[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4870455B2 - Low thermal expansion ceramic joined body having hollow structure - Google Patents

Low thermal expansion ceramic joined body having hollow structure Download PDF

Info

Publication number
JP4870455B2
JP4870455B2 JP2006070678A JP2006070678A JP4870455B2 JP 4870455 B2 JP4870455 B2 JP 4870455B2 JP 2006070678 A JP2006070678 A JP 2006070678A JP 2006070678 A JP2006070678 A JP 2006070678A JP 4870455 B2 JP4870455 B2 JP 4870455B2
Authority
JP
Japan
Prior art keywords
thermal expansion
bonding
low thermal
bonding material
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006070678A
Other languages
Japanese (ja)
Other versions
JP2007246321A (en
Inventor
基宏 梅津
伸也 佐藤
昇 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2006070678A priority Critical patent/JP4870455B2/en
Publication of JP2007246321A publication Critical patent/JP2007246321A/en
Application granted granted Critical
Publication of JP4870455B2 publication Critical patent/JP4870455B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

本発明は、半導体製造装置、液晶パネル製造装置、検査機器等に好適に用いられる中空構造を有する低熱膨張セラミックス接合体に関するものである。 The present invention relates to a low thermal expansion ceramic joined body having a hollow structure that is suitably used in a semiconductor manufacturing apparatus, a liquid crystal panel manufacturing apparatus, an inspection device, and the like.

近年、半導体回路は益々精細化する傾向にあり、製造装置のわずかな変形でも歩留まりの低下を招くことから、半導体製造装置用部材として熱膨張が小さく、剛性も高い低熱膨張セラミックスが用いられている。さらに、装置の大型化、高速移動化にともなう装置用部材の軽量化の要請から、リブやハニカムなどにより内部を構成し剛性を大きく損なうことなく肉厚部を減らした中空構造にすることが行われ、低熱膨張セラミックス部材においても、このような構造が採用されている。 In recent years, semiconductor circuits have been increasingly refined, and even a slight deformation of the manufacturing apparatus causes a decrease in yield. Therefore, low thermal expansion ceramics with low thermal expansion and high rigidity are used as members for semiconductor manufacturing apparatus. . Furthermore, in response to demands for weight reduction of equipment members due to equipment enlargement and high-speed movement, it is necessary to construct a hollow structure in which the inner part is configured with ribs, honeycombs, etc., and the thick part is reduced without greatly impairing rigidity. In fact, such a structure is also adopted in the low thermal expansion ceramic member.

中空構造を有するセラミックス部材を製造する場合、一体ものでは加工が困難なため、複数の部品に分けて製造し、最終的に各々の部品を接合する方法が用いられており、本出願人らにより、このような中空構造の低熱膨張セラミックス部材として、低熱膨張セラミックスからなる部材を、該部材よりも溶融温度の低い低熱膨張セラミックスからなる接合材で接合した低熱膨張セラミックス接合体が提案されている。(例えば、特許文献1参照。)
また、熱膨張セラミックス底板材と一端から一端まで連通する溝部を有する同材質の上板材とを、該板材よりも溶融温度の低い低熱膨張セラミックスからなる接合材で接合してなる露光装置ステージ部材が提案されており、溝部に水や空気を冷却媒体として流し、ステージの冷却をすることを可能としている。(例えば、特許文献2参照。)
さらには、ハニカム構造セラミックス体の上下にセラミックス板を接合してなる露光装置用ステージ部材が提案されている。(例えば、特許文献3参照。)このようなステージ部材を真空装置内で使用する場合は、ハニカム中空構造内外で圧力差が生じるため、圧力に耐えて気密を保持できるように、ハニカム構造体の外周部分を厚く設計しステージに機械的強度を持たせている。
特開2004−59402号公報 特開2004−179353号公報 特開2005−164878号公報
When manufacturing a ceramic member having a hollow structure, since it is difficult to process with a single member, a method of manufacturing a plurality of parts and finally joining each part is used. As such a low thermal expansion ceramic member having a hollow structure, a low thermal expansion ceramic joined body in which a member made of low thermal expansion ceramic is joined with a joining material made of low thermal expansion ceramic having a melting temperature lower than that of the member has been proposed. (For example, refer to Patent Document 1.)
Further, there is provided an exposure apparatus stage member obtained by joining a thermally expanded ceramic bottom plate material and an upper plate material of the same material having a groove communicating from one end to one end with a bonding material made of low thermal expansion ceramic having a melting temperature lower than that of the plate material. It has been proposed that it is possible to cool the stage by flowing water or air as a cooling medium in the groove. (For example, see Patent Document 2.)
Furthermore, a stage member for an exposure apparatus has been proposed in which ceramic plates are joined to the top and bottom of a honeycomb structure ceramic body. (For example, refer to Patent Document 3.) When such a stage member is used in a vacuum apparatus, a pressure difference is generated between the inside and outside of the honeycomb hollow structure, so that the airtightness of the honeycomb structure can be maintained to withstand the pressure. The outer peripheral part is designed to be thick and the stage has mechanical strength.
JP 2004-59402 A JP 2004-179353 A JP 2005-164878 A

しかしながら、実際には、中空構造を有するセラミックス部材の接合において、中空部の気密を完全に保持することは困難であり、ステージ部材の溝部に水や空気を冷却媒体として流した場合には、冷却媒体が接合部の微小な隙間から溝外に漏出し装置を汚染したり、真空装置内で使用する場合は、中空構造部の外周部分を厚くしても接合部からガスが漏出して真空度が低下したりするなど、製品の歩留りが悪く大きな問題となっていた。 However, in actuality, it is difficult to completely maintain the airtightness of the hollow portion in the joining of the ceramic members having a hollow structure. When water or air is allowed to flow as a cooling medium in the groove portion of the stage member, cooling is not possible. When the medium leaks out of the groove from the minute gap in the joint, or when used in a vacuum device, the gas leaks from the joint even if the outer periphery of the hollow structure is thickened, and the degree of vacuum The yield of the product was bad and became a big problem.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、低熱膨張セラミックス接合体の接合層に隣接する接合材メニスカスの形状が、接合層厚みと一定の関係を有するときに、優れた気密性を示すことを知見し、本発明を完成するに至った。
すなわち、本発明は、このような低熱膨張セラミックス接合体の接合不良を解消し、気密性に優れた中空構造を有する低熱膨張セラミックス接合体を提供することを目的とする。
As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention are excellent when the shape of the bonding material meniscus adjacent to the bonding layer of the low thermal expansion ceramic bonded body has a certain relationship with the bonding layer thickness. As a result, the present invention was completed.
That is, an object of the present invention is to provide a low thermal expansion ceramic joined body having a hollow structure that is excellent in airtightness and eliminates such poor bonding of the low thermal expansion ceramic joined body.

上記した本発明の目的は、低熱膨張セラミックス部材の接合面同士が、該部材よりも溶融温度の低い低熱膨張セラミックス接合材からなる接合層を介して接合されてなる中空構造を有する低熱膨張セラミックス接合体であって、前記接合層は接合面に垂直な方向に5〜60μmの厚みtを有しており、かつ、一方の接合面に隣接する側壁面と他方の接合面に隣接する平面で形成される、中空部に面した角隅部が凹状曲面の接合材メニスカスにより被覆されており、かつ、前記側壁面の角縁部から接合材メニスカス面上の最短部までの距離δと、接合層厚みtとの比δ/tが0.5以上5.0以下であり、前記低熱膨張セラミックス部材および前記接合材の20〜30℃における平均の熱膨張係数が−1×10 -6 〜1×10 -6 /℃であることを特徴とする中空構造を有する低熱膨張セラミックス接合体によって達成される。 An object of the present invention described above is to provide a low thermal expansion ceramic joint having a hollow structure in which joining surfaces of low thermal expansion ceramic members are joined via a joining layer made of a low thermal expansion ceramic joining material having a melting temperature lower than that of the member. The bonding layer has a thickness t of 5 to 60 μm in a direction perpendicular to the bonding surface, and is formed of a side wall surface adjacent to one bonding surface and a plane adjacent to the other bonding surface. And a corner delta facing the hollow portion is covered with a concave curved bonding material meniscus, and a distance δ from the corner edge of the side wall surface to the shortest portion on the bonding material meniscus surface, and a bonding layer The ratio δ / t to the thickness t is 0.5 or more and 5.0 or less, and the average thermal expansion coefficient of the low thermal expansion ceramic member and the bonding material at 20 to 30 ° C. is −1 × 10 −6 to 1 ×. 10 -6 / ° C This is achieved by a low thermal expansion ceramic joined body having a hollow structure.

