spray cooling gas flow or other non-contact cooling techniques may be utilized.
- a cooling gel on the skin surface might also be utilized, either in addition to or instead of, one of the cooling techniques indicated above.
- device 100 may include one or more sensors.
- the sensor may provide information about at least one physical quantity and its measurement may lead to feedback which may be displayed by human machine interface 8 or indicators 17 .
- the one or more sensors may be used for sensing a variety of physical quantities, including but not limited to the energy of the delivered electromagnetic radiation or backscattered electromagnetic radiation from the skin, impedance of the skin, resistance of the skin, temperature of the treated skin, temperature of the untreated skin, temperature of at least one layer of the skin, water content of the device, the phase angle of delivered or reflected energy, the position of the active elements 13 , the position of the delivery element 19 , temperature of the cooling media or temperature of the primary electromagnetic generator 6 .
- the sensor may be a temperature, acoustic, vibration, electric, magnetic, flow, positional, optical, imaging, pressure, force, energy flux, impedance, current, Hall or proximity sensor.
- the sensor may be a capacitive displacement sensor, acoustic proximity sensor, gyroscope, accelerometer, magnetometer, infrared camera or thermographic camera.
- the sensor may be invasive or contactless.
- the sensor may be located on the delivery element 19 or in the main unit 2 or may be a part of a distance sensor 22 .
- One sensor may measure more than one physical quantity.
- a sensor may include a combination of a gyroscope, an accelerometer or a magnetometer. Additionally, the sensor may measure one or more physical quantities of the treated skin or untreated skin.
- the thermal sensor measures and monitors the temperature of the treated skin.
- the temperature can be analyzed by a control unit 11 (e.g. CPU).
- the thermal sensor may be a contactless sensor (e.g. infrared temperature sensor).
- the control unit 11 e.g. CPU
- a temperature feedback system may control the temperature and based on set or pre-set limits alert the operator in human perceptible form e.g. on the human machine interface 8 or via indicators 17 .
- the device may be configured to adjust treatment parameters of each active element, e.g. output power, activate cooling or stop the treatment.
- Human perceptible form may be a sound, alert message shown on human machine interface 8 or indicators 17 or change of color of any part of the device 100 .
- a resistance sensor may measure the skin resistance, since it may vary for different patients, as well as the humidity—wetness and sweat may influence the resistance and therefore the behavior of the skin in the energy field. Based on the measured skin resistance, the skin impedance may also be calculated.
- Information from one or more sensors may be used for generation of a pathway on a convenient model e.g. a model of the human body shown on a display of human machine interface 8 .
- the pathway may illustrate a surface or volume of already treated tissue, presently treated tissue, tissue to be treated, or untreated tissue.
- a convenient model may show a temperature map of the treated tissue providing information about the already treated tissue or untreated tissue.
- the sensor may provide information about the location of bones, inflamed tissue or joints. Such types of tissue may not be targeted by electromagnetic radiation due to the possibility of painful treatment. Bones, joints or inflamed tissue may be detected by any type of sensor such as an imaging sensor (ultrasound sensor, IR sensor), impedance and the like. A detected presence of these tissue types may cause general human perceptible signals or interruption of generation of electromagnetic radiation. Bones may be detected for example by a change of impedance of the tissue or by analysis of reflected electromagnetic radiation.
- the device 100 may include an emergency stop button 16 so that the patient can stop the therapy immediately anytime during the treatment.
- the method of treatment includes the following steps: preparation of the tissue; positioning the proposed device; selecting or setting up the treatment parameters; and application of the energy. More than one step may be executed simultaneously.
- Preparation of the tissue may include removing make-up or cleansing the patient's skin.
- anesthetics may be applied topically or in an injection.
- Positioning the device may include selecting the correct shape of the pad according to the area to be treated and affixing the pad or the neutral electrode to the patient, for example with an adhesive layer, vacuum suction, band or mask, and verifying proper contact with the treated tissue in the case of contact therapy.
- positioning of the device may include adjusting the aiming beam of proposed device so that the device can measure the distance of the active element(s) from the treatment area and adjust the treatment parameters accordingly.
- Selecting or setting up the treatment parameters may include adjusting treatment time, power, duty cycle, delivery time and mode (CM or pulsed), active points surface density/size for fractional arrangement and mode of operation. Selecting the mode of operation may mean choosing simultaneous, successive or overlapping methods or selecting the switching order of active elements or groups of active elements or selecting the proper preprogrammed protocol.
- Application of the energy may include providing at least one type of energy in the form of RF energy, electric current, ultrasound energy or electromagnetic energy in the form of polychromatic or monochromatic light, or their combination.
- the energy may be provided from at least one active element into the skin by proposed device.
- Energy may be delivered and regulated automatically by the control unit (e.g. CPU) according to information from thermal sensors and impedance measurements and, in the case of contactless therapy, distance sensors. All automatic adjustments and potential impacts on the therapy may be indicated on the device display. Either the operator or the patient may suspend therapy at any time during treatment.
- a typical treatment might have a duration of about 1 to 60 min or 2 to 50 min or 3 to 40 min or 5 to 30 min or 8 to 25 min or 10 to 20 min depending on the treated area and the size and number of active elements located within one or more pads.
- a typical treatment with 1 , 2 , 3 , 4 , 5 or up to 10 pads may have a total duration of about 1 to 60 minutes or 2 to 50 minutes or 3 to 40 minutes 5 to 30 minutes or 8 to 25 minutes or 10 to 20 minutes.
- a typical treatment with one pad may have a total duration of about 1 to 30 minutes or 2 to 25 minutes or 3 to 22 minutes 5 to 20 minutes or 5 to 15 minutes or 5 to 12 minutes.
- application of energy to the tissue may include providing radiofrequency energy and/or electric current and/or ultrasound energy or any combination of these, from the active elements embedded in the pad, to the skin of the patient.
- active elements providing radiofrequency energy are capacitive or resistive RF electrodes and the RF energy may cause heating, coagulation or ablation of the skin.
- the electric current is provided by the RF electrodes and may cause muscle contractions.
- Ultrasound energy may be provided through an acoustic window and may rise the temperature in the depth which may suppress the gradient loss of RF energy and thus the desired temperature in a germinal layer may be reach.
- the RF electrode may act as an acoustic window for ultrasound energy.
- the application of the energy to the tissue may include providing electromagnetic energy in the form of polychromatic or monochromatic light from the active elements into the skin of the patient.
- active elements providing the electromagnetic energy may comprise optical elements described in the proposed device.
- Optical elements may be represented by an optical window, lens, mirror, fiber or electromagnetic field generator, e.g. LED, laser, flash lamp, incandescent light bulb or other light sources known in the state of art.
- the electromagnetic energy in the form of polychromatic or monochromatic light may entail the heating, coagulation or ablation of the skin in the treated area.
- the device accessories may be removed and a cleansing of the patient's skin may be provided.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Radiology & Medical Imaging (AREA)
- Surgery (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Otolaryngology (AREA)
- Medical Informatics (AREA)
- Pathology (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Plastic & Reconstructive Surgery (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Electromagnetism (AREA)
- Neurosurgery (AREA)
- Physiology (AREA)
- Physical Education & Sports Medicine (AREA)
- Electrotherapy Devices (AREA)
- Thermotherapy And Cooling Therapy Devices (AREA)
- Materials For Medical Uses (AREA)
Priority Applications (27)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/518,243 US20220305275A1 (en) | 2020-05-04 | 2021-11-03 | Device and method for unattended treatment of a patient |
US17/664,161 US11878167B2 (en) | 2020-05-04 | 2022-05-19 | Device and method for unattended treatment of a patient |
US17/941,777 US11633596B2 (en) | 2020-05-04 | 2022-09-09 | Device and method for unattended treatment of a patient |
CA3178145A CA3178145A1 (fr) | 2021-11-03 | 2022-09-30 | Dispositif et methode pour le traitement sans supervision du patient |
DE202022105837.7U DE202022105837U1 (de) | 2021-11-03 | 2022-10-17 | Vorrichtung zur unbeaufsichtigten Behandlung des Patienten |
ES202231768U ES1298498Y2 (es) | 2021-11-03 | 2022-10-26 | Dispositivo para el tratamiento desatendido del paciente |
MX2024005098A MX2024005098A (es) | 2021-11-03 | 2022-11-02 | Dispositivo y procedimiento para el tratamiento desatendido del paciente. |
GB2401926.7A GB2625457A (en) | 2021-11-03 | 2022-11-02 | Device and method for unattended treatment of the patient |
EP22813480.5A EP4426414A1 (fr) | 2021-11-03 | 2022-11-02 | Dispositif et procédé pour le traitement automatisé d'un patient |
CN202280023101.3A CN117062647A (zh) | 2021-11-03 | 2022-11-02 | 用于对患者进行无人照管的治疗的装置和方法 |
KR2020247000030U KR20240001256U (ko) | 2021-11-03 | 2022-11-02 | 환자의 무인 시술을 위한 디바이스 및 방법 |
JP2024525809A JP2024540209A (ja) | 2021-11-03 | 2022-11-02 | 患者の非アテンド式治療のためのデバイスおよび方法 |
GB2315394.3A GB2620511B (en) | 2021-11-03 | 2022-11-02 | Device and method for unattended treatment of the patient |
PCT/EP2022/080502 WO2023078896A1 (fr) | 2021-11-03 | 2022-11-02 | Dispositif et procédé pour le traitement automatisé d'un patient |
CN202222911568.1U CN219208739U (zh) | 2021-11-03 | 2022-11-02 | 用于对患者进行无人照管的治疗的装置 |
AU2022381709A AU2022381709A1 (en) | 2021-11-03 | 2022-11-02 | Device and method for unattended treatment of the patient |
FR2211466A FR3128645B3 (fr) | 2021-11-03 | 2022-11-03 | Dispositif et procédé de traitement sans surveillance du patient |
TW111212037U TWM643961U (zh) | 2021-11-03 | 2022-11-03 | 用於患者之無人看管式治療裝置 |
US18/170,284 US11896816B2 (en) | 2021-11-03 | 2023-02-16 | Device and method for unattended treatment of a patient |
US18/174,368 US11813451B2 (en) | 2020-05-04 | 2023-02-24 | Device and method for unattended treatment of a patient |
US18/177,269 US11806528B2 (en) | 2020-05-04 | 2023-03-02 | Device and method for unattended treatment of a patient |
US18/184,813 US20230241384A1 (en) | 2021-11-03 | 2023-03-16 | Device and method for unattended treatment of a patient |
US18/363,478 US20240091547A1 (en) | 2021-11-03 | 2023-08-01 | Device and method for unattended treatment of a patient |
US18/477,126 US20240024691A1 (en) | 2021-11-03 | 2023-09-28 | Device and method for unattended treatment of a patient |
US18/507,846 US12029905B2 (en) | 2020-05-04 | 2023-11-13 | Device and method for unattended treatment of a patient |
US18/439,568 US12115365B2 (en) | 2021-11-03 | 2024-02-12 | Device and method for unattended treatment of a patient |
US18/766,158 US20240366939A1 (en) | 2020-05-04 | 2024-07-08 | Device and method for unattended treatment of a patient |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202063019619P | 2020-05-04 | 2020-05-04 | |
PCT/IB2021/000300 WO2021224678A1 (fr) | 2020-05-04 | 2021-05-03 | Dispositif et méthode pour traitement automatisé d'un patient |
US17/518,243 US20220305275A1 (en) | 2020-05-04 | 2021-11-03 | Device and method for unattended treatment of a patient |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2021/000300 Continuation-In-Part WO2021224678A1 (fr) | 2020-05-04 | 2021-05-03 | Dispositif et méthode pour traitement automatisé d'un patient |
US17/664,161 Continuation-In-Part US11878167B2 (en) | 2020-05-04 | 2022-05-19 | Device and method for unattended treatment of a patient |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/664,161 Continuation-In-Part US11878167B2 (en) | 2020-05-04 | 2022-05-19 | Device and method for unattended treatment of a patient |
PCT/EP2022/080502 Continuation-In-Part WO2023078896A1 (fr) | 2021-11-03 | 2022-11-02 | Dispositif et procédé pour le traitement automatisé d'un patient |
Publications (1)
Publication Number | Publication Date |
---|---|
US20220305275A1 true US20220305275A1 (en) | 2022-09-29 |
Family
ID=76502747
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/518,243 Pending US20220305275A1 (en) | 2020-05-04 | 2021-11-03 | Device and method for unattended treatment of a patient |
US17/576,646 Pending US20220218987A1 (en) | 2020-05-04 | 2022-01-14 | Device and method for unattended treatment of a patient |
US17/661,406 Active US11491329B2 (en) | 2020-05-04 | 2022-04-29 | Device and method for unattended treatment of a patient |
US17/941,568 Active US11826565B2 (en) | 2020-05-04 | 2022-09-09 | Device and method for unattended treatment of a patient |
US17/930,888 Active US11679255B2 (en) | 2020-05-04 | 2022-09-09 | Device and method for unattended treatment of a patient |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/576,646 Pending US20220218987A1 (en) | 2020-05-04 | 2022-01-14 | Device and method for unattended treatment of a patient |
US17/661,406 Active US11491329B2 (en) | 2020-05-04 | 2022-04-29 | Device and method for unattended treatment of a patient |
US17/941,568 Active US11826565B2 (en) | 2020-05-04 | 2022-09-09 | Device and method for unattended treatment of a patient |
US17/930,888 Active US11679255B2 (en) | 2020-05-04 | 2022-09-09 | Device and method for unattended treatment of a patient |
Country Status (9)
Country | Link |
---|---|
US (5) | US20220305275A1 (fr) |
EP (1) | EP4146335B1 (fr) |
JP (2) | JP2023515722A (fr) |
KR (1) | KR200498115Y1 (fr) |
AU (1) | AU2021269187B2 (fr) |
BR (1) | BR112022022112A2 (fr) |
CA (1) | CA3173876A1 (fr) |
MX (1) | MX2022013485A (fr) |
WO (1) | WO2021224678A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12042653B2 (en) * | 2021-12-30 | 2024-07-23 | Pulse Biosciences, Inc. | Electrical applicators with non-penetrating electrodes for applying energy to tissue surfaces |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180001107A1 (en) | 2016-07-01 | 2018-01-04 | Btl Holdings Limited | Aesthetic method of biological structure treatment by magnetic field |
US11247039B2 (en) | 2016-05-03 | 2022-02-15 | Btl Healthcare Technologies A.S. | Device including RF source of energy and vacuum system |
US11534619B2 (en) | 2016-05-10 | 2022-12-27 | Btl Medical Solutions A.S. | Aesthetic method of biological structure treatment by magnetic field |
US10583287B2 (en) | 2016-05-23 | 2020-03-10 | Btl Medical Technologies S.R.O. | Systems and methods for tissue treatment |
US10556122B1 (en) | 2016-07-01 | 2020-02-11 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
KR102295605B1 (ko) | 2019-04-11 | 2021-09-01 | 비티엘 헬쓰케어 테크놀로지스 에이.에스. | 고주파 및 자기 에너지에 의한 생물학적 구조들의 심미적 치료를 위한 방법들 및 디바이스들 |
US11478606B1 (en) | 2020-01-08 | 2022-10-25 | New Heights Energy, LLC | Wearable devices and methods for providing therapy to a user and/or for measuring physiological parameters of the user |
EP4146335B1 (fr) | 2020-05-04 | 2024-11-13 | BTL Healthcare Technologies a.s. | Dispositif pour traitement automatisé d'un patient |
US11878167B2 (en) | 2020-05-04 | 2024-01-23 | Btl Healthcare Technologies A.S. | Device and method for unattended treatment of a patient |
US20220280808A1 (en) * | 2021-03-04 | 2022-09-08 | Accure Acne Llc | Audible temperature readout apparatus for use with a photo-thermal targeted treatment system and associated methods |
EP4415812A1 (fr) | 2021-10-13 | 2024-08-21 | BTL Medical Solutions a.s. | Dispositifs de traitement esthétique de structures biologiques par énergie radiofréquence et magnétique |
US11896816B2 (en) | 2021-11-03 | 2024-02-13 | Btl Healthcare Technologies A.S. | Device and method for unattended treatment of a patient |
CA3178145A1 (fr) * | 2021-11-03 | 2023-05-03 | Btl Healthcare Technologies A.S. | Dispositif et methode pour le traitement sans supervision du patient |
US11819625B1 (en) * | 2022-04-27 | 2023-11-21 | Therabody, Inc. | Facial wearable device and methods for providing external stimuli using the same |
US12017009B2 (en) | 2022-06-14 | 2024-06-25 | Therabody, Inc. | System and method for altering user mind-body states through external stimuli |
KR102591214B1 (ko) * | 2022-12-02 | 2023-10-20 | 이동신 | 석션형 복합 핸드피스 및 이를 포함하는 미용기기 |
Family Cites Families (1112)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB304587A (en) | 1928-01-21 | 1930-03-13 | Abraham Esau | Improvements in apparatus for treatment by diathermy |
FR744411A (fr) | 1931-09-02 | 1933-04-20 | ||
US1973387A (en) | 1932-06-13 | 1934-09-11 | Gen Electric X Ray Corp | Apparatus for use in giving diathermic treatments and the like |
US2021676A (en) | 1935-01-10 | 1935-11-19 | Galvin Mfg Corp | Balancing and filter system for radioreceivers |
DE718637C (de) | 1937-12-30 | 1942-03-17 | Electricitaetsgesellschaft San | Einrichtung zur Spulenfeldbehandlung mit kurzwelligen elektrischen Schwingungen |
DE1118902B (de) | 1958-10-28 | 1961-12-07 | Nemec Hans | Apparat fuer medizinische Zwecke |
US3163161A (en) | 1962-08-02 | 1964-12-29 | Courtin Jacques | Traveling wave air massaging method |
US3658051A (en) | 1967-11-13 | 1972-04-25 | Kenneth Sheldon Maclean | Method of treating living things using high intensity pulsed magnetic field |
US3566877A (en) | 1968-01-05 | 1971-03-02 | Luther B Smith | Electrotherapeutic apparatus and treatment head and method for tuning said treatment head |
US3709228A (en) | 1971-01-07 | 1973-01-09 | D Barker | Apparatus for facial stimulation |
US3946349A (en) | 1971-05-03 | 1976-03-23 | The United States Of America As Represented By The Secretary Of The Air Force | High-power, low-loss high-frequency electrical coil |
US3841306A (en) | 1972-10-25 | 1974-10-15 | Univ Iowa State Res Found Inc | Implantable, non-contacting nerve stimulating transducer |
DE2314573C2 (de) | 1973-03-23 | 1986-12-18 | Werner Dipl.-Ing. 8000 München Kraus | Gerät zur Förderung von Heilungsprozessen |
US3952751A (en) | 1975-01-08 | 1976-04-27 | W. Denis Kendall | High-performance electrotherapeutic apparatus |
US3971387A (en) | 1975-03-21 | 1976-07-27 | Mantell Michael J | Electro-therapeutic face mask |
US4068292A (en) | 1975-03-27 | 1978-01-10 | International Medical Electronics, Inc. | Electrostatic shield for diathermy treatment head |
NL7510644A (en) | 1975-09-09 | 1977-03-11 | Enraf Nonius | Short:wave therapy inductive electrode - has metal housing with screen of conductors over opening connected to it |
US4105017A (en) | 1976-11-17 | 1978-08-08 | Electro-Biology, Inc. | Modification of the growth repair and maintenance behavior of living tissue and cells by a specific and selective change in electrical environment |
US4315503A (en) | 1976-11-17 | 1982-02-16 | Electro-Biology, Inc. | Modification of the growth, repair and maintenance behavior of living tissues and cells by a specific and selective change in electrical environment |
US4197851A (en) | 1977-04-14 | 1980-04-15 | Fellus Victor M | Apparatus for emitting high-frequency electromagnetic waves |
