[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6688716B2 - 撮像装置および撮像方法 - Google Patents

撮像装置および撮像方法 Download PDF

Info

Publication number
JP6688716B2
JP6688716B2 JP2016196270A JP2016196270A JP6688716B2 JP 6688716 B2 JP6688716 B2 JP 6688716B2 JP 2016196270 A JP2016196270 A JP 2016196270A JP 2016196270 A JP2016196270 A JP 2016196270A JP 6688716 B2 JP6688716 B2 JP 6688716B2
Authority
JP
Japan
Prior art keywords
pattern
image
modulator
image data
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016196270A
Other languages
English (en)
Other versions
JP2018061109A (ja
Inventor
悠介 中村
悠介 中村
島野 健
健 島野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2016196270A priority Critical patent/JP6688716B2/ja
Priority to CN201710828127.6A priority patent/CN107896292B/zh
Priority to US15/721,992 priority patent/US10551532B2/en
Priority to EP17194659.3A priority patent/EP3306911B1/en
Publication of JP2018061109A publication Critical patent/JP2018061109A/ja
Application granted granted Critical
Publication of JP6688716B2 publication Critical patent/JP6688716B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1842Gratings for image generation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/0037Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration with diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/0068Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration having means for controlling the degree of correction, e.g. using phase modulators, movable elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0087Phased arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1866Transmission gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
    • G02B5/1871Transmissive phase gratings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/667Camera operation mode switching, e.g. between still and video, sport and normal or high- and low-resolution modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/95Computational photography systems, e.g. light-field imaging systems
    • H04N23/951Computational photography systems, e.g. light-field imaging systems by using two or more images to influence resolution, frame rate or aspect ratio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/95Computational photography systems, e.g. light-field imaging systems
    • H04N23/955Computational photography systems, e.g. light-field imaging systems for lensless imaging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/702SSIS architectures characterised by non-identical, non-equidistant or non-planar pixel layout
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/21Indexing scheme for image data processing or generation, in general involving computational photography

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Studio Devices (AREA)
  • Image Input (AREA)
  • Image Analysis (AREA)

Description

本発明は、撮像装置および撮像方法に関するものである。
スマートフォンなどに搭載するデジタルカメラは、薄型化が必要である。この種のデジタルカメラの薄型化技術としては、例えば、レンズを用いることなく物体像を得るものがある(例えば、特許文献1参照)。
米国特許出願公開第2014/0253781号明細書
特許文献1では、画像センサ上に貼り付けられる基板の上面に格子のパターンが形成される。この格子のパターンは、渦巻き状などの特殊なパターンとなっている。そして、特許文献1では、像を現像するのに、画像センサにて受光される射影パターンから、逆問題を解く。この逆問題を解く際の演算量は、多いという問題がある。
そこで本発明は、現像処理にかかる演算量を低減する技術を提供することを目的とする。
本願は、上記課題の少なくとも一部を解決する手段を複数含んでいるが、その例を挙げるならば、以下の通りである。上記課題を解決すべく、本発明の一態様に係る撮像装置は、第1のパターンを有し、光の強度を変調する変調器と、前記変調器を透過した光を画像データに変換して出力する画像センサと、前記画像データと、第2のパターンを示すパターンデータとの相互相関演算に基づいて像を復元する画像処理部と、を有することを特徴とする。
本発明によれば、現像処理に係る演算量を低減することができる。上記した以外の課題、構成、および効果は、以下の実施形態の説明により明らかにされる。
第1の実施の形態に係る撮像装置を適用した携帯端末の例を示した図である。 携帯端末が備える撮像装置の構成例を示した図である。 変調器および画像センサを示した図である。 変調器および画像センサの別の例を示した図である。 ガボールゾーンプレートの例を示した図である。 フレネルゾーンプレートの例を示した図である。 変調器を透過する光の画像センサへの射影像を説明する図である。 画像センサ上に投影される投影像の例を示した図である。 記憶装置に記憶される現像用パターンデータのパターン例を示している。 相互相関演算による現像画像の例を示した図である。 撮像装置の画角を説明する図である。 物体の各点からの光が画像センサに対してなす角を説明する図である。 撮像装置の動作例を示したフローチャートである。 画像処理部の機能ブロック構成例を示した図である。 3値化されたパターンの例を示した図である。 透過率が高い部分と低い部分とのデューティ比を変えたパターンの例を示した図である。 第2の実施の形態に係る撮像装置の動作例を示したフローチャートである。 画像処理部の機能ブロック構成例を示した図である。 第3の実施の形態に係る撮像装置の構成例を示した図である。 物体が無限遠にある場合の画像センサへの投影を説明する図である。 物体が有限距離にある場合の画像センサへの投影を説明する図である。 撮像装置の動作例を示したフローチャートである。 ノイズを説明する図である。 フリンジスキャンにおける初期位相の組合せ例を示した図のその1である。 フリンジスキャンにおける初期位相の組合せ例を示した図のその2である。 フリンジスキャンにおける初期位相の組合せ例を示した図のその3である。 ノイズをキャンセルした画像データの例を示している。 第4の実施の形態に係る撮像装置の構成例を示した図である。 変調器が表示する複数の初期位相の例を示した図である。 撮像装置の動作例を示したフローチャートである。 第5の実施の形態に係る撮像装置の構成例を示した図である。 変調器に形成されるパターン例を示している。 フレネルゾーンプレートの例を示した図である。 図33のフレネルゾーンプレートの自己相関関数を示した図である。 第6の実施の形態に係るランダムパターンの例を示した図である。 図35のランダムパターンの自己相関関数を示した図である。 相関関数の拡がりを説明する図である。 第7の実施の形態に係る撮像装置の動作例を示したフローチャートである。 第8の実施の形態に係るRLLパターンの一部を示した図である。 図39のRLLパターンの自己相関関数を示した図である。 第9の実施の形態に係るパターン例を示した図である。 図41のパターンを用いた撮像装置の例を示した図のその1である。 図41のパターンを用いた撮像装置の例を示した図のその2である。 図41のパターンを用いた撮像装置の例を示した図のその3である。
以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。
また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。
さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは特に明示した場合および原理的に明らかにそうではないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。
また、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。以下、本発明の実施の形態を、図面を参照して説明する。
[第1の実施の形態]
図1は、第1の実施の形態に係る撮像装置を適用した携帯端末の例を示した図である。図1に示す携帯端末1は、例えば、スマートフォンである。図1には、携帯端末1の他に、被写体2が示してある。
携帯端末1は、撮像装置(図示せず)を有している。携帯端末1は、ディスプレイを備え、撮像装置が撮像した被写体をディスプレイに表示する。
携帯端末1が備える撮像装置は、レンズレスカメラである。すなわち、携帯端末1が備える撮像装置は、結像させるレンズを用いることなく、外界の被写体2の画像を取得する。これにより、携帯端末1は、小型化、薄型化、および軽量化を図ることができる。
図2は、携帯端末1が備える撮像装置の構成例を示した図である。図2に示すように、撮像装置10は、変調器11と、画像センサ12と、画像処理部13とを有している。
変調器11には、例えば、同心円状のパターンが形成されている。変調器11を透過する光は、変調器11に形成されている同心円状のパターンによって強度が変調され、画像センサ12で受光される。変調器11は、画像センサ12の受光面に密着して固定される。
画像センサ12は、変調器11を透過した光を画像データに変換し、画像処理部13に出力する。
画像処理部13は、画像センサ12から出力される画像データと、所定のパターンを示すパターンデータとの相互相関演算に基づいて、被写体2の像を復元する。
画像センサ12の画像データから、被写体2の像を現像するためのパターンデータは、予め記憶装置(図示せず)に記憶されている。パターンデータは、例えば、変調器11が有するパターンと同様のパターン(図2に示す同心円状のパターン)を有した画像データである。以下では、パターンデータを現像用パターンデータと呼ぶことがある。
画像処理部13で復元された像の画像は、例えば、携帯端末1が備えるディスプレイ(図示せず)に表示される。
図3は、変調器11および画像センサ12を示した図である。図3において、図2と同じものには同じ符号が付してある。図3に示すように、変調器11は、パターン11aと、基板11bとを有している。
パターン11aは、同心円状の形状を有している。パターン11aは、中心から外側に向かうほど間隔(ピッチ)が狭くなっている。具体的には、パターン11aは、中心からの半径に反比例して間隔が狭くなっている。
パターン11aは、例えば、アルミニウム、クロムなどの金属を、半導体プロセスに用いられるスパッタリング法などによって基板11b上に蒸着し、形成される。パターン11aは、アルミニウム等が蒸着されたパターンと、蒸着されていないパターンとの濃淡によって形成される。
なお、パターン11aは、これに限定されるものでなく、例えば、インクジェットプリンタなどによる印刷などによって濃淡が形成されてもよい。すなわち、パターン11aは、透過率の変調を実現できる手段であれば、どのように形成されてもよい。
基板11bは、撮像装置10が可視光の撮影に用いられる場合、例えば、ガラスやプラスティックなど、可視光に対して透明な材料により形成される。一方、撮像装置10が遠赤外線の撮影に用いられる場合、基板11bは、例えば、ゲルマニウム、シリコン、カルコゲナイドなど、遠赤外線に対して透明な材料により形成される。すなわち、基板11bは、撮影対象となる波長に対して透明な材料を用いればよい。また、パターン11aには、撮影対象となる波長を遮断する材料を用いればよい。
画像センサ12は、例えば、CCD(Charge Coupled Device)イメージセンサまたはCMOS(Complementary Metal Oxide Semiconductor)イメージセンサである。画像センサ12の表面には、受光素子である画素12aが格子状に規則的に配置されている。画像センサ12は、画素12aが受光した光画像を、電気信号である画像信号(画像データ)に変換する。
変調器11および画像センサ12の別の例について説明する。
図4は、変調器11および画像センサ12の別の例を示した図である。図4において、図3と同じものには同じ符号が付してある。
図4の例では、パターン11aは、薄膜に形成されている。パターン11aが形成された薄膜は、4つの支持部材11cによって、画像センサ12に対向するように設けられる。変調器11と画像センサ12は、図4に示すように形成されてもよい。なお、以下では、特に断らない限り、変調器11と画像センサ12の構造は、図3に示した構造であるとする。
撮像装置10の撮影原理について説明する。中心からの半径に対し、反比例してピッチが細かくなる同心円状のパターンは、次のように定義する。
まず、レーザ干渉計などにおいて、平面波に近い球面波と、参照光として用いる平面波とを干渉させる場合を想定する。同心円の中心である基準座標からの半径を「r」とし、そこでの球面波の位相を「φ(r)」とすると、位相「φ(r)」は、波面の曲がりの大きさを決める係数βを用いて、次の式(1)で示される。
Figure 0006688716
球面波にもかかわらず、半径「r」の2乗で表されているのは、平面波に近い球面波のため、展開の最低次のみで近似できるからである。この位相分布を持った光に、平面波を干渉させると、次の式(2)で示される干渉縞の強度分布が得られる。
Figure 0006688716
これは、次の式(3)を満たす半径で、明るい線を持つ同心円の縞となる。
Figure 0006688716
縞のピッチを「p」とすると、次の式(4)が得られる。
Figure 0006688716
式(4)より、ピッチは、半径「r」に対して反比例して狭くなっていくことが分かる。このような縞を持つプレート(パターン)は、濃淡が正弦波状に連続的に変化するプレートにおいては、ガボールゾーンプレートと呼ばれ、濃淡が2階調で変化するプレートにおいては、フレネルゾーンプレートと呼ばれる。
図5は、ガボールゾーンプレートの例を示した図である。ガボールゾーンプレートは、縞の濃淡が、正弦波状に連続的に変化する。
図6は、フレネルゾーンプレートの例を示した図である。フレネルゾーンプレートは、縞の濃淡が、2階調で変化する。以下では、ガボールゾーンプレートとフレネルゾーンプレートとを区別しない場合には、単に「ゾーンプレート」と呼ぶことがある。
これより以降、説明を簡単にするために、x軸方向についてのみ数式で説明するが、y軸方向についても同様に考慮することで、2次元に展開して考えることが可能である。
図7は、変調器11を透過する光の画像センサ12への射影像を説明する図である。図7には、変調器11のパターン11aと、基板11bとが示してある。
図7に示すように、パターン11aが形成された厚さ「d」の基板11bに、角度「θ」で平行光が入射したとする。基板11b中の屈折角を「θ」とすると、幾何光学的には、表面のパターン11aの透過率が乗じられた光が、「k=d・tanθ」だけずれて画像センサ12に入射する。このとき、画像センサ12では、次の式(5)で示される強度分布を持つ投影像が検出される。なお、式(5)の「ΦF」は、式(2)の干渉縞強度分布の初期位相を示す。
Figure 0006688716
画像処理部13は、式(5)で示した投影像(画像センサ12から出力される画像データ)と、予め記憶装置に記憶されている現像用パターンデータとの相互相関演算によって、現像画像を得る。現像用パターンデータのパターンは、変調器11に形成されるゾーンプレートと同様のパターンを有し、初期位相を「ΦB」とすると、次の式(6)で示される。
Figure 0006688716
現像用パターンデータは、信号処理において用いられるデータである。そのため、現像用パターンデータのパターンは、式(5)のように、「1」でオフセットさせる必要はなく、負の値を有していてもよい。
図8は、画像センサ12上に投影される投影像の例を示した図である。変調器11に入射した光は、式(5)に示したように、kシフトして画像センサ12上に投影される。
図9は、記憶装置に記憶される現像用パターンデータのパターン例を示している。画像処理部13は、例えば、図9に示すパターンを有する現像用パターンデータを記憶装置に記憶している。
図10は、相互相関演算による現像画像の例を示した図である。画像処理部13は、上記したように、画像センサ12から出力される画像データと、予め記憶装置に記憶されている現像用パターンデータとの相互相関演算を行う。例えば、画像処理部13は、図8に示した投影像の画像データと、図9に示した予め記憶装置に記憶されている現像用パターンデータとの相互相関演算を行って、図10に示すような現像画像(輝点)を得る。すなわち、画像処理部13は、式(5)で示される画像センサ12上の投影像(画像センサ12から出力される画像データ)と、記憶装置に記憶されている式(6)で示される現像用パターンデータとの相互相関演算により、シフト量「k」の輝点を得る。
相互相関演算としては、畳み込み演算がある。例えば、画像処理部13は、画像センサ12から出力される画像データと、予め記憶装置に記憶されている現像用パターンデータとの2次元の畳み込み演算によって、2次元の現像画像を得る。
撮像装置10の画角について説明する。
図11は、撮像装置10の画角を説明する図である。図11には、変調器11のパターン11aと、基板11bとが示してある。
撮像装置10が検出できる平行光の入射角の最大角度を「θmax」とする。最大角度「θmax」は、図11に示すように、パターン11aの中心と、基板11bの下面の端(画像センサ12の端)とを結ぶ光線の角度であり、次の式(7)で示される。
Figure 0006688716
なお、最大角度「θmax」は、画像センサ12上の投影像と、現像用パターンデータとの相互相関関数のピークが、画像センサ12の端に現れたときの角度でもある。
一般的なレンズを用いた結像との類推から、画角「θmax」の平行光を画像センサ12の端で焦点を結んで受光すると考えると、レンズを用いない撮像装置10の実効的な焦点距離は、次の式(8)で示される。
Figure 0006688716
ここで、式(7)より、画角は、変調器11の厚さ「d」によって変更可能であることが分かる。従って、撮像装置10は、変調器11が、例えば、図4に示したような構成を有し、支持部材11cの長さを変更できる機能を有していれば、撮影時に画角を変更して撮影することもできる。
上記で説明してきた平行光と、実際の物体からの光との対応関係について説明する。
図12は、物体の各点からの光が画像センサ12に対してなす角を説明する図である。図12には、被写体2と、変調器11と、画像センサ12とが示してある。図12では、変調器11と画像センサ12とを画像センサ一体基板A1と呼ぶ。
被写体2の各点からの光は、厳密には点光源からの球面波として、画像センサ一体基板A1に入射する。被写体2に対し、画像センサ一体基板A1が十分に小さい場合や、十分に遠い場合には、各点から、画像センサ一体基板A1を照明する光の入射角は、同じとみなすことができる。従って、撮像装置10は、前述したような条件下であれば、無限遠の物体に対して撮像が可能である。
画像処理部13の動作について説明する。
図13は、撮像装置10の動作例を示したフローチャートである。撮像装置10は、例えば、携帯端末1のシャッタボタンがユーザによって押下されたときに、図13に示すフローチャートの処理を開始する。
まず、画像処理部13は、画像センサ12が撮影した画像データを取得する(ステップS1)。
次に、画像処理部13は、記憶装置に記憶されている現像用パターンデータを取得する(ステップS2)。
次に、画像処理部13は、ステップS1にて取得した画像センサ12の画像データと、ステップS2にて取得した記憶装置に記憶されている現像用パターンデータとの相互相関演算を行う(ステップS3)。例えば、画像処理部13は、相互相関演算として、2次元の畳み込み演算を行う。
次に、画像処理部13は、ステップS3にて算出した画像データ(現像画像の画像データ)のノイズ除去を行う(ステップS4)。
次に、画像処理部13は、ステップS4にてノイズ除去した画像データのコントラスト強調を行う(ステップS5)。
次に、画像処理部13は、ステップS5にてコントラスト強調処理した画像データのカラーバランス調整を行う(ステップS6)。
次に、画像処理部13は、ステップS6にてカラーバランス調整した画像データを携帯端末1のディスプレイに出力する(ステップS7)。
以上の処理によって、携帯端末1によって撮影された被写体2は、携帯端末1のディスプレイに表示される。
図14は、画像処理部13の機能ブロック構成例を示した図である。図14に示すように、画像処理部13は、画像入力部13aと、記憶装置13bと、相互相関演算部13cと、ノイズ除去部13dと、コントラスト強調部13eと、カラーバランス調整部13fと、出力部13gとを有している。図14に示す各機能は、CPU(Central Processing Unit)がプログラムを実行することによって実現されてもよいし、論理回路等のハードウェアによって実現されてもよい。
画像入力部13aは、画像センサ12から出力される画像データを入力する。
記憶装置13bには、変調器11に形成されているパターン11aと同様のパターンを有した現像用パターンデータが予め記憶されている。
相互相関演算部13cは、画像入力部13aが入力した画像データと、記憶装置13bに記憶されている現像用パターンデータとの相互相関演算を行う。例えば、相互相関演算部13cは、画像入力部13aが入力した画像データと、記憶装置13bに記憶されている現像用パターンデータとの2次元の畳み込み演算を行う。
ノイズ除去部13dは、相互相関演算部13cによって演算された画像データのノイズ除去を行う。
コントラスト強調部13eは、ノイズ除去部13dでノイズ除去された画像データのコントラスト強調を行う。
カラーバランス調整部13fは、コントラスト強調部13eでコントラスト強調された画像データのカラーバランス調整を行う。
出力部13gは、カラーバランス調整部13fでカラーバランス調整された画像データをディスプレイに出力する。
以上説明したように、撮像装置10の変調器11は、パターン11aを有し、光の強度を変調する。画像センサ12は、変調器11を透過した光を画像データに変換して出力する。そして、画像処理部13は、画像センサ12から出力される画像データと、所定のパターンを示す現像用パターンデータとの相互相関演算に基づいて像を復元する。例えば、画像処理部13は、画像センサ12から出力される画像データと、現像用パターンデータとの畳み込み演算に基づいて、像を復元する。
これにより、撮像装置10は、現像処理に係る演算量を低減することができる。例えば、撮像装置10は、格子基板を透過する光の画像センサ上で生じる射影パターンから、入射光の入射角を逆問題により算出する撮像装置より、演算量を低減することができる。
また、撮像装置10は、演算量を低減するので、ディスプレイに画像を表示するまでの時間を短縮することができる。
また、撮像装置10は、演算量を低減するので、例えば、高性能のCPUを用いる必要がなく、低コスト化および消費電力の低減を図ることができる。
なお、上記では、撮像装置10を携帯端末1に適用した例について説明したが、デジタルカメラなどのその他の電子機器にも適用することができる。
また、上記では、撮像装置10に入射する光線は、同時には1つの入射角度だけであった。しかし、実際に撮像装置10がカメラとして作用するには、複数の入射角度の光が撮像装置10に同時に入射する場合を想定しなければならない。このような複数の入射角の光は、画像センサ12に入射する時点で、すでに複数のパターン11aの像が重なり合わさることになる。しかし、一般的な光源による照明下では、入射光はインコヒーレントであり、相互には影響を及ぼさないため独立して考えることが可能である。
また、現像用パターンデータは、予め記憶装置13bに記憶されるとしたが、これに限られない。画像処理部13は、被写体2が撮影されたときに、式(6)に基づいて現像用パターンデータを生成してもよい。
また、式(2)で示される透過率分布は、基本的に正弦波的な特性があることを想定しているが、パターン11aの基本周波数成分としてそのような成分が含まれていればよい。
図15は、3値化されたパターン11aの例を示した図である。図15に示すように、パターン11aの透過率は、3値化してもよい。これにより、パターン11aは、3種類の透過率によって作製できるため、作製に係る難易度を低下させることができる。
図16は、透過率が高い部分と低い部分とのデューティ比を変えたパターン11aの例を示した図である。図16に示すように、パターン11aは、透過率の高い部分を、透過率の低い部分より広くしてもよい。これにより、撮像装置10は、パターン11aからの回折を抑圧するなどの効果が得られ、撮影像の劣化を低減することができる。
[第2の実施の形態]
第2の実施の形態では、相互相関演算として、フーリエ変換を用いる。これにより、畳み込み演算より、演算量を低減する。第2の実施の形態に係る撮像装置は、図2に示した撮像装置10と同様の構成を有するが、画像処理部13の機能が一部異なる。以下では、第1の実施の形態と異なる部分について説明する。
第2の実施の形態では、画像処理部13は、画像センサ12から出力される画像データをフーリエ変換する。すなわち、画像処理部13は、上記の式(5)をフーリエ変換する。式(5)をフーリエ変換した結果は、次の式(9)に示すようになる。
Figure 0006688716
画像処理部13が有する記憶装置には、フーリエ変換された現像用パターンデータが予め記憶されている。すなわち、記憶装置には、上記の式(6)をフーリエ変換したデータが記憶されている。式(6)をフーリエ変換した結果は、次の式(10)に示すようになる。
Figure 0006688716
式(9)および式(10)に示す「F」は、フーリエ変換の演算を示し、「u」は、x軸方向の周波数座標を示す。式(9)の「δ」は、デルタ関数である。
式(9)および式(10)で重要なことは、フーリエ変換後の式もまたゾーンプレートとなっている点である。つまり、画像処理部13は、フーリエ変換した画像データに対し、フーリエ変換した現像用パターンデータを作用させることにより、現像画像を得ることができる。式(9)と式(10)とを乗算すると、式(11)に示すようになる。
Figure 0006688716
式(11)の指数関数で示される項「exp(−iku)」が信号成分であり、この項を逆フーリエ変換すると、式(12)に示すようになる。
Figure 0006688716
式(12)より、元のx軸において、「k」の位置に輝点を得ることができる(図10を参照)。この輝点が無限遠の光束を示しており、画像処理部13から得られる撮影像にほかならない。
このように、画像処理部13は、画像センサ12から出力される画像データをフーリエ変換し、フーリエ変換した画像データと、予め記憶装置に記憶したフーリエ変換された現像用パターンデータとを乗算することにより、現像画像を得ることができる。そして、フーリエ変換を利用することにより、現像画像を得る演算が乗算演算となるため、画像処理部13は、演算量を低減できる。
なお、式(11)の右辺第2項の「sin」の式において、ΦF=ΦB=π/4となるとき、「sin」の初期位相が「0」となる。さらに、式(11)の右辺第1項が「0」となり、現像に不要な項を低減できる。この条件で現像処理すれば、画像処理部13は、ノイズの少ない現像画像を得ることができる。
図17は、第2の実施の形態に係る撮像装置10の動作例を示したフローチャートである。撮像装置10は、例えば、携帯端末1のシャッタボタンがユーザによって押下されたときに、図17に示すフローチャートの処理を開始する。
まず、画像処理部13は、画像センサ12が撮影した画像データを取得する(ステップS11)。
次に、画像処理部13は、ステップS11にて取得した画像データをフーリエ変換する(ステップS12)。
次に、画像処理部13は、記憶装置に記憶されている、フーリエ変換された現像用パターンデータを取得する(ステップS13)。
次に、画像処理部13は、ステップS12にてフーリエ変換した画像データと、ステップS13にて取得したフーリエ変換された現像用パターンデータとを乗算する(ステップS14)。
次に、画像処理部13は、ステップS14にて乗算したデータを、逆フーリエ変換する(ステップS15)。
ステップS16〜ステップS19の処理は、図13で説明したステップS4〜ステップS7と同様であり、その説明を省略する。
以上の処理によって、携帯端末1によって撮影された被写体2は、携帯端末1のディスプレイに表示される。
図18は、画像処理部13の機能ブロック構成例を示した図である。図18に示すように、画像処理部13は、画像入力部21aと、フーリエ変換部21bと、記憶装置21cと、乗算部21dと、逆フーリエ変換部21eと、ノイズ除去部21fと、コントラスト強調部21gと、カラーバランス調整部21hと、出力部21iとを有している。図18に示す各機能は、CPUがプログラムを実行することによって実現されてもよいし、論理回路等のハードウェアによって実現されてもよい。
画像入力部21aは、画像センサ12から出力される画像データを入力する。
フーリエ変換部21bは、画像入力部21aによって入力された画像データをフーリエ変換する。フーリエ変換部21bは、例えば、FFT(Fast Fourier Transform)によって、画像入力部21aによって入力された画像データをフーリエ変換する。
記憶装置21cには、予めフーリエ変換された現像用パターンデータが記憶されている。
乗算部21dは、フーリエ変換部21bによってフーリエ変換された画像データと、記憶装置21cに記憶されているフーリエ変換された現像用パターンデータとを乗算する。
逆フーリエ変換部21eは、乗算部21dから得られた乗算結果を、逆フーリエ変換する。逆フーリエ変換部21eは、例えば、IFFT(Inverse Fast Fourier Transform)によって、乗算部21dから得られた乗算結果を、逆フーリエ変換する。
ノイズ除去部21f、コントラスト強調部21g、カラーバランス調整部21h、および出力部21iは、図14に示したノイズ除去部13d、コントラスト強調部13e、カラーバランス調整部13f、および出力部13gと同様であり、その説明を省略する。
以上説明したように、撮像装置10の画像処理部13は、画像データのフーリエ変換と、現像用パターンデータのフーリエ変換との乗算演算に基づいて、現像画像を得る。これにより、撮像装置10は、更なる演算量の低減を図ることができる。
なお、相互相関演算をフーリエ変換で実施する方法としてFFTを例に説明したが、これに限定されるものではない。例えば、撮像装置10は、離散コサイン変換(DCT:Discrete Cosine Transform)などを使用してもよく、さらに演算量を削減することもできる。
[第3の実施の形態]
上記の第1の実施の形態および第2の実施の形態では、無限遠での物体の撮影について説明した。第3の実施の形態では、有限距離での物体の撮影について説明する。
図19は、第3の実施の形態に係る撮像装置30の構成例を示した図である。図19において、図2と同じものには同じ符号が付してある。以下では、図2と異なる部分について説明する。
図19に示すように、撮像装置30は、画像記憶装置31と、画像処理部32と、フォーカス設定部33とを有している。
画像記憶装置31は、画像センサ12から出力される画像データを記憶する。
画像処理部32は、図2に示した画像処理部13と同様の機能を有しているが、現像用パターンデータを生成するところが異なる。すなわち、画像処理部32は、現像用パターンデータを記憶装置に予め記憶していない。
フォーカス設定部33は、画像記憶装置31に記憶された画像データのフォーカスを合わせるため、拡大および縮小した現像用パターンデータを生成する。
図20は、物体が無限遠にある場合の画像センサ12への投影を説明する図である。図20には、変調器11のパターン11aと、基板11bとが示してある。なお、基板11bの下面には、画像センサ12が密着して設けられるが、その図示を省略している。
無限遠の物体を構成する点A11からの球面波は、十分に長い距離を伝搬する間に平面波となる。平面波の光は、パターン11aを照射し、画像センサ12に投影される。
物体が無限遠にある場合、画像センサ12に投影される投影像A12は、パターン11aとほぼ同じ形状となる。そのため、投影像A12と、現像用パターンデータとの相互相関演算を行うことにより、単一の輝点を得ることができる。
図21は、物体が有限距離にある場合の画像センサ12への投影を説明する図である。物体を構成する点A21からの球面波の光は、パターン11aを照射し、画像センサ12に投影される。撮影する物体が有限距離にある場合、点A21からの球面波の光の投影像A22は、ほぼ一様に拡大される。
投影像A22の拡大率「α」は、パターン11aから点A21までの距離「f」を用いて、次の式(13)で示される。
Figure 0006688716
投影像A22の拡大率「α」は、距離「f」によって変わる。そのため、平行光に対して設計された現像用パターンデータの透過率分布をそのまま使用し、相互相関演算したのでは、単一の輝点を得ることができない。そこで、一様に拡大された投影像(画像センサ12から出力される画像データ)に合わせて、現像用パターンデータを拡大させれば、拡大された投影像A22に対して、単一の輝点を得ることができる。
例えば、画像処理部13は、画像記憶装置31に記憶された画像データと、フォーカス設定部33によって拡大または縮小された現像用パターンデータとを相互相関演算することにより、単一の輝点の現像画像を出力できる。
なお、単一の輝点を得るには、式(6)に示した現像用パターンデータの係数「β」を「β/α」とすればよい。すなわち、フォーカス設定部33は、式(6)の係数「β」を「β/α」にし、拡大率「α」に基づいて、拡大または縮小した現像用パターンデータを生成する。
フォーカス設定部33は、拡大率「α」をユーザからの操作に応じて変更してもよい。例えば、ユーザは、携帯端末1のディスプレイを見ながら、画像のフォーカスが合うようにGUI(Graphical User Interface)を操作し、フォーカス設定部33は、その操作に応じて拡大率「α」を変更する。または、フォーカス設定部33は、画像のフォーカスが合うように、自動で拡大率「α」を変更してもよい。
撮像装置30の動作例について説明する。以下では、相互相関演算として、フーリエ変換を用いた場合の動作例について説明する。
図22は、撮像装置30の動作例を示したフローチャートである。撮像装置30は、例えば、携帯端末1のシャッタボタンがユーザによって押下されたときに、図22に示すフローチャートの処理を開始する。
まず、画像記憶装置31は、画像センサ12が撮影した画像データを記憶する(ステップS21)。
次に、画像処理部32は、ステップS21にて記憶された画像データをフーリエ変換する(ステップS22)。
次に、フォーカス設定部33は、拡大率を決定する(ステップS23)。例えば、フォーカス設定部33は、ユーザの操作に応じてまたは自動で拡大率を決定する。
次に、画像処理部32は、ステップS23にて決定した拡大率に応じた現像用パターンデータを生成する(ステップS24)。
次に、画像処理部32は、ステップS24にて生成した現像用パターンデータをフーリエ変換する(ステップS25)。
次に、画像処理部32は、ステップS22にてフーリエ変換した画像データと、ステップS25にてフーリエ変換した現像用パターンデータとを乗算する(ステップS26)。
ステップS27〜ステップS31の処理は、図17で説明したステップS15〜ステップS19と同様であり、その説明を省略する。
以上説明したように、フォーカス設定部33は、画像データと相互相関演算される現像用パターンデータを拡大および縮小する。これにより、撮像装置30は、画像のフォーカスを合わせることができる。
また、撮像装置30は、画像記憶装置31に画像センサ12から出力される画像データを記憶する。これにより、撮像装置30は、撮影後にフォーカスを合わせることができる。
また、従来のカメラでは、フォーカスを変更するためには再撮影が必要であったが、撮像装置30は、撮影後に(画像記憶装置31に記憶した画像データに対し)フォーカス合わせができるので、再撮影が不要となる。
[第4の実施の形態]
上記の第2の実施の形態では、式(11)に含まれる信号成分に着目して話を進めたが、実際には、信号項「exp(−iku)」以外のノイズ項も含まれ、鮮明な現像を阻害する。第4の実施の形態では、ノイズ除去について説明する。
図23は、ノイズを説明する図である。図23(a)は、撮影対象を示している。図23(b)は、第2の実施の形態に係る撮像装置10で、図23(a)の撮影対象を撮影したときの画像を示している。
上記したように、式(11)には、信号項「exp(−iku)」以外の項が含まれる。そのため、第2の実施の形態に係る撮像装置10で、図23(a)の撮影対象を撮影すると、図23(b)に示すように、画像データにノイズが含まれる。
そこで、第4の実施の形態では、フリンジスキャンに基づくノイズキャンセルを行う。以下、フリンジスキャンに基づくノイズキャンセルを説明する。
次の式(14)に示すように、三角関数の直交性を利用し、格子間の乗算結果を「ΦF」および「ΦB」に関して積分すると、ノイズ項がキャンセルされ、信号項の定数倍が残る。
Figure 0006688716
式(14)を逆フーリエ変換すると、次の式(15)に示すように変換され、元のx軸において「k」の位置にノイズのない輝点を得ることができる。
Figure 0006688716
ここで、式(14)は、積分の形で示しているが、実際には、「ΦF」と「ΦB」との組合せの総和を計算することによって同様の効果が得られる。
図24は、フリンジスキャンにおける初期位相の組合せ例を示した図のその1である。図24の「ΦF」は、変調器に形成されるパターンの初期位相を示し、「ΦB」は、現像用パターンデータの初期位相を示す。
図24に示すように、「ΦF」と「ΦB」は、「0〜2π」の間の角度を等分するように設定する。図24に示す「ΦF」と「ΦB」との組合せにおける総和を計算すれば、式(14)と同様の効果が得られる。
なお、図24に示す組合せのように、「ΦF」と「ΦB」は、「0〜2π」の間の角度を等分するように設定すればよく、「0、π/3、2π/3」のように3等分してもよい。
式(14)は、さらに簡略化できる。例えば、図24では、「ΦF」と「ΦB」とを独立して変えられるように計算したが、「ΦF=ΦB」、すなわち、変調器が有するパターンの初期位相と、現像用パターンデータの初期位相とに、同じ位相を適用してもノイズ項をキャンセルできる。例えば、式(14)において「ΦF=ΦB=Φ」とすれば、次の式(16)が得られる。
Figure 0006688716
式(16)に示すように、「ΦF=ΦB=Φ」の場合でも、ノイズ項がキャンセルされ、信号光の定数倍が残ることになる。
式(16)を逆フーリエ変換すると、次の式(17)に示すように変換され、元のx軸において「k」の位置にノイズのない輝点を得ることができる。
Figure 0006688716
図25は、フリンジスキャンにおける初期位相の組合せ例を示した図のその2である。図25に示す「ΦF」と「ΦB」との組合せ(ΦF=ΦB=Φ)における総和を計算すれば、式(16)と同様の効果が得られる。
なお、図25に示す組合せのように、「ΦF」と「ΦB」は、「0〜2π」の間の角度を等分するように設定すればよく、「0,π/3,2π/3」のように3等分してもよい。
また、「ΦF」と「ΦB」との組合せを「0,π/2」とすると、式(14)は、さらに簡略化できる。この場合、式(16)は、次の式(18)に示すようになる。
Figure 0006688716
式(18)に示すように、「ΦF」と「ΦB」との組合せが「0,π/2」の場合でも、ノイズ項がキャンセルされ、信号光の定数倍が残ることになる。
式(18)を逆フーリエ変換すると、次の式(19)に示すように変換され、元のx軸において「k」の位置にノイズのない輝点を得ることができる。
Figure 0006688716
図26は、フリンジスキャンにおける初期位相の組合せ例を示した図のその3である。図26に示す「ΦF」と「ΦB」との組合せ(ΦF=ΦB=Φ=0,π/2)における総和を計算すれば、式(18)と同様の効果が得られる。
なお、2つの位相「Φ」は、互いに直交(位相差=π/2+nπ:nは整数)するように選択する必要がある。
式(14)では、「cos(ΦB−ΦF)」を乗算する必要があり、式(16)と式(18)は、2つの格子パターンの位相を揃える必要がある。すなわち、上記で説明した計算方法では、変調器に形成されるパターンと、現像用パターンデータとの初期位相を認識している必要がある。この初期位相を認識せずに演算できるようにするには、次の式(20)のように、格子間の乗算結果を2乗したものを積分してもよい。
Figure 0006688716
式(20)には、「ΦF」および「ΦB」が含まれない。つまり、式(20)による計算によれば、初期位相が不明な場合でもあっても、ノイズキャンセルすることができる。
式(20)を逆フーリエ変換すると、次の式(21)に示すように変換され、元のx軸において「k」の位置にノイズのない輝点を得ることができる。
Figure 0006688716
式(21)に示す「π/2β」は、輝点に対して輝度が「π/2β」オフセットすることを示しており、本質的なノイズではない。
図27は、ノイズをキャンセルした画像データの例を示している。式(14)〜式(21)を用いて現像処理すると、図23(b)で示した画像データは、図27に示すようにノイズがキャンセルされる。すなわち、式(14)〜式(21)で説明したフリンジスキャンによれば、図27に示すように、撮影対象を適切に現像できる。
上記のノイズキャンセルを行うための撮像装置の構成について説明する。フリンジスキャンでは、変調器は、初期位相の異なる複数のパターンを有する必要がある。初期位相の異なる複数のパターンを実現するのに、時分割で変調器のパターンを切り替える。
図28は、第4の実施の形態に係る撮像装置の構成例を示した図である。図28において、図2と同じものには同じ符号が付してある。図28に示すように、撮像装置40は、変調器41と、変調制御部42と、画像処理部43とを有している。
変調器41は、初期位相が異なる複数のパターンを切替えて表示する。例えば、変調器41は、液晶表示素子を有し、電気的に初期位相が異なる複数のパターンを切替えて表示する。
図29は、変調器41が表示する複数の初期位相の例を示した図である。図29(a)には、変調器41が表示するパターンであって、初期位相「ΦF」または「Φ」が「0」のときのパターン例が示してある。図29(b)には、変調器41が表示するパターンであって、初期位相「ΦF」または「Φ」が「π/2」のときのパターン例が示してある。図29(c)には、変調器41が表示するパターンであって、初期位相「ΦF」または「Φ」が「π」のときのパターン例が示してある。図29(d)には、変調器41が表示するパターンであって、初期位相「ΦF」または「Φ」が「3π/2」のときのパターン例が示してある。
図28の説明に戻る。変調制御部42は、変調器41のパターンの切替えタイミングと、画像センサ12のシャッタタイミングとを同期して制御する。例えば、変調制御部42は、変調器41のパターンを、図29に示した4つのパターンで順次切り替えるとともに、画像センサ12に対し、被写体を撮影するように制御する。すなわち、画像センサ12は、1フレームの画像を得るのに、被写体を4回撮影する(図26の場合は2回撮影する)。
変調制御部42は、変調器41のパターンを切替える際、パターンを切替える初期位相の情報を画像処理部43に送信する。例えば、変調制御部42は、変調器41のパターンを、図29(a)に示したパターンから、図29(b)に示したパターンへ切り替えた場合、初期位相「π/2」の情報を画像処理部43に送信する。
画像処理部43は、変調制御部42から送信された初期位相に基づいて、現像用パターンデータの初期位相を変更する。そして、画像処理部43は、「ΦF」と「ΦB」との組合せにおける総和を計算する(図25、図26の例の場合は、「ΦF=ΦB=Φ」の組合せにおける総和を計算する)。
例えば、図24の例を用いて説明すると、画像処理部43は、変調制御部42から初期位相「ΦF=0」が送信された場合、現像用パターンデータの初期位相「ΦB」を「0,π/2,π,3π/2」と順次切り替える。また、画像処理部43は、変調制御部42から初期位相「ΦF=π/2」が送信された場合、現像用パターンデータの初期位相「ΦB」を「0,π/2,π,3π/2」と順次切り替える。以下同様にして、画像処理部43は、現像用パターンデータの初期位相を切り替え、図24に示す全組合せにおける乗算結果を総和する。
撮像装置40の動作例について説明する。以下では、相互相関演算として、フーリエ変換を用いた場合の動作例について説明する。
図30は、撮像装置40の動作例を示したフローチャートである。撮像装置40は、例えば、携帯端末1のシャッタボタンがユーザによって押下されたときに、図30に示すフローチャートの処理を開始する。
まず、画像処理部43は、変数「加算結果」をクリアする(ステップS31)。
次に、変調制御部42は、変調器41のパターンの初期位相を制御する(ステップS32)。例えば、変調制御部42は、処理がステップS37から当該ステップS32に遷移する度に、図29に示した変調器41のパターンを順次切り替える。なお、変調制御部42は、変調器41のパターンの情報を画像処理部43に送信する。
次に、画像処理部43は、画像センサ12から出力される画像データをフーリエ変換する(ステップS33)。
次に、画像処理部43は、初期位相の異なる現像用パターンデータを生成する(ステップS34)。例えば、図24の例の場合、変調制御部42は、初期位相「ΦF=0」に対し、初期位相「0,π/2,π,3π/2」の4つの現像用パターンデータを生成する。
なお、初期位相「ΦF」は、例えば、「ΦF=0」から、ステップS37のループを回る度に、「π/2,π,3π/2」と切替わる。画像処理部43は、それぞれの初期位相「ΦF=π/2,π,3π/2」に対し、初期位相「0,π/2,π,3π/2」の4つの現像用パターンデータを生成することになる。
次に、画像処理部43は、ステップS33にてフーリエ変換した画像データと、ステップS34にて生成した現像用パターンデータとを乗算する(ステップS35)。なお、現像用パターンデータは、4つあるので、乗算結果は、4つ得られる。
次に、画像処理部43は、ステップS35にて算出した乗算結果を加算し、変数「加算結果」に格納されている加算結果に加算する(ステップS36)。
次に、変調制御部42は、初期位相の切替え(初期位相シフト)を全て終了したか判定する(ステップS37)。例えば、変調制御部42は、図29に示した変調器41のパターンを全て切替えたか判定する。
変調制御部42は、ステップS37にて、初期位相の切替えを全て終了していないと判定した場合(S37の「No」)、処理をステップS32へ移行する。一方、変調制御部42は、ステップS37にて、初期位相の切替えを全て終了したと判定した場合(S37の「Yes」)、処理をステップS38へ移行する。
画像処理部43は、ステップS36にて得られた乗算結果(変数「加算結果」に格納されている乗算結果)を、逆フーリエ変換する(ステップS38)。
ステップS39〜ステップS42の処理は、図17で説明したステップS16〜ステップS19と同様であり、その説明を省略する。
以上説明したように、変調制御部42は、変調器41の初期位相が異なる複数のパターンを時分割で切替える。そして、画像処理部43は、変調器41の初期位相の切替えに応じて、現像用パターンデータの初期位相を変更する。これにより、撮像装置40は、簡単な演算により、画像センサ12から得られる画像のノイズをキャンセルすることができる。
[第5の実施の形態]
上記の第4の実施の形態では、変調器41の初期位相が異なるパターンを時分割で切り替えた。第5の実施の形態では、変調器の初期位相が異なるパターンを空間分割する。
図31は、第5の実施の形態に係る撮像装置の構成例を示した図である。図31において、図2と同じものには同じ符号が付してある。図31に示すように、撮像装置50は、変調器51と、画像分割部52と、画像処理部53とを有している。
変調器51は、複数のパターンを有している。
図32は、変調器51に形成されるパターン例を示している。変調器51には、例えば、図32に示すように、複数のパターンが2次元的に形成されている。図32の例では、複数のパターンのそれぞれは、初期位相「ΦF」または「Φ」が「0,π/2,π,3π/2」となっている。
なお、図32の例では、複数のパターンは、2×2で変調器51に形成されている。式(18)に基づくフリンジスキャンでは、2位相で実現できるため(図26参照)、この場合、複数のパターンは、1×2で変調器51に形成される。
図31の説明に戻る。画像分割部52は、画像センサ12から出力される画像データを、変調器51のパターン配置に応じた領域に分割し、画像処理部53に順次出力する。変調器51のパターン配置が図32の例の場合、画像分割部52は、画像データを2×2に分割し、画像処理部53に順次出力する。
画像処理部53は、変調器51の複数のパターンに対応した初期位相の現像用パターンデータを、例えば、記憶装置に予め記憶している。例えば、図32の例の場合、画像処理部53は、4つの現像用パターンデータを有している。画像処理部53は、画像分割部52から出力される画像データに対し、対応する現像用パターンデータを用いて、現像画像を得る。例えば、画像処理部53は、画像分割部52から出力される分割された画像データと、その分割された画像データに対応する現像用パターンデータとの相互相関演算によって、現像画像を得る。
以上説明したように、変調器51は、初期位相が異なる複数のパターンを有する。そして、画像処理部53は、複数のパターンに対応する異なる初期位相の現像用パターンデータを有する。これにより、撮像装置50は、簡単な演算により、画像センサ12から得られる画像のノイズをキャンセルすることができる。
また、変調器51は、空間分割して複数のパターンを有するので、パターンを電気的に切替えずに済み、安価に作製されることができる。ただし、撮像装置50は、画像データを分割するため、解像度が実質的に低下する。従って、解像度を上げる必要がある場合には、第4の実施の形態で説明した時分割方式が適している。
なお、上記では、画像処理部53は、現像用パターンデータを記憶装置に記憶するとしたが、生成してもよい。
[第6の実施の形態]
第6の実施の形態では、フレネルゾーンプレートやガボールゾーンプレートに限定されないパターンを使用する。第6の実施の形態に係る撮像装置は、図2に示した撮像装置10と同様の構成を有するが、変調器11および画像処理部13の機能が一部異なる。以下では、第1の実施の形態と異なる部分について説明する。
まず、数式の一般化を行う。式(5)は、ガボールゾーンプレートの投影像を表す数式であったが、式(5)を一般化すると、次の式(22)で示すことができる。
Figure 0006688716
「f」は平均値0、振幅−1〜+1の関数であることが望ましい。同様に、現像用パターンデータ(式(6))を一般化すると、次の式(23)で示すことができる。
Figure 0006688716
式(22)と式(23)のフーリエ変換は、それぞれ式(24)および式(25)に示すようになる。
Figure 0006688716
Figure 0006688716
ここで、F[]はフーリエ変換の演算、F()は関数fのフーリエ変換、uはx方向の周波数座標、δはデルタ関数である。
次に、上記で説明した第2の実施の形態では、フーリエ変換後の式もまたガボールゾーンプレートであり実数であったため、式(11)のように乗算でよかったが、一般化した場合には、複素共役の乗算となる。よって、式(24)と式(25)の乗算は、式(26)に示すようになる。
Figure 0006688716
ここで、「*」は複素共役を示す。式(26)の指数関数で表される項「exp(−iku)」が信号成分である。
第4の実施の形態で説明したフリンジスキャンと同様に「ΦF=ΦB=Φ」とすると、次の式(27)が得られる。
Figure 0006688716
式(27)には、δ関数が含まれているが、逆フーリエ変換すれば定数となるため本質的なノイズではない。よって、これを除いた項を逆フーリエ変換すれば、次の式(28)が得られる。
Figure 0006688716
ここで、「*」は畳み込み演算を示す。よって、式(28)が単一の輝点(δ関数)となるためには、パワースペクトル「|F(u,Φ)|」が、周波数「u」全域で定数に近い関数fをパターンとして使用することが望ましい。
パワースペクトルが定数となる関数fとしては、例えば、乱数がある。ランダムなパターンを、変調器11のパターンおよび画像処理部13の現像用パターンデータとして用いることにより、ノイズ項の影響を抑えた撮影が可能となる。また、式(28)より、現像画像の分解能は、関数fのパワースペクトルのフーリエ変換の応答によって決定されることが分かる。パワースペクトルのフーリエ変換とは、自己相関関数であり、要するにパターンの自己相関関数が現像画像のPSF(Point Spread Function)であり、分解能を決定する。
図33は、フレネルゾーンプレートの例を示した図である。図33には、フレネルゾーンプレートの一部(例えば、図6に示すフレネルゾーンプレートの左上部分)が示してある。
図33では、パターンの細かさを示す指標として、「β」をセンササイズで規格化した「Z4」を次の式(29)に示すように定義する。
Figure 0006688716
図33(a)には「Z4=512」、図33(b)には「Z4=256」、図33(c)には「Z4=128」、図33(d)には「Z4=64」のフレネルゾーンプレートの例が示してある。なお、パターンの1ピクセルは、画像センサの画素のサイズとした。
図34は、図33のフレネルゾーンプレートの自己相関関数を示した図である。図34の横軸はLagを示し、縦軸はACF(Autocorrelation function)を示している。
図34に示す「Z4=512」のグラフは、図33(a)のパターンの自己相関関数を示している。図34に示す「Z4=256」のグラフは、図33(b)のパターンの自己相関関数を示している。図34に示す「Z4=128」のグラフは、図33(c)のパターンの自己相関関数を示している。図34に示す「Z4=64」のグラフは、図33(d)のパターンの自己相関関数を示している。
図34に示すように、パターンのピッチが細かいほど(Z4の値が大きいほど)、ACFメインローブの半値幅が小さくなり、分解能が向上している様子が分かる。
図35は、第6の実施の形態に係るランダムパターンの例を示した図である。図35には、ランダムパターンの一部が示してある。図35(a)には最小パターン幅が「1ピクセル」、図35(b)には最小パターン幅が「2ピクセル」、図35(c)には最小パターン幅が「4ピクセル」、図35(d)には最小パターン幅が「8ピクセル」のランダムパターンの例が示してある。
図36は、図35のランダムパターンの自己相関関数を示した図である。図36の横軸はLagを示し、縦軸はACFを示している。
図36に示す「Min=1」のグラフは、図35(a)のランダムパターンの自己相関関数を示している。図36に示す「Min=2」のグラフは、図35(b)のパターンの自己相関関数を示している。図36に示す「Min=4」のグラフは、図35(c)のパターンの自己相関関数を示している。図36に示す「Min=8」のグラフは、図35(d)のパターンの自己相関関数を示している。
図36に示すように、ランダムパターンの方が、フレネルゾーンプレートよりも周辺のノイズが抑圧されていることが分かる。
以上説明したように、変調器11に形成されるパターンおよび画像処理部13の現像用パターンデータのパターンに、ランダムパターンを適用する。これによっても、現像画像のノイズを抑圧できる。
また、ランダムパターンの自己相関関数が単一のピークを有すれば、より現像画像のノイズを抑圧できる。
また、撮像装置10は、フレネルゾーンプレート以外の任意のパターンを使用することにより、設計自由度を向上させることができる。
なお、ランダムパターン以外にも任意のパターンを使用することができる。例えば、図34または図36のように、パターンの自己相関関数が単一のメインローブを持ち、メインローブ周辺に存在するサイドローブが少なくともメインローブを超えない関数であれば、ランダムパターン以外にも任意のパターンを使用することができる。また、図34、図36のように、メインローブから離れるに従ってサイドローブのピークが単調に減少する関数である方が好ましい。例えば、コヒーレントな光が散乱体に照射された際に発生するスペックルパターンなどもパターンとして使用できる。
また、上記では、式(27)のパワースペクトル「|F(u,Φ)|」が周波数「u」全域で定数に近い関数fを選ぶように説明したが、式(27)の結果をパワースペクトル「|F(u,Φ)|」で除算すれば、ノイズ成分がキャンセルされることが分かる。ただし、パワースペクトルに「0」が含まれている場合、「0」割りが発生するため、この場合には、パワースペクトルに「0」を有さないパターンを選択する必要がある。
また、式(22)〜式(28)の展開では、関数fが実数という制約を設けておらず複素関数でも成立する。すなわち、透過率変調でなく、位相変調も加えたパターンにしても実現可能である。
また、変調器に形成されるパターンを開示せず秘匿しておけば、画像センサ出力は光学的に暗号化されることになる。この現像処理には撮影時のパターンを知っている必要があり、セキュリティを向上することが可能となる。この暗号化効果による秘匿性をより強化するためには、撮影用パターンを電気的に切り替えて表示できるようにしておき、撮影者、現像者でパターンを共有すれば、パターン解析される心配もなく、秘匿性がさらに向上する。
[第7の実施の形態]
第7の実施の形態では、変調器を透過する光の回折による影響を低減する。第7の実施の形態に係る撮像装置は、図2に示した撮像装置10と同様の構成を有するが、画像処理部13の機能が一部異なる。以下では、第1の実施の形態と異なる部分について説明する。
フレネルゾーンプレートは、端にいくほどパターンのピッチ「p(r)」が狭くなっており、回折の影響が大きくなる。この影響により、変調器11を透過する投影像は、ボケて画像センサに投影されることになる。このボケた画像データを、例えば、第1の実施の形態で説明した方法により現像した場合、相関関数が拡がり、分解能が低下することになる。
図37は、相関関数の拡がりを説明する図である。図37の横軸はLagを示し、縦軸はACFを示している。図37の点線で示すグラフは、図33(d)の「Z4=64」の場合の相関関数の結果を示している。
ここで、この回折によって広がったピッチは、次の式(30)で示される。
Figure 0006688716
「d」は、例えば、図3に示した基板11bの厚さ、「n」は基板11bの屈折率、「λ」は入射光波長を表す。このように回折される量は「d,n,λ」といったパラメータに基づいて予め推定することが可能である。従って、画像処理部13は、この回折を考慮した現像用パターンデータを生成すれば回折による影響を補償することができる。例えば、画像処理部13は、変調器11の厚さと、変調器11の屈折率と、撮影対象の波長とに基づいて、変調器11が有するパターンが画像センサ12に投影される際の回析像を推定し、推定した回析像から、現像用パターンデータを生成する。
図37の一点鎖線は、回折を考慮した現像用パターンデータによる相関関数を示している。図37の一点鎖線に示すように、分解能が向上していることが分かる。
撮像装置10の動作例について説明する。以下では、相互相関演算として、フーリエ変換を用いた場合の動作例について説明する。
図38は、第7の実施の形態に係る撮像装置10の動作例を示したフローチャートである。撮像装置10は、例えば、携帯端末1のシャッタボタンがユーザによって押下されたときに、図38に示すフローチャートの処理を開始する。
まず、画像処理部13は、画像センサ12が撮影した画像データを取得する(ステップS41)。
次に、画像処理部13は、ステップS41にて取得した画像データをフーリエ変換する(ステップS42)。
次に、画像処理部13は、画像センサ12に投影された投影像の回析量を推定する(ステップS43)。例えば、画像処理部13は、変調器11の厚さと、変調器11の屈折率と、撮影対象の波長とに基づいて、回折量を推定する。
次に、画像処理部13は、ステップS43にて推定した回折量に基づいて、現像用パターンデータを生成する(ステップS44)。すなわち、画像処理部43は、画像センサ12に投影された投影像の回折を補償するための現像用パターンデータを生成する。
次に、画像処理部13は、ステップS44にて生成した現像用パターンデータをフーリエ変換する(ステップS45)。
ステップS46〜ステップS51の処理は、図17で説明したステップS14〜ステップS19と同様であり、その説明を省略する。
上記では、画像処理部43は、現像用パターンデータを生成するとしたが、予め現像用パターンデータを生成し、その現像用パターンデータをフーリエ変換したデータを記憶装置に記憶してもよい。この場合、図38のステップS43〜S45の処理は不要となる。そして、画像処理部43は、記憶装置に記憶されているフーリエ変換された現像用パターンデータを読み出せばよい。
以上説明したように、現像用パターンデータは、変調器11の厚さと、変調器11の屈折率と、撮影対象の波長とに基づいて、変調器11が有するパターン11aが画像センサ12に投影される際の回析像を推定し、推定した回析像から作成される。これにより、撮像装置10は、回折による画質低下を抑制することができる。
なお、上記では、回折したパターンを算出するのに式(30)を例に説明したが、より厳密に行うには、フレネル回折の式による回折像算出、平面波展開法による波面推定、FDTD(Finite-difference Time-Domain)法による電磁波解析などを用いることが可能である。なお、これらの演算は一般的に時間がかかるため事前に計算しておき、計算した結果をフーリエ変換して記憶装置に格納しておいて、適宜読み出すなどすることで高速化、回路規模低減が可能となる。
また、式(30)からも分かるように、回折量はその波長に依存する。よって、画像センサ12がカラーセンサである場合には、RGB毎に処理を分け、各色の波長毎に回折したパターンを算出し、RGB毎の現像用パターンデータを生成してもよい。これにより、色収差のない現像画像を得ることができる。
また、以上の説明は、フレネルゾーンプレートやガボールゾーンプレートを例に説明したが、ランダムパターンなどについても同様に適用することができる。
[第8の実施の形態]
上記の第7の実施の形態では、現像用パターンデータのパターンにより、変調器を透過する光の回折の影響を低減した。第8の実施の形態では、変調器に形成されるパターンおよび現像用パターンデータのパターンによって、光の回折の影響を低減する。第8の実施の形態に係る撮像装置は、図2に示した撮像装置10と同様の構成を有するが、変調器11および画像処理部13の機能が一部異なる。以下では、第1の実施の形態と異なる部分について説明する。
図35に示したランダムパターンは、図35(a)よりも図35(d)の方のピッチが大きく、回折の影響を受けにくい。しかし、図36に示したように、ピッチの大きなパターンの相関関数は拡がり、現像画像の分解能が低下する。そこで、これらを両立させるため、2次元RLL(Run-Length Limited)変調を適用したパターンを、変調器11のパターン11aおよび現像用パターンデータに用いる方法について述べる。
2次元RLL変調は、1方向に対する透過/非透過ピクセルの最小連続数をK(K≧2、K:自然数)、それと直交する方向に対する透過/非透過ピクセルの最小連続数をL(L≧2、L:自然数)と制約をかける変調方式である。
図39は、第8の実施の形態に係るRLLパターンの一部を示した図である。図39(a)は最小連続数が1ピクセル、図39(b)は2ピクセル、図39(c)は4ピクセル、図39(d)は8ピクセルのRLLパターンが示してある。図35に示したランダムパターンとの違いは、例えば、図35(b)のランダムパターンは、「2,4,6,8,…」と偶数パターンしか存在していないのに対し、図39(b)のRLLパターンは、「2,3,4,5,6,7,8,…」と1以外のパターンが存在し得る。従って、相関関数に違いが出る。
図40は、図39のRLLパターンの自己相関関数を示した図である。図36の横軸はLagを示し、縦軸はACFを示している。
図40に示す実線のグラフは、図35(d)に示したランダムパターンのAFCを示している。図40に示す点線のグラフは、図39(d)に示したRLLパターンのAFCを示している。図40に示すように、2次元RLLパターンのACFメインローブの半値幅が僅かながら小さくなっており、回折の影響を低減できていることが確認できる。
以上説明したように、変調器11が有するパターン11aおよび現像用パターンデータのパターンに、2次元RLL変調を適用する。これにより、撮像装置10は、回折による画質低下を抑制することができる。
[第9の実施の形態]
第9の実施の形態では、2次元方向の撮像ではなく、1次元方向に限定した撮像について説明する。
図41は、第9の実施の形態に係るパターン例を示した図である。変調器に形成されるパターンおよび現像用パターンデータのパターンは、図41に示すように、1次元方向のパターンとする。このように、垂直方向に同一パターンが連続するパターンを使用することによって、撮像装置は、水平方向のみの画像の復元を行う。
図42は、図41のパターンを用いた撮像装置の例を示した図のその1である。図42に示すように、撮像装置60は、変調器61と、ラインセンサ62とを有している。
変調器61の表面には、図41で説明した1次元方向のパターン61aが形成されている。光は、変調器61により変調される。
ラインセンサ62は、撮影した画像データを画像処理部(図示せず)に出力する。画像処理部は、例えば、第1の実施の形態における画像処理部13と同様の機能を有するが、1次元において現像するところが異なる。
1次元のラインセンサ62を用いることでセンサコストを抑制し、さらにフーリエ変換を1次元のみで実施することにより高速化、回路規模の低減が可能となる。
図43は、図41のパターンを用いた撮像装置の例を示した図のその2である。図43に示すように、撮像装置70は、変調器71と、シリンドリカルレンズ72と、ラインセンサ73とを有している。
変調器71の表面には、図41で説明した1次元方向のパターン71aが形成されている。光は、変調器71により変調される。
シリンドリカルレンズ72は、その焦点位置がラインセンサ73上となるように配置されている。
ラインセンサ73は、図42のラインセンサ62と同様であり、その説明を省略する。
図43の構成によれば、図42よりも多くの光を検出することができるため、現像画像のSNRを向上することができる。
図44は、図41のパターンを用いた撮像装置の例を示した図のその3である。図44に示すように、撮像装置80は、変調器81と、画像センサ82と、垂直方向加算部83とを有している。
変調器81の表面には、図41で説明した1次元方向のパターン81aが形成されている。光は、変調器81により変調される。
垂直方向加算部83は、2次元の画像センサ82から出力される画像データの、垂直方向の輝度を加算する。輝度が加算された画像データは、画像処理部(図示せず)に出力される。
図44の構成によれば、図43のようにシリンドリカルレンズ72を用いなくても、多くの光を検出することができるため、現像画像のSNRを向上することができる。
以上説明したように、変調器が有するパターンおよび現像用パターンデータのパターンに、1方向に同じ透過率が連続したパターンを適用してもよい。これにより、撮像装置は、1次元の撮像ができる。
また、撮像装置は、1次元の撮像に限定することにより、処理の高速化や回路規模の低減を図ることができる。
なお、上記では、水平方向に特化した構成について説明したが、水平方向に同一パターンが連続する格子パターンを使用することによって、垂直方向のみの検出を可能としたり、任意の角度方向の検出を行ったりすることもできる。
また、例えば、図42の構成を回転させるなどして、パターンの角度を時間的に変化させることにより、1次元センサで2次元の像を得ることも可能である。
また、図41では、フレネルゾーンプレートの例を示したが、ランダムパターンやRLLパターンなどのパターンも適用することができる。
以上で説明した本発明は、上記の実施の形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施の形態は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
また、ある実施の形態の構成の一部を、他の実施の形態の構成に置き換えることが可能である。また、ある実施の形態の構成に、他の実施の形態の構成を加えることも可能である。
また、各実施の形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
また、上記の各構成、機能、処理部、処理手段等は、それらの一部または全部を、例えば、集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置またはICカード、SDカード、DVD等の記録媒体に置くことができる。
また、制御線や情報線は、説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
1…携帯端末、2…被写体、10…撮像装置、11…変調器、12…画像センサ、13…画像処理部、11a…パターン、11b…基板、12a…画素、30…撮像装置、31…画像記憶装置、32…画像処理部、33…フォーカス設定部、40…撮像装置、41…変調器、42…変調制御部、43…画像処理部、50…撮像装置、51…変調器、52…画像分割部、53…画像処理部、60,70,80…撮像装置。

Claims (13)

  1. 第1のパターンを有し、光の強度を変調する変調器と、
    前記変調器を透過した光を画像データに変換して出力する画像センサと、
    前記画像データと、第2のパターンを示すパターンデータとの相互相関演算に基づいて像を復元する画像処理部と、
    を有し、
    前記変調器の前記第1のパターンは、初期位相が異なる複数のパターンからなり、
    前記画像処理部は、前記複数のパターンに対応する異なる初期位相の前記パターンデータを有する、
    ことを特徴とする撮像装置。
  2. 第1のパターンを有し、光の強度を変調する変調器と、
    前記変調器を透過した光を画像データに変換して出力する画像センサと、
    前記画像データと、第2のパターンを示すパターンデータとの相互相関演算に基づいて像を復元する画像処理部と、
    を有し、
    前記第1のパターンおよび前記第2のパターンは、スペックルに基づいたパターンである、
    ことを特徴とする撮像装置。
  3. 第1のパターンを有し、光の強度を変調する変調器と、
    前記変調器を透過した光を画像データに変換して出力する画像センサと、
    前記画像データと、第2のパターンを示すパターンデータとの相互相関演算に基づいて像を復元する画像処理部と、
    を有し、
    前記第1のパターンおよび前記第2のパターンは、2次元RLL(Run-Length Limited)変調を適用したパターンである、
    ことを特徴とする撮像装置。
  4. 請求項1〜3のいずれか一項に記載の撮像装置であって、
    前記第2のパターンは、前記第1のパターンと同様のパターンを有する、
    ことを特徴とする撮像装置。
  5. 請求項1〜3のいずれか一項に記載の撮像装置であって、
    前記相互相関演算は、前記画像データと、前記パターンデータとの畳み込み演算に基づく、
    ことを特徴とする撮像装置。
  6. 請求項1〜3のいずれか一項に記載の撮像装置であって、
    前記相互相関演算は、前記画像データのフーリエ変換と、前記パターンデータのフーリエ変換との乗算演算に基づく、
    ことを特徴とする撮像装置。
  7. 請求項1〜3のいずれか一項に記載の撮像装置であって、
    前記パターンデータを拡大および縮小するフォーカス設定部、
    をさらに有することを特徴とする撮像装置。
  8. 請求項1〜3のいずれか一項に記載の撮像装置であって、
    前記パターンデータは、前記変調器の厚さと、前記変調器の屈折率と、撮影対象の波長とに基づいて、前記変調器が有するパターンが前記画像センサに投影される際の回析像を推定し、推定した回析像から作成される、
    ことを特徴とする撮像装置。
  9. 請求項1に記載の撮像装置であって、
    前記第1のパターンおよび前記第2のパターンは、同心円状のパターンである、
    ことを特徴とする撮像装置。
  10. 請求項9に記載の撮像装置であって、
    前記同心円状のパターンは、中心から離れるほど間隔が狭くなる、
    ことを特徴とする撮像装置。
  11. 初期位相が異なる複数のパターンからなる第1のパターンを有し、光の強度を変調する変調器を透過した光を画像データに変換して出力するステップと、
    前記画像データと、前記複数のパターンに対応する異なる初期位相のパターンデータとの相互相関演算に基づいて像を復元するステップと、
    を有することを特徴とする撮像方法。
  12. 第1のパターンを有し、光の強度を変調する変調器を透過した光を画像データに変換して出力するステップと、
    前記画像データと、第2のパターンを示すパターンデータとの相互相関演算に基づいて像を復元するステップと、
    を有し、
    前記第1のパターンおよび前記第2のパターンは、スペックルに基づいたパターンである、
    ことを特徴とする撮像方法。
  13. 第1のパターンを有し、光の強度を変調する変調器を透過した光を画像データに変換して出力するステップと、
    前記画像データと、第2のパターンを示すパターンデータとの相互相関演算に基づいて像を復元するステップと、
    を有し、
    前記第1のパターンおよび前記第2のパターンは、2次元RLL(Run-Length Limited)変調を適用したパターンである、
    ことを特徴とする撮像方法。
JP2016196270A 2016-10-04 2016-10-04 撮像装置および撮像方法 Active JP6688716B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016196270A JP6688716B2 (ja) 2016-10-04 2016-10-04 撮像装置および撮像方法
CN201710828127.6A CN107896292B (zh) 2016-10-04 2017-09-14 摄像装置和摄像方法
US15/721,992 US10551532B2 (en) 2016-10-04 2017-10-02 Imaging device and imaging method
EP17194659.3A EP3306911B1 (en) 2016-10-04 2017-10-04 Imaging device and imaging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016196270A JP6688716B2 (ja) 2016-10-04 2016-10-04 撮像装置および撮像方法

Publications (2)

Publication Number Publication Date
JP2018061109A JP2018061109A (ja) 2018-04-12
JP6688716B2 true JP6688716B2 (ja) 2020-04-28

Family

ID=60119809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016196270A Active JP6688716B2 (ja) 2016-10-04 2016-10-04 撮像装置および撮像方法

Country Status (4)

Country Link
US (1) US10551532B2 (ja)
EP (1) EP3306911B1 (ja)
JP (1) JP6688716B2 (ja)
CN (1) CN107896292B (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6820908B2 (ja) * 2016-02-26 2021-01-27 株式会社日立製作所 撮像装置
WO2019171691A1 (ja) * 2018-03-06 2019-09-12 ソニー株式会社 画像処理装置、および撮像装置、並びに画像処理方法
CN113660400A (zh) * 2018-08-08 2021-11-16 麦克赛尔株式会社 记录装置、再现装置、记录再现装置和摄像装置
JP7097787B2 (ja) * 2018-09-18 2022-07-08 株式会社日立製作所 撮像装置および撮像方法
WO2020059029A1 (ja) * 2018-09-18 2020-03-26 マクセル株式会社 距離計測装置、撮像装置、距離計測システム、距離計測方法、及び撮像方法
JP2020067625A (ja) * 2018-10-26 2020-04-30 国立大学法人九州工業大学 光学装置
JP7065761B2 (ja) * 2018-12-26 2022-05-12 株式会社日立製作所 距離計測装置および距離計測方法
WO2020178905A1 (ja) * 2019-03-01 2020-09-10 株式会社日立製作所 撮像装置及び撮像方法
JP7159118B2 (ja) * 2019-06-25 2022-10-24 株式会社日立製作所 撮像装置
WO2021075527A1 (ja) * 2019-10-18 2021-04-22 国立大学法人大阪大学 カメラ及びイメージングシステム
US20230010599A1 (en) * 2019-12-16 2023-01-12 Sony Group Corporation Imaging device, optical element, image processing system, and image processing method
CN112198578A (zh) * 2020-10-30 2021-01-08 郑州大学 一种单级聚焦螺旋波带片

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0061547B1 (en) * 1981-03-30 1985-03-13 International Business Machines Corporation Method and apparatus for tomographical imaging
WO2002056055A2 (en) * 2000-09-29 2002-07-18 Massachusetts Inst Technology Systems and methods for coded aperture imaging of radiation- emitting sources
JP3860979B2 (ja) * 2001-02-28 2006-12-20 安西メディカル株式会社 ガンマカメラ装置
GB0510470D0 (en) 2005-05-23 2005-06-29 Qinetiq Ltd Coded aperture imaging system
JP5611588B2 (ja) * 2006-07-18 2014-10-22 セルオプティック、インコーポレイテッドCelloptic, Inc. 受信電磁放射線から物体の3次元情報を抽出するシステム、装置および方法
JP5261796B2 (ja) * 2008-02-05 2013-08-14 富士フイルム株式会社 撮像装置、撮像方法、画像処理装置、画像処理方法、およびプログラム
JP2009252978A (ja) * 2008-04-04 2009-10-29 Panasonic Corp 固体撮像素子およびその製造方法
GB0814562D0 (en) * 2008-08-08 2008-09-17 Qinetiq Ltd Processing for coded aperture imaging
US8558182B2 (en) * 2009-10-09 2013-10-15 University Of Rochester Optical element, device, method, and applications
JP5414752B2 (ja) * 2011-08-08 2014-02-12 キヤノン株式会社 画像処理方法、画像処理装置、撮像装置、および、画像処理プログラム
US9013590B2 (en) * 2012-12-13 2015-04-21 Raytheon Company Pixel multiplication using code spread functions
JP6033673B2 (ja) 2012-12-28 2016-11-30 株式会社日立製作所 撮像装置
CN103067664B (zh) * 2012-12-29 2015-07-01 中南大学 一种基于光学原理的图像压缩及解压缩方法
US9110240B2 (en) * 2013-03-05 2015-08-18 Rambus Inc. Phase gratings with odd symmetry for high-resolution lensed and lensless optical sensing
US9746593B2 (en) * 2013-08-28 2017-08-29 Rambus Inc. Patchwork Fresnel zone plates for lensless imaging
JP2015115527A (ja) * 2013-12-13 2015-06-22 株式会社東芝 固体撮像装置及びカメラシステム
JP6820908B2 (ja) * 2016-02-26 2021-01-27 株式会社日立製作所 撮像装置
US10670829B2 (en) * 2016-03-02 2020-06-02 Hitachi, Ltd. Imaging device

Also Published As

Publication number Publication date
EP3306911A1 (en) 2018-04-11
JP2018061109A (ja) 2018-04-12
US20180095200A1 (en) 2018-04-05
CN107896292A (zh) 2018-04-10
EP3306911B1 (en) 2022-09-14
CN107896292B (zh) 2020-07-10
US10551532B2 (en) 2020-02-04

Similar Documents

Publication Publication Date Title
JP6688716B2 (ja) 撮像装置および撮像方法
JP6820908B2 (ja) 撮像装置
JP6491332B2 (ja) 撮像装置
JP6721698B2 (ja) 撮像装置
JP6685887B2 (ja) 撮像装置
US10887504B2 (en) Distance measurement device and distance measurement method
US10863120B2 (en) Imaging device, imaging module, and imaging method
JP6646619B2 (ja) 撮像装置
JP7389195B2 (ja) 画像生成方法
WO2020059181A1 (ja) 撮像装置および撮像方法
JP2023016864A (ja) 撮像装置および方法
JP6947891B2 (ja) 携帯情報端末
JP7159118B2 (ja) 撮像装置
JP7278454B2 (ja) 画像表示装置
JP6814762B2 (ja) 撮像装置
JP6636663B2 (ja) 撮像装置及び画像生成方法
WO2020137185A1 (ja) 距離計測装置および距離計測方法
JP2021064000A (ja) 撮像装置
JP2021005786A (ja) 撮像装置、撮像方法、撮像システムの送信装置、及び撮像システムの受信装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200406

R151 Written notification of patent or utility model registration

Ref document number: 6688716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151