本発明の低熱膨張セラミックス接合体によれば、低熱膨張セラミックス部材の接合面同士を接合する接合材が、中空部に面する接合領域において、接合層に隣接する角隅部を接合層厚みとの関係で一定の形状により被覆する構造になっているため、接合部の欠陥発生が抑制され、中空構造を有する低熱膨張セラミックス接合体中の接合部の気密性を高めることができる。 According to the low thermal expansion ceramic joined body of the present invention, the joining material for joining the joining surfaces of the low thermal expansion ceramic members has a corner portion adjacent to the joining layer in the joining region facing the hollow portion. Since the structure is covered with a certain shape, the occurrence of defects in the joint is suppressed, and the air tightness of the joint in the low thermal expansion ceramic joined body having a hollow structure can be improved.

以下、本発明の実施の形態を図面に基づいて説明する。
図1に示す本発明の低熱膨張セラミックス接合体1は、低熱膨張セラミックス部材の接合面同士が、該部材よりも溶融温度の低い低熱膨張セラミックス接合材からなる接合層を介して接合され、中空箱型の構造となっており、この接合層は、図2に示すように、接合面に対して垂直方向に5〜60μmの厚みt(接合層厚みとも呼ぶ。)を有しており、中空部に面し、一方の接合面に隣接する側壁面と他方の接合面に隣接する平面で形成される角隅部が凹状曲面の接合材メニスカスにより被覆されており、前記側壁面の角縁部から接合材メニスカス面上の最短部までの距離δ(メニスカスの被覆距離とも呼ぶ。)と接合層厚みtとの比δ/tが0.5以上5.0以下となっている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
A low thermal expansion ceramic joined body 1 of the present invention shown in FIG. 1 is formed by joining the joining surfaces of low thermal expansion ceramic members via a joining layer made of a low thermal expansion ceramic joining material having a melting temperature lower than that of the member. As shown in FIG. 2, the bonding layer has a thickness t (also referred to as a bonding layer thickness) of 5 to 60 μm in the direction perpendicular to the bonding surface. The corner corner formed by the side wall surface adjacent to one joint surface and the plane adjacent to the other joint surface is covered with a concave curved joint material meniscus, and from the corner edge of the side wall surface The ratio δ / t between the distance δ (also referred to as the meniscus coating distance) to the shortest portion on the bonding material meniscus surface and the bonding layer thickness t is 0.5 or more and 5.0 or less.

図1(a)に斜視図で本発明の一実施例を示す低熱膨張セラミックス接合体1は、そのA−A線断面図である図1(b)に示すように、セラミックス部材としての基板11と、予め加工によりリブを付与したセラミックス部材12と、これらの部材を接合する接合材13から構成される。 FIG. 1A is a perspective view showing a low thermal expansion ceramic joined body 1 according to an embodiment of the present invention. As shown in FIG. And a ceramic member 12 previously provided with ribs by processing, and a bonding material 13 for bonding these members.

図1(b)のX部を拡大した図2に示すように、接合部の角隅部に形成される接合材メニスカスは凹状曲面13b(接合材メニスカス面とも呼ぶ。)を有する。この接合材凹状曲面13bは、接合材13がセラミックス部材11および部材12と十分な濡れ性を持っており、リブ部の接合面に隣接する側壁面12b、および、基板部材の接合面に隣接する平面11bと融着した接合材の接触角が鋭角になることにより形成される。 As shown in FIG. 2 in which the portion X in FIG. 1B is enlarged, the bonding material meniscus formed at the corners of the bonding portion has a concave curved surface 13b (also referred to as a bonding material meniscus surface). The bonding material concave curved surface 13b is such that the bonding material 13 has sufficient wettability with the ceramic members 11 and 12, and the side wall surface 12b adjacent to the bonding surface of the rib portion and the bonding surface of the substrate member. It is formed by the contact angle of the bonding material fused with the flat surface 11b becoming an acute angle.

ここで、接触角は具体的には40°よりも小さければ良く、さらに望ましくは25°よりも小さければ良い。このようにセラミックス部材と接合材との濡れ性を確保し、接合層を取囲むように凹状曲面の接合材メニスカスを形成することにより、上述したような接合層の欠陥が発生し難くなるだけでなく、接合層に内部欠陥が生じた場合であっても、接合層を取囲む接合材メニスカスにより気密性を担保することができる。さらには、接合材メニスカスにより接合部に十分な接合強度を付与することができる。 Here, the contact angle may specifically be smaller than 40 °, and more desirably smaller than 25 °. Thus, by ensuring the wettability between the ceramic member and the bonding material and forming the concave curved bonding material meniscus so as to surround the bonding layer, the above-described defects in the bonding layer are less likely to occur. In addition, even when an internal defect occurs in the bonding layer, airtightness can be ensured by the bonding material meniscus surrounding the bonding layer. Furthermore, sufficient bonding strength can be imparted to the bonded portion by the bonding material meniscus.

ここで、「一方の接合面に隣接する側壁面と他方の接合面に隣接する平面で形成される、中空部に面した角隅部」は、正確には、リブ部の側壁面の接合層側延長上に接合層の側壁面を仮定し、接合面に隣接するリブ部および接合層の側壁面と基板平面で形成される角隅部として捉えられる。 Here, the “corner corner facing the hollow portion formed by the side wall surface adjacent to one bonding surface and the plane adjacent to the other bonding surface” is precisely the bonding layer on the side wall surface of the rib portion. Assuming the side wall surface of the bonding layer on the side extension, it is regarded as a corner portion formed by the rib portion adjacent to the bonding surface and the side wall surface of the bonding layer and the substrate plane.

さらに、この接合材メニスカスは、一方のセラミックス部材の接合面に隣接する側壁面の角縁部、すなわち前記リブ部の角縁部12cから接合材メニスカス面上の最短部13cまでの距離δと接合材厚みtとの比δ/tが0.5以上5.0以下となっている。δ/tが0.5未満の場合は、接合材メニスカスが、接合層および接合層に隣接する角隅部を十分に被覆することができなくなり気密性が低下する。逆にδ/tが5.0より大きい場合にも気密性は低下する。δ/tが5.0を超えて大きくなるのは、接合材が過剰に溶融し、tが小さくなるとともに、接合層から染み出した部分が大きくなる場合である。後述するように、接合材の低熱膨張セラミックスは、マイナスの熱膨張を示す第一の材料とプラスの熱膨張を示す第二の材料との複合材であり、その低熱膨張性は焼結体の粒界相におけるマイクロクラックがもたらす応力緩和機構により発揮される。しかしながら、過剰に加熱溶融し粒成長が進むと、マイクロクラックが拡大し、大きな割れが生じるため気密性の低下を招来する。 Further, this bonding material meniscus is bonded to the distance δ from the corner edge of the side wall surface adjacent to the bonding surface of one ceramic member, that is, the corner edge 12c of the rib portion to the shortest portion 13c on the bonding material meniscus surface. The ratio δ / t to the material thickness t is 0.5 or more and 5.0 or less. When δ / t is less than 0.5, the bonding material meniscus cannot sufficiently cover the bonding layer and the corners adjacent to the bonding layer, and the airtightness is lowered. Conversely, the airtightness also decreases when δ / t is greater than 5.0. The case where δ / t increases beyond 5.0 is when the bonding material is excessively melted, t decreases, and the portion that exudes from the bonding layer increases. As will be described later, the low thermal expansion ceramic of the bonding material is a composite material of a first material exhibiting a negative thermal expansion and a second material exhibiting a positive thermal expansion. It is exhibited by a stress relaxation mechanism caused by microcracks in the grain boundary phase. However, when the particles are heated and melted excessively and grain growth proceeds, microcracks expand and large cracks are generated, resulting in a decrease in hermeticity.