GB1594389A (en) | 1977-06-03 | 1981-07-30 | Max Planck Gesellschaft | Dressing material for wounds |
US4143661A (en) | 1977-12-12 | 1979-03-13 | Andros Incorporated | Power supply for body implant and method for operation |
US4237898A (en) | 1978-03-27 | 1980-12-09 | Critical Systems, Inc. | Apparatus for heating tissue and employing protection against transients |
US4305115A (en) | 1979-03-14 | 1981-12-08 | Harry H. Leveen | Electrostatic shield |
DE3166555D1 (en) | 1980-04-23 | 1984-11-15 | Inoue Japax Res | Magnetic treatment device |
CA1150361A (fr) | 1980-09-24 | 1983-07-19 | Roland A. Drolet | Systeme et methode de therapie par voie electromagnetique |
US4392040A (en) | 1981-01-09 | 1983-07-05 | Rand Robert W | Induction heating apparatus for use in causing necrosis of neoplasm |
DE3205048A1 (de) | 1982-02-12 | 1983-08-25 | Werner Dipl.-Ing. 8000 München Kraus | Magnetspule fuer die magnetfeld-therapie nach kraus-lechner |
US4454883A (en) | 1982-02-16 | 1984-06-19 | Therafield Holdings Limited | Electrotherapeutic apparatus |
US4456001A (en) | 1982-07-02 | 1984-06-26 | Electro-Biology, Inc. | Apparatus for equine hoof treatment |
US4550714A (en) | 1983-03-09 | 1985-11-05 | Electro-Biology, Inc. | Electromagnetic coil insert for an orthopedic cast or the like |
DE3328051A1 (de) | 1983-08-03 | 1985-02-14 | Siemens AG, 1000 Berlin und 8000 München | Einrichtung zum beruehrungslosen zertruemmern von konkrementen |
US5156587A (en) | 1983-09-01 | 1992-10-20 | Montone Liber J | Method for treating malignant cells |
DE3340974C2 (de) | 1983-11-11 | 1994-07-07 | Werner Dipl Phys Kraus | Elektrotherapiegerät |
US4665898A (en) | 1984-05-23 | 1987-05-19 | Maxwell Laboratories, Inc. | Malignancy treatment |
US4723536A (en) | 1984-08-27 | 1988-02-09 | Rauscher Elizabeth A | External magnetic field impulse pacemaker non-invasive method and apparatus for modulating brain through an external magnetic field to pace the heart and reduce pain |
US4889526A (en) | 1984-08-27 | 1989-12-26 | Magtech Laboratories, Inc. | Non-invasive method and apparatus for modulating brain signals through an external magnetic or electric field to reduce pain |
US4674482A (en) | 1984-09-12 | 1987-06-23 | Irt, Inc. | Pulse electro-magnetic field therapy device with auto bias circuit |
BG41964A1 (en) | 1985-03-29 | 1987-09-15 | Todorov | Device for measuring of magnetic field stress |
EP0209246A1 (fr) | 1985-06-12 | 1987-01-21 | Graeme Ernest Daw | Dispositif thérapeutique magnétique |
US4989604A (en) | 1985-10-03 | 1991-02-05 | Accu Science Corporation | Electromagnetic device |
DE3605148A1 (de) | 1986-02-18 | 1987-08-20 | Vmei Lenin Nis | Vorrichtung fuer die magnetische therapie |
CN86204070U (zh) | 1986-09-09 | 1987-09-09 | 谢荣华 | 磁红仪 |
US5067940A (en) | 1988-03-23 | 1991-11-26 | Life Resonances, Inc. | Method and apparatus for controlling the growth of cartilage |
CN87203746U (zh) | 1987-03-12 | 1987-12-30 | 刘耀武 | 一种多功能的给药理疗装置 |
CN87215926U (zh) | 1987-11-30 | 1988-07-27 | 浙江省天台无线电厂 | 多功能治疗仪 |
US4957480A (en) | 1988-02-02 | 1990-09-18 | Universal Health Products, Inc. | Method of facial toning |
US5143063A (en) | 1988-02-09 | 1992-09-01 | Fellner Donald G | Method of removing adipose tissue from the body |
IT1217550B (it) | 1988-05-10 | 1990-03-30 | Victor Marcel Fellus | Struttura di elettrodoa particolarmente per apparecchiature elettroterapeutiche |
DE3825165A1 (de) | 1988-07-23 | 1990-01-25 | Kastl Electronic Gmbh & Co Kg | Diathermiegeraet |
US4850959A (en) | 1988-08-02 | 1989-07-25 | Bioresearch, Inc. | Bioelectrochemical modulation of biological functions using resonant/non-resonant fields synergistically |
US4993413A (en) | 1988-09-22 | 1991-02-19 | The Research Foundation Of State University Of New York | Method and apparatus for inducing a current and voltage in living tissue |
US4945912A (en) | 1988-11-25 | 1990-08-07 | Sensor Electronics, Inc. | Catheter with radiofrequency heating applicator |
BE1002610A6 (fr) | 1988-12-06 | 1991-04-09 | Alsthom Internat S A | Appareil de physiotherapie pour produire un champ magnetique a utiliser comme moyen therapeutique. |
CN1026953C (zh) | 1989-09-12 | 1994-12-14 | 赵贵春 | 全息经络针灸仪 |
US5061234A (en) | 1989-09-25 | 1991-10-29 | Corteks, Inc. | Magnetic neural stimulator for neurophysiology |
IT1240362B (it) | 1990-03-30 | 1993-12-10 | Medisan S.L.R. | Procedimento per l'elettrostimolazione di una massa muscolare al fine di migliorarne l'aspetto estetico, ed apparecchio per l'attuazione del procedimento |
US5199951A (en) | 1990-05-17 | 1993-04-06 | Wayne State University | Method of drug application in a transporting medium to an arterial wall injured during angioplasty |
DE4017215A1 (de) | 1990-05-29 | 1991-12-05 | Aeg Elotherm Gmbh | Vorrichtung zur elektrolytischen entgratung von kanten in pleuelaugen |
DE9006056U1 (de) | 1990-05-29 | 1991-09-26 | Kraus, Werner, Dipl.-Ing., 8000 München | Applikatorspule für die Magnetfeldtherapie |
US5181902A (en) | 1990-09-21 | 1993-01-26 | American Medical Electronics, Inc. | Double-transducer system for PEMF Therapy |
ZA917281B (en) | 1990-09-26 | 1992-08-26 | Cryomedical Sciences Inc | Cryosurgical instrument and system and method of cryosurgery |
US5195941A (en) | 1991-01-07 | 1993-03-23 | American Medical Electronics, Inc. | Contoured triangular transducer system for PEMF therapy |
JP3091253B2 (ja) | 1991-04-25 | 2000-09-25 | オリンパス光学工業株式会社 | 温熱治療装置 |
GB9124379D0 (en) | 1991-11-15 | 1992-01-08 | Magstim Company The Limited | Coils for magnetic nerve stimulators |
CA2058179C (fr) | 1991-12-20 | 1999-02-09 | Roland Drolet | Systeme et methode de conditionnement electrophysiologique de base |
CN1027958C (zh) | 1992-06-22 | 1995-03-22 | 犹学松 | 气功模拟发生器 |
US6117066A (en) | 1992-12-04 | 2000-09-12 | Somatics, Inc. | Prevention of seizure arising from medical magnetoictal non-convulsive stimulation therapy |
US5344384A (en) | 1992-12-11 | 1994-09-06 | Electromagnetic Bracing Systems, Inc. | Magnetotherapy apparatus |
US5584863A (en) | 1993-06-24 | 1996-12-17 | Electropharmacology, Inc. | Pulsed radio frequency electrotherapeutic system |
DE69318706T2 (de) | 1993-07-06 | 1999-01-14 | Cryonic Medical, Salins Les Bains | Einrichtung für die Kryotherapie |
US5807232A (en) | 1993-12-10 | 1998-09-15 | Espinoza; Fausto Leal | Process for the treatment of saccharide three dimensional structures for the reactivation of recognition mechanisms among antigens and antibodies |
GB2286660A (en) | 1994-02-01 | 1995-08-23 | David Thorner | Peltier effect cooling apparatus for treating diseased or injured tissue |
GB9402545D0 (en) | 1994-02-10 | 1994-04-06 | Magstim Co Ltd | Magnetic stimulators |
CN2192348Y (zh) | 1994-04-09 | 1995-03-22 | 犹学松 | 能量转换器 |
WO1995027533A1 (fr) | 1994-04-12 | 1995-10-19 | Australasian Medical Technology (Nz) Limited | Ortheses comprenant un dispositif therapeutique a champ electromagnetique pulse |
US5419344A (en) | 1994-04-28 | 1995-05-30 | Thomas Lee DeWitt | Razor bump electrolysis |
US20050187599A1 (en) | 1994-05-06 | 2005-08-25 | Hugh Sharkey | Method and apparatus for controlled contraction of soft tissue |
JP3510016B2 (ja) | 1994-10-01 | 2004-03-22 | 林原 健 | 磁気発生装置 |
US6491620B1 (en) | 1994-11-28 | 2002-12-10 | Neotonus, Inc. | Sham for transcranial magnetic stimulator |
US6132361A (en) | 1994-11-28 | 2000-10-17 | Neotonus, Inc. | Transcranial brain stimulation |
US6086525A (en) | 1994-11-28 | 2000-07-11 | Neotonus, Inc. | Magnetic nerve stimulator for exciting peripheral nerves |
US6425852B1 (en) | 1994-11-28 | 2002-07-30 | Emory University | Apparatus and method for transcranial magnetic brain stimulation, including the treatment of depression and the localization and characterization of speech arrest |
US5725471A (en) | 1994-11-28 | 1998-03-10 | Neotonus, Inc. | Magnetic nerve stimulator for exciting peripheral nerves |
US5562706A (en) | 1995-01-11 | 1996-10-08 | Electro Anti Age, Inc. | Device for cosmetic and relaxation treatment |
GB9504216D0 (en) | 1995-03-02 | 1995-04-19 | Magstim Co Ltd | Magnetic stimulator for neuro-muscular tissue |
US5755753A (en) | 1995-05-05 | 1998-05-26 | Thermage, Inc. | Method for controlled contraction of collagen tissue |
US5660836A (en) | 1995-05-05 | 1997-08-26 | Knowlton; Edward W. | Method and apparatus for controlled contraction of collagen tissue |
NZ333791A (en) | 1995-06-19 | 2000-09-29 | Robert R | Electronic apparatus, for treating pain by application of an electrical stimulus, comprising an electrode complex and a magnetic flux generator |
US6099523A (en) | 1995-06-27 | 2000-08-08 | Jump Technologies Limited | Cold plasma coagulator |
BR9611166A (pt) | 1995-10-11 | 1999-04-06 | Regeneration Tech | Processo e gerador de freqüência bioativa |
US7267675B2 (en) | 1996-01-05 | 2007-09-11 | Thermage, Inc. | RF device with thermo-electric cooler |
US6350276B1 (en) | 1996-01-05 | 2002-02-26 | Thermage, Inc. | Tissue remodeling apparatus containing cooling fluid |
JPH09276418A (ja) | 1996-02-15 | 1997-10-28 | Nippon Koden Corp | 尿失禁治療装置 |
DE69725484T2 (de) | 1996-02-15 | 2004-07-15 | Nihon Kohden Corp. | Vorrichtung zur Behandlung von Harninkontinenz |
US5782743A (en) | 1996-05-06 | 1998-07-21 | Russell; John J. | Magnetic medical treatment device |
US6500110B1 (en) | 1996-08-15 | 2002-12-31 | Neotonus, Inc. | Magnetic nerve stimulation seat device |
AU747678B2 (en) | 1996-08-15 | 2002-05-16 | Neotonus, Inc. | Transcranial brain stimulation |
US7608035B2 (en) | 1996-09-10 | 2009-10-27 | Gradient Technologies, Llc | Method and morphologically adaptable apparatus for altering the charge distribution upon living membranes with functional stabilization of the membrane physical electrical integrity |
BE1010730A7 (nl) | 1996-11-04 | 1998-12-01 | Pira Luc Louis Marie Francis | Cryoprobe op basis van peltier module. |
US7204832B2 (en) | 1996-12-02 | 2007-04-17 | Pálomar Medical Technologies, Inc. | Cooling system for a photo cosmetic device |
EP0850665B1 (fr) | 1996-12-27 | 2004-03-03 | Nihon Kohden Corporation | Appareil magnétique à bobine générant des stimulations pour traiter l'incontinence urinaire |
US6063108A (en) | 1997-01-06 | 2000-05-16 | Salansky; Norman | Method and apparatus for localized low energy photon therapy (LEPT) |
US6029090A (en) | 1997-01-27 | 2000-02-22 | Herbst; Ewa | Multi-functional electrical stimulation system |
US5968527A (en) | 1997-02-27 | 1999-10-19 | Catholic University Of America, The | Protection of living systems from the adverse effects of stress |
US5857957A (en) | 1997-03-04 | 1999-01-12 | Lin; Vernon Wen-Hau | Functional magentic stimulation of the expiratory muscles |
WO1998041157A1 (fr) | 1997-03-17 | 1998-09-24 | Boris Rubinsky | Procede de congelation permettant d'eliminer progressivement le tissu adipeux par liposuccion |
DE69835761T2 (de) | 1997-04-03 | 2007-09-13 | Electrofect As. | Verfahren zum verabreichen von pharmazeutischen präparaten und nukleinsäuren an den skelettmuskel |
DE69825447T2 (de) | 1997-05-15 | 2005-09-15 | Palomar Medical Technologies, Inc., Burlington | Gerät zur dermatologischen behandlung |
DE19723910A1 (de) | 1997-06-06 | 1998-12-10 | Braun Ag | Epilationsgerät und Epilationsverfahren |
US5904712A (en) | 1997-06-12 | 1999-05-18 | Axelgaard Manufacturing Co., Ltd. | Current-controlling electrode |
EP0988085B1 (fr) | 1997-06-13 | 2004-10-13 | Alain Baudry | Dispositif electromagnetique de stimulation cutanee pour le traitement d'etats pathologiques |
US5908444A (en) | 1997-06-19 | 1999-06-01 | Healing Machines, Inc. | Complex frequency pulsed electromagnetic generator and method of use |
AU743327B2 (en) | 1997-07-12 | 2002-01-24 | Sergey Vladimirovich Pletnev | Device for local magnetotherapy |
US6104959A (en) | 1997-07-31 | 2000-08-15 | Microwave Medical Corp. | Method and apparatus for treating subcutaneous histological features |
ATE277672T1 (de) | 1997-08-01 | 2004-10-15 | Mann Alfred E Found Scient Res | Implantierbare einrichtung mit verbesserter anordnung zur ladung der batterie und zur energiezufuhr |
CA2306918C (fr) | 1997-10-17 | 2008-04-15 | Respironics, Inc. | Dispositif et procede de stimulation musculaire pour le diagnostic et le traitement de troubles respiratoires |
CA2311666C (fr) | 1997-11-28 | 2007-09-11 | Masayuki Matsuura | Methode de therapie ondulatoire et appareil afferent |
WO1999032191A1 (fr) | 1997-12-22 | 1999-07-01 | Friedrich Wolff | Dispositif pour la production d'un champ magnetique |
CA2295134A1 (fr) | 1998-01-15 | 1999-07-22 | Amethyst Technologies, Inc. | Dispositif et procede ameliores de traitement par energie electromagnetique pulsee |
FR2775589B1 (fr) | 1998-03-06 | 2000-04-28 | Cryonic Medical | Appareil autonome et portable de cryogenie utilisant l'anhydride carbonique en phase liquide/solide |
US6047215A (en) | 1998-03-06 | 2000-04-04 | Sonique Surgical Systems, Inc. | Method and apparatus for electromagnetically assisted liposuction |
US6094599A (en) | 1998-03-24 | 2000-07-25 | Ehti Medical Corporation | RF diathermy and faradic muscle stimulation treatment |
WO1999049937A1 (fr) | 1998-03-27 | 1999-10-07 | The General Hospital Corporation | Procede et appareil de ciblage selectif de tissus riches en graisse |
US6179771B1 (en) | 1998-04-21 | 2001-01-30 | Siemens Aktiengesellschaft | Coil arrangement for transcranial magnetic stimulation |
GB9808764D0 (en) | 1998-04-25 | 1998-06-24 | Magstim Co Ltd | Magnetic stimulators for neuro-muscular tissue |
DE29824981U1 (de) | 1998-04-29 | 2003-11-27 | Markoll, Richard, Dr., Boca Raton | Vorrichtung zur Behandlung von Gewebe- und/oder Gelenkserkrankungen |
JPH11333003A (ja) | 1998-05-27 | 1999-12-07 | Nippon Koden Corp | 尿失禁治療用具 |
US6002965A (en) | 1998-06-10 | 1999-12-14 | Katz; Amiram | Self applied device and method for prevention of deep vein thrombosis |
US6324430B1 (en) | 1998-07-06 | 2001-11-27 | Abiomed, Inc. | Magnetic shield for primary coil of transcutaneous energy transfer device |
FI105163B (fi) | 1998-07-10 | 2000-06-30 | Juha Virtanen | Menetelmä ja laite lumemagneettistimulaation tuottamiseksi |
AU5241699A (en) | 1998-08-03 | 2000-02-28 | Amei Technologies Inc. | Pemf treatment for osteoporosis and tissue growth stimulation |
US6255815B1 (en) | 1998-08-20 | 2001-07-03 | Neotonus, Inc. | Magnetic field calibration device including housing with locator window |
US6099459A (en) | 1998-09-04 | 2000-08-08 | Jacobson; Jerry I. | Magnetic field generating device and method of generating and applying a magnetic field for treatment of specified conditions |
US6213933B1 (en) | 1998-09-10 | 2001-04-10 | Vernon Wen-Hau Lin | Apparatus and method for functional magnetic stimulation |
US7137980B2 (en) | 1998-10-23 | 2006-11-21 | Sherwood Services Ag | Method and system for controlling output of RF medical generator |
US7901400B2 (en) | 1998-10-23 | 2011-03-08 | Covidien Ag | Method and system for controlling output of RF medical generator |
CA2287087C (fr) | 1998-10-23 | 2007-12-04 | Ethicon Endo-Surgery, Inc. | Dispositif chirurgical pour la collecte de tissu mou |
US6366814B1 (en) | 1998-10-26 | 2002-04-02 | Birinder R. Boveja | External stimulator for adjunct (add-on) treatment for neurological, neuropsychiatric, and urological disorders |
US6155966A (en) | 1998-11-17 | 2000-12-05 | Parker; Lloyd S. | Apparatus and method for toning tissue with a focused, coherent electromagnetic field |
US9192780B2 (en) | 1998-11-30 | 2015-11-24 | L'oreal | Low intensity light therapy for treatment of retinal, macular, and visual pathway disorders |
US6663659B2 (en) | 2000-01-13 | 2003-12-16 | Mcdaniel David H. | Method and apparatus for the photomodulation of living cells |
MXPA01007069A (es) | 1999-01-11 | 2002-09-18 | Bmr Res & Dev Ltd | Dispositivo y metodo de electroterapia. |
EP1022034A1 (fr) | 1999-01-19 | 2000-07-26 | Manfred Dr. Leubner | Procédé et dispositif pour la stimulation des muscles ou des tissus nerveux |
US6635053B1 (en) | 1999-01-25 | 2003-10-21 | Cryocath Technologies Inc. | Cooling system |
AU3286299A (en) | 1999-01-29 | 2000-08-18 | Gerard Hassler | Lowering skin temperature |
ATE298536T1 (de) | 1999-03-09 | 2005-07-15 | Thermage Inc | Vorichtung zur behandlung von gewebe |
US6200259B1 (en) | 1999-06-03 | 2001-03-13 | Keith L. March | Method of treating cardiovascular disease by angiogenesis |
IL146976A0 (en) | 1999-06-08 | 2002-08-14 | Medical Bracing Systems Ltd | Pemf biophysical stimulation field generator device and method |
US6445955B1 (en) | 1999-07-08 | 2002-09-03 | Stephen A. Michelson | Miniature wireless transcutaneous electrical neuro or muscular-stimulation unit |
US6939287B1 (en) | 1999-07-14 | 2005-09-06 | Nu-Magnetics, Inc. | Magnetotherapeutic device with bio-ceramic fibers |
WO2001007111A2 (fr) | 1999-07-22 | 2001-02-01 | Neotonus, Inc. | Toroides magnetiques pour la stimulation du tissu biologique |
US6246905B1 (en) | 1999-07-30 | 2001-06-12 | Jamil Ahmad Mogul | Medical instrument that supplies multiple energy forms |
AU7880600A (en) | 1999-08-12 | 2001-03-13 | Somnus Medical Technologies, Inc. | Nerve stimulation and tissue ablation apparatus and method |
US7133717B2 (en) | 1999-08-25 | 2006-11-07 | Johnson & Johnson Consumer Companies, Inc. | Tissue electroperforation for enhanced drug delivery and diagnostic sampling |
US6161757A (en) | 1999-09-21 | 2000-12-19 | Neotonus, Inc. | Patient protocol card |
DE60033756T2 (de) | 1999-09-30 | 2007-06-28 | Nihon Kohden Corp. | Luftkühlungssystem für eine Vorrichtung zur Behandlung von Harninkontinenz |
US6324432B1 (en) | 1999-11-01 | 2001-11-27 | Compex Sa | Electrical neuromuscular stimulator for measuring muscle responses to electrical stimulation pulses |
GB9926621D0 (en) | 1999-11-11 | 2000-01-12 | Magstim Co Ltd | Stimulating coil |
US6527695B1 (en) | 2000-01-11 | 2003-03-04 | Emory University | Magnetic stimulation coil and circuit design |
EP1120131A3 (fr) | 2000-01-27 | 2001-10-10 | Nihon Kohden Corporation | Appareil électromagnétique muni d'une bobine destiné au traitement de l'incontinence urinaire |
JP2001293098A (ja) | 2000-04-14 | 2001-10-23 | Nippon Koden Corp | コイル装置およびコイル駆動装置 |
US20020107514A1 (en) | 2000-04-27 | 2002-08-08 | Hooven Michael D. | Transmural ablation device with parallel jaws |
US6520903B1 (en) | 2000-05-18 | 2003-02-18 | Patsy Yukie Yamashiro | Multiple mode photonic stimulation device |
US7044924B1 (en) | 2000-06-02 | 2006-05-16 | Midtown Technology | Massage device |
US7030764B2 (en) | 2000-06-09 | 2006-04-18 | Bed-Check Corporation | Apparatus and method for reducing the risk of decubitus ulcers |
US6402678B1 (en) | 2000-07-31 | 2002-06-11 | Neuralieve, Inc. | Means and method for the treatment of migraine headaches |
US6697670B2 (en) | 2001-08-17 | 2004-02-24 | Minnesota Medical Physics, Llc | Apparatus and method for reducing subcutaneous fat deposits by electroporation with improved comfort of patients |
US8251986B2 (en) | 2000-08-17 | 2012-08-28 | Angiodynamics, Inc. | Method of destroying tissue cells by eletroporation |
US6871099B1 (en) | 2000-08-18 | 2005-03-22 | Advanced Bionics Corporation | Fully implantable microstimulator for spinal cord stimulation as a therapy for chronic pain |
US6591138B1 (en) | 2000-08-31 | 2003-07-08 | Neuropace, Inc. | Low frequency neurostimulator for the treatment of neurological disorders |
EP1333884B1 (fr) | 2000-09-13 | 2010-12-08 | Mann Medical Research Organization | Appareil de stimulation des muscles pendant le sommeil |
DE10046275A1 (de) | 2000-09-19 | 2002-03-28 | Albrecht Struppler | Magnetspule |
USD447806S1 (en) | 2000-10-06 | 2001-09-11 | Neotonus, Inc. | Transcranial magnetic nerve stimulator |
DE10062050A1 (de) | 2000-10-09 | 2002-04-18 | Medical Magnetics S A | Vorrichtung zur Behandlung von Fettleibigkeit, Cellulitis etc. |
FR2815246B1 (fr) | 2000-10-13 | 2003-01-24 | Cryonic Medical | Appareil autonome et portable de cryotherapie a usage grand public |
EP1326681B1 (fr) | 2000-10-20 | 2007-01-10 | THE GOVERNMENT OF THE UNITED STATES OF AMERICA, as represented by THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES | Bobine pour la stimulation magnetique |
ATE428394T1 (de) | 2000-11-03 | 2009-05-15 | Eleme Medical Inc | System zur behandlung von gewebe |
EA002179B1 (ru) | 2000-11-03 | 2002-02-28 | Жилинская, Ольга Владимировна | Способ лечения сахарного диабета |
US20020082466A1 (en) | 2000-12-22 | 2002-06-27 | Jeongho Han | Laser surgical system with light source and video scope |
US6738667B2 (en) | 2000-12-28 | 2004-05-18 | Medtronic, Inc. | Implantable medical device for treating cardiac mechanical dysfunction by electrical stimulation |
EP1359974A2 (fr) | 2001-01-16 | 2003-11-12 | B.M.R. Research and Development Limited | Appareil pour stimuler le muscle d'un sujet |
US20020143373A1 (en) | 2001-01-25 | 2002-10-03 | Courtnage Peter A. | System and method for therapeutic application of energy |
RU2226115C2 (ru) | 2001-01-26 | 2004-03-27 | Галимов Илдар Рафагатович | Электростимулятор |
US20110087312A1 (en) | 2001-03-02 | 2011-04-14 | Erchonia Corporatin | Method for Treatment of Diabetes and Prediabetes with Low-Level Laser Therapy |
US20050004632A1 (en) | 2001-03-08 | 2005-01-06 | Mellen-Thomas Benedict | Universal light processing for a human body |
US20020160436A1 (en) | 2001-03-14 | 2002-10-31 | Marko Markov | Method and apparatus for determining biologically useful field metrics associated with magnetic fields |
US7083580B2 (en) | 2001-04-06 | 2006-08-01 | Mattioli Engineering Ltd. | Method and apparatus for skin absorption enhancement and transdermal drug delivery |
US7520875B2 (en) | 2001-04-06 | 2009-04-21 | Mattioli Engineering Ltd. | Method and apparatus for skin absorption enhancement and transdermal drug delivery |
US7496401B2 (en) | 2001-04-06 | 2009-02-24 | Mattioli Engineering Ltd | Method and apparatus for skin absorption enhancement and transdermal drug delivery |
JP4178762B2 (ja) | 2001-04-18 | 2008-11-12 | 日本光電工業株式会社 | リッツ線コイルを用いた磁気刺激装置 |
US7250048B2 (en) | 2001-04-26 | 2007-07-31 | Medtronic, Inc. | Ablation system and method of use |
EA003851B1 (ru) | 2001-05-04 | 2003-10-30 | Сергей Владимирович ПЛЕТНЕВ | Способ восстановления работоспособности методом гемомагнитотерапии |
AU2002254777B2 (en) | 2001-05-04 | 2005-02-03 | Board Of Regents, The University Of Texas System | Apparatus and methods for delivery of transcranial magnetic stimulation |
JP2002345979A (ja) | 2001-05-28 | 2002-12-03 | Ya Man Ltd | パルス健康器 |
DE20109058U1 (de) | 2001-05-31 | 2002-10-10 | DeltaMed GmbH, 35578 Wetzlar | Vorrichtung zur Behandlung mit magnetischen Feldern |
KR100491988B1 (ko) | 2001-06-09 | 2005-05-31 | (주) 엠큐브테크놀로지 | 자기 요실금 치료장치의 치료 프로토콜을 형성하기 위한방법 및 그 장치 |
RU2212909C2 (ru) | 2001-06-25 | 2003-09-27 | Тульский государственный университет | Конформная магнитотерапевтическая установка |
US6625563B2 (en) | 2001-06-26 | 2003-09-23 | Northern Digital Inc. | Gain factor and position determination system |
DE50106039D1 (de) | 2001-06-28 | 2005-06-02 | Brainlab Ag | Vorrichtung für transcraniale magnetische Stimulation |
IES20010651A2 (en) | 2001-07-12 | 2003-01-22 | Bmr Res & Dev Ltd | A method and apparatus for applying electrical stimulation to a human or animal subject |
US6939344B2 (en) | 2001-08-02 | 2005-09-06 | Syneron Medical Ltd. | Method for controlling skin temperature during thermal treatment |
US20030032900A1 (en) | 2001-08-08 | 2003-02-13 | Engii (2001) Ltd. | System and method for facial treatment |
JP4734808B2 (ja) | 2001-09-13 | 2011-07-27 | 株式会社村田製作所 | カードタイプ無線通信端末装置 |
US7344533B2 (en) | 2001-09-28 | 2008-03-18 | Angiodynamics, Inc. | Impedance controlled tissue ablation apparatus and method |
US7254444B2 (en) | 2001-10-17 | 2007-08-07 | Encore Medical Asset Corporation | Electrical nerve stimulation device |
FI114613B (fi) | 2001-10-17 | 2004-11-30 | Nexstim Oy | Menetelmä ja laite magneettistimulaation annoslaskentaa varten |
KR200261417Y1 (ko) | 2001-10-19 | 2002-03-15 | (주)애니텍 | 펄스전자기장을 이용한 골아세포 성장촉진기 |
US6745082B2 (en) | 2001-10-22 | 2004-06-01 | Jens Axelgaard | Current-controlling electrode with adjustable contact area |
US7004941B2 (en) | 2001-11-08 | 2006-02-28 | Arthrocare Corporation | Systems and methods for electrosurigical treatment of obstructive sleep disorders |
US6920883B2 (en) | 2001-11-08 | 2005-07-26 | Arthrocare Corporation | Methods and apparatus for skin treatment |
KR20030039567A (ko) | 2001-11-13 | 2003-05-22 | 이영희 | 천공 보조기를 구비한 근육내 자극기 |
US6889090B2 (en) | 2001-11-20 | 2005-05-03 | Syneron Medical Ltd. | System and method for skin treatment using electrical current |
EP1627662B1 (fr) | 2004-06-10 | 2011-03-02 | Candela Corporation | Appareil pour le traitement de la peau à l'aide d'une source lumineuse assistée par dépression |
US7762965B2 (en) | 2001-12-10 | 2010-07-27 | Candela Corporation | Method and apparatus for vacuum-assisted light-based treatments of the skin |
US20030139740A1 (en) | 2002-01-22 | 2003-07-24 | Syneron Medical Ltd. | System and method for treating skin |
KR20030065126A (ko) | 2002-01-31 | 2003-08-06 | (주) 엠큐브테크놀로지 | 자기장을 이용한 기기의 자극코일 냉각시스템 |
KR100484618B1 (ko) | 2002-02-08 | 2005-04-20 | 주식회사 오스테오시스 | 신경 자극기 |
US6701185B2 (en) | 2002-02-19 | 2004-03-02 | Daniel Burnett | Method and apparatus for electromagnetic stimulation of nerve, muscle, and body tissues |
US20030158585A1 (en) | 2002-02-19 | 2003-08-21 | Burnett Daniel R. | Method and apparatus for electromagnetic stimulation of nerve, muscle, and body tissues |
US8840608B2 (en) | 2002-03-15 | 2014-09-23 | The General Hospital Corporation | Methods and devices for selective disruption of fatty tissue by controlled cooling |
CA2478887C (fr) | 2002-03-15 | 2013-08-13 | The General Hospital Corporation | Procedes et dispositifs pour rompre selectivement du tissu adipeux par refroidissement controle |
US6662054B2 (en) | 2002-03-26 | 2003-12-09 | Syneron Medical Ltd. | Method and system for treating skin |
JP2003305131A (ja) | 2002-04-16 | 2003-10-28 | Kyoichi Nakagawa | 磁気治療器 |
KR100497500B1 (ko) | 2002-04-24 | 2005-07-01 | (주) 엠큐브테크놀로지 | 자기 거울을 이용한 자극 코일 및 그 용도 |
US20030236487A1 (en) | 2002-04-29 | 2003-12-25 | Knowlton Edward W. | Method for treatment of tissue with feedback |
CN1206975C (zh) | 2002-05-13 | 2005-06-22 | 沈来沛 | 集声光电磁热药力疗法于一体并诱导通络的理疗仪 |
US7967839B2 (en) | 2002-05-20 | 2011-06-28 | Rocky Mountain Biosystems, Inc. | Electromagnetic treatment of tissues and cells |
AU2003233584A1 (en) | 2002-05-20 | 2003-12-12 | Stephen T. Flock | Device and method for wound healing and uses therefor |
US20120035608A1 (en) | 2002-05-20 | 2012-02-09 | Marchitto Kevin S | Electromagnetic treatment of tissues and cells |
FI20021050A (fi) | 2002-05-31 | 2003-12-01 | Nexstim Oy | Aivojen magneettistimulaation kohdennusmenetelmä ja -laitteisto |
UA78051C2 (en) | 2002-06-05 | 2007-02-15 | Device for magnetic inductive therapy, method of therapeutic use, unipolar pulse emitter | |
BR0312430A (pt) | 2002-06-19 | 2005-04-26 | Palomar Medical Tech Inc | Método e aparelho para tratamento de condições cutâneas e subcutâneas |
CN100482182C (zh) | 2002-06-19 | 2009-04-29 | 帕洛玛医疗技术公司 | 对一定深度的组织进行光热治疗的方法和装置 |
DE10229112B4 (de) | 2002-06-28 | 2004-07-15 | Siemens Ag | Schaltkreis für eine elektromagnetische Quelle zur Erzeugung akustischer Wellen |
US7250047B2 (en) | 2002-08-16 | 2007-07-31 | Lumenis Ltd. | System and method for treating tissue |
US6876883B2 (en) | 2002-08-26 | 2005-04-05 | Arthur F. Hurtado | Method for applying variable electro-muscle stimulation and system therefor |
US8020560B2 (en) | 2002-09-06 | 2011-09-20 | Koninklijke Philips Electronics N.V. | Devices, systems and methods using magnetic force systems affecting the tongue or hyoid muscles in the upper airway |
CN2595398Y (zh) | 2002-09-25 | 2003-12-31 | 王健 | 动态加静态磁脉冲理疗仪 |
US6899667B2 (en) | 2002-10-21 | 2005-05-31 | Paul F. Becker | Method and apparatus for the treatment of physical and mental disorders with low frequency, low flux density magnetic fields |
US6860852B2 (en) | 2002-10-25 | 2005-03-01 | Compex Medical S.A. | Ultrasound therapeutic device |
GB0227147D0 (en) | 2002-11-21 | 2002-12-24 | Magstim The Company Ltd | Magnetic stimulators and coils therefor |
US7367936B2 (en) | 2002-11-21 | 2008-05-06 | The Magstim Company Ltd. | Magnetic stimulators and coils therefor |
TWI278327B (en) | 2002-12-17 | 2007-04-11 | Hakuju Inst For Health Science | An apparatus for treating disorders by altering ion flux across cell membranes with electric fields |
US7294101B2 (en) | 2002-12-21 | 2007-11-13 | Neuropace, Inc. | Means and methods for treating headaches |
WO2004066899A2 (fr) | 2003-01-24 | 2004-08-12 | Engii (2001) Ltd. | Systeme et procede de traitement du visage et du corps |
US7697999B2 (en) * | 2003-02-06 | 2010-04-13 | Axelgaard Manufacturing Company, Ltd. | Moisture resistant electrode with edge protection |
US20090209840A1 (en) * | 2003-02-06 | 2009-08-20 | Jens Axelgaard | Electrode chain |
US7697998B2 (en) | 2006-01-20 | 2010-04-13 | Axelgaard Manufacturing Company, Ltd. | Electrode with edge protection |
US6971984B2 (en) | 2003-02-12 | 2005-12-06 | Vincent Ardizzone | Magneto-cymatic therapeutic face mask |
GB0304714D0 (en) | 2003-03-01 | 2003-04-02 | Finetech Medical Ltd | Nerve stimulation apparatus |
US7153256B2 (en) | 2003-03-07 | 2006-12-26 | Neuronetics, Inc. | Reducing discomfort caused by electrical stimulation |
US8118722B2 (en) | 2003-03-07 | 2012-02-21 | Neuronetics, Inc. | Reducing discomfort caused by electrical stimulation |
JP4774500B2 (ja) | 2003-03-13 | 2011-09-14 | リアル エステテックス リミテッド | セルライト超音波処置システム |
US20060199992A1 (en) | 2003-03-17 | 2006-09-07 | Eisenberg Solomon R | Magnetic stimulator |
US9149322B2 (en) | 2003-03-31 | 2015-10-06 | Edward Wells Knowlton | Method for treatment of tissue |
US20040206365A1 (en) | 2003-03-31 | 2004-10-21 | Knowlton Edward Wells | Method for treatment of tissue |
KR100547265B1 (ko) | 2003-03-31 | 2006-01-26 | 모승기 | 변조 기능을 갖는 펄스 자기 자극 생성 장치 및 방법 |
WO2004095385A2 (fr) | 2003-04-02 | 2004-11-04 | Biophan Technologies, Inc. | Dispositif et procede permettant d'empecher les dommages dus a l'imagerie par resonance magnetique |
ITFI20030104A1 (it) | 2003-04-10 | 2004-10-11 | Luciano Alcidi | Apparecchiatura per terapie di ipertemia non distruttiva |
US20040205345A1 (en) | 2003-04-11 | 2004-10-14 | Ripley Michael S. | System for identification and revocation of audiovisual titles and replicators |
US20040210287A1 (en) | 2003-04-21 | 2004-10-21 | Greene Judy L. | Portable cooling or heating device for applying cryotherapy |
US20050070977A1 (en) | 2003-04-28 | 2005-03-31 | Molina Sherry L. | Light and magnetic emitting mask |
IL155639A0 (en) | 2003-04-29 | 2003-11-23 | A thorny mosaic-like massaging article | |
RU2294217C2 (ru) | 2003-06-06 | 2007-02-27 | Телеа Электроник Инджиниринг С.Р.Л. | Способ косметического ухода за кожей, предотвращающий старение |
US7503927B1 (en) | 2003-06-30 | 2009-03-17 | Vetanze Nelson W | Multiple therapy system and method |
US7711431B2 (en) | 2003-08-04 | 2010-05-04 | Brainlab Ag | Method and device for stimulating the brain |
US7418292B2 (en) | 2003-10-01 | 2008-08-26 | Medtronic, Inc. | Device and method for attenuating an immune response |
FR2870132B1 (fr) | 2003-10-01 | 2008-01-11 | Jean Sebastien Berger | Appareil et procede d'electrostimulation simultanee bi-mode electrique et magnetique |
US20050075702A1 (en) | 2003-10-01 | 2005-04-07 | Medtronic, Inc. | Device and method for inhibiting release of pro-inflammatory mediator |
US7186209B2 (en) | 2003-10-09 | 2007-03-06 | Jacobson Jerry I | Cardioelectromagnetic treatment |
US8467876B2 (en) | 2003-10-15 | 2013-06-18 | Rmx, Llc | Breathing disorder detection and therapy delivery device and method |
US20050085874A1 (en) | 2003-10-17 | 2005-04-21 | Ross Davis | Method and system for treating sleep apnea |
FR2862112B1 (fr) | 2003-11-06 | 2007-01-26 | Sarma | Procede de fabrication d'un organe formant au moins une rotule et organe ainsi realise |
US7104947B2 (en) | 2003-11-17 | 2006-09-12 | Neuronetics, Inc. | Determining stimulation levels for transcranial magnetic stimulation |
KR100571823B1 (ko) | 2003-11-18 | 2006-04-17 | 삼성전자주식회사 | 자장을 이용한 혈류 제어 장치 및 그 방법 |
US20080132971A1 (en) | 2006-09-20 | 2008-06-05 | Pille Arthur A | Electromagnetic apparatus for respiratory disease and method for using same |
US9433797B2 (en) | 2003-12-05 | 2016-09-06 | Rio Grande Neurosciences, Inc. | Apparatus and method for electromagnetic treatment of neurodegenerative conditions |
US7651459B2 (en) | 2004-01-06 | 2010-01-26 | Neuronetics, Inc. | Method and apparatus for coil positioning for TMS studies |
IL159783A (en) | 2004-01-08 | 2009-06-15 | Tavtech Ltd | High velocity liquid-gas mist tissue abrasion device |
US8335566B2 (en) | 2004-01-12 | 2012-12-18 | Compex Medical S.A. | Safety system for electrostimulation device |
US7041100B2 (en) | 2004-01-21 | 2006-05-09 | Syneron Medical Ltd. | Method and system for selective electro-thermolysis of skin targets |
US7499746B2 (en) | 2004-01-30 | 2009-03-03 | Encore Medical Asset Corporation | Automated adaptive muscle stimulation method and apparatus |
DE102004006192B4 (de) | 2004-02-06 | 2008-11-06 | Axel Muntermann | Vorrichtung zur Behandlung mit Magnetfeldern |
US8813756B1 (en) | 2004-02-06 | 2014-08-26 | Erchonia Corporation | Non-invasive method for slimming a human body using laser energy of wavelengths shorter than 632 nm |
US8932338B2 (en) | 2004-02-06 | 2015-01-13 | Erchonia Corporation | Noninvasive method for site-specific fat reduction |
US8074655B2 (en) | 2004-02-26 | 2011-12-13 | Linguaflex, Inc. | Methods and devices for treating sleep apnea and snoring |
JP2005245585A (ja) * | 2004-03-02 | 2005-09-15 | Ngoc Phuong Nguyen Thi | 顔面マッサージのための電気的刺激装置 |
ATE397222T1 (de) | 2004-03-15 | 2008-06-15 | Koninkl Philips Electronics Nv | Hauptmagnet-perforations-wirbelstromabschirmung für eine magnetresonanz-bildgebungseinrichtung |
FR2868686B1 (fr) | 2004-04-09 | 2007-04-06 | Spinevision Sa | Dispositif pour le suivi de la penetration d'un instrument dans une structure anatomique comprenant au moins une partie longitudinale amovible |
US8052591B2 (en) | 2006-05-05 | 2011-11-08 | The Board Of Trustees Of The Leland Stanford Junior University | Trajectory-based deep-brain stereotactic transcranial magnetic stimulation |
US7520848B2 (en) | 2004-04-09 | 2009-04-21 | The Board Of Trustees Of The Leland Stanford Junior University | Robotic apparatus for targeting and producing deep, focused transcranial magnetic stimulation |
AU2012200610B2 (en) | 2004-04-15 | 2014-07-10 | Neuronetics, Inc | Method and apparatus for determining the proximity of a TMS coil to a subject's head |
US8177702B2 (en) | 2004-04-15 | 2012-05-15 | Neuronetics, Inc. | Method and apparatus for determining the proximity of a TMS coil to a subject's head |
BRPI0509432A (pt) | 2004-04-26 | 2007-09-04 | Ivivi Technologies Inc | método para a utilização de um aparelho indutivo do tratamento eletromagnético e aparelho indutivo de tratamento eletromagnético |
KR100556230B1 (ko) | 2004-05-10 | 2006-03-03 | 주식회사 씨알테크놀로지 | 자기 치료기용 코일 냉각장치 |
BE1016013A5 (nl) | 2004-05-11 | 2006-01-10 | Letec Nv | Inrichting voor het beinvloeden van een cellulaire structuur. |
JP2007244400A (ja) | 2004-05-19 | 2007-09-27 | Nippon Kosei Kagaku Kenkyusho:Kk | 温熱治療システム |
GB0411610D0 (en) | 2004-05-24 | 2004-06-30 | Bioinduction Ltd | Electrotherapy apparatus |
US7601115B2 (en) | 2004-05-24 | 2009-10-13 | Neuronetics, Inc. | Seizure therapy method and apparatus |
NL1026431C1 (nl) | 2004-06-16 | 2005-12-19 | Umc Utrecht Holding Bv | Inrichting voor het opwekken van elektrische stroomvelden in een menselijk lichaam en werkwijze voor het gebruik daarvan. |
GB0414909D0 (en) | 2004-07-01 | 2004-08-04 | Magstim The Company Ltd | Magnetic stimulators and slimulating coils |
US20060020236A1 (en) | 2004-07-21 | 2006-01-26 | Asher Ben-Nun | Disposable compression sleeve |
US20060036300A1 (en) | 2004-08-16 | 2006-02-16 | Syneron Medical Ltd. | Method for lypolisis |
US20060047281A1 (en) | 2004-09-01 | 2006-03-02 | Syneron Medical Ltd. | Method and system for invasive skin treatment |
US7520849B1 (en) | 2004-09-20 | 2009-04-21 | Ebi, Lp | Pulsed electromagnetic field method of treating soft tissue wounds |
US8444562B2 (en) | 2004-10-06 | 2013-05-21 | Guided Therapy Systems, Llc | System and method for treating muscle, tendon, ligament and cartilage tissue |
US20120016239A1 (en) | 2004-10-06 | 2012-01-19 | Guided Therapy Systems, Llc | Systems for cosmetic treatment |
CA2484880A1 (fr) | 2004-10-15 | 2006-04-15 | Tuan Vinh Le | Appareil et methode de stimulation electrique |
US8417352B2 (en) | 2004-10-19 | 2013-04-09 | Meagan Medical, Inc. | System and method for stimulating sensory nerves |
US20060085048A1 (en) | 2004-10-20 | 2006-04-20 | Nervonix, Inc. | Algorithms for an active electrode, bioimpedance-based tissue discrimination system |
US7857746B2 (en) | 2004-10-29 | 2010-12-28 | Nueronetics, Inc. | System and method to reduce discomfort using nerve stimulation |
JP4324673B2 (ja) | 2004-11-05 | 2009-09-02 | 国立大学法人東北大学 | ペルチェモジュールによる凍結治療装置 |
US8617152B2 (en) | 2004-11-15 | 2013-12-31 | Medtronic Ablation Frontiers Llc | Ablation system with feedback |
RU2281128C2 (ru) | 2004-11-23 | 2006-08-10 | Открытое акционерное общество "Елатомский приборный завод" | Аппарат магнитотерапевтический |
ITRM20040597A1 (it) | 2004-12-06 | 2005-03-06 | Axe S R L | Dispositivo di condizionamento della capacita' di coordinamento della reazione delle fibrille muscolari attraverso un'onda di pressione, e sua applicazione in campo estetico e terapeutico. |
US9713567B2 (en) | 2004-12-06 | 2017-07-25 | Vissman S.R.L. | Apparatus for the conditioning of muscular fibrils reaction coordination capacity by means a pressure wave, and aesthetic and therapeutic application thereof |
CN100402110C (zh) | 2004-12-24 | 2008-07-16 | 任长学 | 微波全身或区域性加热方法和装置 |
GB2422109B (en) | 2005-01-13 | 2007-02-21 | Richard Mills | Apparatus for providing a heating and cooling effect |
ATE556745T1 (de) | 2005-01-18 | 2012-05-15 | Alma Lasers Ltd | Verbessertes system zur erwärmung von biologischem gewebe mit hf-energie |
US8088058B2 (en) | 2005-01-20 | 2012-01-03 | Neuronetics, Inc. | Articulating arm |
US8825166B2 (en) | 2005-01-21 | 2014-09-02 | John Sasha John | Multiple-symptom medical treatment with roving-based neurostimulation |
US7643883B2 (en) | 2005-01-28 | 2010-01-05 | Syneron Medical Ltd. | Device and method for treating skin |
US7871427B2 (en) | 2005-02-08 | 2011-01-18 | Carewave, Inc. | Apparatus and method for using a portable thermal device to reduce accommodation of nerve receptors |
US20060253176A1 (en) | 2005-02-18 | 2006-11-09 | Palomar Medical Technologies, Inc. | Dermatological treatment device with deflector optic |
CA2597719A1 (fr) | 2005-02-18 | 2006-08-24 | Palomar Medical Technologies, Inc. | Dispositif de traitement dermatologique |
CA2599682A1 (fr) | 2005-03-02 | 2006-09-08 | Meridian Co., Ltd. | Appareil de resolution de l'adiposite pour laser de faible puissance |
US7857775B2 (en) | 2005-03-15 | 2010-12-28 | Syneron Medical Ltd. | Method for soft tissue treatment |
JP2006296669A (ja) | 2005-04-19 | 2006-11-02 | Kagoshima Univ | 磁気コイル |
ES2599064T3 (es) | 2005-04-19 | 2017-01-31 | Compex Technologies, Inc. | Dispositivo de estimulación eléctrica |
JP2008539051A (ja) * | 2005-04-28 | 2008-11-13 | キャロル コール カンパニー | マイクロダーマルトーン皮膚刺激装置 |
US7862565B2 (en) | 2005-05-12 | 2011-01-04 | Aragon Surgical, Inc. | Method for tissue cauterization |
IL168616A (en) | 2005-05-16 | 2010-12-30 | Michael Tavger | High velocity liquid-gas stream device for administering therapeutic substances |
US7396326B2 (en) | 2005-05-17 | 2008-07-08 | Neuronetics, Inc. | Ferrofluidic cooling and acoustical noise reduction in magnetic stimulators |
US7217265B2 (en) | 2005-05-18 | 2007-05-15 | Cooltouch Incorporated | Treatment of cellulite with mid-infrared radiation |
US8588930B2 (en) | 2005-06-07 | 2013-11-19 | Ethicon, Inc. | Piezoelectric stimulation device |
US7976451B2 (en) | 2005-06-16 | 2011-07-12 | The United States Of America As Represented By The Department Of Health And Human Services | Transcranial magnetic stimulation system and methods |
US8109982B2 (en) | 2005-06-23 | 2012-02-07 | Morteza Naghavi | Non-invasive modulation of the autonomic nervous system |
US20070016274A1 (en) | 2005-06-29 | 2007-01-18 | Boveja Birinder R | Gastrointestinal (GI) ablation for GI tumors or to provide therapy for obesity, motility disorders, G.E.R.D., or to induce weight loss |
GB0515040D0 (en) | 2005-07-21 | 2005-08-31 | Bristol Myers Squibb Co | Compression device for the limb |
US7955262B2 (en) | 2005-07-26 | 2011-06-07 | Syneron Medical Ltd. | Method and apparatus for treatment of skin using RF and ultrasound energies |
US7824324B2 (en) | 2005-07-27 | 2010-11-02 | Neuronetics, Inc. | Magnetic core for medical procedures |
JP2009502399A (ja) | 2005-08-05 | 2009-01-29 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 筋肉組織の測定及び刺激 |
US9028469B2 (en) | 2005-09-28 | 2015-05-12 | Candela Corporation | Method of treating cellulite |
US20070083237A1 (en) | 2005-10-12 | 2007-04-12 | Teruel Elberto B | Magnetic therapeutic device and method of using the same |
US20070088419A1 (en) | 2005-10-13 | 2007-04-19 | Fiorina Mark A | Conductive pad assembly for electrical therapy device |
US8702691B2 (en) | 2005-10-19 | 2014-04-22 | Thermage, Inc. | Treatment apparatus and methods for delivering energy at multiple selectable depths in tissue |
US7856264B2 (en) | 2005-10-19 | 2010-12-21 | Advanced Neuromodulation Systems, Inc. | Systems and methods for patient interactive neural stimulation and/or chemical substance delivery |
DE102005052152A1 (de) | 2005-11-02 | 2007-05-03 | Mikas Elektronik Entwicklungen E.K. | Therapiegerät und Verfahren zum Betrieb desselben |
US9037247B2 (en) | 2005-11-10 | 2015-05-19 | ElectroCore, LLC | Non-invasive treatment of bronchial constriction |
US20110125203A1 (en) | 2009-03-20 | 2011-05-26 | ElectroCore, LLC. | Magnetic Stimulation Devices and Methods of Therapy |
US8868177B2 (en) | 2009-03-20 | 2014-10-21 | ElectroCore, LLC | Non-invasive treatment of neurodegenerative diseases |
US9089719B2 (en) | 2009-03-20 | 2015-07-28 | ElectroCore, LLC | Non-invasive methods and devices for inducing euphoria in a patient and their therapeutic application |
KR200407524Y1 (ko) | 2005-11-11 | 2006-01-31 | 넥슨 주식회사 | 양자치료기용 방사기 |
US8170643B2 (en) | 2005-11-22 | 2012-05-01 | Bsd Medical Corporation | System and method for irradiating a target with electromagnetic radiation to produce a heated region |
US20070232966A1 (en) | 2005-11-30 | 2007-10-04 | Robert Applebaum | Apparatus for skin and muscle treatment |
KR200410065Y1 (ko) | 2005-12-06 | 2006-03-03 | 최동환 | 복합 기능 자석 밴드 |
US8262556B2 (en) | 2005-12-19 | 2012-09-11 | Neuralieve, Inc. | Magnetic pulsing system for inducing electric currents in a human body |
US7618429B2 (en) | 2005-12-22 | 2009-11-17 | Spamedica International Srl | Skin rejuvination resurfacing method |
US9339641B2 (en) | 2006-01-17 | 2016-05-17 | Emkinetics, Inc. | Method and apparatus for transdermal stimulation over the palmar and plantar surfaces |
US9610459B2 (en) | 2009-07-24 | 2017-04-04 | Emkinetics, Inc. | Cooling systems and methods for conductive coils |
US20100168501A1 (en) | 2006-10-02 | 2010-07-01 | Daniel Rogers Burnett | Method and apparatus for magnetic induction therapy |
BRPI0706651A2 (pt) | 2006-01-20 | 2011-04-05 | Eleme Medical Inc | dispositivo mecánico de massagem |
CA2574935A1 (fr) | 2006-01-24 | 2007-07-24 | Sherwood Services Ag | Methode et systeme de commande de sortie d'un generateur radiofrequence d'electrochirurgie presentant un algorithme de flux de commandes base sur l'impedance |
US20090254154A1 (en) | 2008-03-18 | 2009-10-08 | Luis De Taboada | Method and apparatus for irradiating a surface with pulsed light |
US8133191B2 (en) | 2006-02-16 | 2012-03-13 | Syneron Medical Ltd. | Method and apparatus for treatment of adipose tissue |
US20130184693A1 (en) | 2006-02-17 | 2013-07-18 | Joseph Neev | Device and method for treating medical, skin, and hair disorders with energy |
GB201317485D0 (en) | 2013-10-02 | 2013-11-13 | Goroszeniuk Teodor | Transcutaneous stimulting device for pain relief |
US7854754B2 (en) | 2006-02-22 | 2010-12-21 | Zeltiq Aesthetics, Inc. | Cooling device for removing heat from subcutaneous lipid-rich cells |
AU2011265424B2 (en) | 2006-02-22 | 2014-07-31 | Zeltiq Aesthetics, Inc. | Cooling device for removing heat from subcutaneous lipid-rich cells |
IES20060134A2 (en) * | 2006-02-23 | 2007-09-05 | Sensor Technologies And Device | Biomedical surface electrode |
ITRE20060026A1 (it) | 2006-02-24 | 2007-08-25 | Genesis Elettronica S R L | Apparecchio per trattamenti medicinali |
ATE513581T1 (de) | 2006-03-16 | 2011-07-15 | Markoll Ernestine Binder | Portabler applikator zur kollagenstimulation |
WO2007117580A2 (fr) | 2006-04-06 | 2007-10-18 | Palomar Medical Technologies, Inc. | Appareil et procédé de traitement cutané à fonction de compression et décompression |
WO2007127953A2 (fr) | 2006-04-27 | 2007-11-08 | Eyad Kishawi | dispositif et procédé pour une stimulation neurale localisée non invasive utilisant un phénomène à effet de hall |
AU2013207657B2 (en) | 2006-04-28 | 2015-11-19 | Zeltiq Aesthetics, Inc. | Cryoprotectant for use with a treatment device for improved cooling of subcutaneous lipid-rich cells |
AU2007244765A1 (en) | 2006-04-28 | 2007-11-08 | Zeltiq Aesthetics, Inc. | Cryoprotectant for use with a treatment device for improved cooling of subcutaneous lipid-rich cells |
US9352167B2 (en) | 2006-05-05 | 2016-05-31 | Rio Grande Neurosciences, Inc. | Enhanced spatial summation for deep-brain transcranial magnetic stimulation |
US8267850B2 (en) | 2007-11-27 | 2012-09-18 | Cervel Neurotech, Inc. | Transcranial magnet stimulation of deep brain targets |
US20070270925A1 (en) | 2006-05-17 | 2007-11-22 | Juniper Medical, Inc. | Method and apparatus for non-invasively removing heat from subcutaneous lipid-rich cells including a coolant having a phase transition temperature |
DE102006024467B4 (de) | 2006-05-24 | 2012-04-26 | Mag & More Gmbh | Magnetischer Neurostimulator |
WO2007140584A1 (fr) | 2006-06-02 | 2007-12-13 | William Toderan | ProcÉdÉ et appareil de traitement de l'apnÉe et des ronflements pendant le sommeil |
ITVR20060113A1 (it) | 2006-06-07 | 2008-01-07 | Giglio Antonio Del | Dispositivo per il trattamento del tessuto adiposo sottocutaneo mediante shockwaves non foicalizzate e contrapposte |
US9630003B2 (en) | 2006-06-15 | 2017-04-25 | Htk Enterprises, Inc. | Non-invasive neuro stimulation system |
US8545378B2 (en) | 2006-06-15 | 2013-10-01 | The Trustees Of Columbia University In The City Of New York | Systems and methods for inducing electric field pulses in a body organ |
US7753836B2 (en) | 2006-06-15 | 2010-07-13 | The Trustees Of Columbia University In The City Of New York | Systems and methods for inducing electric field pulses in a body organ |
CN101500644A (zh) | 2006-06-19 | 2009-08-05 | 高地仪器公司 | 用于刺激生物组织的设备和方法 |
US9913976B2 (en) | 2006-06-19 | 2018-03-13 | Highland Instruments, Inc. | Systems and methods for stimulating and monitoring biological tissue |
CA2655433C (fr) | 2006-06-26 | 2014-11-18 | Centre National De La Recherche Scientifique (Etablissement Public A Caractere Scientifique Et Technologique) | Installation robotisee pour le positionnement et le deplacement d'un organe ou instrument et appareil de traitement comprenant une telle installation |
US8700176B2 (en) | 2006-07-27 | 2014-04-15 | Pollogen Ltd. | Apparatus and method for non-invasive treatment of skin tissue |
US8909342B2 (en) | 2006-08-15 | 2014-12-09 | Andres M. Lozano | Method for treating eating disorders |
EP2087778A4 (fr) | 2006-08-22 | 2010-11-17 | Mattson Tech Inc | Source de plasma inductif à haut rendement de couplage |
US7854232B2 (en) | 2006-08-30 | 2010-12-21 | Nexstim Oy | Transcranial magnetic stimulation induction coil device with attachment portion for receiving tracking device |
US7998053B2 (en) | 2006-08-30 | 2011-08-16 | Nexstim Oy | Transcranial magnetic stimulation induction coil device and method of manufacture |
US9079010B2 (en) | 2006-08-30 | 2015-07-14 | Nexstim Oy | Transcranial magnetic stimulation induction coil device with attachment portion for receiving tracking device |
US7925066B2 (en) | 2006-09-13 | 2011-04-12 | Nexstim Oy | Method and apparatus for correcting an error in the co-registration of coordinate systems used to represent objects displayed during navigated brain stimulation |
US9101751B2 (en) | 2006-09-13 | 2015-08-11 | Nexstim Oy | Method and system for displaying the electric field generated on the brain by transcranial magnetic stimulation |
US9132031B2 (en) | 2006-09-26 | 2015-09-15 | Zeltiq Aesthetics, Inc. | Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile |
US8192474B2 (en) | 2006-09-26 | 2012-06-05 | Zeltiq Aesthetics, Inc. | Tissue treatment methods |
US20080077201A1 (en) | 2006-09-26 | 2008-03-27 | Juniper Medical, Inc. | Cooling devices with flexible sensors |
US7794457B2 (en) | 2006-09-28 | 2010-09-14 | Covidien Ag | Transformer for RF voltage sensing |
US7742828B2 (en) | 2006-09-29 | 2010-06-22 | Tyco Healthcare Group Lp | Medical electrode suitable for high-energy stimulation |
US20180050216A9 (en) | 2006-10-02 | 2018-02-22 | Emkinetics, Inc. | Methods and devices for treating migraines with electromagnetic stimulation |
EP2069013A2 (fr) | 2006-10-02 | 2009-06-17 | Emkinetics, Inc. | Procédé et appareil de thérapie par induction magnétique |
US20100222629A1 (en) | 2006-10-02 | 2010-09-02 | Emkinetics, Inc. | Method and apparatus for magnetic induction therapy |
JP5258772B2 (ja) | 2006-10-10 | 2013-08-07 | メディカル・デバイス・イノベーションズ・リミテッド | マイクロ波放射線を用いた組織を処理するための装置およびアンテナ較正システムおよびその方法 |
US9913982B2 (en) | 2011-01-28 | 2018-03-13 | Cyberonics, Inc. | Obstructive sleep apnea treatment devices, systems and methods |
DE102006050369A1 (de) | 2006-10-25 | 2008-04-30 | Oncotherm Kft. | Hyperthermievorrichtung für die selektive Behandlung und die Überwachung von Oberflächengewebe |
ITRE20060127A1 (it) | 2006-10-27 | 2008-04-28 | Genesis Elettronica S R L | Apparecchio per trattamenti medicali |
WO2008055243A2 (fr) | 2006-10-31 | 2008-05-08 | Zeltiq Aesthetics, Inc. | Procédé et appareil pour refroidir des cellules ou un tissu sous-cutané riche en lipides |
US20100130945A1 (en) | 2006-11-02 | 2010-05-27 | Shlomo Laniado | Treatment of tissue via application of magnetic field |
US9101524B2 (en) | 2006-11-09 | 2015-08-11 | Lumenis Ltd. | Apparatus and method for treating tissue |
US20100210894A1 (en) | 2006-12-01 | 2010-08-19 | Beth Israel Deaconess Medical Center, Inc. | Transcranial magnetic stimulation (TMS) methods and apparatus |
US20080262513A1 (en) | 2007-02-15 | 2008-10-23 | Hansen Medical, Inc. | Instrument driver having independently rotatable carriages |
US8128549B2 (en) | 2007-02-20 | 2012-03-06 | Neuronetics, Inc. | Capacitor failure detection |
US7706885B2 (en) | 2007-02-23 | 2010-04-27 | Gradient Technologies, Llc | Transcutaneous electrical nerve stimulation and method of using same |
WO2008109058A1 (fr) | 2007-03-01 | 2008-09-12 | Finsterwald P Michael | Stimulateur magnétique |
US20080228520A1 (en) | 2007-03-13 | 2008-09-18 | Scott Day | Body Management System and Business Method |
US20100106064A1 (en) | 2007-03-19 | 2010-04-29 | Syneron Medical Ltd. | Method and device for soft tissue destruction |
US10441346B2 (en) | 2007-04-06 | 2019-10-15 | Rocky Mountain Biosystems, Inc | Inductive heating of tissues using alternating magnetic fields and uses thereof |
EP2134293A4 (fr) | 2007-04-06 | 2012-12-12 | Stephen Flock | Chauffage par induction de tissus à l'aide de champs magnétiques alternatifs et ses applications |
WO2008127641A1 (fr) | 2007-04-11 | 2008-10-23 | Eleme Medical Inc. | Utilisation de phototherapie a faible intensite dans le traitement de diverses affections medicales |
KR100866378B1 (ko) | 2007-04-12 | 2008-11-03 | 이승영 | 뇌파를 주요치료정보로 사용하는 저주파 자기물리치료장치 |
BRPI0701434B8 (pt) | 2007-04-12 | 2021-06-22 | Eneura Therapeutics Llc | sistema de pulsador magnético portátil para o tratamento de enxaquecas de um paciente humano |
WO2008130533A2 (fr) | 2007-04-14 | 2008-10-30 | Etis Investments, Inc. | Système d'application de stimulation magnétique |
US20140046232A1 (en) | 2007-05-03 | 2014-02-13 | Orthocor Medical, Inc. | Brace to provide hot and cold therapy |
US7783348B2 (en) | 2007-05-03 | 2010-08-24 | Orthocor Medical, Inc. | Stimulation device for treating osteoarthritis |
US9968797B2 (en) | 2007-05-03 | 2018-05-15 | Orthocor Medical, Inc. | Electromagnetic thermal therapy |
US8768454B2 (en) | 2007-05-03 | 2014-07-01 | Orthocor Medical, Inc. | Electromagnetic thermal therapy |
GB0708783D0 (en) | 2007-05-04 | 2007-06-13 | Gyrus Medical Ltd | Electrosurgical system |
US20090018384A1 (en) | 2007-05-09 | 2009-01-15 | Massachusetts Institute Of Technology | Portable, Modular Transcranial Magnetic Stimulation Device |
AU2012244313B2 (en) | 2007-05-18 | 2014-11-27 | Zeltiq Aesthetics, Inc. | Device for enhanced removal of heat from subcutaneous lipid-rich cells having an actuator |
US20080287839A1 (en) | 2007-05-18 | 2008-11-20 | Juniper Medical, Inc. | Method of enhanced removal of heat from subcutaneous lipid-rich cells and treatment apparatus having an actuator |
DE202007007920U1 (de) | 2007-05-31 | 2008-10-09 | Storz Medical Ag | Medizinisches Gerät zur Behandlung des menschlichen oder tierischen Körpers |
KR100841596B1 (ko) | 2007-06-05 | 2008-06-26 | 한국전기연구원 | 자기장 치료기의 냉각 장치 |
US7744523B2 (en) | 2007-06-07 | 2010-06-29 | Emory University | Drive circuit for magnetic stimulation |
US20120143178A9 (en) | 2007-06-15 | 2012-06-07 | Primaeva Medical, Inc. | Devices and methods for percutaneous energy delivery |
US20090036958A1 (en) | 2007-08-01 | 2009-02-05 | Primaeva Medical, Inc. | Methods and devices for treating tissue |
US20080312647A1 (en) | 2007-06-15 | 2008-12-18 | Primaeva Medical, Inc. | Methods and devices for treating tissue |
IL184218A0 (en) | 2007-06-26 | 2007-10-31 | Zidkiyahu Simenhaus | Photo-magnetic radiation device |
US8216218B2 (en) | 2007-07-10 | 2012-07-10 | Thermage, Inc. | Treatment apparatus and methods for delivering high frequency energy across large tissue areas |
US7885713B2 (en) | 2007-07-11 | 2011-02-08 | Ampcare, Llc | Method and apparatus for laryngeal elevator musculature rehabilitation |
US20090018624A1 (en) | 2007-07-13 | 2009-01-15 | Juniper Medical, Inc. | Limiting use of disposable system patient protection devices |
US20090018627A1 (en) | 2007-07-13 | 2009-01-15 | Juniper Medical, Inc. | Secure systems for removing heat from lipid-rich regions |
WO2009011708A1 (fr) | 2007-07-13 | 2009-01-22 | Zeltiq Aesthetics, Inc. | Système pour traiter des régions riches en lipides |
US8523927B2 (en) | 2007-07-13 | 2013-09-03 | Zeltiq Aesthetics, Inc. | System for treating lipid-rich regions |
US20090018625A1 (en) | 2007-07-13 | 2009-01-15 | Juniper Medical, Inc. | Managing system temperature to remove heat from lipid-rich regions |
US20090018626A1 (en) | 2007-07-13 | 2009-01-15 | Juniper Medical, Inc. | User interfaces for a system that removes heat from lipid-rich regions |
US8103355B2 (en) | 2007-07-16 | 2012-01-24 | Invasix Ltd | Method and device for minimally invasive skin and fat treatment |
ES2688610T3 (es) | 2007-07-26 | 2018-11-05 | Syneron Medical Ltd. | Equipo para el tratamiento de tejido con ultrasonido |
US20100185042A1 (en) | 2007-08-05 | 2010-07-22 | Schneider M Bret | Control and coordination of transcranial magnetic stimulation electromagnets for modulation of deep brain targets |
US20090099405A1 (en) | 2007-08-05 | 2009-04-16 | Neostim, Inc. | Monophasic multi-coil arrays for trancranial magnetic stimulation |
US8956274B2 (en) | 2007-08-05 | 2015-02-17 | Cervel Neurotech, Inc. | Transcranial magnetic stimulation field shaping |
US8956273B2 (en) | 2007-08-20 | 2015-02-17 | Cervel Neurotech, Inc. | Firing patterns for deep brain transcranial magnetic stimulation |
WO2009036040A1 (fr) | 2007-09-10 | 2009-03-19 | Neostim, Inc. | Mouvement automatisé d'électroaimants suivant l'excentricité de la tête |
WO2009055634A1 (fr) | 2007-10-24 | 2009-04-30 | Neostim Inc. | Contrôle intrasession de stimulation magnétique transcrânienne |
US20120109241A1 (en) | 2007-08-10 | 2012-05-03 | Elizabeth Rauscher | Enhancement of Biological Functioning by the use of Electromagnetic and Magnetic Fields |
US20090043293A1 (en) | 2007-08-10 | 2009-02-12 | Eleme Medical Inc. | Multi-module skin or body treatment device and the method of using |
WO2009023680A1 (fr) | 2007-08-13 | 2009-02-19 | Neostim, Inc. | Portique et commutateurs pour le déclenchement à base de position d'impulsions tms dans des bobines mobiles |
WO2009047628A2 (fr) | 2007-08-17 | 2009-04-16 | Endymed Medical Ltd. | Procédés et dispositifs d'électrochirurgie à énergie inductive |
EP3488833A1 (fr) | 2007-08-21 | 2019-05-29 | Zeltiq Aesthetics, Inc. | Surveillance du refroidissement de cellules riches en lipides sous-cutanés, tel que le refroidissement du tissu adipeux |
US9757554B2 (en) | 2007-08-23 | 2017-09-12 | Bioness Inc. | System for transmitting electrical current to a bodily tissue |
WO2009033192A1 (fr) | 2007-09-09 | 2009-03-12 | Neostim, Inc. | Champs magnétiques focalisés |
CA2604112C (fr) | 2007-09-24 | 2016-07-05 | Meridian Co. Ltd. | Appareillage de resolution de l'adipose pour laser de faible puissance |
WO2009042721A1 (fr) | 2007-09-25 | 2009-04-02 | Neosync, Inc. | Systèmes et procédés de traitement par thérapie de synchronisation neuro-eeg |
WO2009042863A1 (fr) | 2007-09-26 | 2009-04-02 | Neostim, Inc. | Système et procédés de refroidissement d'électroaimants pour la stimulation magnétique transcrânienne |
WO2009044400A2 (fr) | 2007-10-01 | 2009-04-09 | Kineticure Limited | Moyens vibrants pouvant être portés et dispositifs thérapeutiques de conditionnement thermique |
WO2009049068A1 (fr) | 2007-10-09 | 2009-04-16 | Neostim, Inc. | Affichage de champs magnétiques modélisés |
US9008793B1 (en) * | 2007-10-15 | 2015-04-14 | Chenes Llc | Multiple electrode radiofrequency generator |
US20090108969A1 (en) | 2007-10-31 | 2009-04-30 | Los Alamos National Security | Apparatus and method for transcranial and nerve magnetic stimulation |
KR100936914B1 (ko) | 2007-11-13 | 2010-01-18 | 이근용 | 자기치료기 |
RU2373971C2 (ru) | 2007-11-22 | 2009-11-27 | ООО "НейроСофт" | Устройство для магнитной стимуляции |
US8035385B2 (en) | 2007-11-22 | 2011-10-11 | Kabushiki Kaisha Toshiba | MRI system and RF coil with enhanced cooling in vicinty of included circuit elements |
TW200924819A (en) | 2007-12-06 | 2009-06-16 | Szu Wei Entpr Co Ltd | Device of flywheel treading module for exercise apparatus |
US20090149930A1 (en) | 2007-12-07 | 2009-06-11 | Thermage, Inc. | Apparatus and methods for cooling a treatment apparatus configured to non-invasively deliver electromagnetic energy to a patient's tissue |
US8579953B1 (en) | 2007-12-07 | 2013-11-12 | Peter J. Dunbar | Devices and methods for therapeutic heat treatment |
US20090156958A1 (en) | 2007-12-12 | 2009-06-18 | Mehta Bankim H | Devices and methods for percutaneous energy delivery |
KR20090063618A (ko) | 2007-12-14 | 2009-06-18 | 주식회사 씨알테크놀러지 | 자기장을 이용한 자극 치료기 및 그 제어방법 |
RU2395267C2 (ru) | 2007-12-26 | 2010-07-27 | Евгений Юрьевич Чернышев | Физиотерапевтическое устройство |
US20090171424A1 (en) | 2007-12-27 | 2009-07-02 | Alma Lasers Ltd. | Rf device for heating biological tissue using a vibrating applicator |
CN101234231A (zh) | 2008-01-24 | 2008-08-06 | 武汉依瑞德医疗设备新技术有限公司 | 多个刺激线圈的经颅磁场刺激器 |
US20090248004A1 (en) | 2008-02-28 | 2009-10-01 | Palomar Medical Technologies, Inc. | Systems and methods for treatment of soft tissue |
CA2716407C (fr) | 2008-02-29 | 2018-04-03 | Sensory Medical, Inc. | Dispositifs et procedes de traitement du syndrome des jambes sans repos |
KR20090095143A (ko) | 2008-03-05 | 2009-09-09 | 임형준 | 자기장을 방출하는 신체 가열기구 |
US20150141877A1 (en) | 2008-03-07 | 2015-05-21 | Inrexrem Inc. | Led and shockwave therapy for tattoo removal |
US9884200B2 (en) | 2008-03-10 | 2018-02-06 | Neuronetics, Inc. | Apparatus for coil positioning for TMS studies |
RU2392979C2 (ru) | 2008-03-17 | 2010-06-27 | Тамара Геннадьевна Киселева | Способ электростимуляционной тренировки мышц |
WO2009116972A1 (fr) | 2008-03-20 | 2009-09-24 | Thomson Licensing | Système et procédé permettant de traiter des données de flux de transport priorité en temps réel dans un système multimédia de radiodiffusion multi-canaux |
JPWO2009119236A1 (ja) | 2008-03-26 | 2011-07-21 | テルモ株式会社 | 治療装置 |
KR20100135863A (ko) | 2008-04-01 | 2010-12-27 | 더 제너럴 하스피탈 코포레이션 | 생체조직의 냉각방법 및 냉각장치 |
GB2459157B (en) | 2008-04-17 | 2010-10-13 | Magstim Co Ltd | Magnetic stimulators and stimulators coils |
US10238447B2 (en) | 2008-04-29 | 2019-03-26 | Virginia Tech Intellectual Properties, Inc. | System and method for ablating a tissue site by electroporation with real-time monitoring of treatment progress |
KR101453071B1 (ko) | 2008-05-14 | 2014-10-23 | 삼성전자주식회사 | 트랜스포머, 밸룬 및 이를 포함하는 집적 회로 |
US20110105826A1 (en) | 2008-05-23 | 2011-05-05 | Neostim, Inc. | Transcranial magnetic stimulation by enhanced magnetic field perturbations |
US8172835B2 (en) | 2008-06-05 | 2012-05-08 | Cutera, Inc. | Subcutaneous electric field distribution system and methods |
US8226639B2 (en) | 2008-06-10 | 2012-07-24 | Tyco Healthcare Group Lp | System and method for output control of electrosurgical generator |
US8998791B2 (en) | 2008-06-29 | 2015-04-07 | Venus Concept Ltd | Esthetic apparatus useful for increasing skin rejuvenation and methods thereof |
US9981143B2 (en) | 2008-06-29 | 2018-05-29 | Venus Concept Ltd. | Esthetic apparatus useful for increasing skin rejuvenation and methods thereof |
US20220370814A1 (en) | 2008-06-29 | 2022-11-24 | Venus Concept Ltd. | Esthetic apparatus useful for increasing skin rejuvenation and methods thereof |
CA2727498C (fr) | 2008-07-02 | 2020-04-21 | Niveus Medical, Inc. | Systemes et procedes de stimulation musculaire automatique |
US20100004536A1 (en) | 2008-07-03 | 2010-01-07 | Avner Rosenberg | Method and apparatus for ultrasound tissue treatment |
US8868204B2 (en) | 2008-07-15 | 2014-10-21 | Venus Technologies LTD. | Esthetic device useful for increasing skin beautification and methods thereof |
US20100017750A1 (en) | 2008-07-16 | 2010-01-21 | Avner Rosenberg | User interface |
CN101327358A (zh) | 2008-07-23 | 2008-12-24 | 李久峰 | 利用密集多点细磁场进行理疗的治疗仪 |
ES2528020T3 (es) | 2008-07-30 | 2015-02-03 | François Dufay | Equipo para el tratamiento corporal formado por una cubierta en al menos dos partes complementarias |
WO2010017249A1 (fr) | 2008-08-04 | 2010-02-11 | The Trustees Of Columbia University In The City Of New York | Procédés, appareil et systèmes de stimulation magnétique |
US20100036191A1 (en) | 2008-08-06 | 2010-02-11 | Walter Timothy J | Brain stimulation systems and methods |
US20100036368A1 (en) | 2008-08-11 | 2010-02-11 | Laura England | Method of selectively heating adipose tissue |
US9149386B2 (en) | 2008-08-19 | 2015-10-06 | Niveus Medical, Inc. | Devices and systems for stimulation of tissues |
WO2010022278A1 (fr) | 2008-08-20 | 2010-02-25 | Ionix Medical, Inc. | Cathéter pour traiter un tissu avec une ablation non thermique |
US9211155B2 (en) | 2008-08-20 | 2015-12-15 | Prostacare Pty Ltd. | Non-thermal ablation system for treating BPH and other growths |
WO2010027874A2 (fr) | 2008-08-26 | 2010-03-11 | Niveus Medical, Inc. | Dispositif, système et procédé d'amélioration des performances de stimulation musculaire assistée en présence d'un œdème tissulaire |
KR101022244B1 (ko) | 2008-08-29 | 2011-03-16 | (주) 엠큐브테크놀로지 | 방열특성이 우수한 저소음 자기장 발생 장치 |
JP5099846B2 (ja) | 2008-09-05 | 2012-12-19 | Necトーキン株式会社 | 電磁誘導モジュール |
US8926490B2 (en) | 2008-09-24 | 2015-01-06 | Neosync, Inc. | Systems and methods for depression treatment using neuro-EEG synchronization therapy |
WO2010036732A1 (fr) | 2008-09-25 | 2010-04-01 | Zeltiq Aesthetics, Inc. | Systèmes et procédés de planification de traitement pour applications de remodelage corporel |
US20100145399A1 (en) | 2008-09-29 | 2010-06-10 | Pooja Johari | Multifunction devices and methods of using the multifunction devices |
US8469957B2 (en) | 2008-10-07 | 2013-06-25 | Covidien Lp | Apparatus, system, and method for performing an electrosurgical procedure |
WO2010042404A1 (fr) | 2008-10-09 | 2010-04-15 | Imthera Medical, Inc. | Procédé de stimulation d’un nerf grand hypoglosse pour contrôler la position de la langue d’un patient |
US20100121131A1 (en) | 2008-11-11 | 2010-05-13 | Mathes Richard A | Apparatus and methods for stimulating a body's natural healing mechanisms |
US20130317281A1 (en) | 2010-10-08 | 2013-11-28 | M. Bret Schneider | Transcranial magnetic stimulation for improved analgesia |
US8795148B2 (en) | 2009-10-26 | 2014-08-05 | Cervel Neurotech, Inc. | Sub-motor-threshold stimulation of deep brain targets using transcranial magnetic stimulation |
WO2010068797A1 (fr) * | 2008-12-10 | 2010-06-17 | Waverx, Inc. | Dispositifs, systèmes et procédés permettant de prévenir et de traiter un déficit sensoriel |
US9180305B2 (en) | 2008-12-11 | 2015-11-10 | Yeda Research & Development Co. Ltd. At The Weizmann Institute Of Science | Systems and methods for controlling electric field pulse parameters using transcranial magnetic stimulation |
US8603073B2 (en) | 2008-12-17 | 2013-12-10 | Zeltiq Aesthetics, Inc. | Systems and methods with interrupt/resume capabilities for treating subcutaneous lipid-rich cells |
WO2010080879A2 (fr) | 2009-01-07 | 2010-07-15 | Neostim, Inc. | Bobines façonnées pour stimulation magnétique cérébrale |
US8506506B2 (en) | 2009-01-12 | 2013-08-13 | Solta Medical, Inc. | Tissue treatment apparatus with functional mechanical stimulation and methods for reducing pain during tissue treatments |
US20100179372A1 (en) | 2009-01-13 | 2010-07-15 | Glassman Harry A | Method of enhancing skin appearance through the combination of Titan TM and TMR methods |
WO2011156495A2 (fr) | 2010-06-08 | 2011-12-15 | Arizona Board Of Regents For And On Behalf Of Arizona State University | Appareil, systèmes, et procédés pour la neurostimulation et la neurotélémétrie utilisant un système à diode semi-conductrice |
JP5661648B2 (ja) | 2009-01-26 | 2015-01-28 | ユニバーシティ・カレッジ・ダブリン,ナショナル・ユニバーシティ・オブ・アイルランド,ダブリン | 骨盤底筋を刺激する方法及び装置 |
JP5650137B2 (ja) | 2009-02-20 | 2015-01-07 | ニヴェウス メディカル, インコーポレーテッド | エネルギー誘導域を用いた電動筋肉刺激システム及び方法 |
CA2754189A1 (fr) | 2009-03-02 | 2010-09-10 | Yeda Research And Development Co. Ltd. | Configuration magnetique et schema de temporisation pour stimulation magnetique transcranienne |
US20100228250A1 (en) | 2009-03-05 | 2010-09-09 | Intuitive Surgical Operations, Inc. | Cut and seal instrument |
EP2403598A4 (fr) | 2009-03-05 | 2013-07-31 | Cynosure Inc | Système et procédé associés à une lumière pulsée à effet thérapeutique |
WO2010102179A1 (fr) | 2009-03-06 | 2010-09-10 | Mcneil-Ppc, Inc. | Dispositif de simulation électrique comportant des modalités sensorielles supplémentaires |
US9492680B2 (en) | 2009-03-06 | 2016-11-15 | Neuralieve | Method and apparatus to record and analyze TMS treatments and results |
JP2010207268A (ja) | 2009-03-06 | 2010-09-24 | Tohoku Univ | 治療用生体磁気刺激方法及び装置 |
US20190224490A1 (en) | 2009-03-06 | 2019-07-25 | eNeura Inc. | Methods and systems for preventative migraine headache treatment |
US20100331603A1 (en) | 2009-03-18 | 2010-12-30 | Johann Szecsi | Method and device for the physical treatment of paretic patients |
US20190111255A1 (en) | 2009-03-20 | 2019-04-18 | Electrocore, Inc. | Systems and methods for initial provisioning and refilling of medical devices |
US9174045B2 (en) | 2009-03-20 | 2015-11-03 | ElectroCore, LLC | Non-invasive electrical and magnetic nerve stimulators used to treat overactive bladder and urinary incontinence |
US8320988B2 (en) | 2009-04-09 | 2012-11-27 | Axelgaard Manufacturing Co., Ltd. | Multi-electrode strung on a common connector |
KR102560518B1 (ko) | 2009-04-16 | 2023-07-28 | 이노비오 파마수티컬즈, 인크. | 비접촉식 전기천공 전극을 포함하는 디바이스 |
US8493286B1 (en) * | 2009-04-21 | 2013-07-23 | Mark T. Agrama | Facial movement measurement and stimulation apparatus and method |
AU2010238677A1 (en) | 2009-04-24 | 2011-11-10 | Regenesis Biomedical, Inc. | Pulsed electromagnetic field and negative pressure therapy wound treatment method and system |
US20100274329A1 (en) | 2009-04-24 | 2010-10-28 | Chris Bradley | System and method for skin care using light and microcurrents |
AU2014203094B2 (en) | 2009-04-30 | 2015-07-23 | Zeltiq Aesthetics, Inc. | Device, system and method of removing heat from subcutaneous lipid-rich cells |
AU2010242785B2 (en) | 2009-04-30 | 2014-03-06 | Zeltiq Aesthetics, Inc. | Device, system and method of removing heat from subcutaneous lipid-rich cells |
US8187273B2 (en) | 2009-05-07 | 2012-05-29 | Tyco Healthcare Group Lp | Apparatus, system, and method for performing an electrosurgical procedure |
EP2907540A1 (fr) | 2009-05-19 | 2015-08-19 | The Trustees of Columbia University in the City of New York | Système de stimulation magnétique |
TWI402868B (zh) | 2009-05-27 | 2013-07-21 | Delta Electronics Inc | 具屏蔽功能之線圈及磁性元件 |
US20100309689A1 (en) | 2009-06-03 | 2010-12-09 | David Coulson | Bootstrap Circuitry |
DE102009023855B4 (de) | 2009-06-04 | 2013-01-31 | Technische Universität München | Vorrichtung zur Nervenreizung mit Magnetfeldimpulsen |
EP2440150A4 (fr) | 2009-06-09 | 2012-11-14 | Gen Hospital Corp | Procédé et appareil de traitement dermatologique et de remodelage de tissu |
WO2010146220A1 (fr) | 2009-06-17 | 2010-12-23 | Nexstim Oy | Dispositif et procédé de stimulation magnétique |
WO2010151619A2 (fr) | 2009-06-24 | 2010-12-29 | Optogen Medical Llc | Dispositifs, systèmes et procédés pour le traitement de tissu mou |
US8271090B1 (en) | 2009-07-02 | 2012-09-18 | Customkynetics, Inc. | Apparatus and methods for providing electrical stimulation |
US8788060B2 (en) | 2009-07-16 | 2014-07-22 | Solta Medical, Inc. | Tissue treatment systems with high powered functional electrical stimulation and methods for reducing pain during tissue treatments |
US20120116271A1 (en) | 2009-07-23 | 2012-05-10 | Palomar Medical Technologies, Inc. | Cellulite treatment |
US9919168B2 (en) | 2009-07-23 | 2018-03-20 | Palomar Medical Technologies, Inc. | Method for improvement of cellulite appearance |
EP2279708B1 (fr) | 2009-07-27 | 2013-05-15 | Straumann Holding AG | Récipient pour un instrument ou implant médical, notamment instrument médical dentaire ou implant dentaire |
KR20120040727A (ko) | 2009-08-04 | 2012-04-27 | 폴로젠 리미티드 | 미용적 피부 재생 |
US8465408B2 (en) | 2009-08-06 | 2013-06-18 | Neosync, Inc. | Systems and methods for modulating the electrical activity of a brain using neuro-EEG synchronization therapy |
EP2467116A4 (fr) | 2009-08-20 | 2015-08-12 | Syneron Medical Ltd | Procédé et appareil de traitement esthétique non invasif de la peau et de l'hypoderme |
US8366756B2 (en) | 2009-08-28 | 2013-02-05 | Erchonia Corporation | Low level laser therapy device with open bore |
US8827886B2 (en) | 2009-09-14 | 2014-09-09 | Minnesota Medical Physics Llc | Thermally assisted pulsed electro-magnetic field stimulation device and method for treatment of osteoarthritis |
US9061134B2 (en) | 2009-09-23 | 2015-06-23 | Ripple Llc | Systems and methods for flexible electrodes |
DE202009013768U1 (de) | 2009-10-09 | 2011-02-24 | Pichler, Christian | Sitz- oder Liegevorrichtung mit integrierter Schaltung zur Magnetfeldtherapie |
DE202009019186U1 (de) | 2009-10-12 | 2018-02-06 | Quanten-Medicine Ag | Vorrichtung zur Magnetstimulation von Körpergewebe |
US8585617B2 (en) | 2009-12-21 | 2013-11-19 | Nyxoah SA | Diagnosis and prediction of obstructive sleep apnea |
DE102009050010A1 (de) | 2009-10-21 | 2011-05-12 | Waltraud Schmidt | Verfahren und Vorrichtung zur Stimulation wenigstens eines Muskels |
AU2010309429A1 (en) | 2009-10-24 | 2012-03-22 | Syneron Medical Ltd. | Method and apparatus for real time monitoring of tissue layers |
AU2010313487A1 (en) | 2009-10-26 | 2012-05-24 | Emkinetics, Inc. | Method and apparatus for electromagnetic stimulation of nerve, muscle, and body tissues |
WO2011053639A1 (fr) | 2009-10-28 | 2011-05-05 | Wms Gaming, Inc. | Tableaux de classement pour jeux de pari |
US8204446B2 (en) | 2009-10-29 | 2012-06-19 | Motorola Mobility, Inc. | Adaptive antenna tuning systems and methods |
GB0919031D0 (en) | 2009-10-30 | 2009-12-16 | Dezac Group The Ltd | Apparatus and methods for the treatment of human or animal tissue by light |
NL1037451C2 (en) | 2009-11-05 | 2011-05-10 | Vabrema B V | Device, system and method for magnetic stimulation. |
US9878152B2 (en) | 2009-11-05 | 2018-01-30 | Koninklijke Philips N.V. | Electrical muscle stimulation |
US20110112520A1 (en) | 2009-11-11 | 2011-05-12 | Invasix Corporation | Method and device for fat treatment |
US8585568B2 (en) | 2009-11-12 | 2013-11-19 | Neosync, Inc. | Systems and methods for neuro-EEG synchronization therapy |
CN102712018B (zh) | 2009-11-12 | 2015-10-07 | 过滤器安全有限公司 | 过滤器近端喷嘴 |
AU2010317380B2 (en) | 2009-11-16 | 2016-02-11 | Pollogen Ltd. | Non-invasive fat removal |
US11590346B2 (en) | 2009-11-16 | 2023-02-28 | Pollogen Ltd. | Apparatus and method for cosmetic treatment of human mucosal tissue |
US20110130796A1 (en) | 2009-11-27 | 2011-06-02 | Mohn Louise | Thermostimulation methods using multilayer pads with integrated temperature regulation |
US8376925B1 (en) | 2009-12-01 | 2013-02-19 | Robert Glenn Dennis | Magnetic system for treatment of a tissue |
US8137259B1 (en) | 2009-12-01 | 2012-03-20 | Magnafix, Llc | Magnetic method for treatment of an animal |
SE1050420A1 (sv) | 2010-04-27 | 2011-07-26 | Inerventions Ab | System och klädesplagg för avslappning av en spastisk muskel |
AU2010325682B2 (en) | 2009-12-06 | 2014-09-11 | Gilead Bar - Ilan | A method and apparatus for personal skin treatment |
DE102009060543B4 (de) | 2009-12-23 | 2014-02-06 | Axel Muntermann | Verfahren zur kosmetischen Hautglättung |
US20110172735A1 (en) | 2009-12-31 | 2011-07-14 | Pooja Johari | Systems and methods for therapy |
DE102010004307B4 (de) | 2010-01-11 | 2013-01-31 | Technische Universität München | Magnetstimulation mit frei wählbarer Pulsform |
US20110172750A1 (en) | 2010-01-11 | 2011-07-14 | David Ellsworth Cassidy | Methods and apparatus for active patient warming |
WO2011091293A1 (fr) | 2010-01-21 | 2011-07-28 | Zeltiq Aesthetics, Inc. | Compositions pour utilisation avec un système pour refroidissement amélioré de tissu sous-cutané riche en lipides |
US9314368B2 (en) | 2010-01-25 | 2016-04-19 | Zeltiq Aesthetics, Inc. | Home-use applicators for non-invasively removing heat from subcutaneous lipid-rich cells via phase change coolants, and associates devices, systems and methods |
US20120029394A1 (en) | 2010-02-05 | 2012-02-02 | Bacoustics, Llc | Ultrasound Assisted Laser Skin and Tissue Treatment |
US20110196438A1 (en) | 2010-02-10 | 2011-08-11 | Lukas Mnozil | Therapy device and method for treating underlying tissue using electrical and acoustic energies |
US20130006039A1 (en) | 2010-02-10 | 2013-01-03 | Sadler John W | Power management in transcranial magnetic stimulators |
WO2011100692A1 (fr) | 2010-02-15 | 2011-08-18 | The General Hospital Corporation | Procédés et dispositifs pour la dissociation sélective de graisse viscérale par refroidissement commandé |
CN102781368A (zh) | 2010-02-24 | 2012-11-14 | 赛诺龙医疗公司 | 体形塑造设备 |
US20110218464A1 (en) | 2010-03-01 | 2011-09-08 | Lumenis Ltd. | System, Device and Methods of Tissue Treatment for Achieving Tissue Specific Effects |
WO2012123939A1 (fr) | 2011-03-17 | 2012-09-20 | Photopill Medical Ltd. | Photothérapie à l'aide d'une capsule |
US20130035745A1 (en) | 2010-03-22 | 2013-02-07 | Zaghloul Ahmed | Charge-enhanced neural electric stimulation system |
JP2011194176A (ja) | 2010-03-24 | 2011-10-06 | Panasonic Electric Works Co Ltd | 美容装置 |
US20130096363A1 (en) | 2010-04-02 | 2013-04-18 | M. Bret Schneider | Neuromodulation of deep-brain targets by transcranial magnetic stimulation enhanced by transcranial direct current stimulation |
US8306628B2 (en) | 2010-04-06 | 2012-11-06 | BDS Medical Corporation | Deep heating hyperthermia using phased arrays and patient positioning |
DE102010014157B4 (de) | 2010-04-08 | 2021-02-18 | Horst Dittmann E.K. | Muskel- und Nervenanregungssystem mit TENS-EMS-Gerät, Gürtel und Thermospeicher |
DE102010016458B4 (de) | 2010-04-15 | 2011-12-15 | Ingo Dreher | Handgeführte Kühlvorrichtung zur Kryotherapie |
US20110263925A1 (en) | 2010-04-23 | 2011-10-27 | Charles Bratton | Pulsed Magnetic Therapy Device |
GB201006841D0 (en) | 2010-04-26 | 2010-06-09 | Thomsen Lars | Method, device and system for targetted cell lysis |
US9272157B2 (en) | 2010-05-02 | 2016-03-01 | Nervive, Inc. | Modulating function of neural structures near the ear |
KR20110123831A (ko) | 2010-05-10 | 2011-11-16 | 주식회사 씨알테크놀러지 | 자기 자극 치료법의 유효성을 확인하기 위한 의사 자기 자극기 |
US20120158100A1 (en) | 2010-06-21 | 2012-06-21 | Kevin Schomacker | Driving Microneedle Arrays into Skin and Delivering RF Energy |
WO2012003451A2 (fr) | 2010-07-01 | 2012-01-05 | Stimdesigns Llc | Système universel de stimulation électrique en boucle fermée |
US10588684B2 (en) | 2010-07-19 | 2020-03-17 | Covidien Lp | Hydraulic conductivity monitoring to initiate tissue division |
US8676338B2 (en) | 2010-07-20 | 2014-03-18 | Zeltiq Aesthetics, Inc. | Combined modality treatment systems, methods and apparatus for body contouring applications |
KR20140004058A (ko) | 2010-07-25 | 2014-01-10 | 시네론 메디컬 리미티드 | 지방 조직의 두께를 측정하는 방법 및 장치 |
US8646239B2 (en) | 2010-08-04 | 2014-02-11 | John David Rulon | Modular building block building system |
US10765882B2 (en) | 2010-09-05 | 2020-09-08 | Madryn Heatlh Partners, Lp | Self operated esthetic device with a substrate |
AU2011305581B2 (en) | 2010-09-20 | 2016-05-05 | Emkinetics, Inc. | Method and apparatus for transdermal stimulation over the palmar and plantar surfaces |
KR101565000B1 (ko) | 2010-10-07 | 2015-11-02 | 바이오모비 코프 | 원격 치료 시스템 |
CN201906360U (zh) | 2010-10-09 | 2011-07-27 | 李明宙 | 双模式刺激治疗仪 |
WO2012052986A2 (fr) * | 2010-10-17 | 2012-04-26 | Syneron Medical Ltd. | Timbre à usage unique pour traitement cutané esthétique personnel |
US8523754B2 (en) | 2010-10-29 | 2013-09-03 | Laurie A. Bechler | Multi-polar magnetic devices for treating patients and methods therefor |
EP2637625A4 (fr) | 2010-11-12 | 2015-03-04 | Syneron Medical Ltd | Procédé et dispositif de traitement de tissu mou |
GB2486400B (en) | 2010-11-20 | 2016-02-10 | Pulse Medical Technologies Ltd | Device for generating magnetic fields |
US9233257B1 (en) | 2010-11-22 | 2016-01-12 | Jacob Zabara | Electromagnetic radiation treatment |
US8684901B1 (en) | 2010-11-22 | 2014-04-01 | Jacob Zabara | Electromagnetic radiation treatment for cancer and pathological genetic regulations |
EP2646103B1 (fr) | 2010-12-03 | 2015-10-21 | Syneron Medical Ltd. | Procédé et appareil permettant d'améliorer le contact électrode-peau |
JP2014503255A (ja) | 2010-12-03 | 2014-02-13 | サイノシュア・インコーポレーテッド | 温熱処置による非侵襲的な脂肪低減 |
GB201021032D0 (en) | 2010-12-10 | 2011-01-26 | Creo Medical Ltd | Electrosurgical apparatus |
WO2013115756A2 (fr) | 2010-12-29 | 2013-08-08 | Ethicon Endo-Surgery, Inc. | Procédés et dispositifs pour activer un tissu adipeux brun par refroidissement |
US9610429B2 (en) | 2010-12-29 | 2017-04-04 | Ethicon Endo-Surgery, Inc. | Methods and devices for activating brown adipose tissue with targeted substance delivery |
FR2970656B1 (fr) | 2011-01-21 | 2014-06-27 | Cosmosoft | Methode pour la reduction de la masse graisseuse viscerale ou intramusculaire |
PT2665516E (pt) | 2011-01-21 | 2015-11-17 | Cosmosoft | Dispositivo para emitir um campo magnético |
WO2012103242A1 (fr) | 2011-01-25 | 2012-08-02 | Zeltiq Aesthetics, Inc. | Dispositifs, systèmes d'application et procédés avec zones de flux thermique localisées permettant de retirer la chaleur de cellules sous-cutanées riches en lipides |
WO2012103315A2 (fr) | 2011-01-27 | 2012-08-02 | Osa Holdings, Inc. | Appareil et méthodes de traitement de l'apnée obstructive du sommeil faisant appel à la cryolyse des tissus adipeux |
JP5723253B2 (ja) | 2011-01-31 | 2015-05-27 | ルネサスエレクトロニクス株式会社 | 半導体装置 |
WO2012103632A1 (fr) | 2011-02-02 | 2012-08-09 | Universite Laval | Procédé et utilisation de la stimulation périphérique de fréquence thêta (ptbs) pour l'amélioration d'une infirmité motrice |
WO2012114337A2 (fr) | 2011-02-22 | 2012-08-30 | Tavtech Ltd. | Dispositif d'administration de substances thérapeutiques à l'aide d'un courant liquide-gaz à vitesse élevée |
CA2828240A1 (fr) | 2011-03-03 | 2012-09-07 | Nexstim Oy | Cartographie cognitive utilisant une stimulation magnetique transcranienne |
WO2012119293A1 (fr) | 2011-03-04 | 2012-09-13 | Zhao Zhigang | Électrode combinée pour thérapie photo-électro-magnétique et équipement thérapeutique photo-électro-magnétique doté de l'électrode |
US10413349B2 (en) | 2011-03-04 | 2019-09-17 | Covidien Lp | System and methods for identifying tissue and vessels |
DE102011014291A1 (de) | 2011-03-17 | 2012-09-20 | Magic Race Llc | Vorrichtung zur extrakorporalen magnetischen Innervation |
AU2012235628B2 (en) | 2011-04-01 | 2015-07-16 | Syneron Beauty Ltd | A treatment device |
US8996115B2 (en) * | 2011-04-07 | 2015-03-31 | Greatbatch, Ltd. | Charge balancing for arbitrary waveform generator and neural stimulation application |
KR101106834B1 (ko) | 2011-04-08 | 2012-01-19 | 황주영 | 오심·구토 제어용 저주파 전기 자극 신호 발생장치 |
DE102011018470B4 (de) | 2011-04-18 | 2013-01-10 | Otto Bock Healthcare Gmbh | Bandage und Elektrodensystem |
WO2012147927A1 (fr) | 2011-04-28 | 2012-11-01 | 国立大学法人大阪大学 | Stimulateur électromagnétique thérapeutique et procédé de production de paires de données personnalisées utilisé dans ce dispositif |
EP2714192B1 (fr) | 2011-06-03 | 2021-03-10 | Nexstim Oyj | Procédé de combinaison de profils de connectivité anatomique et stimulation cérébrale guidée |
WO2012170909A1 (fr) | 2011-06-10 | 2012-12-13 | The Research Foundation Of State University Of New York | Procédé et dispositif pour la stimulation acoustique non invasive de cellules souches et de cellules progénitrices dans un patient |
EP3549543B8 (fr) | 2011-06-14 | 2023-08-23 | Aerin Medical, Inc. | Dispositif de traitement de voies nasales |
US8731657B1 (en) | 2011-07-05 | 2014-05-20 | TAMA Research Corp. | Multi-mode microcurrent stimulus system with safety circuitry and related methods |
WO2013009784A2 (fr) | 2011-07-10 | 2013-01-17 | Guided Therapy Systems, Llc | Système et procédé pour accélérer la cicatrisation d'un matériau implanté et/ou d'un tissu natif |
WO2013012948A1 (fr) | 2011-07-18 | 2013-01-24 | Cervel Neurotech, Inc. | Stimulation simultanée de zones cérébrales profondes et superficielles |
KR101233287B1 (ko) | 2011-07-22 | 2013-02-14 | 포텍마이크로시스템(주) | 물리치료기 |
KR101233286B1 (ko) | 2011-07-22 | 2013-02-14 | 포텍마이크로시스템(주) | 물리치료기 |
EP2741705A4 (fr) | 2011-08-09 | 2014-08-27 | Syneron Beauty Ltd | Procédé et appareil pour des soins de beauté cosmétiques |
CN102319141B (zh) | 2011-08-23 | 2014-08-13 | 广州贝伽电子科技有限公司 | 一种除去人体脂肪的减肥仪 |
EP2747838B8 (fr) | 2011-08-26 | 2019-07-17 | Endomagnetics Limited | Appareil de génération de champ énergétique pour traitement du cancer dans des cavités corporelles et des parties de type cavité |
ES2562990T3 (es) | 2011-09-05 | 2016-03-09 | Venus Concept Ltd | Dispositivo estético mejorado para embellecer la piel |
WO2013035088A1 (fr) | 2011-09-05 | 2013-03-14 | Venus Concept Ltd | Appareil et procédé permettant de chauffer un tissu de façon sélective |
EP2564894B1 (fr) | 2011-09-05 | 2015-11-18 | Venus Concept Ltd | Dispositif esthétique |
US9782324B2 (en) | 2011-09-15 | 2017-10-10 | Sigma Instruments Holdings, Llc | System and method for treating skin and underlying tissues for improved health, function and/or appearance |
JP2013066597A (ja) * | 2011-09-22 | 2013-04-18 | Jsv Co Ltd | フェイスシェイプアップパルスローラー |
CA2887370C (fr) | 2011-09-27 | 2021-03-23 | The Maclean Hospital Corporation | Stimulation de champ magnetique |
US8560077B2 (en) | 2011-10-04 | 2013-10-15 | Feinstein Patents Llc | Universal musculoskeletal rehab device (brace, sleeve, or pad) for electrical treatment modalities and biofeedback response monitoring |
FI20116085L (fi) | 2011-11-03 | 2013-05-04 | Nexstim Oy | Menetelmä ja laite aivojen transkraniaalisen stimulaation vaikutusten määrittämiseksi |
US20140249355A1 (en) | 2011-10-20 | 2014-09-04 | Bioelectronics Corp. | Pulsed electromagnetic field device with adhesive applicator |
JP5937098B2 (ja) | 2011-10-24 | 2016-06-22 | 帝人ファーマ株式会社 | 経頭蓋磁気刺激システム |
WO2013062785A1 (fr) | 2011-10-27 | 2013-05-02 | Scientific Partners, Llc | Système et procédé pour administrer une thérapie et détecter une activité biologique dans la bouche |
KR101292289B1 (ko) | 2011-10-28 | 2013-08-21 | 주식회사 씨알테크놀러지 | 초점 스윕형 경두개 자기 자극 장치 및 경두개 자기 자극 방법 |
KR101415141B1 (ko) | 2011-10-28 | 2014-07-04 | 주식회사 리메드 | 감압 방식의 발열체의 냉각 장치 |
US20140303425A1 (en) | 2011-11-04 | 2014-10-09 | Ivivi Health Sciences, Llc | Method and apparatus for electromagnetic treatment of cognition and neurological injury |
RU2496532C2 (ru) | 2011-11-07 | 2013-10-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный радиотехнический университет" | Способ формирования магнитотерапевтического воздействия и устройство для его осуществления |
US9649502B2 (en) | 2011-11-14 | 2017-05-16 | Neosync, Inc. | Devices and methods of low frequency magnetic stimulation therapy |
WO2013074664A1 (fr) | 2011-11-14 | 2013-05-23 | Kornstein Andrew | Dispositif de cryolipolyis ayant une surface d'applicateur incurvée |
ES2657757T3 (es) | 2011-11-16 | 2018-03-06 | Btl Holdings Limited | Sistemas para tratamientos subcutáneos |
US9867996B2 (en) | 2011-11-16 | 2018-01-16 | Btl Holdings Limited | Methods and systems for skin treatment |
US8548599B2 (en) | 2011-11-16 | 2013-10-01 | Btl Holdings Limited | Methods and systems for subcutaneous treatments |
JP6046158B2 (ja) | 2011-11-16 | 2016-12-14 | ザ ジェネラル ホスピタル コーポレイション | 皮膚組織の低温処置のための方法及び装置 |
US20160220834A1 (en) * | 2011-11-16 | 2016-08-04 | Btl Holdings Limited | Method and system for skin treatment |
US20130123765A1 (en) | 2011-11-16 | 2013-05-16 | Btl Holdings Limited | Methods and systems for subcutaneous treatments |
EP3766445A1 (fr) | 2011-11-16 | 2021-01-20 | The General Hospital Corporation | Procédé et appareil de traitement cryogénique de tissu cutané |
US20130131764A1 (en) | 2011-11-18 | 2013-05-23 | P. Eric Grove | Cool fat burner |
JP5916362B2 (ja) * | 2011-12-05 | 2016-05-11 | 株式会社スターアベニュー | 美顔器 |
US9414759B2 (en) | 2011-12-06 | 2016-08-16 | Imris Inc. | Surface electrode design that can be left in place during MR imaging |
US8728064B2 (en) | 2011-12-12 | 2014-05-20 | Candela Corporation | Devices for the treatment of biological tissue |
US20130172871A1 (en) | 2011-12-28 | 2013-07-04 | Josef LUZON | Skin treatment device |
EP2614807B1 (fr) | 2012-01-11 | 2018-06-06 | Syneron Medical Ltd. | Applicateur de façonnage de corps de grande surface |
KR101905237B1 (ko) | 2012-01-11 | 2018-10-05 | 시네론 메디컬 리미티드 | 큰 면적의 신체를 성형하는 애플리케이터 |
EP2809390A4 (fr) | 2012-01-30 | 2015-07-29 | Us Health | Amélioration de la stimulation transcrânienne par courant continu ou de la stimulation transcrânienne magnétique faisant appel à la modulation synaptique induite par la température |
CN104411260B (zh) | 2012-01-31 | 2018-04-10 | 海因派克兹有限公司 | 高压弹道体外冲击波设备、系统及使用方法 |
US9320907B2 (en) | 2012-02-02 | 2016-04-26 | The United States Government, As Represented By The Department Of Veterans Affairs | Integrated surface stimulation device for pain management and wound therapy |
CA2864468C (fr) | 2012-02-13 | 2021-06-22 | Gaby PELL | Utilisation d'une stimulation magnetique transcranienne pour moduler la permeabilite de la barriere hemato-encephalique |
US10335606B2 (en) | 2012-02-13 | 2019-07-02 | Brainsway, Ltd. | Use of transcranial magnetic stimulation to modulate permeability of the blood-brain barrier |
ITRE20120011A1 (it) | 2012-02-16 | 2013-08-17 | Mantis S R L | Dispositivo elettromedicale |
ITRE20120010A1 (it) | 2012-02-16 | 2013-08-17 | Mantis S R L | Metodo e circuito per la generazione di un campo magnetico pulsato per un dispositivo elettromedicale |
US9084665B2 (en) | 2012-02-23 | 2015-07-21 | Dynatronics Corporation | Systems and methods for providing a thermo-electro-stimulation probe device |
US9044595B2 (en) | 2012-03-05 | 2015-06-02 | Heidi Araya | System and method for reducing lipid content of adipocytes in a body |
ES2792464T3 (es) | 2012-03-05 | 2020-11-11 | Nexstim Oy | Estimulación magnética transcraneal de pulso pareado bifásico |
DE102012101921B4 (de) | 2012-03-07 | 2017-08-10 | Technische Universität München | Schaltungstopologien und Verfahren für die Magnetstimulation |
DE202012002278U1 (de) | 2012-03-08 | 2012-06-26 | Friedemann Lotsch | Gerät für die Kryolipolyse |
IN2014DN09105A (fr) | 2012-04-06 | 2015-05-22 | Newport Brain Res Lab Inc | |
KR101881193B1 (ko) | 2012-04-06 | 2018-07-23 | 코시바나 홀딩스 리미티드 | 생물학적 신호의 하모닉에서의 rTMS |
CN104507523A (zh) | 2012-04-06 | 2015-04-08 | 纽波特大脑研究实验室公司 | 频率特定的感官刺激 |
DK2838613T3 (en) | 2012-04-18 | 2017-09-25 | Afschin Dr Fatemi | Medical system for the treatment of deep tissue targets |
CN202637725U (zh) | 2012-04-20 | 2013-01-02 | 南京理工大学 | 一种动态可变多通道经颅磁刺激线圈阵列 |
CN102847231B (zh) | 2012-04-20 | 2015-02-25 | 南京理工大学 | 一种动态可变多通道经颅磁刺激线圈阵列及其控制方法 |
US9261574B2 (en) | 2012-05-02 | 2016-02-16 | General Electric Company | Structured RF coil assembly for MRI scanner |
WO2013166434A1 (fr) | 2012-05-03 | 2013-11-07 | Cervel Neurotech, Inc. | Matrice de stimulation magnétique transcranienne (smt) à charnières pour alignement de bobine innovant |
WO2013168051A1 (fr) | 2012-05-07 | 2013-11-14 | Koninklijke Philips N.V. | Système radiofréquence pour un traitement de la peau comprenant un rouleau ayant une électrode et procédé de traitement de la peau |
DE102012012149A1 (de) | 2012-06-20 | 2013-12-24 | Quantenmedicine AG | Verfahren und Vorrichtung für das maschinengestützte Beckenbodentraining |
MX2012012158A (es) | 2012-06-21 | 2014-04-02 | Liliana Paez | Dispositivo de enfriamiento para alteracion de celulas ricas en lipidos. |
DE102012013534B3 (de) | 2012-07-05 | 2013-09-19 | Tobias Sokolowski | Vorrichtung für repetitive Nervenstimulation zum Abbau von Fettgewebe mittels induktiver Magnetfelder |
JP5847353B2 (ja) | 2012-07-09 | 2016-01-20 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 皮膚処置方法及び装置 |
JP6208758B2 (ja) | 2012-07-26 | 2017-10-18 | シネロン ビューティー リミテッド | 家庭用美容トリートメント装置 |
JP6043686B2 (ja) | 2012-08-10 | 2016-12-14 | 株式会社 Mtg | 美容器具 |
GB2504984A (en) | 2012-08-16 | 2014-02-19 | Quest Ion Pte Ltd | Toning belt |
CA2882299C (fr) | 2012-08-18 | 2023-09-19 | Wright Therapy Products, Inc. | Methodes pour determiner la taille de parties du corps dans des interventions de compressotherapie |
US20140066786A1 (en) | 2012-09-04 | 2014-03-06 | Morteza Naghavi | Method and Apparatus For Improved Wound Healing and Enhancement of Rehabilitation |
KR101447532B1 (ko) | 2012-09-14 | 2014-10-10 | 주식회사 리메드 | 자기장을 이용한 자극 치료기 |
KR101413022B1 (ko) | 2012-09-14 | 2014-07-04 | 주식회사 리메드 | 자기장을 이용한 자극 치료기 |
US20140081359A1 (en) | 2012-09-19 | 2014-03-20 | Bruce J. Sand | Enhanced light based lipoplasty |
EP2911604B1 (fr) | 2012-10-24 | 2019-12-04 | Biolase, Inc. | Ensemble pièce à main pour dispositif de traitement laser |
CA2845438C (fr) | 2012-11-13 | 2015-02-03 | Mehran TALEBINEJAD | Circuit et procede a utiliser dans la stimulation magnetique transcranienne |
KR101351356B1 (ko) | 2012-12-18 | 2014-01-15 | (주) 엠큐브테크놀로지 | 자기 자극기를 이용한 바이오피드백 장치 및 그 제어 방법 |
CN203169831U (zh) | 2012-12-21 | 2013-09-04 | 广州赫尔玛思电子科技有限公司 | 电磁射频纤塑仪 |
RU2529471C2 (ru) | 2012-12-28 | 2014-09-27 | Федеральное государственное бюджетное учреждение науки Институт физиологии им. И.П. Павлова Российской академии наук (ИФ РАН) | Способ накожной электростимуляции спинного мозга |
PL402395A1 (pl) | 2013-01-08 | 2014-07-21 | Kriosystem Spółka Z Ograniczoną Odpowiedzialnością | Urządzenie do krioterapii z układem ważącym |
KR101451891B1 (ko) | 2013-01-22 | 2014-10-16 | 유니스파테크주식회사 | 금속 냉온 감압 피부 관리 장치 |
US9248308B2 (en) | 2013-02-21 | 2016-02-02 | Brainsway, Ltd. | Circular coils for deep transcranial magnetic stimulation |
US9808642B2 (en) | 2013-02-21 | 2017-11-07 | Brainsway, Ltd. | Circular coils for deep transcranial magnetic stimulation |
US9802058B2 (en) | 2013-02-21 | 2017-10-31 | Brainsway, Ltd. | Central base coils for deep transcranial magnetic stimulation |
US9254394B2 (en) | 2013-02-21 | 2016-02-09 | Brainsway, Ltd. | Central base coils for deep transcranial magnetic stimulation |
US9533168B2 (en) | 2013-02-21 | 2017-01-03 | Brainsway, Ltd. | Unilateral coils for deep transcranial magnetic stimulation |
US20140243933A1 (en) | 2013-02-25 | 2014-08-28 | Medos International Sarl | Modulation of the Activity of Mitochondria in Brown Adipose Tissue By Photobiomodulation for the Treatment of Obesity |
WO2014134197A1 (fr) | 2013-03-01 | 2014-09-04 | Empi, Inc. | Systèmes et procédés pour la commande sans fil d'électrothérapie non invasive |
US8880196B2 (en) | 2013-03-04 | 2014-11-04 | Zoll Medical Corporation | Flexible therapy electrode |
US9026196B2 (en) | 2013-03-05 | 2015-05-05 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for detecting sheathing and unsheathing of localization elements |
EP2964126B1 (fr) | 2013-03-07 | 2018-11-28 | The Cleveland Clinic Foundation | Appareil pour le traitement d'un défaut neuromusculaire |
US10835767B2 (en) | 2013-03-08 | 2020-11-17 | Board Of Regents, The University Of Texas System | Rapid pulse electrohydraulic (EH) shockwave generator apparatus and methods for medical and cosmetic treatments |
US10369373B2 (en) | 2013-03-11 | 2019-08-06 | The Regents Of The University Of California | Portable transcutaneous magnetic stimulator and systems and methods of use thereof |
US9545523B2 (en) | 2013-03-14 | 2017-01-17 | Zeltiq Aesthetics, Inc. | Multi-modality treatment systems, methods and apparatus for altering subcutaneous lipid-rich tissue |
US20150005759A1 (en) | 2013-03-14 | 2015-01-01 | Cynosure, Inc. | Current Delivery Systems, Apparatuses and Methods |
US9844460B2 (en) | 2013-03-14 | 2017-12-19 | Zeltiq Aesthetics, Inc. | Treatment systems with fluid mixing systems and fluid-cooled applicators and methods of using the same |
EP2967744B1 (fr) | 2013-03-14 | 2017-10-18 | Syneron Medical Ltd. | Appareil de traitement de la peau |
JP2016515869A (ja) | 2013-03-15 | 2016-06-02 | エムキネティクス,インコーポレイテッド | 手のひら及び足底の表面上での経皮的な刺激のための方法及び装置 |
WO2014144923A1 (fr) | 2013-03-15 | 2014-09-18 | Sonovia Holdings Llc | Transducteur ultrasonore et convertisseur de lumière |
US20140276693A1 (en) | 2013-03-15 | 2014-09-18 | Palomar Medical Technologies, Llc | Treatment of tissue |
US9707121B2 (en) | 2013-03-15 | 2017-07-18 | Elwha Llc | Treating sleep apnea with negative pressure |
WO2014149021A2 (fr) | 2013-03-15 | 2014-09-25 | Cynosure, Inc. | Réduction de graisse non invasive par traitement hyperthermique |
CN105377359B (zh) | 2013-03-29 | 2019-02-01 | Gsk消费者健康有限公司 | 使用电极-皮肤阻抗来检测皮肤电极脱落 |
CA2908587C (fr) | 2013-04-02 | 2020-08-18 | Teijin Pharma Limited | Dispositif de stimulation magnetique |
EP2982412B1 (fr) | 2013-04-02 | 2017-11-01 | Teijin Pharma Limited | Dispositif de positionnement de tête, système médical, dispositif de positionnement d'instrument médical, et coque de maintien |
WO2014176420A1 (fr) * | 2013-04-24 | 2014-10-30 | Tufts University | Appareil, systèmes et procédés pour détecter ou stimuler une activité musculaire |
WO2014195580A1 (fr) | 2013-06-03 | 2014-12-11 | Nexstim Oy | Dispositif de bobine mtms avec enroulements de bobine se chevauchant |
US9072891B1 (en) | 2013-06-04 | 2015-07-07 | Dantam K. Rao | Wearable medical device |
CA2913786C (fr) | 2013-06-06 | 2023-03-14 | Tricord Holdings, L.L.C. | Systemes, kits et methodes de surveillance physiologique modulaire |
KR20160100900A (ko) | 2013-06-17 | 2016-08-24 | 아디 매쉬아취 | 임플란트 유닛 이송 도구 |
DE102013211859B4 (de) | 2013-06-21 | 2015-07-16 | Technische Universität München | Magnetstimulator zur Stimulation eines Gewebes durch ein Magnetfeld |
US11724130B2 (en) | 2013-06-24 | 2023-08-15 | Zetroz Systems Llc | Wearable ultrasound device |
CN105324150B (zh) | 2013-06-28 | 2018-04-27 | Koc大学 | 电刺激装置 |
WO2015012672A1 (fr) | 2013-07-22 | 2015-01-29 | Товарищество С Ограниченной Ответственностью "Фармацевтическая Компания "Ромат" | Correcteur à impulsions magnétiques (variantes) |
WO2015012639A1 (fr) | 2013-07-26 | 2015-01-29 | 부산대학교 산학협력단 | Appareil d'application de champ magnétique servant à soulager la douleur ressentie sur la peau générée lors de l'application d'une stimulation électrique à basse fréquence au moyen d'un puissant champ magnétique |
KR101487850B1 (ko) | 2013-08-08 | 2015-02-02 | (주)클래시스 | 냉각을 이용한 비만치료 장치 |
US9168096B2 (en) | 2013-09-09 | 2015-10-27 | Invasix Corp. | System and method for tissue treatment using non-symmetric radio-frequency energy waveform |
JP6118456B2 (ja) | 2013-09-19 | 2017-04-19 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 無線周波数電流を用いた皮膚のための処置装置 |
DE102013110984B3 (de) | 2013-10-02 | 2015-04-02 | Pierenkemper Gmbh | Vorrichtung zur Elektrostimulation sowie Verfahren zur Ansteuerung von mehreren Elektroden in einer Vorrichtung zur Elektrostimulation |
ES2533145B1 (es) | 2013-10-03 | 2016-07-12 | Clinipro, S. L. | Procedimiento cosmético para reducir el tejido adiposo subcutáneo |
US20150342661A1 (en) | 2013-10-09 | 2015-12-03 | Venus Concept Ltd | Integrated Treatment System |
KR101511444B1 (ko) | 2013-10-30 | 2015-04-10 | 주식회사 리메드 | 헤드기어 타입의 tms 치료기 |
KR101622143B1 (ko) | 2013-10-30 | 2016-05-18 | 주식회사 화니메디칼 | 피부 조직의 치료 또는 피하 지방 제거를 위한 고주파 자극 장치 |
JP2015085137A (ja) | 2013-11-01 | 2015-05-07 | 株式会社東芝 | 磁気共鳴イメージング装置 |
US9205258B2 (en) | 2013-11-04 | 2015-12-08 | ElectroCore, LLC | Nerve stimulator system |
EP3065823B1 (fr) | 2013-11-06 | 2020-09-09 | Terry Ward | Dispositif et procédé de réduction de cellulite et de graisse mettant en oeuvre des émetteurs optiques |
US10183172B2 (en) | 2013-11-11 | 2019-01-22 | Neuronetics, Inc. | Monitoring and detecting magnetic stimulation |
WO2015075548A1 (fr) | 2013-11-22 | 2015-05-28 | Simon Fraser University | Appareil et procédés d'assistance respiratoire par stimulation nerveuse transvasculaire |
EP2878336B1 (fr) | 2013-11-29 | 2019-10-30 | Nexstim Oy | Appareil de support de dispositif |
US10188868B2 (en) | 2013-11-29 | 2019-01-29 | Nexstim Oyj | Device support apparatus |
GB2521609B (en) | 2013-12-23 | 2016-02-10 | Nexstim Oy | Device support apparatus |
JP5771261B2 (ja) | 2013-12-03 | 2015-08-26 | 株式会社Ifg | 医療用連発磁気パルス発生装置 |
EP3079769A1 (fr) | 2013-12-13 | 2016-10-19 | Guided Therapy Systems, L.L.C. | Système et procédé pour un traitement non-invasif ayant une efficacité améliorée |
US9561384B1 (en) | 2014-01-06 | 2017-02-07 | Eneurak, Inc. | Transcranial magnetic stimulation device for the treatment of migraine headaches |
US9968798B2 (en) | 2014-01-06 | 2018-05-15 | Eneura, Inc. | Transcranial magnetic stimulation device with body proximity sensors for the treatment of migraine headaches |
US10195426B2 (en) | 2014-01-07 | 2019-02-05 | Invicta Medical, Inc. | Method and apparatus for treating sleep apnea |
US9849301B2 (en) | 2014-01-15 | 2017-12-26 | Neuronetics, Inc. | Magnetic stimulation coils and ferromagnetic components for reduced surface stimulation and improved treatment depth |
EP3099259A1 (fr) | 2014-01-31 | 2016-12-07 | Zeltiq Aesthetics, Inc. | Systèmes de traitement permettant le traitement des glandes par refroidissement |
KR101539633B1 (ko) | 2014-02-06 | 2015-07-27 | 정상문 | 다기능 치료장치 |
WO2015120479A1 (fr) | 2014-02-10 | 2015-08-13 | Neuronetics, Inc. | Modélisation de tête pour une procédure thérapeutique ou de diagnostic |
TWI663955B (zh) | 2014-02-12 | 2019-07-01 | 美商綜合醫院股份有限公司 | 用於影響組織的色素形成之方法及設備 |
US10237962B2 (en) | 2014-02-26 | 2019-03-19 | Covidien Lp | Variable frequency excitation plasma device for thermal and non-thermal tissue effects |
WO2015137733A1 (fr) | 2014-03-11 | 2015-09-17 | 송재훈 | Dispositif et procédé de refroidissement de la peau |
KR20150106379A (ko) | 2014-03-11 | 2015-09-21 | 송재훈 | 피부 쿨링 장치 및 방법 |
EP2948218A1 (fr) | 2014-03-21 | 2015-12-02 | Nexstim Oy | Planification de stimulation magnétique transcrânienne guidée à l'aide d'un indice d'efficacité structurale |
US10518098B2 (en) | 2014-04-02 | 2019-12-31 | University Of Maryland, Baltimore | Methods and systems for controlling magnetic fields and magnetic field induced current |
WO2015153046A1 (fr) | 2014-04-04 | 2015-10-08 | Cardiac Pacemakers, Inc. | Procédés et appareil permettant une stimulation pour traiter l'apnée |
US10737107B2 (en) | 2014-04-08 | 2020-08-11 | Ori Ledany | LED-laser biomagnetic wave therapy device |
CN203989490U (zh) | 2014-04-08 | 2014-12-10 | 奥利·莱德尼 | 便携式按摩及磁光治疗仪 |
GB201406604D0 (en) | 2014-04-11 | 2014-05-28 | Zeez Technology Ltd | Therapeutic field generator |
EP3129100A4 (fr) | 2014-04-11 | 2017-10-18 | Bioelectronics Corp. | Dispositif de thérapie électromagnétique et procédés associés |
US20150297909A1 (en) | 2014-04-17 | 2015-10-22 | Thomas J. Peashock | Apparatus for assisting with the physiological recovery from fatigue, stress or injury |
US10195454B2 (en) | 2014-05-05 | 2019-02-05 | Patsy Yamashiro | Use of magnetic stimulation to modulate muscle contraction |
US9526912B1 (en) | 2014-05-13 | 2016-12-27 | Eneura, Inc. | Transcranial magnetic stimulation device for the treatment of migraine headaches |
EP3145585B1 (fr) | 2014-05-20 | 2021-11-03 | electroCore, Inc. | Neurostimulation non invasive par l'intermédiaire de dispositifs mobiles |
WO2015184447A1 (fr) | 2014-05-30 | 2015-12-03 | Cervel Neurotech, Inc. | Commande de plasticité de réseau cérébral dépendant du minutage de pointe par l'intermédiaire d'une stimulation magnétique transcrânienne multi-bobine |
US20170128720A1 (en) | 2014-06-03 | 2017-05-11 | Vomaris Innovations, Inc | Methods and devices for modulating gene expression and enzyme activity |
US20150360045A1 (en) | 2014-06-13 | 2015-12-17 | Zygood, Llc | Electrical pulse generator to create magnetic pulses for the treatment of pain |
GB2530475A (en) | 2014-06-20 | 2016-03-30 | Stefan M Goetz | Device and method for quiet magnetic neurostimulation |
JP3192971U (ja) * | 2014-06-27 | 2014-09-11 | 株式会社キュービックアイディ | 美容器 |
US20150375005A1 (en) | 2014-06-30 | 2015-12-31 | BrainQ Technologies Ltd. | Therapeutic electromagnetic field |
FI20145644A (fi) | 2014-07-02 | 2016-01-03 | Nexstim Oy | Asennonmäärityslaite |
GB201412044D0 (en) | 2014-07-07 | 2014-08-20 | Magstim The Company Ltd | Magnetic stimulation (MS) coil arrangement |
KR101660830B1 (ko) | 2014-07-16 | 2016-09-29 | 피에스케이 주식회사 | 이중 플라즈마 소스를 이용한 플라즈마 생성 장치 및 그를 포함하는 기판 처리 장치 |
US9649148B2 (en) | 2014-07-24 | 2017-05-16 | Arthrocare Corporation | Electrosurgical system and method having enhanced arc prevention |
US9884199B2 (en) | 2014-08-11 | 2018-02-06 | Minnesota Medical Physics Llc | Methods and apparatus for treatment of chronic kidney disease |
WO2016023126A1 (fr) | 2014-08-14 | 2016-02-18 | Functional Neuromodulation, Inc. | Système de stimulation du cerveau comprenant de multiples modes de stimulation |
EP3182943A4 (fr) | 2014-08-18 | 2018-03-21 | Miramar Labs, Inc. | Appareil, système et procédé de traitement de tissu graisseux |
US10568759B2 (en) | 2014-08-19 | 2020-02-25 | Zeltiq Aesthetics, Inc. | Treatment systems, small volume applicators, and methods for treating submental tissue |
DE102014112548A1 (de) | 2014-09-01 | 2016-03-03 | Logicdata Electronic & Software Entwicklungs Gmbh | Arbeitsplatzstuhlsystem und Verfahren zur Justierung und Benutzung eines Arbeitsplatzstuhlsystems |
US20160066994A1 (en) | 2014-09-09 | 2016-03-10 | Erchonia Corporation | Non-Invasive Method for Slimming a Human Body Using Two Wavelngths of Laser Energy Concurrently |
WO2016048721A1 (fr) | 2014-09-25 | 2016-03-31 | Zeltiq Aesthetics, Inc. | Systèmes de traitement, procédés, et appareils pour modifier l'aspect de la peau |
WO2016054502A1 (fr) | 2014-10-03 | 2016-04-07 | Neurospring | Stimulateur de nerf profond |
US10675819B2 (en) | 2014-10-03 | 2020-06-09 | Massachusetts Institute Of Technology | Magnetic field alignment of emulsions to produce porous articles |
US10413744B2 (en) | 2014-10-07 | 2019-09-17 | Teijin Pharma Limited | Transcranial magnetic stimulation system |
EP3209246B1 (fr) | 2014-10-21 | 2018-12-12 | Tecres S.P.A. | Prothese pour une articulation d'epaule |
US20160129273A1 (en) | 2014-11-07 | 2016-05-12 | Sam Boong Park | Pulsed electromagnetic therapy device with combined energy delivery |
US20160129274A1 (en) | 2014-11-10 | 2016-05-12 | Sam Boong Park | Wearable energy delivery system |
US9967838B2 (en) | 2014-11-21 | 2018-05-08 | Apple Inc. | Network synchronization for system configuration exchanges |
GB201421448D0 (en) | 2014-12-03 | 2015-01-14 | Armighorn Medical Ltd | Oral muscle training |
WO2016090333A1 (fr) | 2014-12-05 | 2016-06-09 | Eneura Inc | Méthodes et systèmes de traitement préventif de la migraine |
GB2534369A (en) | 2015-01-20 | 2016-07-27 | The Magstim Company Ltd | Magnetic field shielding arrangement for a magnetic stimulation (MS) coil |
WO2016123135A1 (fr) | 2015-01-26 | 2016-08-04 | CyMedica Orthopedics, Inc. | Systèmes et procédés de thérapie de patient |
US11123556B2 (en) * | 2015-01-26 | 2021-09-21 | CyMedica Orthopedics, Inc. | Patient therapy systems and methods |
GB201501983D0 (en) | 2015-02-06 | 2015-03-25 | Morgan Innovation & Technology Ltd | Treatment of snoring and sleep apnoea |
SI24921A (sl) | 2015-02-10 | 2016-08-31 | Iskra Medical D.O.O. | Naprava za magnetno živčno mišično stimulacijo z večjim številom neodvisnih tuljav nameščenih v aplikatorju |
WO2016134367A1 (fr) | 2015-02-20 | 2016-08-25 | Rio Grande Neurosciences, Inc. | Procédé et appareil pour traitement électromagnétique de sclérose en plaques |
US10376145B2 (en) | 2015-02-24 | 2019-08-13 | Elira, Inc. | Systems and methods for enabling a patient to achieve a weight loss objective using an electrical dermal patch |
NL2014356B1 (en) | 2015-02-26 | 2017-01-17 | Louis Biesbrouck | Electrical body stimulator cushion device, a medical or therapeutic device comprising same and use thereof in a method of therapy. |
CA2977913A1 (fr) | 2015-02-27 | 2016-09-01 | Mtg Co., Ltd. | Dispositif de stimulation electrique de muscle |
EP3061494A1 (fr) | 2015-02-27 | 2016-08-31 | Nihon Kohden Corporation | Mécanisme de liaison pour partie de bras |
US9962553B2 (en) | 2015-03-04 | 2018-05-08 | Btl Holdings Limited | Device and method for contactless skin treatment |
JP2016163663A (ja) | 2015-03-06 | 2016-09-08 | 株式会社 Mtg | 筋肉電気刺激装置 |
US10946195B2 (en) | 2015-03-13 | 2021-03-16 | Case Western Reserve University | System and method for ensuring airway patency when asleep |
FI20155181A (fi) | 2015-03-17 | 2016-09-18 | Cryotech Nordic Oü | Käsikappalekokonaisuus kosmeettisessa hoidossa käytettyä laitetta varten |
CN107708611B (zh) | 2015-04-02 | 2020-12-22 | 国立大学法人东京大学 | 经颅磁刺激装置用线圈装置及其制造方法 |
AU2016241024B2 (en) | 2015-04-03 | 2020-05-21 | Osaka University | Coil apparatus for use in transcranial magnetic stimulation apparatus |
US10124187B2 (en) * | 2015-04-28 | 2018-11-13 | Btl Holdings Limited | Combination of radiofrequency and magnetic treatment methods |
US9636519B2 (en) | 2015-07-01 | 2017-05-02 | Btl Holdings Limited | Magnetic stimulation methods and devices for therapeutic treatments |
US20170001029A1 (en) | 2015-07-01 | 2017-01-05 | Btl Holdings Limited | Methods for controlling a magnetic stimulation device |
US20170001025A1 (en) | 2015-07-01 | 2017-01-05 | Btl Holdings Limited | Aesthetic method of biological structure stimulation by magnetic field |
US20160317346A1 (en) | 2015-04-28 | 2016-11-03 | Zeltiq Aesthetics, Inc. | Systems and methods for monitoring cooling of skin and tissue to identify freeze events |
US11491342B2 (en) | 2015-07-01 | 2022-11-08 | Btl Medical Solutions A.S. | Magnetic stimulation methods and devices for therapeutic treatments |
US9919161B2 (en) * | 2015-07-01 | 2018-03-20 | Btl Holdings Limited | Method of neural structure stimulation by magnetic field |
US20170001024A1 (en) | 2015-07-01 | 2017-01-05 | Btl Holdings Limited | High power time varying magnetic field therapy |
US11129982B2 (en) | 2015-05-15 | 2021-09-28 | Dasyo Technology Ltd | Apparatus and method of non-invasive directional tissue treatment using radiofrequency energy |
US10610696B1 (en) | 2015-05-31 | 2020-04-07 | Yona Peled | Apparatus and method for treating biological tissue |
US10245439B1 (en) | 2015-07-01 | 2019-04-02 | Medical Technologies Cz A.S. | Aesthetic method of biological structure treatment by magnetic field |
US10478633B2 (en) | 2015-07-01 | 2019-11-19 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US10549110B1 (en) | 2015-07-01 | 2020-02-04 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US10569095B1 (en) | 2015-07-01 | 2020-02-25 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US10709894B2 (en) | 2015-07-01 | 2020-07-14 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US10549109B2 (en) | 2015-07-01 | 2020-02-04 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US9974519B1 (en) | 2015-07-01 | 2018-05-22 | Btl Holdings Limited | Aesthetic method of biologoical structure treatment by magnetic field |
US20170106201A1 (en) | 2015-07-01 | 2017-04-20 | Btl Holdings Limited | Combination of magnetic and electromagnetic treatment method |
US20170001030A1 (en) | 2015-07-01 | 2017-01-05 | Btl Holdings Limited | Magnetic stimulation device and methods |
US10471269B1 (en) | 2015-07-01 | 2019-11-12 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US10695575B1 (en) | 2016-05-10 | 2020-06-30 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US10821295B1 (en) | 2015-07-01 | 2020-11-03 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US10493293B2 (en) | 2015-07-01 | 2019-12-03 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US10478634B2 (en) | 2015-07-01 | 2019-11-19 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US10695576B2 (en) | 2015-07-01 | 2020-06-30 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US20180001107A1 (en) | 2016-07-01 | 2018-01-04 | Btl Holdings Limited | Aesthetic method of biological structure treatment by magnetic field |
US20180125416A1 (en) | 2016-11-07 | 2018-05-10 | Btl Holdings Limited | Apparatus and method for treatment of biological structure |
US10569094B2 (en) | 2015-07-01 | 2020-02-25 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US11266850B2 (en) | 2015-07-01 | 2022-03-08 | Btl Healthcare Technologies A.S. | High power time varying magnetic field therapy |
US9937358B2 (en) | 2015-07-01 | 2018-04-10 | Btl Holdings Limited | Aesthetic methods of biological structure treatment by magnetic field |
KR101673182B1 (ko) | 2015-07-30 | 2016-11-07 | 주식회사 리메드 | 자기장을 이용하는 의료 장치 |
CN105030408A (zh) | 2015-08-28 | 2015-11-11 | 京东方科技集团股份有限公司 | 止鼾装置 |
AU2016323117B2 (en) | 2015-09-15 | 2019-10-31 | I-Lumen Scientific, Inc. | Apparatus and method for ocular microcurrent stimulation therapy |
CN106540375B (zh) | 2015-09-18 | 2019-03-12 | 乐慈元(武汉)生物科技发展有限公司 | 一种对人体美容、除皱的磁力装置及其美容方法 |
US10080906B2 (en) | 2015-09-30 | 2018-09-25 | Btl Holdings Limited | Methods and devices for tissue treatment using mechanical stimulation and electromagnetic field |
US9636516B2 (en) | 2015-09-30 | 2017-05-02 | Btl Holdings Limited | Methods and devices for tissue treatment using shock waves and electromagnetic field |
US11484724B2 (en) | 2015-09-30 | 2022-11-01 | Btl Medical Solutions A.S. | Methods and devices for tissue treatment using mechanical stimulation and electromagnetic field |
FR3041881A1 (fr) | 2015-10-02 | 2017-04-07 | Deleo Sas | Applicateur destine a effectuer un traitement non invasif de reduction des graisses par le froid |
US11154418B2 (en) | 2015-10-19 | 2021-10-26 | Zeltiq Aesthetics, Inc. | Vascular treatment systems, cooling devices, and methods for cooling vascular structures |
US11253717B2 (en) | 2015-10-29 | 2022-02-22 | Btl Healthcare Technologies A.S. | Aesthetic method of biological structure treatment by magnetic field |
US10874871B2 (en) | 2015-11-09 | 2020-12-29 | Axilum Robotics (Societe Par Actions Simpl | Magnetic stimulation device comprising a force-sensing resistor |
WO2017087681A1 (fr) | 2015-11-17 | 2017-05-26 | Inspire Medical Systems, Inc. | Dispositif de traitement par microstimulation pour les troubles respiratoires du sommeil (sdb) |
GB201521133D0 (en) | 2015-12-01 | 2016-01-13 | Magstim The Company Ltd | Auxilliary magnetic stimulation (MS) coil arrangement and system |
RU2645923C2 (ru) | 2015-12-01 | 2018-02-28 | Закрытое акционерное общество "ОКБ "РИТМ" | Способ адаптивного воздействия на живой организм (варианты) |
IL259809B (en) | 2015-12-16 | 2022-09-01 | Pollogen Ltd | Cosmetic device and method for cosmetic treatment of human mucosal tissue |
WO2017106878A1 (fr) | 2015-12-18 | 2017-06-22 | Thync Global, Inc. | Appareils et procédés de stimulation électrique transdermique de nerfs pour modifier ou induire un état cognitif |
ITUB20159823A1 (it) | 2015-12-31 | 2017-07-01 | Mantis S R L | Apparecchiatura elettromedicale per il trattamento del corpo umano e procedimento di trattamento mediante detta apparecchiatura |
US20200330782A1 (en) | 2016-01-04 | 2020-10-22 | Jacob Zabara | Electromagnetic radiation treatment |
US10729914B2 (en) | 2016-01-04 | 2020-08-04 | Jacob Zabara | Electromagnetic radiation treatment |
CN108472151B (zh) | 2016-01-07 | 2020-10-27 | 斯尔替克美学股份有限公司 | 在组织冷却期间施用器与皮肤之间的温度依赖性粘附 |
KR101891154B1 (ko) | 2016-01-29 | 2018-08-23 | 이영규 | 가정용 tms 의료 기기 |
US10765552B2 (en) | 2016-02-18 | 2020-09-08 | Zeltiq Aesthetics, Inc. | Cooling cup applicators with contoured heads and liner assemblies |
US10195456B2 (en) | 2016-03-03 | 2019-02-05 | The Florida International University Board Of Trustees | Low intensity magnetic field device for cosmetic skin treatment |
EP3424559B1 (fr) | 2016-03-04 | 2021-05-26 | The University Of Tokyo | Bobine et stimulateur magnétique utilisant celle-ci |
US10398906B2 (en) | 2016-03-10 | 2019-09-03 | Kosivana Holdings Limited | Systems and methods for pain treatment using spinal nerve magnetic stimulation |
KR101794269B1 (ko) | 2016-03-15 | 2017-11-08 | 주식회사 엔씨바이오 | 의료용 저온기 |
KR101650155B1 (ko) | 2016-03-17 | 2016-08-22 | 정성재 | 냉동 지방 분해 장치 및 그 제어 방법 |
WO2017168101A1 (fr) | 2016-03-31 | 2017-10-05 | Deleo | Systeme de reduction d'amas graisseux localises par le froid, applicateur pour un tel systeme et procede de traitement non invasif de reduction des graisses par le froid |
UY36937A (es) * | 2016-03-31 | 2017-11-30 | Medecell S A | Proceso para establecer un protocolo de electroestimulación muscular, y el respectivo equipo portátil de electroestimulación muscular utilizando el referido protocolo |
AT518082B1 (de) | 2016-03-31 | 2017-07-15 | Gerhard Kunze Dr | Klimatisierung durch Mehrphasen-Plattenwärmetauscher |
CA3019140C (fr) | 2016-04-04 | 2022-02-15 | Jean-Philippe Trembley | Appareil de cryotherapie a refroidissement indirect |
GB2549762A (en) | 2016-04-28 | 2017-11-01 | The Magstim Company Ltd | Magnetic stimulation coil arrangement |
US11247039B2 (en) * | 2016-05-03 | 2022-02-15 | Btl Healthcare Technologies A.S. | Device including RF source of energy and vacuum system |
US11464993B2 (en) | 2016-05-03 | 2022-10-11 | Btl Healthcare Technologies A.S. | Device including RF source of energy and vacuum system |
US10195453B2 (en) * | 2016-05-03 | 2019-02-05 | Btl Holdings Limited | Device including RF source of energy and vacuum system |
US20190099220A1 (en) * | 2016-05-04 | 2019-04-04 | Syneron Medical Ltd. | A Transparent Electrode |
US10555831B2 (en) | 2016-05-10 | 2020-02-11 | Zeltiq Aesthetics, Inc. | Hydrogel substances and methods of cryotherapy |
JP2019514616A (ja) | 2016-05-10 | 2019-06-06 | ゼルティック エステティックス インコーポレイテッド | ざ瘡及び皮膚状態を処置するための皮膚凍結システム |
US10709895B2 (en) | 2016-05-10 | 2020-07-14 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
US11382790B2 (en) | 2016-05-10 | 2022-07-12 | Zeltiq Aesthetics, Inc. | Skin freezing systems for treating acne and skin conditions |
US10682297B2 (en) | 2016-05-10 | 2020-06-16 | Zeltiq Aesthetics, Inc. | Liposomes, emulsions, and methods for cryotherapy |
US20170326346A1 (en) | 2016-05-10 | 2017-11-16 | Zeltiq Aesthetics, Inc. | Permeation enhancers and methods of cryotherapy |
GB2554043B (en) | 2016-05-12 | 2021-09-08 | The Magstim Company Ltd | Magnetic Stimulation Coil Arrangement |
GB2591692B (en) | 2016-05-12 | 2022-05-04 | The Magstim Company Ltd | Magnetic stimulation coil arrangement |
US10583287B2 (en) * | 2016-05-23 | 2020-03-10 | Btl Medical Technologies S.R.O. | Systems and methods for tissue treatment |
US20220003112A1 (en) | 2016-05-31 | 2022-01-06 | Transocean Innovation Labs Ltd. | Methods for assessing the reliability of hydraulically-actuated devices and related systems |
CN109310460B (zh) | 2016-06-03 | 2022-09-27 | R2科技公司 | 冷却系统和皮肤处理方法 |
GB2551171B (en) | 2016-06-08 | 2021-09-22 | Feeligreen Sa | Skin treatment device and method for producing said skin treatment device |
GB201609981D0 (en) | 2016-06-08 | 2016-07-20 | Magstim The Company Ltd | Magnetic stimulation coil arrangement |
GB201609980D0 (en) | 2016-06-08 | 2016-07-20 | Magstim The Company Ltd | Magnetic stimulation coil arrangement |
US20180000533A1 (en) | 2016-07-01 | 2018-01-04 | Cynosure, Inc. | Non-invasive uniform and non-uniform rf methods and systems |
US20200352633A1 (en) | 2016-07-01 | 2020-11-12 | Cynosure, Llc | Non-invasive, uniform and non-uniform rf methods and systems related applications |
US10556122B1 (en) | 2016-07-01 | 2020-02-11 | Btl Medical Technologies S.R.O. | Aesthetic method of biological structure treatment by magnetic field |
GB2552004A (en) | 2016-07-06 | 2018-01-10 | The Magstim Company Ltd | Magnetic stimulation coil arrangment including coolant leak detector |
WO2018008023A1 (fr) | 2016-07-07 | 2018-01-11 | Venus Concept Ltd. | Appareil à usage esthétique utile pour accroître la régénération de la peau et procédés associés |
JP6840487B2 (ja) | 2016-07-27 | 2021-03-10 | 株式会社ブラウニー | 電磁誘導加熱装置及び電磁誘導加熱システム |
JP6784092B2 (ja) | 2016-08-10 | 2020-11-11 | Smk株式会社 | 生体用電極及び生体用電極付き着用具 |
GB2552810B (en) | 2016-08-10 | 2021-05-26 | The Magstim Company Ltd | Headrest assembly |
US11141219B1 (en) * | 2016-08-16 | 2021-10-12 | BTL Healthcare Technologies, a.s. | Self-operating belt |
US10420953B2 (en) | 2016-08-27 | 2019-09-24 | Wave Neuroscience, Inc. | RTMS pulse frequency optimization |
KR20180024571A (ko) | 2016-08-30 | 2018-03-08 | 주식회사 바디프랜드 | 척추 디스크 및 골다공증 예방 및 치료에 효과적인 펄스전자기장을 장착한 안마의자 |
EP3506846A4 (fr) | 2016-08-30 | 2021-01-06 | The General Hospital Corporation | Systèmes de cryothérapie et de cryoablation et procédés de traitement de tissu |
DE102016116399B4 (de) | 2016-09-01 | 2024-06-27 | Iskra Medical D.O.O. | Sitz- oder Liegevorrichtung für eine Magnetfeldtherapie |
US20180103991A1 (en) | 2016-10-18 | 2018-04-19 | Btl Holdings Limited | Device and method for tissue treatment by combination of energy and plasma |
US10786382B2 (en) | 2016-10-25 | 2020-09-29 | Jargalsaikhan Shagdar | Multifunctional vest for posture correcting, pain relieving and workout boosting |
WO2018078619A1 (fr) | 2016-10-25 | 2018-05-03 | Brainsway Ltd | Appareil et procédés pour prédire un résultat de thérapie |
US20190275320A1 (en) | 2016-11-08 | 2019-09-12 | Massachusetts Institute Of Technology | Systems and methods of facial treatment and strain sensing |
GB2555809B (en) | 2016-11-10 | 2019-07-24 | The Magstim Company Ltd | Fault detector |
KR101904778B1 (ko) | 2016-11-25 | 2018-10-05 | 주식회사 리메드 | 의료 장치 |
TW201825045A (zh) | 2016-11-28 | 2018-07-16 | 美商脫其泰有限責任公司 | 利用表皮電子裝置監測和治療疼痛 |
BR112019012824A2 (pt) | 2016-12-23 | 2019-11-26 | GSK Consumer Healthcare S.A. | aparelho e método para estimulação elétrica transcutânea de nervo. |
FR3061012B1 (fr) | 2016-12-27 | 2020-02-14 | Deleo | Procede de reduction d'un volume graisseux sous-cutane par le froid utilisant un actif anticellulite |
ES2767629T3 (es) | 2016-12-27 | 2020-06-18 | Suvaddhana Sarin Loap | Procedimiento de reducción de tejidos adiposos por criotermogénesis sin temblor |
US11617615B2 (en) | 2017-01-19 | 2023-04-04 | Bios S.R.L. | Apparatus and cosmetic method for body orifice remodeling |
AU2018215194B2 (en) | 2017-02-01 | 2023-02-02 | The Alfred E. Mann Foundation For Scientific Research | Stimulator systems and methods for obstructive sleep apnea |
KR20180092020A (ko) | 2017-02-08 | 2018-08-17 | 대양의료기(주) | 고주파 및 저주파 복합 치료 장치 및 그 방법 |
US20180229048A1 (en) * | 2017-02-15 | 2018-08-16 | Btl Holdings Limited | Method and device for body fluid stimulation |
WO2018160670A1 (fr) | 2017-02-28 | 2018-09-07 | Case Western Reserve University | Systèmes et procédés de détection et de surveillance de l'apnée obstructive du sommeil |
DE102017104627A1 (de) | 2017-03-06 | 2018-09-06 | Mag & More Gmbh | Positionierhilfe für tms |
US20180263677A1 (en) | 2017-03-16 | 2018-09-20 | Zeltiq Aesthetics, Inc. | Adhesive liners for cryotherapy |
EP3595762A1 (fr) | 2017-03-16 | 2020-01-22 | The Procter and Gamble Company | Applicateur de soin de la peau |
US20180271767A1 (en) | 2017-03-21 | 2018-09-27 | Zeltiq Aesthetics, Inc. | Use of saccharides for cryoprotection and related technology |
FI129532B (en) | 2017-04-03 | 2022-04-14 | Aalto Korkeakoulusaeaetioe | Control of transcranial magnetic stimulation |
US11896823B2 (en) | 2017-04-04 | 2024-02-13 | Btl Healthcare Technologies A.S. | Method and device for pelvic floor tissue treatment |
US10039929B1 (en) | 2017-04-04 | 2018-08-07 | BLT Holdings Limited | Method and device for pelvic floor tissue treatment |
EP3609575B1 (fr) | 2017-04-13 | 2024-07-31 | Multi Radiance Medical | Appareille pour thérapie de photobiomodulation permettant de réduire les effets de la fibromyalgie |
DE102017108084B4 (de) | 2017-04-13 | 2023-08-31 | Universität der Bundeswehr München | Pulsquelle und Verfahren für die magnetisch induktive Nervenreizung |
US11076879B2 (en) | 2017-04-26 | 2021-08-03 | Zeltiq Aesthetics, Inc. | Shallow surface cryotherapy applicators and related technology |
EP3621689A4 (fr) | 2017-05-09 | 2021-01-27 | Nalu Medical, Inc. | Appareil de stimulation |
CN107149722B (zh) | 2017-06-20 | 2020-10-09 | 深圳市瀚翔生物医疗电子股份有限公司 | 一种经颅磁刺激治疗设备 |
US20190000529A1 (en) | 2017-06-28 | 2019-01-03 | Cutera, Inc. | System for controlling activation of multiple applicators for tissue treatment |
US20200237424A1 (en) | 2017-06-28 | 2020-07-30 | Cutera, Inc. | System and methods for controlling activation of multiple applicators for tissue treatment |
KR20200024241A (ko) | 2017-06-30 | 2020-03-06 | 알2 더마톨로지, 인크. | 노즐들의 선형 어레이를 갖는 피부 과학적 냉동 스프레이 디바이스들 및 사용 방법들 |
IL253677B2 (en) | 2017-07-26 | 2023-06-01 | Epitech Mag Ltd | A magnetic device for the treatment of living tissues |
EP3434323B1 (fr) | 2017-07-29 | 2020-04-08 | Hanno Voigt | Dispositif de stimulation électrique fonctionnelle sous l'eau |
US20190053871A1 (en) | 2017-08-15 | 2019-02-21 | Pro Med Instruments Gmbh | Head stabilization system and method with arc features |
CN111212612A (zh) | 2017-08-15 | 2020-05-29 | 普罗梅德仪器股份有限公司 | 具有盒特征的头部稳定系统和方法 |
CN208511024U (zh) | 2017-08-29 | 2019-02-19 | 南京伟思医疗科技股份有限公司 | 一种适用于经颅磁刺激仪的磁感应触发肌电采集器 |
CH714113A2 (it) | 2017-09-04 | 2019-03-15 | Periso Sa | Dispositivo a scopo terapeutico che emette campi magnetici interagenti con segnali a radiofrequenza. |
FR3071395B1 (fr) * | 2017-09-27 | 2021-12-31 | Montecarlo Esthetics | Dispositif et systeme de traitement cosmetique et methode utilisant un tel systeme |
CA3092689A1 (fr) | 2017-10-23 | 2019-05-02 | Patent Holding Company 001, Llc | Dispositifs, procedes et systemes de communication |
GB2602603B (en) | 2017-10-27 | 2022-12-21 | The Magstim Company Ltd | Magnetic stimulation coil arrangement |
GB2567872B (en) | 2017-10-27 | 2022-06-15 | The Magstim Company Ltd | Magnetic stimulation coil arrangement |
GB2568051A (en) | 2017-11-01 | 2019-05-08 | The Magstim Company Ltd | Magnetic stimulation (MS) apparatus and method |
JP6911121B2 (ja) | 2017-11-13 | 2021-07-28 | ヤーマン株式会社 | 美容マスク |
TWI690298B (zh) | 2017-11-27 | 2020-04-11 | 國立成功大學 | 用於預防及/或治療焦慮症之裝置 |
AU2018378194B2 (en) | 2017-12-04 | 2021-07-01 | Med-El Elektromedizinische Geraete Gmbh | Eliciting swallowing using electrical stimulation applied via surface electrodes |
ES2914806T3 (es) | 2017-12-04 | 2022-06-16 | Atlantic Therapeutics Group Ltd | Circuito conductor |
WO2019118709A1 (fr) | 2017-12-15 | 2019-06-20 | Life Care Medical Devices Limited | Traitement des rides |
DK179927B1 (en) | 2017-12-18 | 2019-10-09 | Innocon Medical Aps | SYSTEM FOR ELECTRICAL STIMULATION OF NERVES |
WO2019126080A1 (fr) * | 2017-12-18 | 2019-06-27 | Dan Sachs | Dispositifs, systèmes et procédés de stimulation musculaire thérapeutique |
US10625077B2 (en) | 2017-12-26 | 2020-04-21 | Med Sapiens Co., LTD | Portable body slimmer to stimulate core muscle with Russian current |
US11291499B2 (en) | 2017-12-26 | 2022-04-05 | Inmode Ltd. | Device and method for treatment of sleep disorders |
KR200491572Y1 (ko) | 2018-01-02 | 2020-05-04 | 비티엘 메디컬 테크놀로지스 에스.알.오. | 환자의 치료를 위한 자기장 생성 장치 |
DE102018101394A1 (de) | 2018-01-23 | 2019-07-25 | Prof. Dr. Fischer AG | Magnetfeldapplikator mit einem rampenförmigen Signalverlauf der verwendeten Spulenströme |
KR102000971B1 (ko) | 2018-01-24 | 2019-07-17 | 주식회사 리메드 | 체외 치료기 |
IT201800001767A1 (it) * | 2018-01-24 | 2019-07-24 | Muester E Dikson Service S P A | Apparecchio con elemento applicatore multifunzione |
WO2019150378A1 (fr) | 2018-02-05 | 2019-08-08 | Brainsway Ltd. | Assemblage de bobine électromagnétique |
CN209221338U (zh) | 2018-02-05 | 2019-08-09 | 布雷恩斯维公司 | 线圈组件、用于施加经颅磁刺激的头盔 |
CN209221337U (zh) | 2018-02-05 | 2019-08-09 | 布雷恩斯维公司 | 包括多个环的线圈组件以及用于施加经颅磁刺激的头盔 |
JP7220227B2 (ja) | 2018-02-20 | 2023-02-09 | ニューロネティクス インコーポレイテッド | 治療および診断手順のための磁気刺激コイルおよび強磁性コンポーネント |
US11000693B2 (en) | 2018-02-20 | 2021-05-11 | Neuronetics, Inc. | Magnetic stimulation coils and ferromagnetic components for treatment and diagnostic procedures |
IT201800003075A1 (it) | 2018-02-27 | 2019-08-27 | Fremslife S R L | Apparato elettrostimolatore |
US20200398068A1 (en) | 2018-03-13 | 2020-12-24 | Augmented Bionics Pty Ltd | Sensory stimulation apparatus |
GB2572186A (en) | 2018-03-22 | 2019-09-25 | The Magstim Company Ltd | Apparatus and method for determining a desired coil position for magnetic stimulation |
WO2019183622A1 (fr) | 2018-03-23 | 2019-09-26 | Regenesis Biomedical, Inc. | Systèmes applicateurs de champ électromagnétique pulsé à haute puissance |
US11666775B2 (en) | 2018-03-29 | 2023-06-06 | Minnesota Medical Physics Llc | Method and apparatus for treatment of benign prostatic hyperplasia (BPH) |
US20190314629A1 (en) | 2018-04-17 | 2019-10-17 | Inmode Ltd. | Method of adipose tissue treatment |
US20190314638A1 (en) | 2018-04-17 | 2019-10-17 | Inmode Ltd. | Rf device for skin and fat treatment |
WO2019207359A1 (fr) | 2018-04-26 | 2019-10-31 | Pro Med Instruments Gmbh | Système de stabilisation de tête à tampons à remplissage réglable et procédé d'utilisation |
AU2019262960A1 (en) | 2018-04-29 | 2020-11-26 | Brian A. GANDEL | Device and method for inducing lypolysis in humans |
JP2021523767A (ja) | 2018-05-01 | 2021-09-09 | ブレインズウェイ リミテッド | リアルタイム閉ループ脳刺激のための装置および方法 |
KR101941863B1 (ko) | 2018-05-15 | 2019-01-24 | 주식회사 지티지웰니스 | 전기 자극방식의 근육 운동기기 |
US20190350646A1 (en) | 2018-05-16 | 2019-11-21 | Inmode Ltd. | Device for collagenous tissue treatment |
CN112469472B (zh) | 2018-05-31 | 2024-01-26 | 琳妮·比尔斯顿 | 用于治疗口腔和咽部疾病的系统、装置和方法 |
EP3801744A4 (fr) | 2018-06-01 | 2022-03-16 | Zennea Technologies Inc. | Méthode et dispositif pour traiter des troubles respiratoires liés au sommeil |
FR3083123A1 (fr) | 2018-06-29 | 2020-01-03 | Ga. Promotion | Procede et systeme de stimulation electrique neuro-musculaire |
ES2948813T3 (es) | 2018-08-14 | 2023-09-19 | Neurotrigger Ltd | Aparato para la estimulación transcutánea del nervio facial |
WO2020041502A1 (fr) | 2018-08-21 | 2020-02-27 | The Regents Of The University Of California | Stimulation rachidienne électrique et/ou magnétique transcutanée pour la maîtrise de la vessie ou de l'intestin chez des sujets ne présentant pas de lésion du système nerveux central |
KR101955542B1 (ko) | 2018-08-22 | 2019-05-30 | 전나라 | 마사지 및 자극치료가 가능한 의료보조 장치 |
CN110870942A (zh) | 2018-09-02 | 2020-03-10 | 塔夫泰什有限公司 | 用于使用高速液-气流施用治疗物质的带屏蔽的装置 |
CN110893125A (zh) | 2018-09-12 | 2020-03-20 | 塔夫泰什有限公司 | 使用高速液气流施用治疗药物的具有注射器分配器的装置 |
US20200094066A1 (en) | 2018-09-20 | 2020-03-26 | Stephan HEATH | SYSTEMS, APPARATUS, AND/OR METHODS UTILIZING LASER GENERATING PULSES OF LIGHT, PULSED SOUND FREQUENCIES AND/OR PULSED ELECTROMAGNETIC FIELDS (EMFs) FOR IMPROVING PROPER SYSTEMS, APPARATUS, AND/OR METHODS UTILIZING LASER GENERATING PULSES OF LIGHT, PULSED SOUND FREQUENCIES AND/OR PULSED ELECTROMAGNETIC FIELDS (EMFs) FOR IMPROVING PROPERTIES OR FUNCTIONS OF CELLS, TISSUES, PROTEINS, FATS, OR ORGANS IN VITRO, IN VIVO, OR IN SITU |
US11950721B2 (en) | 2018-09-24 | 2024-04-09 | Denneroll Holdings Pty Ltd | Cavity contour pillow |
US11219322B2 (en) | 2018-09-24 | 2022-01-11 | Denneroll Holdings Pty Ltd | Cavity contour pillow |
CN109260593B (zh) | 2018-09-27 | 2020-09-08 | 武汉资联虹康科技股份有限公司 | 一种经颅磁刺激治疗方法及设备 |
US10828504B2 (en) | 2018-10-12 | 2020-11-10 | Edward L. Blenderman | Wearable device that increases muscle strength |
US20200121984A1 (en) | 2018-10-17 | 2020-04-23 | Signifier Medical Technologies Limited | Oral muscle training |
KR102170209B1 (ko) | 2018-11-07 | 2020-10-26 | 주식회사 리메드 | 자기 자극 장치 |
KR102195670B1 (ko) | 2018-11-15 | 2020-12-28 | 주식회사 리메드 | 펄스 자기장 자극 장치 |
KR102170208B1 (ko) | 2018-11-15 | 2020-10-26 | 주식회사 리메드 | 의료용 자극 장치 |
KR102199943B1 (ko) | 2018-11-15 | 2021-01-11 | 주식회사 리메드 | 의료용 자극 장치 |
KR102262560B1 (ko) | 2018-11-15 | 2021-06-08 | 주식회사 리메드 | 자기 자극 장치 |
KR102154771B1 (ko) | 2018-11-15 | 2020-09-10 | 주식회사 리메드 | 의료용 자극 장치 |
AU2019389903B2 (en) | 2018-11-29 | 2023-04-06 | Novocure Gmbh | Enhanced-flexibility transducer arrays for delivering TTFields (tumor treating fields) |
EP3905978A1 (fr) | 2019-01-02 | 2021-11-10 | Cynosure, LLC | Applications liées à des procédés et systèmes rf non invasifs, uniformes et non uniformes |
HRPK20190078B3 (hr) | 2019-01-11 | 2021-05-28 | Synergotron D.O.O. | Uređaj za neinvazivno tretiranje bolesti i stanja živih organizama |
EP3930829B1 (fr) | 2019-02-28 | 2023-07-19 | Bios S.r.l. | Appareil de réduction de la graisse et de la cellulite à l'aide d'énergie rf en combinaison avec la thermostimulation magnétique du muscle (ems) |
AU2020233880B2 (en) | 2019-03-08 | 2023-04-27 | Vanderbilt University | Systems and methods for treating sleep disordered breathing |
US11653971B2 (en) | 2019-03-10 | 2023-05-23 | Inmode Ltd. | RF device for tissue treatment |
US10981016B2 (en) | 2019-03-13 | 2021-04-20 | Seraya Medical Systems LLC | Identifiable magnetic assemblies and communications |
WO2020183508A1 (fr) | 2019-03-13 | 2020-09-17 | Rognone Fabrizio | Équipement électromédical pour le traitement du vieillissement de la peau et de zones pathologiques du corps humain |
WO2020190406A1 (fr) | 2019-03-18 | 2020-09-24 | Exo Neural Network Inc. | Configuration de thérapie médicale pour appliquer une stimulation électrique à un sujet humain ou animal |
US11478638B2 (en) | 2019-03-22 | 2022-10-25 | Neurostim Technologies Llc | Detection and treatment of obstructive sleep apnea |
KR102295605B1 (ko) | 2019-04-11 | 2021-09-01 | 비티엘 헬쓰케어 테크놀로지스 에이.에스. | 고주파 및 자기 에너지에 의한 생물학적 구조들의 심미적 치료를 위한 방법들 및 디바이스들 |
WO2020223942A1 (fr) | 2019-05-09 | 2020-11-12 | 武汉资联虹康科技股份有限公司 | Palette de bobine tms intégrée pour la mesure et le traitement de la fonction cérébrale |
US20200353273A1 (en) | 2019-05-09 | 2020-11-12 | Doug Zucco | Method For Reducing Visceral Body Fat In Humans |
KR102218065B1 (ko) | 2019-06-04 | 2021-02-18 | 연세대학교 원주산학협력단 | 경두개 자기장 자극 장치 및 그의 제어 방법 |
CA3141259C (fr) | 2019-06-12 | 2024-05-21 | John Crosson | Systeme et procede pour administrer un courant electrique pulse a un tissu vivant |
US20200406050A1 (en) | 2019-06-26 | 2020-12-31 | University Of South Carolina | Transcranial Magnetic Stimulation for the Treatment of Dysautonomia |
WO2020264263A1 (fr) | 2019-06-27 | 2020-12-30 | Biovisics Medical, Inc. | Systèmes et interfaces de thérapie oculaire |
CN110180083A (zh) | 2019-06-30 | 2019-08-30 | 南京伟思医疗科技股份有限公司 | 一种免拆式线圈切换磁刺激器和磁刺激方法 |
KR102264077B1 (ko) | 2019-07-01 | 2021-06-11 | 주식회사 리메드 | 의료용 네비게이션 장치 |
KR102228743B1 (ko) | 2019-07-01 | 2021-03-17 | 주식회사 리메드 | 커패시터에 충전된 전하를 방전시키기 위한 수단을 가지는 의료용 장치 |
KR20220034831A (ko) | 2019-07-11 | 2022-03-18 | 더 유나이티드 스테이츠 거번먼트 애즈 리프리젠티드 바이 더 디파트먼트 오브 베테랑스 어페어즈 | 경두개 자기 자극 코일 정렬 장치 |
GB201910452D0 (en) | 2019-07-22 | 2019-09-04 | Remedius Ltd | Electrode |
CN110339480A (zh) | 2019-07-24 | 2019-10-18 | 南京伟思医疗科技股份有限公司 | 一种基于多轴机器人视觉动态跟踪的磁刺激系统和方法 |
CN211357457U (zh) | 2019-07-24 | 2020-08-28 | 南京伟思医疗科技股份有限公司 | 一种基于多轴机器人视觉动态跟踪的磁刺激系统 |
US11759636B2 (en) | 2019-08-05 | 2023-09-19 | David Goldfarb | Apparatus and method for treating obstructive sleep apnea |
CN210770219U (zh) | 2019-08-31 | 2020-06-16 | 南京伟思医疗科技股份有限公司 | 一种磁刺激线圈的密封结构 |
BR112022004442A2 (pt) | 2019-09-13 | 2022-05-31 | Univ Vanderbilt | Neuromodulação do nervo glossofaríngeo para melhorar a respiração desordenada do sono |
US11420061B2 (en) | 2019-10-15 | 2022-08-23 | Xii Medical, Inc. | Biased neuromodulation lead and method of using same |
CN114901353A (zh) | 2019-11-20 | 2022-08-12 | 斯尔替克美学股份有限公司 | 用于肌肉刺激的交替高频和低频占空比 |
US11464970B2 (en) | 2020-03-15 | 2022-10-11 | Inmode Ltd. | Method for enhanced electro-muscle stimulation |
US11559152B2 (en) | 2020-04-23 | 2023-01-24 | DSAGA Food & Packaging Products LLC | Prone position pillow system |
EP4146335B1 (fr) | 2020-05-04 | 2024-11-13 | BTL Healthcare Technologies a.s. | Dispositif pour traitement automatisé d'un patient |
US11717679B2 (en) | 2020-05-20 | 2023-08-08 | Pollogen Ltd. | Apparatus and method for non-invasive fractional treatment of skin tissue |
CN111728712A (zh) | 2020-06-10 | 2020-10-02 | 南京伟思医疗科技股份有限公司 | 一种经颅磁刺激用充气定位头枕及其定位方法 |
CN213432603U (zh) | 2020-06-10 | 2021-06-15 | 南京伟思医疗科技股份有限公司 | 一种经颅磁刺激用头部随动定位装置 |
EP4182010A4 (fr) | 2020-07-15 | 2024-03-13 | EBT Medical, Inc. | Système de neurostimulation pouvant être porté à thérapie personnalisée |
CN212700107U (zh) | 2020-08-03 | 2021-03-16 | 南京伟思医疗科技股份有限公司 | 一种经颅磁刺激重复定位头盔 |
CN111840804A (zh) | 2020-08-03 | 2020-10-30 | 南京伟思医疗科技股份有限公司 | 一种经颅磁刺激重复定位头盔及其使用方法 |
CN111905267A (zh) | 2020-08-29 | 2020-11-10 | 深圳英智科技有限公司 | 用于经颅磁刺激的线材、经颅磁刺激线圈和经颅磁刺激仪 |
CN112023270A (zh) | 2020-08-31 | 2020-12-04 | 南京伟思医疗科技股份有限公司 | 一种多功能脉冲磁治疗座椅 |
CN212416683U (zh) | 2020-08-31 | 2021-01-29 | 南京伟思医疗科技股份有限公司 | 一种多功能脉冲磁治疗座椅 |
US20220080217A1 (en) | 2020-09-16 | 2022-03-17 | Duke University | Methods and systems for magnetic stimulation |
NZ798091A (en) | 2020-10-01 | 2024-08-30 | Sunrise Sa | Wearable device for decreasing the respiratory effort of a sleeping subject |
CN112221015A (zh) | 2020-10-29 | 2021-01-15 | 广州猴晒蕾科技有限公司 | 一种通过电磁场分解脂肪组织的装置与方法 |
GB202018997D0 (en) | 2020-12-02 | 2021-01-13 | Signifier Medical Tech Limited | Oral muscle composition detection and training |
TW202222373A (zh) | 2020-12-11 | 2022-06-16 | 義大利商愛爾恩股份有限公司 | 用於磁治療的施用器 |
CN214099374U (zh) | 2020-12-14 | 2021-08-31 | 南京伟思医疗科技股份有限公司 | 一种用于磁刺激的刺激线圈 |
CN112582159A (zh) | 2020-12-14 | 2021-03-30 | 南京伟思医疗科技股份有限公司 | 一种用于磁刺激的刺激线圈及其绕制方法 |
WO2022128991A1 (fr) | 2020-12-15 | 2022-06-23 | Magventure A/S | Ensemble d'équilibrage, de positionnement et de fixation |
CN215081635U (zh) | 2020-12-22 | 2021-12-10 | 南京伟思医疗科技股份有限公司 | 一种单个磁体可多体位治疗座椅 |
CN112472506A (zh) | 2020-12-22 | 2021-03-12 | 南京伟思医疗科技股份有限公司 | 一种单磁体可多体位治疗座椅 |
CN215309722U (zh) | 2020-12-23 | 2021-12-28 | 南京伟思医疗科技股份有限公司 | 一种主被动结合的盆底磁刺激治疗装置 |
CN215084285U (zh) | 2021-01-06 | 2021-12-10 | 广州蓓蕾电子科技有限公司 | 一种磁疗刺激锻炼装置 |
CZ202167A3 (cs) | 2021-02-15 | 2022-08-24 | Deymed Diagnostic S.R.O. | Stimulační cívka pro magnetickou stimulaci |
US20240123232A1 (en) | 2021-02-23 | 2024-04-18 | Inspire Medical Systems, Inc. | Integrating stimulation therapy, patient management, and external patient monitoring |
FI130569B (en) | 2021-03-15 | 2023-11-21 | Nexstim Oyj | System and method for assisting in the delivery of transcranial magnetic stimulation |
KR20240017339A (ko) | 2021-03-16 | 2024-02-07 | 베누스 컨셉트 인코포레이티드 | 피부를 치료하기 위한 방법 및 디바이스 |
CN113041500A (zh) | 2021-03-31 | 2021-06-29 | 南京伟思医疗科技股份有限公司 | 一种可记忆经颅磁刺激导航定位装置与定位方法 |
AU2022279294A1 (en) | 2021-05-21 | 2023-12-14 | Inspire Medical Systems, Inc. | Multiple target stimulation therapy for sleep disordered breathing |
US20220370006A1 (en) | 2021-05-24 | 2022-11-24 | Crestmont Ventures, Inc. | Electromyographic bruxism training |
WO2022256388A1 (fr) | 2021-06-01 | 2022-12-08 | Orchard Ultrasound Innovation Llc | Système de traitement de tissu |
CN216091887U (zh) | 2021-06-28 | 2022-03-22 | 南京伟思医疗科技股份有限公司 | 一种用于磁刺激的深部刺激线圈模组 |
EP4366639A1 (fr) | 2021-07-08 | 2024-05-15 | Venus Concept Ltd | Appareil à usage esthétique utile pour accroître le rajeunissement de la peau et méthodes associées |
SE2150968A1 (en) | 2021-07-23 | 2023-01-24 | Frigg Ab | Device and method for stimulating a target area |
CN113647936B (zh) | 2021-08-03 | 2022-07-22 | 南京伟思医疗科技股份有限公司 | 一种用于盆底磁刺激治疗设备的坐姿检测方法及检测系统 |
WO2023011503A1 (fr) | 2021-08-03 | 2023-02-09 | 南京伟思医疗科技股份有限公司 | Siège intelligent à double position pour stimulation magnétique du plancher pelvien |
CN217908621U (zh) | 2022-05-07 | 2022-11-29 | 南京伟思医疗科技股份有限公司 | 一种联动机构的多功能磁疗座椅 |
WO2023010656A1 (fr) | 2021-08-03 | 2023-02-09 | 南京伟思医疗科技股份有限公司 | Siège de thérapie magnétique, et système de détection de posture assise et méthode de traitement par stimulation magnétique de plancher pelvien |
CN113499542A (zh) | 2021-08-16 | 2021-10-15 | 南京伟思医疗科技股份有限公司 | 一种双体位自动切换的联合磁疗座椅 |
CN216169399U (zh) | 2021-08-18 | 2022-04-05 | 南京伟思医疗科技股份有限公司 | 一种新型经颅磁刺激重复定位头盔 |
CN216986082U (zh) | 2021-09-09 | 2022-07-19 | 广州蓓蕾电子科技有限公司 | 一种电磁场增加射频分解脂肪组织的装置 |
CN113769275B (zh) | 2021-10-19 | 2022-10-04 | 南京伟思医疗科技股份有限公司 | 一种用于经颅磁的治疗靶点自动定位方法及系统 |
WO2023076525A1 (fr) | 2021-10-27 | 2023-05-04 | OPAD Airway Inc. | Dispositif de gestion de position de patient, systèmes, méthodes d'utilisation et améliorations associées |
CN217526108U (zh) | 2021-12-15 | 2022-10-04 | 南京伟思医疗科技股份有限公司 | 一种磁刺激线圈 |
CN217960287U (zh) | 2022-07-01 | 2022-12-06 | 广州蓓蕾电子科技有限公司 | 一种电磁场增加射频分解脂肪组织的装置 |
CN115364376A (zh) | 2022-07-12 | 2022-11-22 | 南京伟思医疗科技股份有限公司 | 脉冲磁塑形仪及其自动识别方法、系统、控制方法和电路 |
CN218129587U (zh) | 2022-07-14 | 2022-12-27 | 南京伟思医疗科技股份有限公司 | 一种磁疗主机的冷却系统 |
CN115454185B (zh) | 2022-09-02 | 2023-11-28 | 南京伟思医疗科技股份有限公司 | 一种脉冲磁刺激仪的可调幅电源控制方法及其控制系统 |
CN115645748A (zh) | 2022-09-21 | 2023-01-31 | 南京伟思医疗科技股份有限公司 | 塑形磁刺激仪的自适应参数调节方法和系统 |
CN115645737A (zh) | 2022-09-29 | 2023-01-31 | 南京伟思医疗科技股份有限公司 | 一种用于腹部治疗的自动定位装置及其定位方法 |
CN115591124A (zh) | 2022-10-28 | 2023-01-13 | 南京伟思医疗科技股份有限公司(Cn) | 一种用于磁刺激的输出功率自适应控制系统及其控制方法 |
CN115639868B (zh) | 2022-12-23 | 2023-03-21 | 南京伟思医疗科技股份有限公司 | 一种用于磁刺激设备的自适应温度控制方法、设备及系统 |
-
2021
- 2021-05-03 EP EP21733172.7A patent/EP4146335B1/fr active Active
- 2021-05-03 CA CA3173876A patent/CA3173876A1/fr active Pending
- 2021-05-03 WO PCT/IB2021/000300 patent/WO2021224678A1/fr unknown
- 2021-05-03 AU AU2021269187A patent/AU2021269187B2/en active Active
- 2021-05-03 JP JP2022567126A patent/JP2023515722A/ja active Pending
- 2021-05-03 MX MX2022013485A patent/MX2022013485A/es unknown
- 2021-05-03 KR KR2020227000059U patent/KR200498115Y1/ko active IP Right Grant
- 2021-05-03 BR BR112022022112A patent/BR112022022112A2/pt not_active Application Discontinuation
- 2021-11-03 US US17/518,243 patent/US20220305275A1/en active Pending
-
2022
- 2022-01-14 US US17/576,646 patent/US20220218987A1/en active Pending
- 2022-04-29 US US17/661,406 patent/US11491329B2/en active Active
- 2022-09-09 US US17/941,568 patent/US11826565B2/en active Active
- 2022-09-09 US US17/930,888 patent/US11679255B2/en active Active
-
2023
- 2023-12-26 JP JP2023219462A patent/JP2024029120A/ja active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12042653B2 (en) * | 2021-12-30 | 2024-07-23 | Pulse Biosciences, Inc. | Electrical applicators with non-penetrating electrodes for applying energy to tissue surfaces |
Also Published As
Publication number | Publication date |
---|---|
US20230001191A1 (en) | 2023-01-05 |
MX2022013485A (es) | 2022-11-30 |
EP4146335B1 (fr) | 2024-11-13 |
AU2021269187B2 (en) | 2023-02-23 |
KR20230000081U (ko) | 2023-01-10 |
US20220249836A1 (en) | 2022-08-11 |
US20220218987A1 (en) | 2022-07-14 |
US20230024117A1 (en) | 2023-01-26 |
EP4146335A1 (fr) | 2023-03-15 |
WO2021224678A1 (fr) | 2021-11-11 |
US11826565B2 (en) | 2023-11-28 |
AU2021269187A1 (en) | 2022-12-15 |
US11491329B2 (en) | 2022-11-08 |
JP2024029120A (ja) | 2024-03-05 |
CA3173876A1 (fr) | 2021-11-11 |
JP2023515722A (ja) | 2023-04-13 |
KR200498115Y1 (ko) | 2024-07-03 |
US11679255B2 (en) | 2023-06-20 |
BR112022022112A2 (pt) | 2022-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220305275A1 (en) | Device and method for unattended treatment of a patient | |
US12029905B2 (en) | Device and method for unattended treatment of a patient | |
US20240024691A1 (en) | Device and method for unattended treatment of a patient | |
US11896816B2 (en) | Device and method for unattended treatment of a patient | |
US20230241384A1 (en) | Device and method for unattended treatment of a patient | |
US20240091547A1 (en) | Device and method for unattended treatment of a patient | |
AU2023203099B2 (en) | Device and method for unattended treatment of a patient | |
AU2022100167A4 (en) | Device and method for unattended treatment of a patient | |
CA3178145A1 (fr) | Dispositif et methode pour le traitement sans supervision du patient | |
WO2023078896A1 (fr) | Dispositif et procédé pour le traitement automatisé d'un patient | |
AU2024278152A1 (en) | Device and method for unattended treatment of a patient | |
EA044406B1 (ru) | Устройство и способ для полностью автоматического лечения пациента |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BTL HEALTHCARE TECHNOLOGIES A.S., CZECH REPUBLIC Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHWARZ, TOMAS;JELINKOVA, LUCIA;KUBIK, VOJTECH;SIGNING DATES FROM 20220531 TO 20220607;REEL/FRAME:060206/0094 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |