[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6005930B2 - Channel member, heat exchanger using the same, electronic component device, and semiconductor manufacturing device - Google Patents

Channel member, heat exchanger using the same, electronic component device, and semiconductor manufacturing device Download PDF

Info

Publication number
JP6005930B2
JP6005930B2 JP2011266998A JP2011266998A JP6005930B2 JP 6005930 B2 JP6005930 B2 JP 6005930B2 JP 2011266998 A JP2011266998 A JP 2011266998A JP 2011266998 A JP2011266998 A JP 2011266998A JP 6005930 B2 JP6005930 B2 JP 6005930B2
Authority
JP
Japan
Prior art keywords
flow path
wall portion
side wall
path member
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011266998A
Other languages
Japanese (ja)
Other versions
JP2013048204A (en
Inventor
和彦 藤尾
和彦 藤尾
石峯 裕作
裕作 石峯
敬一 関口
敬一 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2011266998A priority Critical patent/JP6005930B2/en
Publication of JP2013048204A publication Critical patent/JP2013048204A/en
Application granted granted Critical
Publication of JP6005930B2 publication Critical patent/JP6005930B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

本発明は、流路部材、これを用いた熱交換器および電子部品装置ならびに半導体製造装置に関する。   The present invention relates to a flow path member, a heat exchanger using the same, an electronic component device, and a semiconductor manufacturing apparatus.

近年、電子部品装置に搭載される半導体素子等の電子部品の高集積化・高速化に伴い、電子部品からの発熱量が増大している。さらには、半導体製造装置では、例えば加工して電子部品となるウェハ等が高温の環境下で加工されるようになっている。それゆえ電子部品や加工して電子部品となる物を冷却する必要性が高くなってきている。   2. Description of the Related Art In recent years, the amount of heat generated from electronic components has increased with the increase in integration and speed of electronic components such as semiconductor elements mounted on electronic component devices. Furthermore, in a semiconductor manufacturing apparatus, for example, a wafer or the like that is processed to become an electronic component is processed in a high-temperature environment. Therefore, there is an increasing need to cool electronic parts and objects that are processed to become electronic parts.

特許文献1に開示された流路部材は、積層された複数のシートが焼成されて形成された回路基板であって、冷媒を通すための略円形断面の冷媒用流路が内部に形成されている。   The flow path member disclosed in Patent Document 1 is a circuit board formed by firing a plurality of laminated sheets, and has a substantially circular cross-section refrigerant flow path formed therein for passing a refrigerant. Yes.

特開平7−142822号公報Japanese Unexamined Patent Publication No. 7-142822

特に近年では、電子部品を効率良く冷却できる流路部材が求められており、熱交換効率の向上した流路部材が要求されている。   Particularly in recent years, there has been a demand for a flow path member capable of efficiently cooling electronic components, and a flow path member with improved heat exchange efficiency is required.

それゆえ本発明は、熱交換効率が向上した流路部材、これを用いた熱交換器および電子部品装置ならびに半導体製造装置を提供することを目的とするものである。   Therefore, an object of the present invention is to provide a flow path member with improved heat exchange efficiency, a heat exchanger using the same, an electronic component device, and a semiconductor manufacturing apparatus.

本発明の流路部材は、蓋体部と、側壁部と、底板部とで構成され、内部に流体が流れる流路を有する、セラミックスからなる流路部材であって、前記流路を形成する面の少なくとも一部に流体が流れる方向に沿って延びる凹凸を断続的に有することを特徴とするものである。
The flow path member of the present invention is a flow path member made of ceramics, which includes a lid part, a side wall part, and a bottom plate part, and has a flow path through which a fluid flows. The flow path member forms the flow path. At least a part of the surface is intermittently provided with irregularities extending along the direction in which the fluid flows.

また、本発明の熱交換器は、前記流路部材の前記蓋体部に金属板を設けてなることを特徴とするものである。   The heat exchanger according to the present invention is characterized in that a metal plate is provided on the lid portion of the flow path member.

また、本発明の電子部品装置は、前記金属板上に電子部品を搭載してなることを特徴とするものである。   The electronic component device of the present invention is characterized in that an electronic component is mounted on the metal plate.

また、本発明の半導体製造装置は、上記構成の熱交換器を備えることを特徴とするものである。   Moreover, the semiconductor manufacturing apparatus of this invention is equipped with the heat exchanger of the said structure, It is characterized by the above-mentioned.

本発明の流路部材によれば、蓋体部と、側壁部と、底板部とで構成され、内部に流体が流れる流路を有する、セラミックスからなる流路部材であって、前記流路を形成する面の少なくとも一部に流体が流れる方向に沿って延びる凹凸を断続的に有することにより、流体が流れるための流路の体積が大きくなり蓋体部との熱交換効率を高くすることができる。 According to the flow path member of the present invention, the flow path member is made of ceramics, which includes a lid body part, a side wall part, and a bottom plate part, and has a flow path through which a fluid flows. By having irregularities extending intermittently along the direction in which the fluid flows in at least a part of the surface to be formed, the volume of the flow path for the fluid to flow increases and the heat exchange efficiency with the lid portion increases. Can do.

また、本発明の熱交換器によれば、上記構成の流路部材の蓋体部の外面に、金属板を設
けてなることから、熱交換効率の高い熱交換器を提供できる。
Moreover, according to the heat exchanger of this invention, since the metal plate is provided in the outer surface of the cover body part of the flow path member of the said structure, a heat exchanger with high heat exchange efficiency can be provided.

また、本発明の電子部品装置によれば、上記構成の熱交換器に電子部品を搭載してなることから、熱交換効率が高い電子部品装置を提供できる。   In addition, according to the electronic component device of the present invention, an electronic component device having high heat exchange efficiency can be provided because the electronic component is mounted on the heat exchanger configured as described above.

また、本発明の半導体製造装置によれば、上記構成の熱交換器を備えていることから、例えば、上記構成における金属板をウェハの載置用テーブルおよび加工用電極として併用でき、シンプルな構造で発熱した電極の放熱性を向上させ、ウェハの温度上昇を防ぐことにより寸法精度の高い半導体素子を製造するための半導体製造装置とすることができる。   Further, according to the semiconductor manufacturing apparatus of the present invention, since the heat exchanger having the above configuration is provided, for example, the metal plate in the above configuration can be used together as a wafer mounting table and a processing electrode, and has a simple structure. Thus, it is possible to provide a semiconductor manufacturing apparatus for manufacturing a semiconductor element with high dimensional accuracy by improving the heat dissipation of the electrode that generates heat and preventing the temperature of the wafer from rising.

本実施形態の流路部材の一例を示す、(a)は外観斜視図および流体が流れる方向に対して垂直な断面を示す斜視図であり(b)、(c)、(d)および(e)は(a)の破線で囲んだ円内を部分拡大した断面図である。An example of the flow path member of this embodiment is shown. (A) is an external perspective view and a perspective view showing a cross section perpendicular to the direction in which fluid flows. (B), (c), (d) and (e) ) Is a partially enlarged cross-sectional view of a circle surrounded by a broken line in FIG. 本実施形態の流路部材の他の一例を示す、(a)は外観斜視図および流体が流れる方向に対して垂直な断面を示す斜視図であり、(b)および(c)は(a)の破線で囲んだ円内を部分拡大した断面図である。Another example of the flow path member of this embodiment is shown, (a) is an external perspective view and a perspective view showing a cross section perpendicular to the direction in which the fluid flows, and (b) and (c) are (a). It is sectional drawing which expanded partially the inside of the circle | round | yen enclosed with the broken line. 本実施形態の流路部材のさらに他の一例を示す、(a)は外観斜視図および流体が流れる方向に対して垂直な断面図であり、(b)は(a)の破線で囲んだ円内を部分拡大した断面図である。FIG. 5A shows still another example of the flow path member of the present embodiment, FIG. 5A is an external perspective view and a cross-sectional view perpendicular to the direction in which fluid flows, and FIG. 5B is a circle surrounded by a broken line in FIG. It is sectional drawing which expanded the inside partially. 本実施形態の流路部材のさらに他の一例を示す、(a)は外観斜視図および流体が流れる方向に対して垂直な断面図であり、(b)は(a)の破線で囲んだ円内を部分拡大した断面図である。FIG. 5A shows still another example of the flow path member of the present embodiment, FIG. 5A is an external perspective view and a cross-sectional view perpendicular to the direction in which fluid flows, and FIG. 5B is a circle surrounded by a broken line in FIG. It is sectional drawing which expanded the inside partially. 本実施形態の流路部材のさらに他の一例を示す、流路を構成する隔壁部を備えた例の平面図である。It is a top view of the example provided with the partition part which comprises the flow path which shows another example of the flow path member of this embodiment. 本実施形態の流路部材のさらに他の一例を示す、蛇行状の流路を備える例の平面図である。It is a top view of an example provided with a meandering flow path which shows other examples of a flow path member of this embodiment. 本実施形態の流路部材の蓋体部の外面に金属板を設けた熱交換器の一例を示す斜視図である。It is a perspective view which shows an example of the heat exchanger which provided the metal plate in the outer surface of the cover body part of the flow-path member of this embodiment. 本実施形態の熱交換器に電子部品を載置した電子部品装置の一例を示す斜視図である。It is a perspective view which shows an example of the electronic component apparatus which mounted the electronic component in the heat exchanger of this embodiment. 本実施形態の熱交換器を備えた半導体製造装置の全体的なシステム構成の一例を示す概略図である。It is the schematic which shows an example of the whole system configuration | structure of the semiconductor manufacturing apparatus provided with the heat exchanger of this embodiment.

以下、本発明の流路部材の実施の形態の例を説明する。   Hereinafter, examples of embodiments of the flow path member of the present invention will be described.

本実施形態の流路部材の一例を示す、(a)は外観斜視図および流体が流れる方向に対して垂直な断面を示す斜視図であり、(b)、(c)、(d)および(e)は(a)の破線で囲んだ円内を部分拡大した断面図である。   An example of the flow path member of this embodiment is shown, (a) is an external perspective view and a perspective view showing a cross section perpendicular to the direction of fluid flow, (b), (c), (d) and ( e) is a partially enlarged cross-sectional view of a circle surrounded by a broken line in FIG.

図1(a)、(b)、(c)、(d)および(e)に示すように、本実施形態の流路部材1は、蓋体部1aと、側壁部1cと、底板部1bとで構成され、その内部には、後述する電子部品を冷却するための気体や液体等の流体を流すための流路3を有しており、この流路3を形成する面のうち側壁部1cに流体が流れる方向に沿って延びる凹凸2を有している。そして、凹凸2は、(b)に示すような角張った形状、(c)に示すようなS字状、(d)に示すような蓋体側1a側が大きく流路3側に突出した形状、(e)に示すような蓋体1a側が大きくくぼんだ形状など様々な凹凸の形状であってよい。また、図1では、側壁部1cの流路3に接する一方の面について示したが、他方の面についても、同様に凹凸2を有することが好ましい。さらにまた、蓋体部1aおよび底板部1bも同様に流路
3を形成する面に凹凸2を有してもよい。
As shown in FIGS. 1 (a), (b), (c), (d) and (e), the flow path member 1 of this embodiment includes a lid portion 1a, a side wall portion 1c, and a bottom plate portion 1b. And has a flow path 3 for flowing a fluid such as a gas or a liquid for cooling an electronic component to be described later, and a side wall portion of a surface forming the flow path 3. It has the unevenness | corrugation 2 extended along the direction where a fluid flows to 1c. And the unevenness | corrugation 2 is an angular shape as shown in (b), an S shape as shown in (c), a shape in which the lid side 1a side as shown in FIG. It may have various uneven shapes such as a shape in which the lid 1a side is greatly recessed as shown in e). Moreover, in FIG. 1, although shown about one surface which contact | connects the flow path 3 of the side wall part 1c, it is preferable that the other surface also has the unevenness | corrugation 2 similarly. Furthermore, the lid portion 1a and the bottom plate portion 1b may also have irregularities 2 on the surface on which the flow path 3 is formed.

本実施形態の流路部材1によれば、蓋体部1aと、側壁部1cと、底板部1bとで構成され、内部に流体が流れる流路3を有する流路部材1であって、流路3を形成する面の少なくとも一部に流体が流れる方向に沿って延びる凹凸2を有することが重要である。   According to the flow path member 1 of the present embodiment, the flow path member 1 includes a lid portion 1a, a side wall portion 1c, and a bottom plate portion 1b, and includes a flow channel 3 through which a fluid flows. It is important to have irregularities 2 extending along the direction in which the fluid flows in at least a part of the surface forming the path 3.

そして、本実施形態の流路部材1によれば、流路部材1の内部に流体が流れる流路3を形成する面の少なくとも一部に流体が流れる方向に沿って延びる凹凸2を有することから、流路3を構成する側壁部1cの表面積を増やせるとともに流体を流すための流路3の体積を大きくすることができ、流路部材1の内部を流れる気体や液体等の流体との熱交換効率を高くすることができる。特に熱交換効率を高くするためには、流体が流れる方向に沿って延びる凹凸2を有すると同時に、蓋体部1aにおいて、強度に問題がない程度でできるだけ厚みを薄くすることで熱交換が容易となり特に好ましい。さらにまた、蓋体部1aに配置された熱を発する電子部品を冷却する場合には、側壁部1cの流路3側に凹凸2を有することによって、流体が側壁部1cの流路3を形成する面の近辺で渦流が発生することで、温度の高くなる蓋体部1a側の方に流体が対流して流れやすくなる。その結果、熱交換効率が高くなると同時に流路3の内部を流れる気体や液体等に含まれる塵等が流路3に付着することによって、流路3を構成する側壁部1cの表面積や流路3の体積の減少を抑制でき、熱交換効率の低下や流体の流れを妨げにくくすることができると同時に、塵などが流路3を形成する面に付着した場合には、発生した渦流によって側壁部1cから剥がしやすくなる。   And according to the flow path member 1 of this embodiment, it has the unevenness | corrugation 2 extended along the direction through which the fluid flows in at least one part of the surface which forms the flow path 3 into which the fluid flows into the flow path member 1. The surface area of the side wall 1c constituting the flow path 3 can be increased, the volume of the flow path 3 for flowing the fluid can be increased, and heat exchange with a fluid such as gas or liquid flowing in the flow path member 1 can be performed. Efficiency can be increased. In particular, in order to increase the heat exchange efficiency, it is easy to exchange heat by having asperities 2 extending along the direction in which the fluid flows and at the same time reducing the thickness of the lid 1a as much as possible without causing any problems in strength. Especially preferred. Furthermore, when cooling the electronic component that generates heat disposed on the lid 1a, the fluid forms the flow path 3 of the side wall 1c by having the unevenness 2 on the side of the flow path 3 of the side wall 1c. By generating a vortex in the vicinity of the surface to be performed, the fluid tends to flow in a convection direction toward the lid 1a side where the temperature is high. As a result, the heat exchange efficiency is increased and at the same time, dust or the like contained in gas or liquid flowing in the flow path 3 adheres to the flow path 3, so that the surface area of the side wall portion 1 c constituting the flow path 3 or the flow path is increased. 3 can be suppressed, the heat exchange efficiency can be reduced and the flow of fluid can be prevented from being hindered. At the same time, when dust or the like adheres to the surface forming the flow path 3, It becomes easy to peel off from the part 1c.

また、本実施形態の流路部材1は、さらに熱交換効率を高くするためには、流体が流れる方向に沿って延びる凹凸2を断続的に有していることが好ましい。流体が流れる方向に沿って延びる凹凸2を断続的に有しているときには、凹凸2が途切れた部分によって、さらに渦流を発生させることができる。その結果、効率良く流体との熱交換効率を高くすることができる。また、この渦流が発生することから、流路3の内部を流れる気体や液体等に含まれる塵などが付着しにくくすることができると同時に、塵などが流路3を形成する面に付着した場合には、この渦流によって流路3を形成する面から剥がしやすくなる。   Moreover, it is preferable that the flow path member 1 of this embodiment has the unevenness | corrugation 2 extended along the direction through which a fluid flows, in order to make heat exchange efficiency still higher. When it has the unevenness | corrugation 2 extended along the direction where a fluid flows intermittently, a vortex | eddy_current can be further generated by the part which the unevenness | corrugation 2 interrupted. As a result, the efficiency of heat exchange with the fluid can be increased efficiently. Further, since this eddy current is generated, it is possible to make it difficult for dust or the like contained in the gas or liquid flowing inside the flow path 3 to adhere, and at the same time, dust or the like adheres to the surface forming the flow path 3. In some cases, the eddy current can be easily peeled off from the surface on which the flow path 3 is formed.

さらに、本実施形態の流路部材1は、流体と接する蓋体部1aおよび底板部1bの各表面における算術平均粗さ(Ra)が、0.2μm以上0.8μm以下であることが好ましい。流体と接する蓋体部1aおよび底板部1bの各表面における算術平均粗さ(Ra)が、0.2
μm以上0.8μm以下であれば、流体と接する蓋体部1aおよび底板部1bの各表面で渦
流がさらに発生し、流体との熱交換効率をさらに向上することができる。なお、流体と接する表面における算術平均粗さ(Ra)は、JIS B 0601−2001に基づき測定すればよい。
Furthermore, the flow path member 1 of the present embodiment preferably has an arithmetic average roughness (Ra) of 0.2 μm or more and 0.8 μm or less on each surface of the lid portion 1a and the bottom plate portion 1b in contact with the fluid. The arithmetic average roughness (Ra) on each surface of the lid portion 1a and the bottom plate portion 1b in contact with the fluid is 0.2.
If it is not less than μm and not more than 0.8 μm, a vortex is further generated on each surface of the lid portion 1a and the bottom plate portion 1b in contact with the fluid, and the heat exchange efficiency with the fluid can be further improved. In addition, what is necessary is just to measure arithmetic mean roughness (Ra) in the surface which contact | connects a fluid based on JISB0601-2001.

図2は、本実施形態の流路部材の他の一例を示す、(a)は外観斜視図および流体が流れる方向に対して垂直な断面を示す斜視図であり、(b)および(c)は(a)の破線で囲んだ円内を部分拡大した断面図である。   FIG. 2 shows another example of the flow path member of the present embodiment, (a) is an external perspective view and a perspective view showing a cross section perpendicular to the direction in which the fluid flows, and (b) and (c). FIG. 4 is a partially enlarged cross-sectional view of a circle surrounded by a broken line in FIG.

図2(a),(b)および(c)に示す他の一例を示す流路部材11は、蓋体部1aと、側壁部1cと、底板部1bとで流体が流れる流路3を形成するとともに、蓋体部1aと側壁部1cおよび底板部1bと側壁部1cとで構成される流路3のコーナ部5を潰した形状としてなるものであり、(b)はコーナ部5の形状を傾斜面状としており、(c)はコーナ部5の形状を湾曲面状としている。   2 (a), 2 (b), and 2 (c), the flow path member 11 forms a flow path 3 through which fluid flows through the lid portion 1a, the side wall portion 1c, and the bottom plate portion 1b. In addition, the corner portion 5 of the flow path 3 constituted by the lid portion 1a and the side wall portion 1c and the bottom plate portion 1b and the side wall portion 1c is crushed, and (b) is the shape of the corner portion 5. (C) makes the shape of the corner portion 5 a curved surface.

このように、蓋体部1aと側壁部1cおよび底板部1bと側壁部1cとで構成される流路3のコーナ部5を潰した形状とすることで、流路3を流れる気体や液体等の流体の圧力
を高くして使用される環境化でも、流路3のコーナ部5に係る応力を緩和しやすくなることからこのコーナ部5にクラックが生じにくくなり流路が破壊することを抑制できる。また、流路3を構成する側壁部1cの表面積の減少を抑えつつ、流路3の体積を大きく保つため傾斜面および湾曲面の寸法は、例えば蓋体部1aと側壁部1cおよび底板部1bと側壁部1cとで流路3を形成する面が交わるコーナ部5から0.01〜0.05mm流路3側に入った寸法であることが好ましい。
Thus, by making the corner part 5 of the flow path 3 comprised by the cover body part 1a and the side wall part 1c and the bottom plate part 1b and the side wall part 1c into a crushed shape, the gas, liquid, etc. which flow through the flow path 3 Even in an environment where the pressure of the fluid is increased, it is easy to relieve stress on the corner portion 5 of the flow path 3, so that the corner portion 5 is less likely to crack and the flow path is prevented from being broken. it can. Moreover, in order to keep the volume of the flow path 3 large while suppressing the reduction of the surface area of the side wall part 1c constituting the flow path 3, the dimensions of the inclined surface and the curved surface are, for example, the lid part 1a, the side wall part 1c, and the bottom plate part 1b. It is preferable that the dimensions be in the range of 0.01 to 0.05 mm from the corner 5 where the surface forming the flow path 3 intersects with the side wall 1c.

図3は、本実施形態の流路部材のさらに他の一例を示す、(a)は外観斜視図および流体が流れる方向に対して垂直な断面を示す斜視図であり、(b)は(a)の破線で囲んだ円内を部分拡大した断面図である。   3A and 3B show still another example of the flow path member of the present embodiment. FIG. 3A is an external perspective view and a perspective view showing a cross section perpendicular to the direction in which the fluid flows, and FIG. FIG.

図3(a)および(b)に示す本実施形態のさらに他の一例を示す流路部材12は、側壁部1cが、流路3となる貫通孔を形成した板状体4を複数枚積層してなるものであり、この板状体4の流路3となる貫通孔の流体と接する部分に凹凸2が形成されている。   3 (a) and 3 (b), a flow path member 12 showing still another example of the present embodiment is formed by laminating a plurality of plate-like bodies 4 in which the side wall portion 1c has a through hole that becomes the flow path 3. Concavities and convexities 2 are formed in the portion of the plate-like body 4 in contact with the fluid in the through holes that form the flow paths 3.

この様に側壁部1cを構成する板状体4を複数枚積層してなることから、流路3を構成する側壁部1cの表面積を増やせるとともに流体を流すための流路3の体積をさらに大きくした流路部材1とすることができる。例えば、特に電子部品が高温の環境下で使用される場合に、電子部品を効率良く冷却する目的で大量の流体を流すことができ流路部材12の熱交換効率をより高くすることができるようにするためには、側壁部1cは、流路3を形成するための孔を有する板状体4を複数備えてなる積層体であることが好ましい。   Since a plurality of plate-like bodies 4 constituting the side wall 1c are laminated in this way, the surface area of the side wall 1c constituting the flow path 3 can be increased and the volume of the flow path 3 for flowing fluid can be further increased. The flow path member 1 can be obtained. For example, particularly when an electronic component is used in a high-temperature environment, a large amount of fluid can be flowed for the purpose of efficiently cooling the electronic component, so that the heat exchange efficiency of the flow path member 12 can be further increased. In order to achieve this, the side wall 1c is preferably a laminated body including a plurality of plate-like bodies 4 having holes for forming the flow paths 3.

図4は、本実施形態の流路部材のさらに他の一例を示す、(a)は外観斜視図および流体が流れる方向に対して垂直な断面を示す斜視図であり、(b)は(a)の破線で囲んだ円内を部分拡大した断面図である。   4A and 4B show still another example of the flow path member of the present embodiment. FIG. 4A is an external perspective view and a perspective view showing a cross section perpendicular to the direction in which the fluid flows, and FIG. FIG.

図4に示す本実施形態のさらに他の一例を示す流路部材13は、側壁部1cが、流路3となる貫通孔を形成した板状体4を複数枚積層してなり、この板状体4の流路3となる貫通孔の流体と接する部分に凹凸2が形成されているとともに、側壁部1cの各板状体4との間(接合部1d)に流路3につながる隙間8を有している。   A flow path member 13 showing still another example of the present embodiment shown in FIG. 4 is formed by laminating a plurality of plate-like bodies 4 in which the side wall portion 1c has a through-hole that becomes the flow path 3, and this plate shape Concavities and convexities 2 are formed in the portion of the body 4 that is in contact with the fluid in the through hole that becomes the flow path 3, and a gap 8 that connects to the flow path 3 between the plate-like bodies 4 of the side wall 1 c (joining portion 1 d). have.

このような流路部材13において、例えば、薬液の熱交換器として耐薬品性に優れるようにするにあたっては、蓋体部1a、側壁部1cおよび底板部1bは、それぞれセラミックスにて作製することが好ましい。各部材をセラミックスにて作製するにあたっては、例えば、セラミックグリーンシートを積層した積層体を焼成することで作製できる。   In such a flow path member 13, for example, in order to make it excellent in chemical resistance as a chemical heat exchanger, the lid portion 1a, the side wall portion 1c, and the bottom plate portion 1b can be made of ceramics, respectively. preferable. In producing each member with ceramics, for example, it can be produced by firing a laminate in which ceramic green sheets are laminated.

そして、内部に流体が流れる流路3を形成するには、例えば、側壁部1cとなるセラミックグリーンシートに任意の流路3となる貫通孔を金型による打ち抜き加工やレーザによる切断加工によって予め形成しておき、その貫通孔の各々の面に内面研削盤等を用いて凹凸を加工すればよい。そして、このようなセラミックグリーンシートに貫通孔を金型による打ち抜き加工やレーザによる切断加工によって形成したものと、この貫通孔の上下を塞ぐためのセラミックグリーンシートを準備し、これらのセラミックグリーンシートを積層,加圧した後に焼成することによって流路部材13とすることができる。   In order to form the flow path 3 through which the fluid flows, for example, a through hole to be an arbitrary flow path 3 is formed in advance in the ceramic green sheet to be the side wall 1c by punching with a mold or cutting with a laser. In addition, the unevenness may be processed on each surface of the through hole using an internal grinding machine or the like. Then, a ceramic green sheet having a through hole formed in such a ceramic green sheet by punching with a die or a cutting process with a laser and a ceramic green sheet for closing the upper and lower sides of the through hole are prepared. The channel member 13 can be formed by firing after laminating and pressurizing.

ところで、側壁部1cとなる板状体を作製する場合に、貫通孔の端面には金型による打ち抜き加工やレーザによる切断加工によってバリが発生することは避けられず、このようなセラミックグリーンシートを積層,加圧すると、貫通孔の端面に発生したバリがセラミックグリーンシートの接合部1dに挟まり、積層したセラミックグリーンシートを加圧しても接合部に挟まったバリに加圧力が集中してしまい、加圧のムラが発生することによって接合不良が発生しやすい。本実施形態の流路部材13では、流路3につながる接合部1d
に隙間8を有することにより、側壁部1cの端面に発生したバリが接合部1dに挟み込むおそれが少なくなり、接合不良の発生を低く抑えられ、流路3に流体を流した時でも接合不良が少ないためにクラックや流路3の破壊といった問題の発生を抑制することもできる。
By the way, when producing a plate-like body serving as the side wall portion 1c, it is inevitable that burrs are generated on the end face of the through hole by punching with a mold or cutting with a laser. When laminating and pressing, the burrs generated on the end face of the through-hole are sandwiched between the ceramic green sheet joints 1d, and even if the laminated ceramic green sheets are pressed, the pressure is concentrated on the burrs sandwiched between the joints. Bonding defects are likely to occur due to uneven pressurization. In the flow path member 13 of the present embodiment, the joint 1d connected to the flow path 3
By providing the gap 8 in the gap, there is less possibility that burrs generated on the end face of the side wall 1c will be sandwiched between the joints 1d, and the occurrence of poor joints can be kept low. Therefore, the occurrence of problems such as cracks and breakage of the flow path 3 can be suppressed.

なお上述においては、流路部材13の材質をセラミックスとした例にて説明したが、蓋体部1aがセラミックスで側壁部1cがアルミニウムや銅系などの金属などの他の材料であっても同様の効果を得ることができる。   In the above description, the material of the flow path member 13 is ceramic. However, the same applies to the case where the lid portion 1a is ceramic and the side wall portion 1c is other material such as aluminum or copper. The effect of can be obtained.

このように、本実施形態の流路部材13は、側壁部1cとなる板状体4を複数枚積層した場合の接合部1dのクラックの発生が少なく、高い圧力で流体を流した場合であっても流路3の内部からの破壊の発生を抑制できる。さらに、熱交換効率が高いため、半導体装置や半導体製造装置の冷却用流路部材として、また、加熱と冷却を繰り返すような半導体製造装置の熱交換用流路部材として、さらには、薬液の熱交換器やプリンター等に用いられるインク流路部材として用いることができる。   As described above, the flow path member 13 of the present embodiment is a case in which the occurrence of cracks in the joint portion 1d is small when a plurality of the plate-like bodies 4 serving as the side wall portions 1c are laminated, and a fluid is flowed at a high pressure. However, the occurrence of breakage from the inside of the flow path 3 can be suppressed. Furthermore, since the heat exchange efficiency is high, as a channel member for cooling of a semiconductor device or a semiconductor manufacturing device, as a channel member for heat exchange of a semiconductor manufacturing device that repeats heating and cooling, and further, the heat of a chemical solution It can be used as an ink flow path member used for an exchanger, a printer, or the like.

そして、この様な本実実施形態の流路部材1,11,12,13における強度を維持するため
には側壁部1cの厚みを0.3mm以上8mm以下とすればよい。
And in order to maintain the intensity | strength in the flow path members 1, 11, 12, and 13 of this actual embodiment, the thickness of the side wall part 1c should just be 0.3 mm or more and 8 mm or less.

図5は、本実施形態の流路部材のさらに他の一例を示す、流路を構成する隔壁部を備えた例の平面図である。   FIG. 5 is a plan view of an example including a partition wall portion constituting a flow path, showing still another example of the flow path member of the present embodiment.

図5に示す本実施形態のさらに他の一例を示す流路部材14は、流路3を構成する外壁部1fと隔壁部1eとを備えている。   A flow path member 14 showing still another example of the present embodiment shown in FIG. 5 includes an outer wall portion 1 f and a partition wall portion 1 e constituting the flow path 3.

本実施形態および後述するさらに他の実施形態において外壁部1fとは、流路部材14の側壁部において外周面を構成し、かつ、内部で流体と接している壁部であり、隔壁部1eとは、流体と接しているが、流路部材14の外周面を構成しない壁部のことを言う。   In this embodiment and still other embodiments described later, the outer wall portion 1f is a wall portion that forms an outer peripheral surface in the side wall portion of the flow path member 14 and is in contact with the fluid inside, and the partition wall portion 1e Means a wall portion that is in contact with the fluid but does not constitute the outer peripheral surface of the flow path member.

そして、隔壁部1eを形成する面の少なくとも一部に流体が流れる方向(図5においては縦方向、後述する図6においては横方向)に沿って伸びる凹凸を有することが好適である。   And it is suitable to have the unevenness | corrugation extended along the direction (vertical direction in FIG. 5, horizontal direction in FIG. 6 mentioned later) which a fluid flows into at least one part of the surface which forms the partition part 1e.

この様に本実施形態では、隔壁部1eを形成することによって、流体の流れを制御することができるとともに、隔壁部1eが凹凸を有していることによって、流路3を構成する側壁部1eの表面積をさらに増やすことができる。それにより、蓋体部1a側から側壁部1eに伝わってきた熱を流体と効率よく熱交換することができる。   As described above, in this embodiment, the flow of the fluid can be controlled by forming the partition wall portion 1e, and the side wall portion 1e constituting the flow path 3 is formed by the unevenness of the partition wall portion 1e. The surface area of can be further increased. Thereby, the heat transferred from the lid portion 1a side to the side wall portion 1e can be efficiently exchanged with the fluid.

図6は、本実施形態の流路部材のさらに他の一例を示す、蛇行状の流路を備える例の平面図である。   FIG. 6 is a plan view of an example including a meandering flow path, showing still another example of the flow path member of the present embodiment.

図6に示す本実施形態のさらに他の一例を示す流路部材15は、蛇行状の流路3を構成する外壁部1fと隔壁部1eとが備えられている。この様に、外壁部1fと隔壁部1eとで、蛇行状の流路3を形成することによって、流路部材1の内部における流路3を長くすることができる。それにより、流路3の総体積を大きくすることができるとともに流路3を流れる流体の滞留時間を長くすることができる。それにより流体との熱交換が効率よくできるとともに均一な温度に保つことがきる。   A flow path member 15 showing still another example of the present embodiment shown in FIG. 6 includes an outer wall portion 1 f and a partition wall portion 1 e that constitute a meandering flow path 3. Thus, the flow path 3 in the flow path member 1 can be lengthened by forming the meandering flow path 3 with the outer wall portion 1f and the partition wall portion 1e. Thereby, the total volume of the flow path 3 can be increased, and the residence time of the fluid flowing through the flow path 3 can be increased. As a result, heat exchange with the fluid can be efficiently performed and a uniform temperature can be maintained.

また、流体を流路3の隅々にまで行き渡りやすくして効率よく熱交換をするためには、蛇行状の流路3を構成する隔壁部1eをそれぞれ外壁部1fと平行に配置するのが好まし
い。なお、外壁部1fと平行であれば、外壁部1fの短手方向または長手方向のいずれに対して平行となっていてもよい。
In addition, in order to easily spread the fluid to every corner of the flow path 3 and efficiently exchange heat, the partition walls 1e constituting the meandering flow path 3 are arranged in parallel with the outer wall portions 1f, respectively. preferable. In addition, as long as it is parallel to the outer wall part 1f, it may be parallel to either the short side direction or the long side direction of the outer wall part 1f.

また、本実施形態の流路部材14,15は、外壁部1fと隔壁部1eとの厚みが、同じ場合でも異なる場合でも効率よく熱交換できるが、さらに熱交換効率を向上するためには、外壁部1fの厚みが、隔壁部1eの厚みよりも薄いことが好ましい。外壁部1fの厚みが、隔壁部1eの厚みよりも薄いときには、蓋体部1aからの熱が熱抵抗の低い外壁部1fに伝わることによって、流路部材14,15の外部に放熱しやすいので、熱交換効率をさらに高
くすることができる。
Moreover, although the flow path members 14 and 15 of this embodiment can exchange heat efficiently even when the thickness of the outer wall part 1f and the partition part 1e is the same or different, in order to improve heat exchange efficiency further, The thickness of the outer wall portion 1f is preferably thinner than the thickness of the partition wall portion 1e. When the thickness of the outer wall portion 1f is thinner than the thickness of the partition wall portion 1e, the heat from the lid portion 1a is transmitted to the outer wall portion 1f having a low thermal resistance, so that heat is easily radiated to the outside of the flow path members 14 and 15. Further, the heat exchange efficiency can be further increased.

なお、隔壁部1eは、蓋体部1a、底板部1bまたは外壁部1fの少なくとも一部に接合して設けられれば良く、熱交換をするための発熱部がある方に少なくとも接合して設けられていれば良い。   The partition wall portion 1e may be provided by being joined to at least a part of the lid portion 1a, the bottom plate portion 1b, or the outer wall portion 1f. It should be.

図7は本実施形態の流路部材の蓋体部の外面に金属板を設けた熱交換器の一例を示す斜視図である。   FIG. 7 is a perspective view showing an example of a heat exchanger in which a metal plate is provided on the outer surface of the lid portion of the flow path member of the present embodiment.

図7に示す本実施形態の熱交換器20は、内部に流体が流れる流路3を有する本実施形態の流路部材1,11,12,13,14,15の蓋体部1aの外面に金属板6が接合されている。このように、蓋体部1aの外面に金属板6が接合されているときには、金属板6上に熱交換対象物を搭載することにより、流体との熱交換がしやすくなる。   The heat exchanger 20 of the present embodiment shown in FIG. 7 is provided on the outer surface of the lid portion 1a of the flow path members 1, 11, 12, 13, 14, and 15 of the present embodiment having the flow path 3 through which the fluid flows. The metal plate 6 is joined. Thus, when the metal plate 6 is joined to the outer surface of the lid portion 1a, the heat exchange with the fluid is facilitated by mounting the heat exchange object on the metal plate 6.

図8は、本実施形態の熱交換器の金属板の上に電子部品を搭載した電子部品装置の一例を示す斜視図である。   FIG. 8 is a perspective view showing an example of an electronic component device in which an electronic component is mounted on the metal plate of the heat exchanger of the present embodiment.

図8に示す本実施形態の電子部品装置40は、本実施形態の流路部材1,11,12,13,14,15の蓋体部1aの上方に金属板6を接合した熱交換器20を用いてなる電子部品装置40である。流路部材1,11,12,13,14,15の流路に冷媒となる流体を流すことにより、電子部品7を効果的に冷却することができ、流路破壊の発生が少なく、かつ、熱交換効率が高い電子部品装置40を提供できる。   The electronic component device 40 of the present embodiment shown in FIG. 8 includes a heat exchanger 20 in which a metal plate 6 is joined above the lid portion 1a of the flow path members 1, 11, 12, 13, 14, and 15 of the present embodiment. This is an electronic component device 40 using. By flowing a fluid as a refrigerant through the flow paths of the flow path members 1, 11, 12, 13, 14, and 15, the electronic component 7 can be effectively cooled, and the occurrence of flow path destruction is small, and The electronic component device 40 having high heat exchange efficiency can be provided.

特に電子部品装置40としては、PCUなどの半導体モジュールや、高出力LED前照灯の半導体装置、直流高電圧電源装置およびスイッチング装置など作動時に高熱を発する装置として有用である。   In particular, the electronic component device 40 is useful as a device that generates high heat during operation, such as a semiconductor module such as a PCU, a semiconductor device of a high-power LED headlamp, a DC high-voltage power supply device, and a switching device.

図9は、本実施形態の熱交換器を備えた半導体製造装置の全体的なシステム構成の一例を示す概略図である。   FIG. 9 is a schematic diagram illustrating an example of an overall system configuration of a semiconductor manufacturing apparatus including the heat exchanger according to the present embodiment.

図9に示す本実施形態の半導体製造装置50は、本実施形態の流路部材1,11,12,13,14,15の蓋体部1aの上方に金属板6を接合した熱交換器20を用いてなる半導体製造装置50である。   A semiconductor manufacturing apparatus 50 according to this embodiment shown in FIG. 9 includes a heat exchanger 20 in which a metal plate 6 is joined above the lid portion 1a of the flow path members 1, 11, 12, 13, 14, and 15 according to this embodiment. This is a semiconductor manufacturing apparatus 50 using

例えば、半導体製造装置50のひとつであるプラズマ処理装置であれば、熱交換器20の金属板6はウェハ29を処理するための下部電極22として利用でき、処理室28の中の上部にアンテナ電極25を設け、それぞれの電極22、25を電源30と接続し、流路部材1,11,12,13,14,15に流体を供給口10に供給パイプ31から流し、また、排出口16および排出パイプ32から排出することにより、プラズマ処理する際に高温となる電極22,25を冷却し、安定し
た温度に維持できる。これにより、ウェハ29の温度も制御されることから、寸法精度の高い加工ができる。
For example, in the case of a plasma processing apparatus which is one of the semiconductor manufacturing apparatuses 50, the metal plate 6 of the heat exchanger 20 can be used as the lower electrode 22 for processing the wafer 29, and the antenna electrode is formed in the upper part of the processing chamber 28. 25, each electrode 22, 25 is connected to a power source 30, fluid flows to the flow path members 1, 11, 12, 13, 14, 15 from the supply pipe 31 to the supply port 10, and the discharge port 16 and By discharging from the discharge pipe 32, the electrodes 22 and 25 that are at a high temperature during the plasma treatment can be cooled and maintained at a stable temperature. Thereby, since the temperature of the wafer 29 is also controlled, processing with high dimensional accuracy can be performed.

本実施形態の半導体製造装置50は、プラズマ処理装置の他に、スパッタ装置、レジスト塗布装置、CVD装置等やエッチング処理装置として用いることができる。   The semiconductor manufacturing apparatus 50 according to the present embodiment can be used as a sputtering apparatus, a resist coating apparatus, a CVD apparatus, or an etching processing apparatus in addition to a plasma processing apparatus.

以下、本実施形態の流路部材1の製造方法の一例について説明する。   Hereinafter, an example of the manufacturing method of the flow path member 1 of this embodiment is demonstrated.

流路部材1は、アルミニウムや銅系などの金属やセラミック材料により作製することができるが、例えば、耐薬品性に優れるようにするためにセラミック材料より作製することが望ましく、セラミック材料として、アルミナ,ジルコニア,窒化珪素,炭化珪素および窒化アルミニウム,窒化硼素またはこれらの複合物を用いることができる。中でも絶縁性や材料コスト等を考慮すればアルミナが好ましい。さらに、酸化珪素等を含みアルミナ含有量94〜97質量%の材料であれば比較的低い温度で焼結するために、焼成コストを考慮すれば特に好ましい。また、流路部材の熱伝導性の向上や軽量化等を考慮すれば炭化珪素または窒化硼素が好ましい。   The flow path member 1 can be made of a metal such as aluminum or copper, or a ceramic material. For example, the flow path member 1 is preferably made of a ceramic material in order to have excellent chemical resistance. , Zirconia, silicon nitride, silicon carbide and aluminum nitride, boron nitride or a composite thereof can be used. Of these, alumina is preferable in consideration of insulation properties and material costs. Furthermore, a material containing silicon oxide or the like and having an alumina content of 94 to 97% by mass is particularly preferable in view of firing costs because sintering is performed at a relatively low temperature. Further, silicon carbide or boron nitride is preferable in consideration of improvement in thermal conductivity and weight reduction of the flow path member.

以下、流路部材1,11,12,13,14,15の作製について詳細に説明する。   Hereinafter, production of the flow path members 1, 11, 12, 13, 14, and 15 will be described in detail.

まず、流路部材1,11,12,13,14,15をアルミナで作製する場合は、平均粒径が1.4
〜1.8μm程度の酸化アルミニウム(Al)の粉末と、酸化珪素(SiO)と、
酸化カルシウム(CaO)および酸化マグネシウム(MgO)の少なくとも1種の粉末とを準備し、例えば、各粉末の混合割合が、酸化アルミニウム96.4質量%,酸化珪素2.3質
量%,酸化カルシウム0.3質量%および酸化マグネシウム1.0質量%となるように秤量し混合した混合粉末を、ポリエチレングリコールからなるバインダとともに回転ミルに投入して、高純度のアルミナボールで混合する。ここで、バインダの添加量は混合粉末100質量
%に対して4〜8質量%程度とする。なお、バインダの添加量が混合粉末100質量%に対
して4〜8質量%程度の範囲内であれば、成形体の強度や可撓性が良好で、また、焼成時に成形用バインダの脱脂が不十分となる不具合を抑制できる。
First, when the flow path members 1, 11, 12, 13, 14, 15 are made of alumina, the average particle size is 1.4.
About 1.8 μm of aluminum oxide (Al 2 O 3 ) powder, silicon oxide (SiO 2 ),
Preparation of at least one powder of calcium oxide (CaO) and magnesium oxide (MgO), for example, the mixing ratio of each powder is 96.4% by mass of aluminum oxide, 2.3% by mass of silicon oxide, 0.3% by mass of calcium oxide, and oxidation The mixed powder weighed and mixed so as to be 1.0% by mass of magnesium is put into a rotating mill together with a binder made of polyethylene glycol and mixed with high-purity alumina balls. Here, the additive amount of the binder is about 4 to 8% by mass with respect to 100% by mass of the mixed powder. In addition, if the addition amount of the binder is within the range of about 4 to 8% by mass with respect to 100% by mass of the mixed powder, the strength and flexibility of the molded body are good, and the molding binder is degreased during firing. Insufficient defects can be suppressed.

また、流路部材1,11,12,13,14,15を炭化珪素で作製する場合は、平均粒径(D50)が0.5μm以上2μm以下である炭化珪素粉末に水,分散剤,炭化硼素粉末,カルボ
ン酸塩の粉末およびポリエチレングリコールを加え、ボールミル,回転ミル,振動ミル,ビーズミル等のミルで混合,粉砕して混合粉末を得る。ここで、炭化硼素粉末,カルボン酸塩の粉末のそれぞれの含有量は、炭化珪素粉末100質量%に対して、例えば、0.12質量
%以上1.4質量%以下、1質量%以上3.4質量%以下であり、ポリエチレングリコールの添加量は、混合粉末100質量%に対して4質量%以上8質量%以下である。ポリエチレング
リコールの添加量が混合粉末100質量%に対して4質量%以上8質量%以下であれば、成
形体の強度や可撓性が良好で、また、ポリエチレングリコールの脱脂を容易にすることができる。
When the flow path members 1, 11, 12, 13, 14, 15 are made of silicon carbide, water, a dispersant, boron carbide is added to silicon carbide powder having an average particle size (D50) of 0.5 μm to 2 μm. Powder, carboxylate powder and polyethylene glycol are added, and mixed and pulverized by a mill such as a ball mill, rotary mill, vibration mill, bead mill, etc. to obtain a mixed powder. Here, the content of each of the boron carbide powder and the carboxylate powder is, for example, 0.12% by mass to 1.4% by mass and 1% by mass to 3.4% by mass with respect to 100% by mass of the silicon carbide powder. The addition amount of polyethylene glycol is 4% by mass or more and 8% by mass or less with respect to 100% by mass of the mixed powder. If the addition amount of polyethylene glycol is 4% by mass or more and 8% by mass or less with respect to 100% by mass of the mixed powder, the strength and flexibility of the molded article are good and the degreasing of polyethylene glycol can be facilitated. it can.

次に、これにポリビニルアルコール,ポリエチレングリコールやアクリル樹脂またはブチラール樹脂等のバインダを、混合粉末100質量%に対して4〜8質量%程度添加し、混
合してスラリーを得る。ここで、バインダの添加量が混合粉末100質量%に対して4〜8
質量%程度とすれば成形体の強度や可撓性が良好で、また、焼成時に成形用バインダの脱脂が不十分となる不具合を抑制できる。
Next, a binder such as polyvinyl alcohol, polyethylene glycol, an acrylic resin or a butyral resin is added thereto in an amount of about 4 to 8% by mass with respect to 100% by mass of the mixed powder, and mixed to obtain a slurry. Here, the added amount of the binder is 4 to 8 with respect to 100% by mass of the mixed powder.
If it is about mass%, the strength and flexibility of the molded product are good, and the problem of insufficient degreasing of the molding binder during firing can be suppressed.

次に、このスラリーを用いてセラミックスの一般的な成形法であるドクターブレード法やロールコンパクション成形法によりセラミックグリーンシートを形成し、次に、製品形状とするための金型により打ち抜いてセラミックグリーンシートを作製する。積層する各セラミックグリーンシートは、焼成時の収縮差による変形や反り、また、クラックの発生を少なくするために同一のロットのものを用いることが好ましい。   Next, using this slurry, a ceramic green sheet is formed by a doctor blade method or a roll compaction method, which is a general ceramic forming method, and then punched out with a mold for forming a product shape. Is made. The ceramic green sheets to be laminated are preferably used in the same lot in order to reduce deformation and warpage due to shrinkage differences during firing and the occurrence of cracks.

そして、流路部材1,11,12,13の側壁部1cを構成するためのセラミックグリーンシートに流路3を形成する面への凹凸2の加工,蓋体部1aおよび底板部1bへの凹凸2の加工,蓋体部1aと側壁部1cおよび底板部1bと側壁部1cとで構成される流路3のコーナ部を傾斜面状や湾曲面状に潰した形状とするための加工,積層したときに流路3につながる接合部1dに隙間8を設けるための加工方法としては、先ず、セラミックグリーンシートに金型による打ち抜き加工またはレーザによる切断加工をすることにより流路3となる孔を形成する。なお、流路3となる孔の側面に凹凸2や蓋体部1aと側壁部1cおよび底板部1bと側壁部1cとで構成される流路3のコーナ部5を傾斜面状や湾曲面状や、また、積層したときに流路3につながる接合部1dに隙間8を加工するにあたっては、砥石の形状を流路3の側面形状に合わせて成形して、内面研削盤を用いて加工すればよい。また、蓋体部1aや底板部1bに凹凸2を加工するにあたっては、砥石の形状を凹凸2が付くように加工した砥石を成形してから平面研削盤を用いて加工すればよい。また、図5および図6に示すような本実施形態の流路部材14,15とする場合には、セラミックグリーンシートに図5および図6に示すような流路3となる部分の形状を金型での打ち抜き加工またはレーザ光を用いて切断加工をすることにより流路3を構成する隔壁部1eおよび蛇行状の流路3を構成する隔壁部1eを加工すればよい。   And processing of the unevenness | corrugation 2 to the surface which forms the flow path 3 in the ceramic green sheet for comprising the side wall part 1c of the flow path members 1, 11, 12, 13 and the unevenness | corrugation to the cover part 1a and the baseplate part 1b 2. Processing, laminating the corner portion of the flow path 3 composed of the lid portion 1a and the side wall portion 1c and the bottom plate portion 1b and the side wall portion 1c into a shape that is crushed into an inclined surface shape or a curved surface shape, lamination As a processing method for providing the gap 8 in the joint portion 1d connected to the flow path 3 at first, a hole to be the flow path 3 is formed by punching a ceramic green sheet or cutting with a laser. Form. It should be noted that the corner portion 5 of the flow path 3 composed of the unevenness 2, the lid portion 1 a and the side wall portion 1 c, and the bottom plate portion 1 b and the side wall portion 1 c is formed on the side surface of the hole that becomes the flow channel 3. In addition, when processing the gap 8 in the joint 1d connected to the flow path 3 when stacked, the shape of the grindstone is formed in accordance with the side surface shape of the flow path 3 and processed using an internal grinder. That's fine. Moreover, when processing the unevenness | corrugation 2 in the cover body part 1a and the baseplate part 1b, what is necessary is just to process using the surface grinder after shaping | molding the grindstone processed so that the unevenness | corrugation 2 may attach the shape of a grindstone. Further, when the flow path members 14 and 15 of the present embodiment as shown in FIGS. 5 and 6 are used, the shape of the portion that becomes the flow path 3 as shown in FIGS. What is necessary is just to process the partition part 1e which comprises the flow path 3, and the partition part 1e which comprises the serpentine flow path 3 by carrying out the punching process with a type | mold, or a cutting process using a laser beam.

このようにして作製した複数のセラミックグリーンシートを所望の流路3となるように積層するが、それぞれのセラミックグリーンシートの接合面に、セラミックグリーンシートを作製するときに用いたものと同様のバインダを密着液として塗布し、セラミックグリーンシートを積層したあとに、平板状の加圧具を介して約0.5MPa程度の加圧を加え、
そのあとに、約50〜70℃の室温で約10〜15時間乾燥させる。
A plurality of ceramic green sheets produced in this way are laminated so as to form a desired flow path 3, and the same binder as that used when producing the ceramic green sheets is formed on the bonding surface of each ceramic green sheet. Is applied as a close contact liquid, and after laminating ceramic green sheets, a pressure of about 0.5 MPa is applied through a flat plate-shaped pressurizing tool,
Then, it is dried at room temperature of about 50-70 ° C. for about 10-15 hours.

次に、流路部材1となる積層したセラミックグリーンシートを、例えば公知のプッシャー方式やローラー方式の連続トンネル炉で焼成する。それぞれの材質により焼成温度は異なるが、アルミナ含有量が94〜97質量%の材料であれば、最高温度が約1500〜1650℃で酸化雰囲気で10分〜20時間にて焼成、炭化珪素含有量が98.6質量%以上99.9質量%以下の材料であれば、不活性ガスの雰囲気中または真空雰囲気中、1800〜2200℃の温度範囲で10分〜10時間保持した後、2200〜2350℃の温度範囲で10分〜20時間にて焼成すればよい。   Next, the laminated ceramic green sheets to be the flow path member 1 are fired in, for example, a known pusher type or roller type continuous tunnel furnace. The firing temperature differs depending on the material, but if the material has an alumina content of 94 to 97% by mass, the maximum temperature is about 1500 to 1650 ° C in an oxidizing atmosphere for 10 minutes to 20 hours, and the silicon carbide content If the material is 98.6 mass% or more and 99.9 mass% or less, hold in an inert gas atmosphere or vacuum atmosphere at a temperature range of 1800-2200 ° C for 10 minutes to 10 hours, and then a temperature range of 2200-2350 ° C It may be fired in 10 minutes to 20 hours.

そして、それぞれの焼成温度および焼成時間を調整することによって、流路の算術平均粗さ(Ra)を適宜調整することができる。   And the arithmetic mean roughness (Ra) of a flow path can be adjusted suitably by adjusting each baking temperature and baking time.

また、得られた流路部材14,15の外周面を研削することによって、外壁部1fの厚さを調整することで隔壁部1eの厚みより薄い外壁部1fとすることがきる。特に図9に示すような、半導体製造装置に使用する熱交換器の場合、外壁部1fの厚さを薄くすることが好ましく、外気との熱交換を効率よくするためには、その厚みを0.3〜2.0mm程度とすることが好ましい。   Further, by grinding the outer peripheral surfaces of the obtained flow path members 14 and 15, the outer wall portion 1f can be made thinner than the partition wall portion 1e by adjusting the thickness of the outer wall portion 1f. In particular, in the case of a heat exchanger used in a semiconductor manufacturing apparatus as shown in FIG. 9, it is preferable to reduce the thickness of the outer wall 1f, and in order to efficiently exchange heat with the outside air, the thickness is set to 0.3. It is preferable to be about ~ 2.0 mm.

また、この様に、外壁部1fの厚みを薄くした場合には、流路部材の強度を維持しつつ、蓋体部1aから側壁部1eへと伝わってきた熱を流体と効率よく熱交換効するにあたり、隔壁部1eの厚さを外壁部1fの厚さの2〜4倍とすることが好ましい。   In addition, when the thickness of the outer wall portion 1f is reduced in this way, the heat transferred from the lid portion 1a to the side wall portion 1e is efficiently exchanged with the fluid while maintaining the strength of the flow path member. In doing so, it is preferable that the thickness of the partition wall 1e is 2 to 4 times the thickness of the outer wall 1f.

特に図9に示すような、高熱を発する電子部品7が搭載された基板を流路部材1の蓋体部1aに搭載するときには、流路を形成するために貫通孔を封止している蓋体部1aの厚みは、熱交換効率を向上させるためになるべく薄くすることが好ましく、アルミナ含有量が94〜97質量%の蓋体部1aにおいては、0.3〜0.5mm程度、炭化珪素の蓋体部1aにおいては、0.2〜0.5mm程度とすることが好ましい。   In particular, when a substrate on which an electronic component 7 generating high heat is mounted as shown in FIG. 9 is mounted on the lid portion 1a of the flow path member 1, the lid that seals the through holes to form the flow path The thickness of the body part 1a is preferably as thin as possible in order to improve the heat exchange efficiency. In the lid part 1a having an alumina content of 94 to 97% by mass, the silicon carbide lid body is about 0.3 to 0.5 mm. In the part 1a, it is preferable to set it as about 0.2-0.5 mm.

以上により流路部材1,11,12,13,14,15が作製され、この流路部材1,11,12,13
,14,15に、金属板6を介してLSIやLED等の電子部品7を搭載することによって、気体や液体等の冷媒を流路部材1,11,12,13,14,15の流路に通すことで電子部品7を冷却することができる。
Thus, the flow path members 1, 11, 12, 13, 14, 15 are produced.
, 14 and 15 are mounted with electronic parts 7 such as LSIs and LEDs via a metal plate 6 so that a refrigerant such as a gas or a liquid flows through the flow path members 1, 11, 12, 13, 14 and 15. The electronic component 7 can be cooled by passing through.

また、本実施形態の流路部材1,11,12,13,14,15は、冷却用途だけでなく温熱用途など幅広い用途にも利用することができるとともに、凹凸2によって渦流が発生して流路部材内部において塵等の付着を少なくできることから、ウェハなどを搬送する吸着搬送部材としても用いることもできる。   Further, the flow path members 1, 11, 12, 13, 14, and 15 of the present embodiment can be used not only for cooling applications but also for a wide range of applications such as thermal applications. Since adhesion of dust and the like can be reduced inside the path member, it can also be used as a suction conveyance member for conveying a wafer or the like.

1,11,12,13,14,15:流路部材
1a:蓋体部
1b:底板部
1c:側壁部
1d:接合部
1e:隔壁部
1f:外壁部
2:凹凸
3:流路
20:熱交換器
40:電子部品装置
50:半導体製造装置
1, 11, 12, 13, 14, 15: Channel member 1a: Lid portion 1b: Bottom plate portion 1c: Side wall portion 1d: Joint portion 1e: Partition portion 1f: Outer wall portion 2: Concavity and convexity 3: Channel
20: Heat exchanger
40: Electronic component equipment
50: Semiconductor manufacturing equipment

Claims (7)

蓋体部と、側壁部と、底板部とで構成され、内部に流体が流れる流路を有する、セラミックスからなる流路部材であって、前記流路を形成する面の少なくとも一部に流体が流れる方向に沿って延びる凹凸を断続的に有することを特徴とする流路部材。 A lid portion, a side wall portion, is composed of a bottom plate, having a flow passage through which fluid therein, a flow passage member made of ceramics, at least a portion of the surfaces forming the flow path, the fluid A flow path member characterized by having irregularities extending intermittently along the direction in which the gas flows. 前記側壁部は、前記流路を形成するための孔を有する板状体を複数備えてなる積層体であることを特徴とする請求項1に記載の流路部材。   The flow path member according to claim 1, wherein the side wall portion is a laminated body including a plurality of plate-like bodies having holes for forming the flow path. 前記流路を構成する隔壁部を備えるとともに、該隔壁部を形成する面の少なくとも一部に流体が流れる方向に沿って延びる凹凸を有することを特徴とする請求項1または請求項2に記載の流路部材。   3. The structure according to claim 1, further comprising a partition portion that constitutes the flow path, and at least part of a surface that forms the partition portion, having irregularities extending along a direction in which a fluid flows. Channel member. 前記側壁部の厚みが、前記隔壁部の厚みより薄いことを特徴とする請求項3に記載の流路部材。   The flow path member according to claim 3, wherein a thickness of the side wall portion is smaller than a thickness of the partition wall portion. 請求項1乃至請求項4のいずれかに記載の前記流路部材の前記蓋体部の外面に、金属板を設けてなることを特徴とする熱交換器。   A heat exchanger comprising a metal plate provided on an outer surface of the lid portion of the flow path member according to any one of claims 1 to 4. 請求項5に記載の前記熱交換器の前記金属板上に電子部品を搭載してなることを特徴とする電子部品装置。   An electronic component device comprising an electronic component mounted on the metal plate of the heat exchanger according to claim 5. 請求項5に記載の前記熱交換器を備えることを特徴とする半導体製造装置。   A semiconductor manufacturing apparatus comprising the heat exchanger according to claim 5.
JP2011266998A 2011-07-28 2011-12-06 Channel member, heat exchanger using the same, electronic component device, and semiconductor manufacturing device Active JP6005930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011266998A JP6005930B2 (en) 2011-07-28 2011-12-06 Channel member, heat exchanger using the same, electronic component device, and semiconductor manufacturing device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011165647 2011-07-28
JP2011165647 2011-07-28
JP2011266998A JP6005930B2 (en) 2011-07-28 2011-12-06 Channel member, heat exchanger using the same, electronic component device, and semiconductor manufacturing device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016111934A Division JP2016171343A (en) 2011-07-28 2016-06-03 Passage member, heat exchanger and electronic component device using the same, and semiconductor manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2013048204A JP2013048204A (en) 2013-03-07
JP6005930B2 true JP6005930B2 (en) 2016-10-12

Family

ID=48011045

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2011266998A Active JP6005930B2 (en) 2011-07-28 2011-12-06 Channel member, heat exchanger using the same, electronic component device, and semiconductor manufacturing device
JP2016111934A Pending JP2016171343A (en) 2011-07-28 2016-06-03 Passage member, heat exchanger and electronic component device using the same, and semiconductor manufacturing apparatus

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2016111934A Pending JP2016171343A (en) 2011-07-28 2016-06-03 Passage member, heat exchanger and electronic component device using the same, and semiconductor manufacturing apparatus

Country Status (1)

Country Link
JP (2) JP6005930B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6290635B2 (en) * 2014-01-23 2018-03-07 京セラ株式会社 Channel member, heat exchanger using the same, and semiconductor manufacturing apparatus
JP6437844B2 (en) * 2014-03-14 2018-12-12 京セラ株式会社 Channel member, heat exchanger using the same, and semiconductor manufacturing apparatus
JP6251381B2 (en) * 2014-03-25 2017-12-20 京セラ株式会社 Channel member and semiconductor module
EP3150955B1 (en) * 2014-05-28 2019-11-27 Kyocera Corporation Flow channel member, and heat exchanger and semiconductor module each using same
US10667641B2 (en) 2014-11-28 2020-06-02 Østerlandsk Thehus Apparatus for brewing and dispensing beverages
EP3326988B1 (en) * 2015-08-28 2019-11-06 Kyocera Corporation Flow path member

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63293865A (en) * 1987-05-26 1988-11-30 Nec Corp Water cooling jacket structure
JPH02121355A (en) * 1988-10-28 1990-05-09 Shimadzu Corp Ceramic multilayer substrate
JPH04179503A (en) * 1990-11-14 1992-06-26 Mitsubishi Materials Corp Hollow ceramics extrusion molding
JP2577063Y2 (en) * 1992-02-28 1998-07-23 京セラ株式会社 Semiconductor package
JPH07142822A (en) * 1993-09-20 1995-06-02 Fujitsu Ltd Circuit board and its manufacture
JP3692623B2 (en) * 1996-05-20 2005-09-07 株式会社デンソー Ceramic laminate and manufacturing method thereof
JPH09313926A (en) * 1996-05-31 1997-12-09 Orion Mach Co Ltd Heat-exchange apparatus for semiconductor treating liquid
JP3683348B2 (en) * 1996-06-25 2005-08-17 日本特殊陶業株式会社 Manufacturing method of ceramic structure
JP3816194B2 (en) * 1996-11-22 2006-08-30 ファナック株式会社 Cooling device, light source device, surface light emitting device, and manufacturing method thereof
JPH10209351A (en) * 1997-01-21 1998-08-07 Fujitsu Ltd Heat sink
JP2000299585A (en) * 1999-02-12 2000-10-24 Toyota Motor Corp Cooling device
JP3797060B2 (en) * 1999-05-17 2006-07-12 株式会社デンソー Ceramic laminate and manufacturing method thereof
JP2002026469A (en) * 2000-07-11 2002-01-25 Denki Kagaku Kogyo Kk Circuit board having directly cooling structure
JP4385533B2 (en) * 2001-03-02 2009-12-16 日本軽金属株式会社 Manufacturing method of heat plate
JP2002329938A (en) * 2001-04-27 2002-11-15 Kyocera Corp Ceramic circuit board
JP2002373873A (en) * 2001-06-15 2002-12-26 Sumitomo Metal Ind Ltd Vacuum chuck for holding wafer
JP3945208B2 (en) * 2001-10-09 2007-07-18 株式会社デンソー Heat exchange tubes and heat exchangers
JP2005166751A (en) * 2003-11-28 2005-06-23 Ngk Spark Plug Co Ltd Cooling device for semiconductor part, manufacturing method therefor and semiconductor part with cooling device
JP2005166855A (en) * 2003-12-02 2005-06-23 Hitachi Ltd Electronic apparatus
JP2006100410A (en) * 2004-09-28 2006-04-13 Kyocera Corp Package for storing electronic component, and electronic apparatus
JP4870455B2 (en) * 2006-03-15 2012-02-08 太平洋セメント株式会社 Low thermal expansion ceramic joined body having hollow structure
JP4675283B2 (en) * 2006-06-14 2011-04-20 トヨタ自動車株式会社 Heat sink and cooler
JP4826426B2 (en) * 2006-10-20 2011-11-30 株式会社デンソー Semiconductor device
JP2009283732A (en) * 2008-05-23 2009-12-03 Kyocera Corp Circuit board, and electronic apparatus
JP2011017516A (en) * 2009-07-10 2011-01-27 Mitsubishi Electric Corp Plate laminated type cooling device and method of manufacturing the same
US9379038B2 (en) * 2010-04-28 2016-06-28 Kabushiki Kaisha Toyota Jidoshokki Heat dissipation device and semiconductor device
EP2582213B1 (en) * 2010-06-09 2021-01-20 Kyocera Corporation Flow channel member, heat exchanger using same, and electronic component device
JP2012005191A (en) * 2010-06-15 2012-01-05 Denso Corp Power conversion apparatus

Also Published As

Publication number Publication date
JP2016171343A (en) 2016-09-23
JP2013048204A (en) 2013-03-07

Similar Documents

Publication Publication Date Title
JP2016171343A (en) Passage member, heat exchanger and electronic component device using the same, and semiconductor manufacturing apparatus
EP2772717B1 (en) Channel member, heat exchanger, and semiconductor unit including the same
CN102934528B (en) Flow channel member, heat exchanger using same, and electronic component device
JPWO2007125878A1 (en) Aluminum-silicon carbide composite and heat dissipation component using the same
JP6175437B2 (en) Channel member, heat exchanger using the same, and semiconductor manufacturing apparatus
JP6018196B2 (en) Channel member, heat exchanger using the same, and semiconductor manufacturing apparatus
JPWO2011065457A1 (en) Laminate and method for producing the same
JP5829695B2 (en) Heat sink and electronic component device including the heat sink
JP6162558B2 (en) Channel member, heat exchanger using the same, and semiconductor manufacturing apparatus
TW201523817A (en) Heat sink, power module and manufacturing method for heat sink
JP2022187981A (en) Composite material and heat dissipation component
WO2020158775A1 (en) Heat-dissipating member and manufacturing method for same
CN104014921A (en) Method for rapidly preparing copper-molybdenum multi-layer composite material
JP6290635B2 (en) Channel member, heat exchanger using the same, and semiconductor manufacturing apparatus
JP6591113B1 (en) Heat dissipation member and manufacturing method thereof
JP5969325B2 (en) Channel member and electronic device using the same
US20170317223A1 (en) Ceramic carrier body having solar cells
JP6437844B2 (en) Channel member, heat exchanger using the same, and semiconductor manufacturing apparatus
JP6154248B2 (en) Channel member, heat exchanger using the same, and semiconductor manufacturing apparatus
JP4339212B2 (en) Manufacturing method of ceramic substrate and use thereof
JP2012171838A (en) Method for producing aluminum-silicon carbide composite
JP6204224B2 (en) Insulating material
JP6853443B2 (en) Manufacturing method of board for power module
JP4520243B2 (en) Manufacturing method of ceramic sheet, ceramic substrate using the same, and use thereof
JP2006159654A (en) Method for producing ceramic sheet, ceramic substrate using it, and its application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160603

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160908

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 6005930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150