尚、図1(b)に示すように、接合層13は低熱膨張セラミックス接合体1の外壁側接合部も被覆するように形成されるが、外壁側接合部の被覆部分は必要に応じ、研削、研磨等により取り除かれても良い。また、接合層厚みtとメニスカスの被覆距離δとの比率は、均等である必要はなく、上記範囲内においてばらつきがあっても良い。 As shown in FIG. 1B, the bonding layer 13 is formed so as to cover the outer wall side bonded portion of the low thermal expansion ceramic bonded body 1 as well, but the coated portion of the outer wall side bonded portion is ground if necessary. It may be removed by polishing or the like. Further, the ratio between the bonding layer thickness t and the meniscus coating distance δ need not be uniform, and may vary within the above range.

さらに、図2に示す接合層13は、接合面に対して垂直方向に5〜60μmの厚みtを有している。接合層厚みtが5μm未満の場合は、接合強度が著しく低下してしまうため加工時や装置への組み込み時の負荷により接合部が外れたり、外れに至らない場合であっても内部にクラックが生じ、気密が低下したりする。また、接合層厚みtが60μmを越える場合にも気密性が低下する。tが60μmを超えて大きくなるのは、接合材の溶融が不十分な場合であり、接合層中の気孔を介して漏れが生じてしまう。 Furthermore, the bonding layer 13 shown in FIG. 2 has a thickness t of 5 to 60 μm in the direction perpendicular to the bonding surface. If the bonding layer thickness t is less than 5 μm, the bonding strength will be significantly reduced, so even if the bonding part is detached or does not come off due to a load during processing or incorporation into the apparatus, cracks are generated inside. Resulting in reduced airtightness. Further, the airtightness is also lowered when the bonding layer thickness t exceeds 60 μm. When t exceeds 60 μm, it is a case where the bonding material is insufficiently melted, and leakage occurs through pores in the bonding layer.

ここで、前記部材および前記接合材の20〜30℃における平均の熱膨張係数が−1×10-6〜1×10-6/℃であることが好ましい。この範囲であれば、半導体製造装置部材として用いられた場合に、半導体回路の精細化に適合可能である。また、部材と接合材との間の、20〜30℃における平均の熱膨張係数の差が±0.1×10-6/℃以内であることが好ましい。熱膨張係数の差がこの範囲を超えると、接合のための熱処理後、冷却過程で内部応力により亀裂が生じ、気密性の低下を招くおそれがある。 Here, it is preferable that the average coefficient of thermal expansion of the member and the bonding material at 20 to 30 ° C. is −1 × 10 −6 to 1 × 10 −6 / ° C. Within this range, when used as a semiconductor manufacturing apparatus member, it can be adapted to refinement of a semiconductor circuit. Moreover, it is preferable that the difference of the average thermal expansion coefficient in 20-30 degreeC between a member and a joining material is less than +/- 0.1x10 < -6 > / degreeC . If the difference in thermal expansion coefficient exceeds this range, after heat treatment for bonding, cracks may occur due to internal stress in the cooling process, leading to a decrease in hermeticity.

接合材を構成する低熱膨張セラミックスは2種以上の材料からなる複合材料であることが好ましい。このように接合材を構成する低熱膨張セラミックスとして複合材料を用いることにより、低熱膨張セラミックス部材に適合した熱膨張になるように構成材料の配合を変化させることができ、適用の自由度を極めて高くすることができる。 The low thermal expansion ceramic constituting the bonding material is preferably a composite material composed of two or more kinds of materials. Thus, by using a composite material as the low thermal expansion ceramic constituting the bonding material, the composition of the constituent materials can be changed so as to achieve thermal expansion suitable for the low thermal expansion ceramic member, and the degree of freedom of application is extremely high. can do.

接合材を構成する複合材料としては、リチウムアルミノシリケート、コーディエライトから選ばれる1種以上の第1の材料と、炭化珪素、窒化珪素、サイアロン、アルミナ、ジルコニア、ムライト、ジルコン、窒化アルミニウム、ケイ酸カルシウムから選ばれる1種以上の第2の材料とからなるものが好適である。これら構成材料のうち第1の材料は熱膨張が極めて小さく、第2の材料は熱膨張係数は第1の材料よりも大きいがヤング率が高く、これらを複合化することにより、所望の低熱膨張および高剛性を兼備した材料とすることができる。 The composite material constituting the bonding material includes one or more first materials selected from lithium aluminosilicate and cordierite, silicon carbide, silicon nitride, sialon, alumina, zirconia, mullite, zircon, aluminum nitride, silicon nitride. What consists of 1 or more types of 2nd materials chosen from calcium acid is suitable. Of these constituent materials, the first material has a very low thermal expansion, and the second material has a higher coefficient of thermal expansion than the first material, but has a higher Young's modulus. And it can be set as the material which has high rigidity.

上記第1の材料としては、リチウムアルミノシリケートであるβ−ユークリプタイトやスポジューメンが好ましい。また、その中でもβ−ユークリプタイトはマイナスの熱膨張を示すので、プラスの熱膨張を示す第2の材料と組み合わせることにより、極めて低い熱膨張係数を得ることが可能であるし、また、配合を調節することにより熱膨張係数をマイナスからプラスの広い範囲で調節することが可能となる。尚、β−ユークリプタイトやスポジューメンに代表されるリチウムアルミノシリケートは、Ca、Mg、Fe、K、Ti、Zn等の他の成分と固溶体を形成するが、本発明ではこのような固溶体も適用可能である。
一方、第2の材料は、接合材の溶融温度が低熱膨張セラミックス部材の溶融温度よりも低くなるように上記材料の中から適宜選択される。
As the first material, lithium aluminosilicate β-eucryptite and spodumene are preferable. Of these, β-eucryptite exhibits a negative thermal expansion, so that it can be combined with a second material exhibiting a positive thermal expansion to obtain an extremely low thermal expansion coefficient. It is possible to adjust the thermal expansion coefficient in a wide range from minus to plus by adjusting. In addition, although lithium aluminosilicate represented by β-eucryptite and spodumene forms a solid solution with other components such as Ca, Mg, Fe, K, Ti, and Zn, such a solid solution is also applied in the present invention. Is possible.
On the other hand, the second material is appropriately selected from the above materials so that the melting temperature of the bonding material is lower than the melting temperature of the low thermal expansion ceramic member.

接合材を構成する複合材料としては、具体的には、βーユークリプタイトと窒化珪素とからなるものが好ましい。この複合材料は、低熱膨張であり、剛性も高く、溶融温度が1300〜1360℃と比較的低い。本発明において、接合材はその溶融温度よりも高い温度で焼結する低熱膨張セラミックス部材を接合することが可能であるから、このような比較的低温で溶融する接合材は適用範囲が広い。また、上述したようにβ−ユークリプタイトは負の熱膨張係数を有しており、窒化珪素は正の熱膨張係数を有することから、これらの配合比を変えることで、マイナス膨張からプラス膨張まで、任意に熱膨張係数を変化させることが可能であり、したがって、セラミックス部材の熱膨張係数に応じてこれらの配合比を適宜選択することにより、どのような材質の部材も接合部に応力を生じさせずに良好に接合することができる。 Specifically, the composite material constituting the bonding material is preferably a material composed of β-eucryptite and silicon nitride. This composite material has low thermal expansion, high rigidity, and a relatively low melting temperature of 1300 to 1360 ° C. In the present invention, since the bonding material can bond a low thermal expansion ceramic member that is sintered at a temperature higher than its melting temperature, such a bonding material that melts at a relatively low temperature has a wide range of applications. In addition, as described above, β-eucryptite has a negative thermal expansion coefficient, and silicon nitride has a positive thermal expansion coefficient. Therefore, by changing the mixing ratio of these, the negative expansion can be changed to the positive expansion. Thus, it is possible to arbitrarily change the thermal expansion coefficient. Therefore, by appropriately selecting the mixing ratio according to the thermal expansion coefficient of the ceramic member, any material member can apply stress to the joint. Good bonding can be achieved without causing it.

また、接合材のみならず、セラミックス部材および接合材のいずれもが2種以上の材料からなる複合材料からなる低熱膨張セラミックスで構成することが好ましい。このように両者に複合材料を用いることにより、セラミックス部材を構成する材料の配合割合を変化させれば、要求される種々の熱膨張に対応することが可能であるし、接合材はセラミックス部材に適合した熱膨張になるように構成材料の配合を変化させることができるから、所望の特性の低熱膨張セラミックス接合体を容易に得ることができ、しかも自由度が高い適用が可能である。 Moreover, it is preferable that not only the bonding material but also the ceramic member and the bonding material are both made of a low thermal expansion ceramic made of a composite material made of two or more kinds of materials. Thus, by using a composite material for both, if the blending ratio of the material constituting the ceramic member is changed, it is possible to cope with various required thermal expansions, and the bonding material is applied to the ceramic member. Since the composition of the constituent materials can be changed so as to achieve suitable thermal expansion, it is possible to easily obtain a low thermal expansion ceramic bonded body having desired characteristics, and it is possible to apply with a high degree of freedom.

この場合に、セラミックス部材および接合材を構成する複合材料としては、上述した、リチウムアルミノシリケート、コーディエライトから選ばれる1種以上の第1の材料と、炭化珪素、窒化珪素、サイアロン、アルミナ、ジルコニア、ムライト、ジルコン、窒化アルミニウム、ケイ酸カルシウムから選ばれる1種以上の第2の材料とからなるものが好適である。上記第1の材料としては、同様に、リチウムアルミノシリケートであるβ−ユークリプタイトやスポジューメンが好ましく、特にβ−ユークリプタイトが好ましい。リチウムアルミノシリケートとしては、上述のような他の元素を固溶したものを用いることができる。一方、接合材およびセラミックス部材を構成する第2の材料は、接合材の溶融温度がセラミックス部材の溶融温度よりも低くなるように、それぞれ上記材料の中から適宜選択される。 In this case, as the composite material constituting the ceramic member and the bonding material, the above-described one or more first materials selected from lithium aluminosilicate and cordierite, silicon carbide, silicon nitride, sialon, alumina, A material composed of one or more second materials selected from zirconia, mullite, zircon, aluminum nitride, and calcium silicate is preferable. Similarly, the first material is preferably lithium aluminosilicate β-eucryptite or spodumene, and β-eucryptite is particularly preferable. As lithium aluminosilicate, what dissolved the above other elements can be used. On the other hand, the second material constituting the bonding material and the ceramic member is appropriately selected from the above materials so that the melting temperature of the bonding material is lower than the melting temperature of the ceramic member.

尚、接合材およびセラミックス部材を構成する複合材料において、実質的な化学的反応が生じなければ、第1の材料として複数の材料を組み合わせて用いることも可能である。また、第2の材料も同様に、実質的な化学的反応が生じなければ、複数の材料を組み合わせて用いることも可能である。
セラミックス部材および接合材がいずれも複合材料である場合に、セラミックス部材を構成する複合材料の構成材料のうち1種以上が、接合材を構成する複合材料の構成材料と共通であることが好ましい。これにより、共通の構成材料が拡散しやすく強固に接合することができるとともに、接合面がきれいである。
In the composite material constituting the bonding material and the ceramic member, a plurality of materials may be used in combination as the first material if no substantial chemical reaction occurs. Similarly, the second material can be used in combination with a plurality of materials as long as no substantial chemical reaction occurs.
When both the ceramic member and the bonding material are composite materials, it is preferable that at least one of the constituent materials of the composite material constituting the ceramic member is the same as the constituent material of the composite material constituting the bonding material. As a result, the common constituent material can be easily diffused and firmly bonded, and the bonding surface is clean.

セラミックス部材および接合材がいずれも複合材料である場合の具体的材料の組み合わせは、接合材の溶融温度がセラミックス部材の溶融温度よりも低い低熱膨張セラミックスであれば任意であり、種々の組み合わせを採用することができる。その中でも、セラミックス部材としてβ−ユークリプタイトと炭化珪素との複合材料を用い、接合材としてβ−ユークリプタイトと窒化珪素との複合材料を用いたものが好適である。β−ユークリプタイトと炭化珪素との複合材料からなるセラミックス部材は、溶融温度が1370〜1430℃と、接合材を構成するβ−ユークリプタイトと窒化珪素との複合材料の溶融温度である1300〜1360℃よりも高く、接合材を溶融させて接合する際に、セラミックス部材を溶融させるおそれがない。しかも、セラミックス部材と接合材にβ−ユークリプタイトが共通に含まれているから接合が強固であり、さらにこれらはいずれも低熱膨張であり組成を調整することによりほぼ同等の熱膨張係数とすることができ、かつセラミックス部材も接合材もともに剛性が高い。この場合に、セラミックス部材の組成としてはβ−ユークリプタイト50〜95重量%と炭化珪素5〜50重量%であり、接合材の組成としてはβ−ユークリプタイト40〜85重量%と窒化珪素15〜60重量%であることが好ましい。 When the ceramic member and the bonding material are both composite materials, the specific material combination is arbitrary as long as the melting temperature of the bonding material is lower than the melting temperature of the ceramic member, and various combinations are adopted. can do. Among them, a ceramic member using a composite material of β-eucryptite and silicon carbide and a composite material of β-eucryptite and silicon nitride as a bonding material is preferable. A ceramic member made of a composite material of β-eucryptite and silicon carbide has a melting temperature of 1370 to 1430 ° C. and 1300 which is the melting temperature of the composite material of β-eucryptite and silicon nitride constituting the bonding material. It is higher than ˜1360 ° C., and there is no possibility of melting the ceramic member when the bonding material is melted and bonded. Moreover, since β-eucryptite is commonly contained in the ceramic member and the bonding material, the bonding is strong, and both of these have low thermal expansion, and by adjusting the composition, almost the same thermal expansion coefficient is obtained. In addition, both the ceramic member and the bonding material have high rigidity. In this case, the composition of the ceramic member is β-eucryptite 50 to 95% by weight and silicon carbide 5 to 50% by weight, and the composition of the bonding material is β-eucryptite 40 to 85% by weight and silicon nitride. It is preferably 15 to 60% by weight.

ここで、本発明の低熱膨張セラミックス接合体の製造方法について説明する。
第一に、軽量化や中空溝配置など目的に応じた形状に加工された低熱膨張セラミックス部材を作製する。部材の構成としては、図1(a)では、基板と予め加工によりリブを付与した部材の2つの部材からなる構成としたが、図3(a)に示す接合体2のように、基板21と、基板21に対向する天板22と、基板21と天板22の間に配置されたリブ23と、これらの3つの部材からなる構成としてもよい。接合体内部の中空構造は筒状、格子状、ハニカム状、ピン状、リブのない箱型構造等の種々の構造が採用できる。また、接合体形状についても図1および図3に示したような直方体形状に限られるものではなく、中空のものであれば種々の形状が採用可能である。セラミックス部材の接合面の表面は、平面度を接合層厚みtの1/2以下とし、平面度10〜100μm、表面粗さ0.1〜0.5μmとすることが好ましい。接合層厚みtの1/2を超える平面度を有する接合面同士を接合した場合、接合面間の隙間の最大距離が接合層厚み以上となる可能性が有り、これにより未接合部が形成され、気密性が大きく低下してしまう。
Here, the manufacturing method of the low thermal expansion ceramic joined body of this invention is demonstrated.
First, a low thermal expansion ceramic member processed into a shape according to the purpose such as weight reduction or hollow groove arrangement is produced. In FIG. 1A, the member is composed of two members: a substrate and a member provided with ribs by processing in advance. However, like the joined body 2 shown in FIG. The top plate 22 facing the substrate 21, the ribs 23 disposed between the substrate 21 and the top plate 22, and the three members may be used. Various structures such as a cylindrical shape, a lattice shape, a honeycomb shape, a pin shape, and a box structure without ribs can be adopted as the hollow structure inside the joined body. Also, the shape of the joined body is not limited to the rectangular parallelepiped shape as shown in FIGS. 1 and 3, and various shapes can be adopted as long as it is hollow. The surface of the bonding surface of the ceramic member preferably has a flatness of ½ or less of the bonding layer thickness t, a flatness of 10 to 100 μm, and a surface roughness of 0.1 to 0.5 μm. When bonding surfaces having flatness exceeding 1/2 of the bonding layer thickness t are bonded to each other, the maximum distance of the gap between the bonding surfaces may be equal to or greater than the bonding layer thickness, thereby forming an unbonded portion. The airtightness is greatly reduced.

本発明の接合体は、接合材粉末を適宜のバインダー、可塑剤および溶剤とともに混練して粘糊性のあるペーストとし、このペーストを介してセラミックス部材同士を接着させ、バインダー等の有機成分は焼失し、接合材は溶融するけれどもセラミックス部材は溶融しない温度で熱処理する。これにより、接合材が溶融し、一部はセラミックス部材に拡散して部材同士を接合する。
この際の熱処理雰囲気は、材料が全て酸化物系のものであれば、大気雰囲気を用いることができるが、非酸化物系の材料が含まれている場合には、非酸化雰囲気を用いることが好ましい。接合材の平均粒子径は、2.0μm以下とすることが好ましい。平均粒子径が2.0μmを超えて大きいと接合材の焼結性が悪くなり、接合材中に内部欠陥が生成する虞が有り、気密性が低下してしまう。
In the joined body of the present invention, the bonding material powder is kneaded together with an appropriate binder, plasticizer and solvent to form a paste having a sticky property, and the ceramic members are bonded to each other through the paste, and organic components such as the binder are burned off. Then, heat treatment is performed at a temperature at which the bonding material melts but the ceramic member does not melt. As a result, the bonding material is melted and part of the bonding material is diffused into the ceramic member to bond the members together.
As the heat treatment atmosphere in this case, an air atmosphere can be used if the material is all oxide-based, but if a non-oxide-based material is included, a non-oxidizing atmosphere should be used. preferable. The average particle diameter of the bonding material is preferably 2.0 μm or less. If the average particle diameter exceeds 2.0 μm, the sinterability of the bonding material is deteriorated, and internal defects may be generated in the bonding material, resulting in a decrease in airtightness.

また、接合材の形態としては、特に限定はしないが、バインダーと可塑剤を添加したペースト状であることが好ましく、ペーストの粘度としては50〜300Pa・secに調整することが好ましい。バインダーとしてはポリビニルアルコール、ポリエチレングリコール、ポリビニールブチラール、ポリエチレンオキサイド、ポリビニールアセタール、アクリル樹脂、メチルセルロース、エチルセルロース、カルボキシルメチルセルロース、ワックスエマルジョン等を用いるのが好ましく、可塑剤としてはフタル酸ジブチル、フタル酸ジメチル、アジピン酸ジオクチル等を用いることが好ましい。溶媒としては、水、アルコールの他、α-テルピネオール、ブチルカルビトール、カルビトールアセテート等の有機溶剤を用いることができる。また、バインダー、可塑剤および溶媒の添加量は、接合材中のセラミックス粉末固形分を20〜60重量%の比率となるように調整した方が好ましい。接合材として用いるセラミックス粉末の量がペースト全体に対して20重量%未満であると、接合層中に空隙が生成する原因となるとともに、接合材メニスカスにより接合部を所定厚みで被覆することが困難となる。また、粉体の量がペースト全体に対して60重量%を超えると、ペーストの粘度が高くなり過ぎて接合面に均質にペーストを塗布することができず、接合強度の低下を引き起こすとともに、δ/tの値を0.5以上とすることが困難となる。 Further, the form of the bonding material is not particularly limited, but it is preferably a paste with a binder and a plasticizer added, and the viscosity of the paste is preferably adjusted to 50 to 300 Pa · sec. As the binder, it is preferable to use polyvinyl alcohol, polyethylene glycol, polyvinyl butyral, polyethylene oxide, polyvinyl acetal, acrylic resin, methyl cellulose, ethyl cellulose, carboxymethyl cellulose, wax emulsion or the like, and plasticizers such as dibutyl phthalate and dimethyl phthalate. It is preferable to use dioctyl adipate. As the solvent, in addition to water and alcohol, organic solvents such as α-terpineol, butyl carbitol, carbitol acetate and the like can be used. Moreover, it is preferable to adjust the addition amount of a binder, a plasticizer, and a solvent so that the ceramic powder solid content in a joining material may become a ratio of 20 to 60 weight%. When the amount of the ceramic powder used as the bonding material is less than 20% by weight with respect to the entire paste, it causes a void in the bonding layer, and it is difficult to cover the bonding portion with a predetermined thickness with the bonding material meniscus. It becomes. On the other hand, when the amount of the powder exceeds 60% by weight with respect to the entire paste, the viscosity of the paste becomes too high, and the paste cannot be uniformly applied to the joint surface, causing a decrease in joint strength and It becomes difficult to set the value of / t to 0.5 or more.

次に、上記のように作製された接合材を、目的に応じた形状に加工された低熱膨張セラミックス部材の接合面上に均一の厚さになるように塗布する。接合材の塗布方法としては、例えば、接合材をペースト状として、スクリーン版により印刷する等、接合面に均一の厚さに塗布できる方法であれば、特に限定はしない。接合材の塗布厚さは、接合材の固形分、熱処理条件、収縮率により決定され、最終的に接合層厚みが、5〜60μmとなるように、適宜調整を行う。 Next, the bonding material manufactured as described above is applied so as to have a uniform thickness on the bonding surface of the low thermal expansion ceramic member processed into a shape according to the purpose. The method for applying the bonding material is not particularly limited as long as it is a method that can be applied to the bonding surface with a uniform thickness, for example, by printing the bonding material in a paste form using a screen plate. The coating thickness of the bonding material is determined by the solid content of the bonding material, the heat treatment conditions, and the shrinkage rate, and is appropriately adjusted so that the final bonding layer thickness is 5 to 60 μm.

次に、セラミックス部材の接合は、接合面同士を貼り合わせたセラミックス部材の上面に、荷重を付加して行う。荷重は5.0〜100g/cm2であるのが好ましく、荷重が5.0g/cm2未満であると、接合材の密着性が悪くなって気密性が低下し、100g/cm2を超えると接合材の厚さを60μm以下とすることが困難となるだけでなく、セラミックス部材が荷重により塑性変形し、未接合部が形成されてしまう虞がある。
セラミックス部材同士を接合材を介して貼り合わせた後、接合材の溶融温度以上、セラミックス部材の融点以下の温度範囲で熱処理することにより、接合界面で溶融拡散もしくは焼結させて接合する。例えば、セラミックス部材としてβ−ユークリプタイトと炭化珪素との複合材料を用い、接合材としてβ−ユークリプタイトと窒化珪素との複合材料を用いた場合は、β−ユークリプタイトと炭化珪素との複合材料からなるセラミックス部材は、溶融温度が1370〜1430℃であり、接合材を構成するβ−ユークリプタイトと窒化珪素との複合材料の溶融温度は1300〜1360℃であるため、セラミックス部材を溶融させることなく、接合することができる。溶融温度近辺では、接合材の粘性が高く、十分な濡れ性を有しないため、接合層が60μmを超えて大きくなったり、接合材メニスカスが凸状曲面となったりするためクラックが生じやすくなるし、接合材メニスカスが凹状曲面の場合のように接合部を取囲む構造にならないため、気密性が確保できない。また、接合の熱処理温度を高くし過ぎると、接合材の粘性が低くなり過ぎて、接合材メニスカスの被覆距離δが小さくなったり、接合層が5μm未満になったりし、接合層を十分に被覆できず気密性が低下し、接合強度も不十分となる。
Next, the ceramic member is bonded by applying a load to the upper surface of the ceramic member obtained by bonding the bonding surfaces together. Is preferably a load is 5.0~100g / cm 2, when the load is less than 5.0 g / cm 2, airtightness decreases becomes poor adhesion of the bonding material, greater than 100 g / cm 2 In addition, it is difficult to make the thickness of the bonding material 60 μm or less, and there is a possibility that the ceramic member is plastically deformed by a load and an unbonded portion is formed.
After the ceramic members are bonded to each other via a bonding material, heat treatment is performed in a temperature range not lower than the melting temperature of the bonding material and not higher than the melting point of the ceramic member. For example, when a composite material of β-eucryptite and silicon carbide is used as the ceramic member and a composite material of β-eucryptite and silicon nitride is used as the bonding material, β-eucryptite and silicon carbide The ceramic member made of this composite material has a melting temperature of 1370 to 1430 ° C., and the melting temperature of the composite material of β-eucryptite and silicon nitride constituting the bonding material is 1300 to 1360 ° C. Can be joined without melting. In the vicinity of the melting temperature, since the bonding material has a high viscosity and does not have sufficient wettability, the bonding layer becomes larger than 60 μm or the bonding material meniscus becomes a convex curved surface, so that cracks are likely to occur. Since the joining material meniscus does not have a structure surrounding the joint as in the case of a concave curved surface, airtightness cannot be ensured. If the heat treatment temperature for bonding is too high, the viscosity of the bonding material becomes too low, the bonding distance δ of the bonding material meniscus becomes smaller, the bonding layer becomes less than 5 μm, and the bonding layer is sufficiently covered. The airtightness is lowered and the bonding strength is insufficient.

このような条件で製造された本発明の低熱膨張セラミックス接合体は、接合層に内部欠陥が存在せず、接合部が接合材メニスカスにより所定形状で被覆されることにより、高い気密性を発現する。よって、本発明の低熱膨張セラミックス接合体は、半導体製造装置や液晶製造装置などの精密機器用部材として、ステージ部材、テーブル、ガイドレール等、あるいは一般構造用部材として、その駆動源がサーボモータ、リニアモータ、超音波モータ等であるステージ、ガイド材、治具等に用いることが可能であり、構造体中の中空部が優れた気密性を有しているため、冷却媒体として、冷却水やHeガス等を流入させることができる。 The low thermal expansion ceramic bonded body of the present invention manufactured under such conditions exhibits high airtightness when the bonding layer has no internal defect and the bonding portion is covered with the bonding material meniscus in a predetermined shape. . Therefore, the low thermal expansion ceramic joined body of the present invention is a member for precision equipment such as a semiconductor manufacturing apparatus or a liquid crystal manufacturing apparatus, a stage member, a table, a guide rail or the like, or a general structural member. It can be used for stages such as linear motors, ultrasonic motors, guide materials, jigs, etc., and the hollow part in the structure has excellent airtightness. He gas or the like can be introduced.

以下、本発明の実施例と比較例を具体的に挙げ、本発明をより詳細に説明する。
(実施例1〜20)
(1)セラミックス接合体の作成
まず、β−ユークリプタイト粉末と炭化珪素粉末とを表1に示す割合でポットミル混合して乾燥させ、母材セラミックスの原料混合粉末を作製した。この混合粉末を一軸加圧成形して成形体を作製し、150MPaでCIP処理した。窒素雰囲気において1400℃で焼成し、母材セラミックスからなる低熱膨張セラミックス焼結体を得た。焼結体の形状は、100mm×100mm×10mmの板状部材(基板)を1枚、形状100mm×100mm×20mmに、幅10mmのリブが田の字に配置されるように、形状35mm×35mm×10mmのザグリ溝を、マシニング加工により設けたリブを付与したセラミックス部材を1枚作製した。各セラミックス部材の接合面を、平面研削加工により、平面度を10μm、表面粗さを0.3μmとした。熱膨張係数の測定は焼結体から4mm×4mm×12mmの試験片を切り出し、レーザー干渉式熱膨張測定装置(アルバック理工社製 LIX−1)を用いて20〜30℃において試験片の変位量を測定し、熱膨張係数を求めた。
次に、β−ユークリプタイトと窒化珪素を表1に示す割合でポットミル混合して乾燥させ、接合材用の混合粉末を作製した。この混合粉末を無機分が30vol%となるようにバインダーとしてエチルセルロースの15%α−テルピネオール溶液、可塑剤としてフタル酸ジブチルを混合し、三本ロールを用いてペースト状にした。尚、この接合材について同じ組成の焼結体を作製して板状部材およびリブを付与したセラミックス部材と同様にして熱膨張係数を求めた。その結果も表1にまとめて示した。母材セラミックスも接合材も低熱膨張セラミックスであった。
Hereinafter, the present invention will be described in more detail with specific examples and comparative examples of the present invention.
(Examples 1-20)
(1) Preparation of ceramic joined body First, β-eucryptite powder and silicon carbide powder were mixed in a pot mill at a ratio shown in Table 1 and dried to prepare a base ceramic mixed powder. This mixed powder was uniaxially pressed to produce a molded body, which was CIP treated at 150 MPa. Firing was performed at 1400 ° C. in a nitrogen atmosphere to obtain a low thermal expansion ceramic sintered body made of a base ceramic material. The shape of the sintered body is a shape of 35 mm × 35 mm so that one plate-like member (substrate) of 100 mm × 100 mm × 10 mm, a shape of 100 mm × 100 mm × 20 mm, and a rib of 10 mm in width are arranged in a rice field. One ceramic member provided with ribs provided with × 10 mm counterbored grooves by machining was produced. The joined surface of each ceramic member was subjected to surface grinding to have a flatness of 10 μm and a surface roughness of 0.3 μm. The thermal expansion coefficient was measured by cutting a 4 mm × 4 mm × 12 mm test piece from the sintered body and using a laser interference thermal expansion measuring device (LIX-1 manufactured by ULVAC-RIKO) at 20-30 ° C. Was measured and the coefficient of thermal expansion was determined.
Next, β-eucryptite and silicon nitride were mixed in a pot mill at a ratio shown in Table 1 and dried to prepare a mixed powder for a bonding material. This mixed powder was mixed with 15% α-terpineol solution of ethyl cellulose as a binder and dibutyl phthalate as a plasticizer so that the inorganic content was 30 vol%, and made into a paste using a three-roll. In addition, the thermal expansion coefficient was calculated | required similarly to the ceramic member which produced the sintered compact of the same composition about this joining material, and provided the plate-shaped member and the rib. The results are also summarized in Table 1. Both the base material ceramics and the bonding material were low thermal expansion ceramics.

Figure 0004870455
Figure 0004870455

得られたペースト状の接合材を#100のスクリーンマスクを用いて板状部材とリブを付与したセラミックス部材の接合面に印刷した。500℃で脱脂した後、部材の印刷面同士を接着した。引き続き、窒素雰囲気で表1に示す温度で熱処理し、接合材を溶融させて母材セラミックスの間に接合材が介在された中空構造を有する低熱膨張セラミックス接合体を得た。この際に、母材セラミックスの溶融温度は接合材が溶融する温度よりも高いので、接合温度で母材セラミックスは溶融していなかった。尚、接合体の側壁面の角縁部から接合材メニスカス面上の最短部までの距離δ、接合材厚みtについては、接合材の印刷厚さおよび熱処理時に付加する荷重を制御することによって、tを6〜53μm、δ/tを0.5〜5.0とした。 The obtained paste-like bonding material was printed on the bonding surface of the ceramic member to which the plate-shaped member and the rib were provided using a # 100 screen mask. After degreasing at 500 ° C., the printed surfaces of the members were bonded together. Subsequently, heat treatment was performed at a temperature shown in Table 1 in a nitrogen atmosphere, and the bonding material was melted to obtain a low thermal expansion ceramic bonded body having a hollow structure in which the bonding material was interposed between the base ceramic materials. At this time, the melting temperature of the base material ceramics is higher than the temperature at which the bonding material melts, so the base material ceramics were not melted at the bonding temperature. In addition, for the distance δ from the corner edge of the side wall surface of the joined body to the shortest part on the joining material meniscus surface, the joining material thickness t, by controlling the printing thickness of the joining material and the load applied during heat treatment, t was 6 to 53 μm, and δ / t was 0.5 to 5.0.

(2)評価
得られた接合体の接合層厚みtと側壁面の角縁部から接合材メニスカス面上の最短部までの距離δの計測は、接合体を接合面に対して垂直に切断し、その断面を光学顕微鏡により観察することに行った。
また、得られた中空構造を有するセラミックス接合体の気密性の評価は、Heリーク量を測定して行った。Heリーク量の測定は、ボンビング法(JIS−Z2230準拠)により、Heリーク検知機(日電アネルバ製:ASM 151 TURBO)を用いて行った。リーク量の評価結果を、δ/tの計算値とともに表2にまとめて示した。
ここで、表中で実施例1のリーク量の測定値において、1.2×10-6を1.2E-6と略記した。以下のリーク量の測定値においても同様な略記を行った。
(2) Evaluation The measurement of the bonding layer thickness t of the obtained bonded body and the distance δ from the corner edge of the side wall surface to the shortest part on the bonding material meniscus surface is performed by cutting the bonded body perpendicular to the bonded surface. The cross section was observed with an optical microscope.
Further, the evaluation of the airtightness of the obtained ceramic joined body having the hollow structure was performed by measuring the amount of He leak. The amount of He leak was measured by a bombing method (based on JIS-Z2230) using a He leak detector (manufactured by Nidec Deneru: ASM 151 TURBO). The evaluation results of the leak amount are shown together in Table 2 together with the calculated value of δ / t.
Here, in the table, 1.2 × 10 −6 was abbreviated as 1.2E-6 in the measured value of the leak amount of Example 1. Similar abbreviations were made for the following measured values of leakage amount.

Figure 0004870455
Figure 0004870455

(比較例1〜20)
中空構造を有する低膨張セラミックス接合体を構成する低熱膨張セラミックス部材の材質および形状としては、実施例と同様にした。
実施例1と同様に、各接合体は、側壁面の角縁部から接合材メニスカス面上の最短部までの距離δ、接合層厚みtにおいて、接合材の印刷厚さおよび熱処理時に付加する荷重を制御することによって、tを5〜51μm、δ/tを0〜0.4、5.4〜9.9となるようにした。
得られた中空構造を有する低膨張セラミックス接合体は、気密性の評価として、実施例と同様の方法でHeリーク量を測定した。リーク量の評価結果を、δ/tの計算値とともに、表3にまとめて示した。
(Comparative Examples 1-20)
The material and shape of the low thermal expansion ceramic member constituting the low expansion ceramic joined body having a hollow structure were the same as in the example.
As in Example 1, each bonded body has a printing thickness of the bonding material and a load applied during heat treatment at a distance δ from the corner edge of the side wall surface to the shortest portion on the bonding material meniscus surface and the bonding layer thickness t. By controlling t to 5 to 51 μm and δ / t to 0 to 0.4 and 5.4 to 9.9.
The obtained low-expansion ceramic joined body having a hollow structure was measured for the amount of He leak by the same method as in the examples as an evaluation of airtightness. The evaluation results of the leak amount are shown together in Table 3 together with the calculated value of δ / t.

Figure 0004870455
Figure 0004870455

ここで、JISの規定によれば、セラミックス接合体の気密性の合否判定は、Heリーク量が1×10-4atm・cc/sec以上となる接合体は不合格とされている。
したがって、この規定に従い、実施例と比較例のセラミックス接合体について、合否判定の評価を行うと、接合層厚みtと接合材メニスカスの被覆距離δとの比率δ/tが、本発明の範囲内である実施例1〜20のセラミックス接合体は、Heリーク量が10-6〜10-10atm・cc/secと十分な気密性を有して合格であるのに対し、δ/tが本発明の範囲外である比較例1〜20では、Heリーク量が1×10-4atm・cc/sec以上であり、十分な気密性が得らず不合格であることが分かった。
Here, according to the regulations of JIS, the judgment of pass / fail of the airtightness of the ceramic joined body is rejected for a joined body having a He leak amount of 1 × 10 −4 atm · cc / sec or more.
Therefore, according to this rule, when the pass / fail judgment is evaluated for the ceramic joined bodies of the example and the comparative example, the ratio δ / t between the joining layer thickness t and the covering distance δ of the joining material meniscus is within the range of the present invention. In the ceramic joined bodies of Examples 1 to 20, the He leak amount is 10 −6 to 10 −10 atm · cc / sec and has sufficient airtightness, whereas δ / t is In Comparative Examples 1 to 20, which are out of the scope of the invention, the amount of He leak was 1 × 10 −4 atm · cc / sec or more, and it was found that sufficient airtightness was not obtained and was rejected.

以上説明したように、本発明によれば、低熱膨張セラミックス部材の接合面同士が、該部材よりも溶融温度の低い低熱膨張セラミックス接合材からなる接合層を介して接合されてなる中空構造を有する低熱膨張セラミックス接合体であって、前記接合層は、接合面に垂直な方向に5〜60μmの厚みtを有しており、一方の接合面に隣接する側壁面と他方の接合面に隣接する平面で形成される、中空部に面した角隅部が凹状曲面の接合材メニスカスにより被覆されており、前記側壁面の角縁部から接合材メニスカス上の最近部までの距離δと接合材厚みtとの比δ/tが0.5以上5.0以下とすることで、気密性に優れた中空構造低熱膨張セラミックス接合体を作製することができた。 As described above, according to the present invention, the bonding surfaces of the low thermal expansion ceramic members have a hollow structure formed by bonding via a bonding layer made of a low thermal expansion ceramic bonding material having a melting temperature lower than that of the members. In the low thermal expansion ceramic bonded body, the bonding layer has a thickness t of 5 to 60 μm in a direction perpendicular to the bonding surface, and is adjacent to the side wall surface adjacent to one bonding surface and the other bonding surface. A corner formed on a flat surface facing a hollow portion is covered with a concave curved bonding material meniscus, and the distance δ from the corner edge of the side wall surface to the nearest part on the bonding material meniscus and the bonding material thickness By setting the ratio δ / t to t to be not less than 0.5 and not more than 5.0, a hollow structure low thermal expansion ceramic joined body having excellent airtightness could be produced.

(a)本発明の一実施例を示すセラミックス接合体1の斜視図。(b)A−A線断面図。(A) The perspective view of the ceramic joined body 1 which shows one Example of this invention. (B) AA sectional view. X部の拡大図である。It is an enlarged view of the X section. (a)本発明の他の実施例を示すセラミックス接合体2の斜視図。(b)B−B線断面図。(A) The perspective view of the ceramic joined body 2 which shows the other Example of this invention. (B) BB sectional drawing.

符号の説明Explanation of symbols

1,2:低熱膨張セラミックス接合体
11,21,22:基板
12:リブを付与したセラミックス部材
23:リブ
13,24:接合材
11a,12a:接合面
11b:平面部
12b:側壁面
12c:角縁部
13a:接合層
13b:接合材メニスカス面
13c:角縁部との最短部
DESCRIPTION OF SYMBOLS 1, 2: Low thermal expansion ceramic joined body 11, 21, 22: Board | substrate 12: Ceramic member 23 which provided the rib 23: Rib 13, 24: Joining material 11a, 12a: Joining surface 11b: Planar part 12b: Side wall surface 12c: Corner Edge 13a: Bonding layer 13b: Bonding material meniscus surface 13c: Shortest portion with corner edge

Claims (1)

低熱膨張セラミックス部材の接合面同士が、該部材よりも溶融温度の低い低熱膨張セラミックス接合材からなる接合層を介して接合されてなる中空構造を有する低熱膨張セラミックス接合体であって、前記接合層は接合面に垂直な方向に5〜60μmの厚みtを有しており、かつ、一方の接合面に隣接する側壁面と他方の接合面に隣接する平面で形成される、中空部に面した角隅部が凹状曲面の接合材メニスカスにより被覆されており、かつ、前記側壁面の角縁部から接合材メニスカス面上の最短部までの距離δと、接合層厚みtとの比δ/tが0.5以上5.0以下であり、
前記低熱膨張セラミックス部材および前記接合材の20〜30℃における平均の熱膨張係数が−1×10 -6 〜1×10 -6 /℃であることを特徴とする、中空構造を有する低熱膨張セラミックス接合体。
A low thermal expansion ceramic joined body having a hollow structure in which bonding surfaces of a low thermal expansion ceramic member are joined via a joining layer made of a low thermal expansion ceramic joining material having a melting temperature lower than that of the member, the joining layer Has a thickness t of 5 to 60 μm in a direction perpendicular to the joint surface, and faces a hollow portion formed by a side wall surface adjacent to one joint surface and a plane adjacent to the other joint surface. The ratio δ / t between the distance δ from the corner edge of the side wall surface to the shortest portion on the bonding material meniscus surface and the bonding layer thickness t, where the corner is covered with a concave curved bonding material meniscus Is 0.5 or more and 5.0 or less ,
The low thermal expansion ceramic member having a hollow structure, wherein the low thermal expansion ceramic member and the bonding material have an average thermal expansion coefficient at 20 to 30 ° C. of −1 × 10 −6 to 1 × 10 −6 / ° C. Joined body.
JP2006070678A 2006-03-15 2006-03-15 Low thermal expansion ceramic joined body having hollow structure Expired - Fee Related JP4870455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006070678A JP4870455B2 (en) 2006-03-15 2006-03-15 Low thermal expansion ceramic joined body having hollow structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006070678A JP4870455B2 (en) 2006-03-15 2006-03-15 Low thermal expansion ceramic joined body having hollow structure

Publications (2)

Publication Number Publication Date
JP2007246321A JP2007246321A (en) 2007-09-27
JP4870455B2 true JP4870455B2 (en) 2012-02-08

Family

ID=38591004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006070678A Expired - Fee Related JP4870455B2 (en) 2006-03-15 2006-03-15 Low thermal expansion ceramic joined body having hollow structure

Country Status (1)

Country Link
JP (1) JP4870455B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4870454B2 (en) * 2006-03-15 2012-02-08 太平洋セメント株式会社 Ceramic bonded body having hollow structure
JP5184934B2 (en) * 2008-03-27 2013-04-17 太平洋セメント株式会社 Joining material for Al alloy-ceramic composite material and joined body using the same
JP5270306B2 (en) * 2008-11-10 2013-08-21 太平洋セメント株式会社 Ceramic bonded body and manufacturing method thereof
JP6005930B2 (en) * 2011-07-28 2016-10-12 京セラ株式会社 Channel member, heat exchanger using the same, electronic component device, and semiconductor manufacturing device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3690979B2 (en) * 2000-11-30 2005-08-31 日本特殊陶業株式会社 Metal-ceramic joint and vacuum switch unit using the same
JP3949459B2 (en) * 2002-01-25 2007-07-25 日本碍子株式会社 Joined body of different materials and manufacturing method thereof
JP4489344B2 (en) * 2002-11-27 2010-06-23 太平洋セメント株式会社 Stage member
JP4870454B2 (en) * 2006-03-15 2012-02-08 太平洋セメント株式会社 Ceramic bonded body having hollow structure

Also Published As

Publication number Publication date
JP2007246321A (en) 2007-09-27

Similar Documents

Publication Publication Date Title
JP4870454B2 (en) Ceramic bonded body having hollow structure
KR101960264B1 (en) Residual stress free joined SiC ceramics and the processing method of the same
JP4939232B2 (en) Composite ceramic body, method for producing the same, microchemical chip, and reformer
JP6096094B2 (en) Laminated body, insulating cooling plate, power module, and manufacturing method of laminated body
JP5641451B2 (en) Metal ceramic substrate
JP4870455B2 (en) Low thermal expansion ceramic joined body having hollow structure
JP2010520063A (en) Metal-ceramic composite air brazing material with ceramic particulates.
JP6512401B2 (en) Reaction sintered silicon carbide member
JP4103385B2 (en) Vacuum chuck
JP5270306B2 (en) Ceramic bonded body and manufacturing method thereof
JP2019220641A (en) Manufacturing method of joint
JP2003282685A (en) Cooling plate
JP2019046966A (en) Substrate manufacturing method
JP2004059402A (en) Low thermal expansion ceramic junction body
JP2014114186A (en) Silica bonded body and method for manufacturing the same
JP4489344B2 (en) Stage member
JP2006232667A (en) Low thermal expansion ceramic and member for device for manufacturing semiconductor using it
JP6014439B2 (en) Electrostatic chuck and manufacturing method thereof
JP5085959B2 (en) Ceramic material
JP3946132B2 (en) Mirror for position measurement and mirror member
JP2005022966A (en) Aluminum nitride joined body and its producing method
JP3904746B2 (en) Member for semiconductor manufacturing apparatus and method for manufacturing the same
JP4417189B2 (en) Honeycomb structure
JP2018168050A (en) Adhesive for alumina, burning tool and manufacturing method therefor
JP5718780B2 (en) Silicon carbide joined body and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080115

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111117

R150 Certificate of patent or registration of utility model

Ref document number: 4870455

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees