JP4520243B2 - Manufacturing method of ceramic sheet, ceramic substrate using the same, and use thereof - Google Patents
Manufacturing method of ceramic sheet, ceramic substrate using the same, and use thereof Download PDFInfo
- Publication number
- JP4520243B2 JP4520243B2 JP2004223344A JP2004223344A JP4520243B2 JP 4520243 B2 JP4520243 B2 JP 4520243B2 JP 2004223344 A JP2004223344 A JP 2004223344A JP 2004223344 A JP2004223344 A JP 2004223344A JP 4520243 B2 JP4520243 B2 JP 4520243B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- sheet
- ceramic
- mass
- screw extruder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000919 ceramic Substances 0.000 title claims description 73
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 239000000758 substrate Substances 0.000 title description 26
- 239000000843 powder Substances 0.000 claims description 106
- 239000002245 particle Substances 0.000 claims description 39
- 238000000465 moulding Methods 0.000 claims description 36
- 239000007788 liquid Substances 0.000 claims description 28
- 239000011230 binding agent Substances 0.000 claims description 24
- 238000005245 sintering Methods 0.000 claims description 21
- 238000004898 kneading Methods 0.000 claims description 20
- 239000001301 oxygen Substances 0.000 claims description 18
- 229910052760 oxygen Inorganic materials 0.000 claims description 18
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 17
- 239000002994 raw material Substances 0.000 claims description 16
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 8
- 239000011812 mixed powder Substances 0.000 claims description 7
- 239000004014 plasticizer Substances 0.000 claims description 7
- 239000003795 chemical substances by application Substances 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 description 30
- 239000002184 metal Substances 0.000 description 30
- 238000000034 method Methods 0.000 description 29
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- 239000004927 clay Substances 0.000 description 13
- 238000010304 firing Methods 0.000 description 13
- 239000010949 copper Substances 0.000 description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 229910052799 carbon Inorganic materials 0.000 description 10
- 238000001125 extrusion Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 9
- 239000012298 atmosphere Substances 0.000 description 9
- 238000005238 degreasing Methods 0.000 description 9
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 7
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 7
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 7
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 7
- 239000005642 Oleic acid Substances 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 7
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 7
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 6
- 230000002411 adverse Effects 0.000 description 6
- 229910001873 dinitrogen Inorganic materials 0.000 description 6
- 230000001590 oxidative effect Effects 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 239000012159 carrier gas Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 230000009477 glass transition Effects 0.000 description 4
- 230000017525 heat dissipation Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 150000004767 nitrides Chemical group 0.000 description 4
- 230000035882 stress Effects 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 235000021355 Stearic acid Nutrition 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000009863 impact test Methods 0.000 description 3
- 238000005121 nitriding Methods 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 3
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 239000008117 stearic acid Substances 0.000 description 3
- 230000004580 weight loss Effects 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229910018182 Al—Cu Inorganic materials 0.000 description 2
- 108010053481 Antifreeze Proteins Proteins 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 125000005396 acrylic acid ester group Chemical group 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005219 brazing Methods 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000007606 doctor blade method Methods 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000006082 mold release agent Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000007569 slipcasting Methods 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- 229910017944 Ag—Cu Inorganic materials 0.000 description 1
- 238000007088 Archimedes method Methods 0.000 description 1
- 229910000878 H alloy Inorganic materials 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229960003280 cupric chloride Drugs 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000001739 density measurement Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 150000004673 fluoride salts Chemical class 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000009740 moulding (composite fabrication) Methods 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000012756 surface treatment agent Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 229940116411 terpineol Drugs 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- PHYFQTYBJUILEZ-IUPFWZBJSA-N triolein Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(OC(=O)CCCCCCC\C=C/CCCCCCCC)COC(=O)CCCCCCC\C=C/CCCCCCCC PHYFQTYBJUILEZ-IUPFWZBJSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Landscapes
- Ceramic Products (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Press-Shaping Or Shaping Using Conveyers (AREA)
- Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
Description
本発明は、10〜20μm、0.5〜1.5μm、及び0.3μm以下の3領域において粒子径の極大値をそれぞれ一つずつ有するセラミック粉末を原料として使用するセラミックシートの製造方法、それを用いたセラミック基板及びその用途に関する。 The present invention relates to a method for producing a ceramic sheet, which uses as a raw material ceramic powders each having a maximum particle size in three regions of 10 to 20 μm, 0.5 to 1.5 μm, and 0.3 μm or less, The present invention relates to a ceramic substrate using the same and its use.
セラミック回路基板は、セラミック基板に導電性を有する金属回路を形成したものであり、金属回路の所定位置に半導体素子等が搭載される。セラミック回路基板の高信頼性を保つには、半導体素子が発生する熱を放熱し、半導体素子の温度が過度に上昇しないようにすることが必要であり、セラミック基板には、電気絶縁性に加えて、優れた放熱特性が要求される。
近年、セラミック回路基板の小型化、パワーモジュールの高出力化が進む中、小型軽量化モジュールに関して、電気絶縁性が高く、高熱伝導性を有する窒化アルミニウム(以下、AlNと記載)焼結体を用いるセラミック基板、並びにAlN基板の主面に金属回路を形成したセラミック回路基板が注目されている。
The ceramic circuit board is obtained by forming a conductive metal circuit on the ceramic board, and a semiconductor element or the like is mounted at a predetermined position of the metal circuit. In order to maintain high reliability of the ceramic circuit board, it is necessary to dissipate the heat generated by the semiconductor element so that the temperature of the semiconductor element does not rise excessively. Therefore, excellent heat dissipation characteristics are required.
In recent years, as ceramic circuit boards have become smaller and power modules have increased in output, aluminum nitride (hereinafter referred to as AlN) sintered bodies having high electrical insulation and high thermal conductivity are used for small and light modules. A ceramic circuit board and a ceramic circuit board in which a metal circuit is formed on the main surface of an AlN substrate have attracted attention.
セラミック基板となるセラミックス焼結体は、一般に以下の方法で製造される。例えばAlN焼結体の場合、AlN粉末に焼結助剤、有機バインダー、可塑剤、分散剤、離型剤等の添加剤を適量混合し、それを押出成形やテープ成形によって薄板状又はシート状に成形する。一方、厚板状又は大型形状の場合は、押出成形やプレスにより成形される(本発明では、厚さ1mm未満を薄板、1mm以上を厚板とする)。次いで、成形体を空気中、又は窒素等の不活性ガス雰囲気中で、450〜650℃に加熱して有機バインダーを除去した後(脱脂工程)、窒素等の非酸化性雰囲気中で、1600〜1900℃で0.5〜10時間保持すること(焼成工程)によって製造される。 A ceramic sintered body to be a ceramic substrate is generally manufactured by the following method. For example, in the case of an AlN sintered body, an appropriate amount of additives such as a sintering aid, an organic binder, a plasticizer, a dispersant, and a release agent are mixed with the AlN powder, and this is formed into a thin plate or sheet by extrusion molding or tape molding. To form. On the other hand, in the case of a thick plate shape or a large shape, it is formed by extrusion molding or pressing (in the present invention, a thickness of less than 1 mm is a thin plate, and a thickness of 1 mm or more is a thick plate). Subsequently, after heating a molded object in air or inert gas atmosphere, such as nitrogen, to 450-650 degreeC and removing an organic binder (degreasing | defatting process), it is 1600-600 in non-oxidizing atmosphere, such as nitrogen. It is manufactured by holding at 1900 ° C. for 0.5 to 10 hours (firing step).
一般に、押出成形法を用いると成形厚みの制限が無く、薄板及び厚板のセラミックシートの成形が可能で、例えば、以下の方法が知られている。万能混合機、ライカイ機、ミキサー、振動篩機等を用いて、予めオレイン酸で表面処理したセラミック粉末と焼結助剤と有機粉末バインダーからなる混合粉末を調製する。この混合粉末に、水、有機液体バインダー、離型剤及び可塑剤等からなる混合液体を噴霧し、万能混合機、ライカイ機、ミキサー、振動篩機等を用いて顆粒状の湿紛原料を作製する(顆粒化工程)。次に、オレイン酸処理したセラミック粉末とバインダー水溶液を馴染ませるため、湿紛を2〜3日間低温にて放置する(寝かせ工程)。この原料を混練機の原料供給口に投入し、練土を調製した後(混練工程)、さらに、2〜3日間低温にて放置し、練土粘度を低下させる。この練土をダイスが設置された1軸押出成型機の原料供給部に投入し、厚板状又はシート状に成形する。
前記製造方法は、顆粒化工程に続く寝かせ工程や、練土の低温下での放置を必要とするリードタイムの長い生産方式である。さらに、1軸押出成形機では混練不足が生じるため、成形シート密度が低下したり、或いは不均一となり、焼成後のセラミック焼結体が変形するという課題がある。本発明の目的は、従来と同等もしくはそれ以上の品質が得られ、しかも生産効率の良好なセラミックシートの製造方法、並びに、それを用いたセラミック基板、セラミック回路基板、及びモジュールを提供することである。 The manufacturing method is a production method with a long lead time that requires the laying process following the granulation process or leaving the dough under low temperature. Furthermore, since the kneading is insufficient in the single screw extruder, there is a problem that the density of the formed sheet is reduced or becomes non-uniform, and the sintered ceramic body after firing is deformed. An object of the present invention is to provide a method for producing a ceramic sheet that has a quality equivalent to or better than that of the prior art and that has good production efficiency, and a ceramic substrate, a ceramic circuit board, and a module using the same. is there.
即ち、本発明は、原料粉末として、10〜20μm、0.5〜1.5μm、及び0.3μm以下の3領域において粒子径の極大値をそれぞれ一つずつ有し、前記3領域における粒子含有率が、体積基準でそれぞれ50〜70%、20〜40%、5〜20%の範囲にあり、且つ、酸素含有量が0.6〜1.0%であるセラミック粉末を使用し、2軸押出機の吐出口と1軸成形機の原料供給口を連結させた押出成形機を用いて、厚みが0.2〜10mmのセラミックシートを成形することを特徴とするセラミックシートの製造方法であり、原料粉末が窒化物セラミック粉末であり、(1)窒化物セラミック粉末、焼結助剤及び有機バインダー粉末からなる混合粉末を2軸押出機の粉末供給部より供給し、(2)液状の有機バインダー、離型剤及び可塑剤からなる混合液体を2軸押出機の液体供給部より供給し、(3)2軸押出機内の混練部にて前記混合粉末と混合液体を混練し、(4)シートダイスを取付けた1軸成形機によりシート成形を行うことを特徴とする該セラミックシートの製造方法であり、該窒化物セラミックが窒化アルミニウムであり、シートの見掛け密度が2.6g/cm3以上であることを特徴とする該セラミックシートの製造方法である。 That is, the present invention has, as a raw material powder, one maximum value of the particle diameter in each of three regions of 10 to 20 μm, 0.5 to 1.5 μm, and 0.3 μm or less, and the inclusion of particles in the three regions. Using ceramic powder with a rate in the range of 50 to 70%, 20 to 40%, and 5 to 20% on a volume basis, and an oxygen content of 0.6 to 1.0%, biaxial A method for producing a ceramic sheet, wherein a ceramic sheet having a thickness of 0.2 to 10 mm is formed using an extrusion molding machine in which a discharge port of an extruder and a raw material supply port of a uniaxial molding machine are connected. The raw material powder is a nitride ceramic powder, and (1) a mixed powder composed of a nitride ceramic powder, a sintering aid and an organic binder powder is supplied from a powder supply unit of a twin screw extruder, and (2) a liquid organic Binder, release agent and plasticizer The mixed liquid is supplied from the liquid supply part of the twin screw extruder, (3) the mixed powder and the mixed liquid are kneaded in the kneading part in the twin screw extruder, and (4) uniaxial molding with a sheet die attached. A method for producing the ceramic sheet, wherein the sheet is formed by a machine, wherein the nitride ceramic is aluminum nitride, and the apparent density of the sheet is 2.6 g / cm 3 or more. It is a manufacturing method of a ceramic sheet.
さらに、前記方法により製造されたセラミックシートに、脱脂及び焼結処理を施してなるセラミック基板であり、該セラミック基板の一主面に金属回路を形成し、他の一主面に放熱板を接合してなるセラミック回路基板であり、該セラミック回路基板を用いてなるモジュールである。 Furthermore, it is a ceramic substrate formed by subjecting the ceramic sheet manufactured by the above method to degreasing and sintering, forming a metal circuit on one main surface of the ceramic substrate, and bonding a heat sink to the other main surface The ceramic circuit board is a module using the ceramic circuit board.
本発明により、従来法と同等もしくはそれ以上の品質が得られ、しかも生産効率の良好なセラミックシートの製造方法が提供され、セラミック基板及びセラミック回路基板の製造、並びに、モジュールへの適用が可能である。 According to the present invention, a method for producing a ceramic sheet having a quality equal to or higher than that of the conventional method and having good production efficiency is provided, and the production of a ceramic substrate and a ceramic circuit substrate and application to a module are possible. is there.
焼結体の変形を抑制するには、成形シート密度を高め、焼結時の収縮を低下させることが必要である。そのためには、最密充填に近い状態を実現することが必要であり、10〜20μm、0.5〜1.5μm、及び0.3μm以下の3領域において、粒子径の極大値をそれぞれ一つずつ有することが好ましい。 In order to suppress the deformation of the sintered body, it is necessary to increase the density of the formed sheet and reduce the shrinkage during sintering. For that purpose, it is necessary to realize a state close to the closest packing, and in each of three regions of 10 to 20 μm, 0.5 to 1.5 μm, and 0.3 μm or less, one maximum value of the particle diameter is set. It is preferable to have each one.
本発明に係る原料粉末は窒化物セラミック粉末が好ましく、特にAlN粉末が好ましい。AlN粉末は、直接窒化法、アルミナ還元法等の公知の方法で製造された粉末が使用できるが、中でも、窒素雰囲気下で、金属アルミニウム粉末を高温の炉内に噴霧窒化して分級したAlN粉末が好ましい。具体的な製造方法は、例えば次の通りである。1850℃以上に加熱された直径1m、高さ3mの縦型石英炉の最頂部から、金属アルミニウム粉末を窒素やアルゴンガス等の非酸化性ガスをキャリアガスとして、30〜50g/min噴霧する。反応ガスとしての窒素ガス量は、上記キャリアガスとして窒素ガスを使用した場合は、キャリアガスとの合計量で150〜300l/min供給し、最頂部から0.5m低い位置に石英管の外径を囲むようにヒーターを設置する。合成炉は特に限定されるものではなく、縦型あるいは横型のどちらも使用可能である。合成したAlN粉末を炉体下部よりブロワーで吸引し、バグフィルターにて捕集した後、遠心力式風力分級機の設定条件を変えて分級することにより、粒度分布と酸素量の異なるAlN粉末を得ることができる。このようにして分級されたAlN粉末を所定の割合で配合することにより、本発明に係るAlN粉末が得られる。 The raw material powder according to the present invention is preferably a nitride ceramic powder, and particularly preferably an AlN powder. As the AlN powder, a powder produced by a known method such as a direct nitriding method or an alumina reduction method can be used. Among them, an AlN powder classified by spray nitriding a metal aluminum powder in a high-temperature furnace in a nitrogen atmosphere. Is preferred. A specific manufacturing method is, for example, as follows. From the top of a vertical quartz furnace having a diameter of 1 m and a height of 3 m heated to 1850 ° C. or higher, metal aluminum powder is sprayed at 30 to 50 g / min using a non-oxidizing gas such as nitrogen or argon gas as a carrier gas. When nitrogen gas is used as the carrier gas, the nitrogen gas amount as the reaction gas is supplied in a total amount of 150 to 300 l / min with the carrier gas, and the outer diameter of the quartz tube is 0.5 m lower than the top. Install a heater to surround The synthesis furnace is not particularly limited, and either a vertical type or a horizontal type can be used. The synthesized AlN powder is sucked with a blower from the bottom of the furnace body, collected by a bag filter, and then classified by changing the setting conditions of the centrifugal air classifier, so that the AlN powder with different particle size distribution and oxygen content is classified. Obtainable. The AlN powder according to the present invention is obtained by blending the AlN powder thus classified in a predetermined ratio.
従来のアルミナ還元法、或いは直接窒化法で製造されたAlN粉末は、本発明に係るAlN粉末を調製するための一成分として使用することができるが、アルミナ還元法では10μm以上の粒子を製造することが困難であり、一方、直接窒化法ではAlNの酸素含有量が高くなるため、単独では本発明に係るAlN粉末として使用することができない。 AlN powder produced by the conventional alumina reduction method or direct nitriding method can be used as one component for preparing the AlN powder according to the present invention, but the alumina reduction method produces particles of 10 μm or more. On the other hand, the direct nitridation method increases the oxygen content of AlN, and cannot be used alone as the AlN powder according to the present invention.
本発明に係るセラミック粉末の粒度分布測定には、レーザー回折法による、体積分布の頻度と累積値を測定できる装置の使用が好ましい。本発明に係るセラミック粉末は、10〜20μm(以下、「粗粉領域」という)、0.5〜1.5μm(以下、「中粉領域」という。)、0.3μm以下(以下、「微粉領域」という。)の各領域に、粒子径の極大値を一つずつ有するものである。AlN粉中の酸素量は、粗粉領域が0.3〜0.6質量%、中粉領域が1.0〜1.5質量%、微粉領域は1.6〜3.0質量%が好ましく、これらのトータルの酸素含有量は0.6〜1.0質量%が好ましい。粒子径の極大値は体積分布の頻度によって求められ、また粒子含有率はそれぞれの領域における累積値によって求めることができる。 For measuring the particle size distribution of the ceramic powder according to the present invention, it is preferable to use an apparatus capable of measuring the frequency and cumulative value of the volume distribution by the laser diffraction method. The ceramic powder according to the present invention is 10 to 20 μm (hereinafter referred to as “coarse powder region”), 0.5 to 1.5 μm (hereinafter referred to as “medium powder region”), 0.3 μm or less (hereinafter referred to as “fine powder”). Each region of “region”) has one maximum value of the particle diameter. The oxygen content in the AlN powder is preferably 0.3 to 0.6% by mass in the coarse powder region, 1.0 to 1.5% by mass in the medium powder region, and 1.6 to 3.0% by mass in the fine powder region. The total oxygen content is preferably 0.6 to 1.0% by mass. The maximum value of the particle diameter can be determined by the frequency of volume distribution, and the particle content can be determined by the cumulative value in each region.
粗粉領域の粒子径の極大値が、20μmを超えると焼結性に悪影響を及ぼして、熱伝導率が向上しない場合があり、一方、10μmより小さくなると焼結性は良いが、焼結時の収縮率が大きくなる場合がある。又、粗粉領域の粒子含有率(体積基準)が50%未満では、焼結時の収縮率が大きくなる場合があり、一方、70%を超えると焼結性に悪影響を及ぼし、熱伝導率が向上しない場合がある。粗粉領域は、粒子径の極大値が12〜18μmにあり、粒子含有率が55〜65%であることがより好ましい。 If the maximum value of the particle size of the coarse powder region exceeds 20 μm, the sinterability may be adversely affected and the thermal conductivity may not be improved. On the other hand, if the particle size is smaller than 10 μm, the sinterability is good, but during sintering, There is a case where the shrinkage rate of is increased. Further, if the particle content (volume basis) in the coarse powder region is less than 50%, the shrinkage rate during sintering may increase. On the other hand, if it exceeds 70%, the sinterability is adversely affected and the thermal conductivity is increased. May not improve. In the coarse powder region, the maximum value of the particle diameter is 12 to 18 μm, and the particle content is more preferably 55 to 65%.
中粉領域の粒子径の極大値が、1.5μmより大きくなると、焼結性に悪影響を及ぼして熱伝導率が向上しない場合があり、一方、0.5μmより小さくなると、微粉領域の粒子径の極大値の値と近くなり、焼結時の収縮率が大きくなり、しかも酸素量の増大によって高熱伝導性の発現に悪影響を及ぼす場合がある。中粉領域の粒子含有率(体積基準)が20%未満では、焼結性に悪影響を及ぼす場合があり、一方、40%を超えると焼結時の収縮率が大きくなる場合がある。中粉領域は、粒子径の極大値が0.8〜1.3μmにあり、粒子含有率が25〜35%であることがより好ましい。 If the maximum value of the particle size of the medium powder region is larger than 1.5 μm, the sinterability may be adversely affected and the thermal conductivity may not be improved. On the other hand, if the particle size is smaller than 0.5 μm, the particle size of the fine powder region may be The shrinkage rate during sintering increases, and an increase in the amount of oxygen may adversely affect the development of high thermal conductivity. If the particle content (volume basis) in the medium powder region is less than 20%, the sinterability may be adversely affected. On the other hand, if it exceeds 40%, the shrinkage rate during sintering may increase. In the middle powder region, the maximum value of the particle diameter is 0.8 to 1.3 μm, and the particle content is more preferably 25 to 35%.
微粉領域の粒子径の極大値が0.3μmより大きくなると、中粉領域の粒子径の極大値の値と近くなり、焼結時の収縮率が大きくなる場合がある。微粉領域の粒子含有率(体積基準)が20%を超えると、酸素量が増大し熱伝導率に悪影響を及ぼす場合があり、一方、5%未満では焼結時の収縮率が大きくなる場合がある。微粉領域は、粒子径の極大値が0.15〜0.05μmにあり、粒子含有率が5〜15%であることがより好ましい。 When the maximum value of the particle size in the fine powder region is larger than 0.3 μm, the value may be close to the maximum value of the particle size in the medium powder region, and the shrinkage rate during sintering may increase. If the particle content (volume basis) in the fine powder region exceeds 20%, the amount of oxygen may increase and adversely affect the thermal conductivity. On the other hand, if it is less than 5%, the shrinkage rate during sintering may increase. is there. In the fine powder region, the maximum value of the particle diameter is preferably 0.15 to 0.05 μm, and the particle content is more preferably 5 to 15%.
粗粉領域、中粉領域及び微粉領域における粒子含有率の合計は、100%であることが好ましい。しかしながら、粗粉領域、中粉領域及び微粉領域における粒子含有率が特許請求の範囲に規定された範囲内にあれば、本発明の粗粉領域、中粉領域及び微粉領域以外の粒子径のセラミック粉末が含まれていてもよい。 The total particle content in the coarse powder region, the medium powder region, and the fine powder region is preferably 100%. However, if the particle content in the coarse powder region, the medium powder region, and the fine powder region is within the range specified in the claims, the ceramic having a particle size other than the coarse powder region, the medium powder region, and the fine powder region of the present invention. Powder may be included.
本発明に係る窒化アルミニウム粉末の酸素含有量は、0.6〜1.0質量%であることが好ましい。酸素含有量が0.6質量%未満では焼結時に液相の生成が不十分となり、焼結反応の進行が遅延して緻密化が阻害され、熱伝導率が低化する場合があり、一方、1.0質量%を超えると、焼結反応過程において、セラミック結晶粒内に存在する酸素がフォノン経路を阻害し、熱伝導率が低化する場合がある。
The oxygen content of the aluminum nitride powder according to the present invention is preferably 0.6 to 1.0% by mass. If the oxygen content is less than 0.6% by mass, the generation of the liquid phase is insufficient during sintering, the progress of the sintering reaction is delayed, densification is hindered, and the thermal conductivity may be reduced. If it exceeds 1.0 mass%, oxygen present in the ceramic crystal grains may interfere with the phonon path in the sintering reaction process, and the thermal conductivity may be lowered.
セラミック粉末の種類によっては、加水分解を防止するためにステアリン酸、オレイン酸、リン酸等で表面処理することが好ましい。表面処理剤はオレイン酸が好ましく、その使用量は、セラミック粉末100質量部に対して0.5〜3質量部程度が好ましい。使用量が3質量部を超えると、オレイン酸の撥水作用により練土の流動性が低下し、成形性が損なわれる場合があり、一方、0.5質量部未満では表面処理効果が不十分な場合がある。 Depending on the type of the ceramic powder, it is preferable to perform surface treatment with stearic acid, oleic acid, phosphoric acid or the like in order to prevent hydrolysis. The surface treatment agent is preferably oleic acid, and the amount used is preferably about 0.5 to 3 parts by mass with respect to 100 parts by mass of the ceramic powder. If the amount used exceeds 3 parts by mass, the fluidity of the dough may be reduced due to the water repellent action of oleic acid, and the moldability may be impaired. On the other hand, if the amount is less than 0.5 parts by mass, the surface treatment effect is insufficient. There is a case.
本発明に係る焼結助剤は、希土類金属、アルカリ土類金属、及びアルミニウム酸化物、フッ化物、塩化物、硝酸塩、硫酸塩等が使用可能である。中でも、イットリウム酸化物等の希土類酸化物が一般的である。本発明では、希土類酸化物の他に、さらにアルミニウム酸化物を併用し、焼成温度を低下させることはより好ましい。焼結助剤の使用量は、セラミック粉末100質量部に対して1〜5質量部が好ましい。使用量が、1質量部未満であったり、或いは、5質量部を超えると、焼結しにくくなり、高密度な焼結体が得られない場合がある。アルミニウム酸化物を併用する場合その使用量は、セラミック粉末100質量部に対して1〜5質量部が好ましい。使用量が、1質量部未満であったり、或いは、5質量部を超えると、セラミック基板の熱伝導率が更に向上しない場合がある。 As the sintering aid according to the present invention, rare earth metals, alkaline earth metals, aluminum oxides, fluorides, chlorides, nitrates, sulfates, and the like can be used. Among these, rare earth oxides such as yttrium oxide are common. In the present invention, it is more preferable to use aluminum oxide in addition to the rare earth oxide to lower the firing temperature. The amount of the sintering aid used is preferably 1 to 5 parts by mass with respect to 100 parts by mass of the ceramic powder. If the amount used is less than 1 part by mass or exceeds 5 parts by mass, sintering may be difficult and a high-density sintered body may not be obtained. When using an aluminum oxide together, the usage-amount is preferable 1-5 mass parts with respect to 100 mass parts of ceramic powder. If the amount used is less than 1 part by mass or exceeds 5 parts by mass, the thermal conductivity of the ceramic substrate may not be further improved.
本発明に係る液状の有機バインダーは特に限定されないが、アクリル酸エステル、メタクリル酸エステル、アクリル酸、及びメタクリル酸からなる群より選ばれる一種又は二種以上を重合してなるポリマーを含む有機バインダーを用いることが好ましい。この有機液体バインダーを用いる理由は、窒素等の不活性ガス雰囲気中の脱脂処理において、他のバインダーよりも熱分解性が良く、残留炭素分の制御を容易に行うことができるからである。脱脂処理は、非酸化性雰囲気下で行うことが好ましい。例えばAlN粉末の場合、酸化雰囲気中で脱脂処理すると、AlN脱脂体中の酸素量が増加し、焼結の際にAlN格子内に酸素が固溶してAlN焼結体の熱伝導率を低下させる場合がある。上記ポリマーのガラス転移温度は、−50〜0℃であることが好ましい。ポリマーのガラス転移温度が−50℃より低いと、十分な成形体強度が得られず、成形が困難となる場合があり、一方、ガラス転移温度が0℃より高いと成形体が硬く、脆いものとなり、割れが発生しやすくなる場合がある。 Although the liquid organic binder which concerns on this invention is not specifically limited, The organic binder containing the polymer formed by superposing | polymerizing 1 type, or 2 or more types chosen from the group which consists of acrylic acid ester, methacrylic acid ester, acrylic acid, and methacrylic acid is used. It is preferable to use it. The reason for using this organic liquid binder is that, in the degreasing treatment in an inert gas atmosphere such as nitrogen, the thermal decomposability is better than other binders, and the residual carbon content can be easily controlled. The degreasing treatment is preferably performed in a non-oxidizing atmosphere. For example, in the case of AlN powder, if the degreasing treatment is performed in an oxidizing atmosphere, the amount of oxygen in the AlN degreased body increases, and oxygen is dissolved in the AlN lattice during sintering, thereby reducing the thermal conductivity of the AlN sintered body. There is a case to let you. The glass transition temperature of the polymer is preferably -50 to 0 ° C. When the glass transition temperature of the polymer is lower than −50 ° C., sufficient molded body strength may not be obtained and molding may be difficult. On the other hand, when the glass transition temperature is higher than 0 ° C., the molded body is hard and brittle. And cracks are likely to occur.
液体の有機バインダーの添加割合は、セラミック粉末に対して外割配合で0.5〜30質量%が好ましく、1〜10質量%がより好ましい。添加割合が、0.5質量%より少ないと、十分な成形体強度が得られず、割れを生じる場合があり、一方、30質量%を超えると、脱脂処理に多大な時間がかかる上に、脱脂体中の残留炭素量が多いため、焼結体に色むらが生じる場合がある。 The addition ratio of the liquid organic binder is preferably from 0.5 to 30% by mass, more preferably from 1 to 10% by mass, based on the ceramic powder. If the addition ratio is less than 0.5% by mass, sufficient molded body strength may not be obtained and cracking may occur. On the other hand, if it exceeds 30% by mass, degreasing treatment takes a lot of time, Since the amount of residual carbon in the degreased body is large, uneven color may occur in the sintered body.
本発明に係る有機バインダー粉末は特に限定されないが、メチルセルロース系あるいはアクリル系等の使用が好ましい。有機バインダー粉末の使用量は、セラミック粉末100質量部に対して1〜5質量部が好ましい。使用量が1質量部より少ないと、十分な成形体強度が得られず割れを生じる場合があり、一方、5質量部を超えると、脱脂時のバインダー除去の際に成形体密度が低下するため、焼結時の収縮率が大きくなり、寸法不良や変形を生じる場合がある。 The organic binder powder according to the present invention is not particularly limited, but methylcellulose-based or acrylic-based materials are preferably used. As for the usage-amount of organic binder powder, 1-5 mass parts is preferable with respect to 100 mass parts of ceramic powder. If the amount used is less than 1 part by mass, sufficient molded body strength may not be obtained and cracking may occur. On the other hand, if it exceeds 5 parts by mass, the density of the molded body will be reduced during binder removal during degreasing. In some cases, the shrinkage rate during sintering increases, resulting in dimensional defects and deformation.
本発明において、上記成形体の加熱脱脂処理後の残留炭素分は、2.0質量%以下が好ましい。残留炭素分が2.0質量%を超えると、焼結を阻害して緻密な焼結体が得られなくなる場合がある。 In the present invention, the carbon content after the heat degreasing treatment of the molded body is preferably 2.0% by mass or less. If the residual carbon content exceeds 2.0% by mass, sintering may be inhibited and a dense sintered body may not be obtained.
本発明に係る可塑剤としては、精製グリセリン、グリセリントリオレート、ジエチレングリコール等が使用可能であり、その使用量は、セラミック粉末100質量部に対して2〜5質量部が好ましい。使用量が2質量部未満では、成形シートの柔軟性が不十分なためプレス成形時に成形体が脆くなり、シートへ亀裂が入りやすくなる場合がある。一方、5質量部を超えると練土粘度が低下しシート形状の保持が困難になるため、シート幅方向の厚みムラを生じる場合がある。 As the plasticizer according to the present invention, purified glycerin, glycerin trioleate, diethylene glycol and the like can be used, and the amount used is preferably 2 to 5 parts by mass with respect to 100 parts by mass of the ceramic powder. If the amount used is less than 2 parts by mass, the molded sheet is insufficiently flexible, so that the molded body becomes brittle during press molding, and the sheet may be easily cracked. On the other hand, when the amount exceeds 5 parts by mass, the viscosity of the kneaded clay is lowered and it is difficult to maintain the sheet shape.
本発明に係る離型剤は特に限定されないが、ステアリン酸系やシリコン系等が使用可能であり、その使用量はセラミック粉末100質量部に対して2〜5質量部が好ましい。使用量が2質量部未満であると、2軸押出機と1軸成形機間に設置された練土供給ニーダーに付着し、練土供給に支障をきたして生産性を低下させるだけでなく、練土性状の劣化に起因したシート厚みムラが生じる場合がある。一方、5質量部を超えると練土粘度が低下し、シート形状の保持が困難になるため、シート幅方向の厚みムラが生じる場合がある。 The release agent according to the present invention is not particularly limited, but stearic acid type or silicon type can be used, and the amount used is preferably 2 to 5 parts by mass with respect to 100 parts by mass of the ceramic powder. If the amount used is less than 2 parts by mass, not only will it adhere to the kneaded clay kneader installed between the twin-screw extruder and the single-screw molding machine, which will hinder the supply of the clay and reduce productivity, There may be a case where unevenness of the sheet thickness is caused due to deterioration of the kneaded properties. On the other hand, when the amount exceeds 5 parts by mass, the kneaded clay viscosity decreases and it becomes difficult to maintain the sheet shape, and thus thickness unevenness in the sheet width direction may occur.
本発明では、必要に応じて、さらに分散剤を使用することも可能である。 In the present invention, a dispersant may be further used as necessary.
本発明に係る溶媒としては、エタノールやトルエン等の使用が可能であるが、地球環境への配慮及び防爆設備対応を考慮して、イオン交換水又は純水を使用するのが一般的である。使用量は、セラミックス粉末100質量部に対して1〜15質量部が好ましい。使用量が1質量部未満であると、練土粘度の流動性が悪いため、シート成形に支障をきたす場合がある。一方、15質量部を超えると、練土粘度が低下し、シート形状の保持が困難になるため、シート幅方向の厚みムラが生じる場合がある。 As the solvent according to the present invention, ethanol, toluene or the like can be used, but ion-exchanged water or pure water is generally used in consideration of the global environment and explosion-proof equipment. The amount used is preferably 1 to 15 parts by mass with respect to 100 parts by mass of the ceramic powder. If the amount used is less than 1 part by mass, the fluidity of the clay viscosity is poor, which may hinder sheet molding. On the other hand, when the amount exceeds 15 parts by mass, the kneaded clay viscosity decreases and it becomes difficult to maintain the sheet shape, and thus thickness unevenness in the sheet width direction may occur.
本発明者は、セラミックシートを製造するため、ドクターブレード法、押し出し成型法、乾式プレス法、射出成型法、スリップキャスト法について検討した。 The present inventor examined a doctor blade method, an extrusion molding method, a dry press method, an injection molding method, and a slip casting method in order to produce a ceramic sheet.
乾式プレス法及び射出成型法は、バインダー量が多くなるため焼成時の収縮率が大きくなり、寸法精度が取れず、焼結体を研磨加工する必要がある。スリップキャスト法は、少ロットの異形品向きで量産性に劣り、厚い成形体は幅方向および流れ方向に厚みムラが生じやすい。 In the dry press method and the injection molding method, the amount of binder increases, so the shrinkage rate during firing increases, the dimensional accuracy cannot be obtained, and the sintered body must be polished. The slip casting method is suitable for small-sized shaped products and is inferior in mass productivity, and a thick molded body tends to have thickness unevenness in the width direction and the flow direction.
ドクターブレード法は、厚み0.5〜1mmの成型品は可能であるが、厚みが1mm程度を越えると厚みムラが大きくなり、特に端部と中心部の厚み差が40μm以上になることもあり、大きな反りを生じる場合がある。更に、厚みの厚いものは、シ−ト成型後に有機溶剤を乾燥・除去する際、蒸発する有機溶剤によって表面が荒れたりピンホールが発生する場合がある。 The doctor blade method can be used for molded products with a thickness of 0.5 to 1 mm, but if the thickness exceeds about 1 mm, the thickness unevenness will increase, and the thickness difference between the end and the center may be 40 μm or more. May cause a large warp. Further, when the organic solvent is dried and removed after sheet molding, the surface of the thicker one may be roughened or pinholes may be generated due to the evaporated organic solvent.
これに対し、押出成形法は、ダイスのクリアランスを大きくするだけで容易に厚みの厚いシートを成形することができ、しかも成形圧力を5〜10MPaと高くすることができるため、成形体密度を上げることが可能で、焼成時の寸法精度が良好である。 On the other hand, the extrusion molding method can easily form a thick sheet only by increasing the clearance of the die, and the molding pressure can be increased to 5 to 10 MPa. The dimensional accuracy during firing is good.
本発明に係る、2軸押出機と1軸成形機を組合せた押出成形機を図1に示す。 FIG. 1 shows an extrusion molding machine combining a twin screw extruder and a single screw molding machine according to the present invention.
2軸押出機の混錬部は、2軸押出機の30〜70体積%を占めることが好ましい。混錬部が30体積%未満であると、混練不足が生じてセラミックシート密度のバラツキを誘発する場合があり、一方、70体積%を超えると、過剰混練により練土の発熱が著しくなり、配合ズレや水分蒸発に伴う流動性の低下が生じ、安定した品質のシートが得られない場合がある。 The kneading part of the twin screw extruder preferably occupies 30 to 70% by volume of the twin screw extruder. If the kneading part is less than 30% by volume, kneading shortage may occur and ceramic sheet density variation may be induced. On the other hand, if the kneading part exceeds 70% by volume, heat generation of the kneaded clay will be significant due to excessive kneading. There is a case where fluidity is lowered due to misalignment or moisture evaporation, and a sheet having a stable quality cannot be obtained.
スクリュー回転数はスクリュー形状と関連するため厳密には決められないが、一般に50〜200rpm程度が好ましく、70〜150rpmがより好ましい。回転数が50rpm未満では混練不足が生じる場合があり、一方、200rpmを超えると練土の発熱が著しくなり、バインダー溶液の蒸発に伴う流動性の低下が生じるため、シート品質が安定しない場合がある。2軸押出機の混練により練土中に混入した気泡を消滅させるため、混錬部からストランドダイス間で真空引きを行う。このとき、真空度は絶対圧力表示にて1333Pa以下の真空雰囲気に保たれる。2軸押出機は冷却用チラーユニットに接続され、2軸押出機からの吐出物温度は5〜15℃に調節される。 Although the screw rotation speed is related to the screw shape and cannot be determined strictly, it is generally preferably about 50 to 200 rpm, more preferably 70 to 150 rpm. If the rotational speed is less than 50 rpm, kneading may be insufficient. On the other hand, if it exceeds 200 rpm, heat generation of the kneaded clay becomes significant, and fluidity is reduced due to evaporation of the binder solution, so that the sheet quality may not be stable. . In order to eliminate the air bubbles mixed in the kneaded clay by kneading in the twin-screw extruder, vacuuming is performed between the kneading part and the strand dies. At this time, the degree of vacuum is maintained in a vacuum atmosphere of 1333 Pa or less in terms of absolute pressure. The twin-screw extruder is connected to a cooling chiller unit, and the discharge temperature from the twin-screw extruder is adjusted to 5 to 15 ° C.
本発明に係る2軸押出機の特徴は、(1)2軸スクリューが同方向回転であり、2軸スクリュー間の噛み合い部において、1軸成形機よりも高いせん断応力を負荷でき、短時間で均一に混練された練土が得られる。(2)2軸スクリューは複数のパーツからなり、材料に応じて組み替えられるため混練の自由度が大きいことである。さらに、焼成する際、押出方向に依存しない等方的な収縮性能を発現することから、セラミック焼結体の寸法および変形不良を低減させることができる。 The features of the twin screw extruder according to the present invention are as follows: (1) The twin screw is rotated in the same direction, and a high shear stress can be applied to the meshing part between the two screw screws as compared with the single screw molding machine in a short time. A uniformly kneaded dough is obtained. (2) The biaxial screw is composed of a plurality of parts and is recombined according to the material, so that the degree of freedom of kneading is large. Furthermore, since the isotropic shrinkage performance independent of the extrusion direction is exhibited when firing, the size and deformation defect of the ceramic sintered body can be reduced.
練土の成分が均一で、良好な成形性が得られる場合の練土の粘度は、降下式フローテスターでせん断応力を0.3MPaとした場合、4000〜5000Pa・sであり、シート断面の輪郭形状はフラットとなる。粘度が4000Pa・s未満であると、シート幅方向において厚みムラが発生し、焼成後のセラミック基板の寸法不良や変形を生じる場合がある。一方、粘度が5000Pa・sを超えると、シート断面の輪郭形状はフラットになるが、シート表面の流れ方向にフローマークが著しく現れるため、焼成後のセラミック基板表面の外観が損なわれる場合がある。 When the components of the dough are uniform and good moldability is obtained, the viscosity of the dough is 4000 to 5000 Pa · s when the shear stress is 0.3 MPa with a descending flow tester, and the contour of the sheet cross section The shape is flat. When the viscosity is less than 4000 Pa · s, thickness unevenness occurs in the sheet width direction, which may cause dimensional defects or deformation of the fired ceramic substrate. On the other hand, when the viscosity exceeds 5000 Pa · s, the contour shape of the sheet cross section becomes flat, but a flow mark appears remarkably in the flow direction of the sheet surface, so that the appearance of the surface of the ceramic substrate after firing may be impaired.
1軸成形機のスクリュー径Dおよびスクリュ長さLに関して特に制約は無いが、1軸成形機のスクリュー径Dは2軸押出機のスクリュー径以上にすることが好ましい。1軸成形機の回転数は吐出量に比例するため、30〜150rpm程度が好ましい。回転数が30rpm未満では、所望の吐出量が得られず生産性が低下する場合があり、一方、150rpmを超えると練土の発熱が著しくなり、溶液中の水分蒸発に伴う流動性の低下が生じるため、安定した品質のシートが得られない場合がある。1軸成形機の混錬部は、練土が2軸押出機にて既に十分混錬されているため不要である。1軸成形機は冷却用チラーユニットに接続され、1軸成形機からの吐出物温度は5〜15℃に調節される。 Although there is no restriction | limiting in particular regarding the screw diameter D and screw length L of a uniaxial molding machine, It is preferable that the screw diameter D of a uniaxial molding machine shall be more than the screw diameter of a biaxial extruder. Since the rotation speed of the uniaxial molding machine is proportional to the discharge amount, about 30 to 150 rpm is preferable. If the rotational speed is less than 30 rpm, the desired discharge amount may not be obtained and the productivity may decrease. On the other hand, if it exceeds 150 rpm, exothermic heat of the dough becomes remarkable, and the fluidity decreases due to the evaporation of moisture in the solution. As a result, a stable quality sheet may not be obtained. The kneading part of the single-shaft forming machine is unnecessary because the dough has already been kneaded sufficiently by the twin-screw extruder. The uniaxial molding machine is connected to a cooling chiller unit, and the temperature of discharged material from the uniaxial molding machine is adjusted to 5 to 15 ° C.
2軸押出機の吐出口と1軸成形機の原料供給部の接続部は図1の様に設置される。この箱状容器(真空室)は材質に制限はないが、操業中練土の流動状態を監視するため透明な容器であり、高真空下でも破損しないことが必要である。練土の表面に気泡が混入し密度低下を起こさぬよう、容器内は絶対圧力表示にて1333Pa以下の真空度に保たれる。2軸押出機及び1軸成形機と、容器の界面は真空漏れが生じないように、樹脂やゴムパッキン等のシール材が用いられる。2軸押出機の吐出口から吐出された練土は、その直下の1軸成形機の練土供給口に設置されたニーダーにより、1軸成形機内に搬送される。 The connection part of the discharge port of a biaxial extruder and the raw material supply part of a uniaxial molding machine is installed as shown in FIG. The material of the box-like container (vacuum chamber) is not limited, but it is a transparent container for monitoring the flow state of the kneaded clay during operation and should not be damaged even under high vacuum. The inside of the container is kept at a vacuum of 1333 Pa or less in terms of absolute pressure so that bubbles do not enter the surface of the dough and cause a decrease in density. Sealing materials such as resin and rubber packing are used so that vacuum leakage does not occur at the interface between the biaxial extruder and uniaxial molding machine and the container. The clay discharged from the discharge port of the twin screw extruder is conveyed into the single screw molding machine by a kneader installed at the clay supply port of the single screw molding machine immediately below.
本発明に係る1軸成形機の特徴は、原料供給系に起因する圧力変動が2軸押出機よりも小さく、2軸押出機のシート流れ方向の厚みバラツキがR>5μmなのに対し、1軸成形機ではR≦5μmと吐出安定性に優れることである。シート流れ方向の厚みバラツキがR>5μmでは、焼成後のセラミック基板幅方向の反り量が大きくなり、金属回路板側および金属放熱板側の接合に不具合を生じる場合がある。 The feature of the uniaxial molding machine according to the present invention is that the pressure fluctuation caused by the raw material supply system is smaller than that of the biaxial extruder, and the thickness variation in the sheet flow direction of the biaxial extruder is R> 5 μm. In the machine, R ≦ 5 μm and the discharge stability is excellent. When the thickness variation in the sheet flow direction is R> 5 μm, the amount of warpage in the width direction of the ceramic substrate after firing becomes large, which may cause a problem in joining on the metal circuit board side and the metal heat sink side.
本発明において、2軸押出機と1軸成形機を組み合せた理由は、両機の欠点を補い、優れた特徴を活かすためである。2軸押出機の原料供給部は図1に示す通り、粉末と液体用の2箇所からなる。粉末および液体供給は、ウエイトロス式の粉末フィーダー、及び吐出脈動の少ないウエイトロス式モノポンプ若しくはウエイトロス式チューブポンプを用いることが好ましい。ここで重要なのは、粉末および液体のフィードバラツキを│±R%│≦1以内に制御し、且つ粉末フィーダーと液体添加ポンプの吐出を同調させることである。ここで、±R%は(1)および(2)式から算出する。 In the present invention, the reason why the twin-screw extruder and the single-screw molding machine are combined is to compensate for the disadvantages of both machines and take advantage of the excellent features. As shown in FIG. 1, the raw material supply section of the twin-screw extruder consists of two places for powder and liquid. For the powder and liquid supply, it is preferable to use a weight loss type powder feeder and a weight loss type mono pump or a weight loss type tube pump with little discharge pulsation. What is important here is that the powder and liquid feed variations are controlled within │ ± R% │≤1, and the discharge of the powder feeder and the liquid addition pump is synchronized. Here, ± R% is calculated from the equations (1) and (2).
バラツキが│±R%│≦1を外れると、粉末と液体の配合比率ズレが発生するため、グリーンシートの密度バラツキが生じることから、焼成後のセラミック焼結体に変形が生じる場合がある。 If the variation is outside of ±± R% | ≦ 1, the mixing ratio of the powder and the liquid is shifted, resulting in a variation in the density of the green sheet. Therefore, the sintered ceramic body after firing may be deformed.
本発明では、窒化アルミニウム粉末を2軸押出機の吐出口と1軸成形機の原料供給口を連結させた押出成形機によりシート成形することで、シート密度を2.6g/cm3以上にすることが可能である。これにより、窒化アルミニウム焼結体の収縮率を11%未満にすることができ、焼成時の収縮に伴う変形不良を解消できる。シート密度が2.6g/cm3未満であると、変形不良が発生する場合がある。 In the present invention, the sheet density is made 2.6 g / cm 3 or more by forming the aluminum nitride powder into a sheet by an extrusion molding machine in which the discharge port of the twin screw extruder and the raw material supply port of the single screw molding machine are connected. It is possible. Thus, the shrinkage rate of the aluminum nitride sintered body can be less than 11%, it can be eliminated deformation failure due to shrinkage during firing. If the sheet density is less than 2.6 g / cm 3 , deformation defects may occur.
シートの乾燥は、乾燥ゾーンをシートが通過する、例えばベルト乾燥機などを用いて、シート含水率が1.5〜3.5%になるように乾燥させた後、金型プレス成形機にて所望形状にプレスし、成形シートを作製する。次に、その成形シートに含まれる有機バインダー等を除去するため、窒素ガス等の非酸化性雰囲気中、温度400〜700℃で1〜20時間保持にて脱脂処理を施す。得られた脱脂体を窒化ホウ素製の焼成容器内に収容し、非酸化性雰囲気中、1600〜1850℃で0.5〜10時間保持して焼成する。焼成は、真空、減圧、及び加圧下で行うことも可能であるが、常圧下で行うのが一般的である。 The sheet is dried using a die press molding machine after the sheet passes through the drying zone, for example, using a belt dryer or the like so that the moisture content of the sheet becomes 1.5 to 3.5%. Press into a desired shape to produce a molded sheet. Next, in order to remove the organic binder and the like contained in the molded sheet, a degreasing treatment is performed by holding at a temperature of 400 to 700 ° C. for 1 to 20 hours in a non-oxidizing atmosphere such as nitrogen gas. The obtained degreased body is housed in a firing container made of boron nitride and fired in a non-oxidizing atmosphere at 1600 to 1850 ° C. for 0.5 to 10 hours. Firing can be performed under vacuum, reduced pressure, and increased pressure, but it is generally performed under normal pressure.
本発明により製造されたセラミック焼結体、中でもAlN焼結体は、機械的特性に優れ、且つ、高い熱伝導率を有するので、厳しい使用条件下で用いられる回路基板、例えばパワーモジュール用回路基板に好適な材料である。本発明のセラミック回路基板は、セラミック基板の一主面に金属回路を形成し、他の主面に放熱板を接合してなるものである。 The ceramic sintered body produced by the present invention, especially the AlN sintered body, is excellent in mechanical properties and has high thermal conductivity. Therefore, a circuit board used under severe conditions such as a circuit board for power modules. It is a suitable material. The ceramic circuit board of the present invention is formed by forming a metal circuit on one main surface of a ceramic substrate and bonding a heat sink to the other main surface.
本発明に係るセラミック基板の厚みは特に限定されるものではなく、例えば、放熱特性を重視する場合は0.2〜1.0mm程度、高電圧下での絶縁耐圧を高めたい場合は1.0〜10mm程度のものを用いるのが一般的である。 The thickness of the ceramic substrate according to the present invention is not particularly limited. For example, when the heat radiation characteristics are important, the thickness is about 0.2 to 1.0 mm, and when the dielectric strength under high voltage is to be increased, the thickness is 1.0. It is common to use a thing of about 10 mm.
金属回路と金属放熱板の材質はAl、Cu、またはAl−Cu合金であることが好ましい。これらは単層ないしはこれを一層として含むクラッド等の積層体の形態で用いることが可能である。中でも、AlはCuよりも降伏応力が小さいため塑性変形し易く、ヒートサイクル等の熱応力負荷が掛かった際に、セラミック基板に加わる熱応力を大幅に低減することができる。そのため、AlはCuを使用した場合よりも、金属回路とセラミック基板間に発生する水平クラックが発生しにくく、より高信頼性モジュールの作製が可能である。 The material of the metal circuit and the metal heat sink is preferably Al, Cu, or Al-Cu alloy. These can be used in the form of a single layer or a laminate such as a clad including the same. Among them, Al has a lower yield stress than Cu, and thus is easily plastically deformed. When a thermal stress load such as a heat cycle is applied, the thermal stress applied to the ceramic substrate can be greatly reduced. Therefore, Al is less prone to generate horizontal cracks between the metal circuit and the ceramic substrate than when Cu is used, and a more reliable module can be produced.
金属回路の厚みは、特に限定されるものではないが、電気的および熱的仕様からAl回路及びCu回路とも0.1〜0.5mmが一般的である。一方、放熱板は、半田付け時に反りを生じない厚みにすることが必要であり、例えば、Al放熱板及びCu回路とも0.1〜0.5mmが一般的である。 The thickness of the metal circuit is not particularly limited, but it is generally 0.1 to 0.5 mm for both the Al circuit and the Cu circuit because of electrical and thermal specifications. On the other hand, the heat dissipation plate needs to have a thickness that does not warp during soldering. For example, the Al heat dissipation plate and the Cu circuit are generally 0.1 to 0.5 mm.
本発明に係るセラミック回路基板は、板状のセラミック焼結体、或いは研削加工により板状に加工したセラミック焼結体をセラミック基板とし、金属板を接合した後、エッチング等の方法により回路を形成させるか、或いは、予め形成した金属回路をセラミック基板に接合することにより製造することができる。セラミック基板と金属板又は金属回路との接合は、例えば、Al−Cu、Ag、Cu、又はAg−Cu合金と、Ti、Zr、Hf等の活性金属成分を含むロウ材を介在させ、不活性ガスまたは真空雰囲気中で加熱する方法(活性金属法)により可能である。 The ceramic circuit board according to the present invention uses a plate-shaped ceramic sintered body or a ceramic sintered body processed into a plate shape by grinding to form a circuit by a method such as etching after joining a metal plate. Alternatively, it can be manufactured by bonding a pre-formed metal circuit to a ceramic substrate. Bonding between the ceramic substrate and the metal plate or metal circuit is inactive, for example, by interposing a brazing material containing an active metal component such as Al-Cu, Ag, Cu, or Ag-Cu alloy and Ti, Zr, Hf, etc. It is possible by a method of heating in a gas or vacuum atmosphere (active metal method).
〈原料粉末であるAlN粉の合成〉
1950℃に保持された直径400mm、長さ3000mmの縦型反応管の頂部から、金属アルミニウム粉末を窒素ガスをキャリアガスとして2kg/hr噴霧した。反応ガスとしての窒素ガス量は、上記キャリアガスとしての窒素ガス量との合計量で200l/minとし、AlN粉末を合成した。AlN粉末は炉体下部よりブロワーで吸引し、バグフィルターによって捕集した。
<Synthesis of AlN powder as raw material powder>
From the top of a vertical reaction tube having a diameter of 400 mm and a length of 3000 mm maintained at 1950 ° C., metal aluminum powder was sprayed at 2 kg / hr using nitrogen gas as a carrier gas. The amount of nitrogen gas as the reaction gas was 200 l / min in total with the amount of nitrogen gas as the carrier gas, and an AlN powder was synthesized. The AlN powder was sucked from the lower part of the furnace body with a blower and collected by a bag filter.
次に、AlN粉末を遠心力式風力分級機により分級し、粒度構成と酸素量の異なる種々のAlN粉末を得た。これらの粉末を適宜組み合わせ、表1に示すように、粒子径の極大値P1、P2及びP3を有し、酸素量の異なる窒化アルミニウム粉末を種々調製した。得られたAlN粉末は、純度99.9%、鉄含有量20ppm、シリコン含有量50ppmであった。AlN粉末の特性を表1に示す。 Next, the AlN powder was classified by a centrifugal air classifier to obtain various AlN powders having different particle size configurations and oxygen amounts. These powders were appropriately combined, and as shown in Table 1, various aluminum nitride powders having particle diameter maximum values P1, P2 and P3 and different amounts of oxygen were prepared. The obtained AlN powder had a purity of 99.9%, an iron content of 20 ppm, and a silicon content of 50 ppm. Table 1 shows the characteristics of the AlN powder.
〈シート成形〉
AlN粉末100質量部に対してオレイン酸を1.5質量部添加し、振動篩機を用いて予めオレイン酸で表面処理したAlN粉末100質量部、有機バインダー粉末3質量部、Al2O32質量部、及びY2O34質量部をボールトン混合機により乾式混合し、2軸押出機と1軸成形機を組合せた強混練型成形機の粉末供給口に、定量粉末フィーダー(供給バラツキ<1%)を用いて13.4kg/h供給した(練土の89%が粉末)。また、AlN粉末100質量部に対して、可塑剤が3質量部、離型剤が2質量部、イオン交換水が4質量部、有機液体バインダーが外割で7質量%となるように混合撹拌した液体を、同押出機の液体供給口へ定量液体モノポンプ(供給バラツキ<1%)を用いて1.6kg/h供給した(練土の11%が液体)。2軸押出機はD=46mm、L=1840mm(L/D=40)、混練部は50体積%、スクリュー回転数100rpm、真空度は絶対圧力で666.6Paであった。また、2軸押出機と1軸成形機間の真空室の真空度は666.6Paであった。1軸成形機はD=70mm、L=700mmからなる装置を用い、スクリュー回転速度60rpmの運転条件(吐出量30kg/h)にて、シートダイスを用いて、巾80mm×厚み1.174mmの帯状のシート成形を行った。成形条件を表2に、成形されたシートの物性を表3に記す。
<Sheet molding>
1.5 parts by mass of oleic acid is added to 100 parts by mass of AlN powder, and 100 parts by mass of AlN powder that has been surface-treated with oleic acid in advance using a vibration sieve, 3 parts by mass of organic binder powder, Al 2 O 3 2 Mass parts and 4 parts by mass of Y 2 O 3 are dry-mixed by a Bolton mixer, and a quantitative powder feeder (supply variation) is fed into a powder feed port of a strong kneading type molding machine combining a twin screw extruder and a single screw molding machine. <1%) was fed at 13.4 kg / h (89% of the dough was powder). Further, with respect to 100 parts by mass of AlN powder, 3 parts by mass of plasticizer, 2 parts by mass of release agent, 4 parts by mass of ion exchange water, and 7% by mass of the organic liquid binder are mixed and stirred. 1.6 kg / h of the obtained liquid was supplied to the liquid supply port of the extruder using a metered liquid monopump (supply variation <1%) (11% of the dough was liquid). The twin screw extruder was D = 46 mm, L = 1840 mm (L / D = 40), the kneading part was 50% by volume, the screw rotation speed was 100 rpm, and the degree of vacuum was 666.6 Pa in absolute pressure. The degree of vacuum in the vacuum chamber between the twin screw extruder and the single screw molding machine was 666.6 Pa. The uniaxial molding machine uses an apparatus consisting of D = 70 mm and L = 700 mm, and under a driving condition of a screw rotation speed of 60 rpm (discharge amount 30 kg / h), using a sheet die, a strip shape of width 80 mm × thickness 1.174 mm The sheet was molded. Table 2 shows the molding conditions, and Table 3 shows the physical properties of the molded sheet.
〈AlN焼結体〉
成形されたグリーンシートを、ベルト乾燥機を用いてシート含水率が2%になるまで乾燥した後、金型付プレス機により70×50mm×1.174mmtの寸法に調整した。これを窒化ホウ素製の坩堝に充填して、常圧下、窒素雰囲気中にて500℃で4時間保持して脱脂した後、カーボンヒーター電気炉を用いて、絶対圧力0.1MPaの窒素雰囲気下で1800℃、2時間焼成してAlN焼結体を作製した。得られたAlN焼結体の物性を表3に示す。
<AlN sintered body>
The formed green sheet was dried using a belt dryer until the sheet moisture content became 2%, and then adjusted to a size of 70 × 50 mm × 1.174 mm by a press machine with a mold. This was filled in a boron nitride crucible, degreased by holding at 500 ° C. in a nitrogen atmosphere for 4 hours under normal pressure, and then using a carbon heater electric furnace in a nitrogen atmosphere with an absolute pressure of 0.1 MPa. An AlN sintered body was produced by firing at 1800 ° C. for 2 hours. Table 3 shows the physical properties of the obtained AlN sintered body.
得られたAlN焼結体の回路基板としての性能を評価するため、金属回路及び金属放熱板としてアルミニウム板を以下の方法にて接合し、回路パターンを形成した。 In order to evaluate the performance of the obtained AlN sintered body as a circuit board, an aluminum plate was joined as a metal circuit and a metal heat sink by the following method to form a circuit pattern.
AlN焼結体の両面に70×50mm×0.2mmtのロウ合金箔を貼付け、さらにその両面から70×50mm×0.2mmtのアルミニウム板を挟み、それを10枚積層したものをカーボン治具にカーボンネジ締めにより設置した後、620℃で2時間保持してAlN焼結体とアルミニウム板を接合した。接合体の一主面には所定の形状の回路パターンを、もう一方の主面には放熱板パターンを形成させるべく、UV硬化型レジストインクをスクリーン印刷した後、UVランプを照射させてレジスト膜を硬化させた。次いで、レジスト塗布した部分以外を水酸化ナトリウム水溶液でエッチングした後、フッ化アンモニウム水溶液にてレジスト剥離し、図3に記載したようにアルミニウム回路AlN基板を作製した。 A 70 × 50 mm × 0.2 mmt brazing alloy foil is pasted on both sides of the AlN sintered body, and a 70 × 50 mm × 0.2 mmt aluminum plate is sandwiched from both sides, and a laminate of 10 sheets is used as a carbon jig. After installation by tightening with carbon screws, the AlN sintered body and the aluminum plate were joined by holding at 620 ° C. for 2 hours. In order to form a circuit pattern of a predetermined shape on one main surface of the joined body and a heat sink pattern on the other main surface, a UV curable resist ink is screen-printed and then irradiated with a UV lamp to form a resist film. Was cured. Next, after etching the portion other than the resist-coated portion with an aqueous sodium hydroxide solution, the resist was peeled off with an aqueous ammonium fluoride solution to produce an aluminum circuit AlN substrate as shown in FIG.
得られたセラミック回路基板の信頼性を評価するため熱履歴衝撃試験を実施し、1)パターン印刷ズレの有無、2)断面観察による回路面及び放熱板面とAlN基板間の接合クラック発生の有無、3)回路および放熱板部分を溶解後、インクテストによるAlN基板のクラック発生の有無確認を確認した。結果を表4に示す。ここで、接合クラック発生の有無は、熱履歴衝撃試験を実施し、2000サイクル未満にて接合クラックが発生した場合を記号1、2000〜3000サイクルにて接合クラックが発生した場合を記号2、3000サイクルでも接合クラックが発生しない場合を記号3とした。回路基板としては記号2以上が好ましい。
Conduct thermal hysteresis impact test to evaluate the reliability of the obtained ceramic circuit board. 1) Presence of pattern printing misalignment, 2) Presence of occurrence of joint cracks between circuit surface and heatsink surface and AlN substrate by cross-sectional observation 3) After dissolving the circuit and the heat sink, it was confirmed whether or not the AlN substrate was cracked by an ink test. The results are shown in Table 4. Here, the presence / absence of occurrence of a joint crack is determined by performing a thermal hysteresis impact test,
〈使用材料〉
・金属アルミニウム粉末:純度99.97質量%、平均粒径25μm。
・Al2O3:アドマテックス社製、商品名「AO−500」、D50の粉末粒径1.0μm、純度99.9%。
・Y2O3:信越化学工業株式会社製、商品名「Yttrium Oxide」、D50の粉末粒径1.0μm、純度99.9%。
・有機液体バインダー:ユケン工業株式会社製、商品名「セランダー」、主成分アクリル酸エステル、ガラス転移温度−20℃。
・有機バインダー粉末:ダイセル化学工業株式会社製、商品名「CMCダイセル」、主成分カルボキシメチルセルロース。
・可塑剤:花王社製、商品名「エキセパール」、主成分グリセリン。
・離型剤:サンノプコ社製、商品名「ノプコセラLU−6418」、主成分ステアリン酸。
・アルミニウム板:三菱アルミニウム株式会社製、商品名「1085材」(対応JIS番号)。
・ロウ合金箔:東洋精箔株式会社製、商品名「A2017R−H合金箔」(対応JIS番号)。
・UV硬化型レジストインク:互応化学工業株式会社製、商品名「PER−27B−6」。
<Materials used>
Metal aluminum powder: purity 99.97% by mass, average particle size 25 μm.
· Al 2 O 3: Admatechs Co., Ltd., trade name "AO-500", a powder particle size 1.0μm of D50, 99.9% purity.
Y 2 O 3 : manufactured by Shin-Etsu Chemical Co., Ltd., trade name “Yttrium Oxide”, D50 powder particle size 1.0 μm, purity 99.9%.
Organic liquid binder: Yuken Kogyo Co., Ltd., trade name “Cerander”, main component acrylic acid ester, glass transition temperature −20 ° C.
Organic binder powder: manufactured by Daicel Chemical Industries, Ltd., trade name “CMC Daicel”, main component carboxymethylcellulose.
・ Plasticizer: Kao Corporation, trade name “Exepearl”, main component glycerin.
Mold release agent: manufactured by San Nopco, trade name “Nopcocera LU-6418”, main component stearic acid.
Aluminum plate: Mitsubishi Aluminum Co., Ltd., trade name “1085 material” (corresponding JIS number).
-Wax alloy foil: manufactured by Toyo Seiki Co., Ltd., trade name "A2017R-H alloy foil" (corresponding JIS number).
UV curable resist ink: trade name “PER-27B-6” manufactured by Kyoyo Chemical Co., Ltd.
〈測定方法〉
・粒度分布測定:レーザー回折散乱法測定装置(ベックマンコールター社製「LS−230」)、測定可能範囲は0.04〜2000μm、測定原理はレーザー光を粉末に照射し、散乱パターンから粒子の大きさを識別し、散乱の強度から粒子径を測定する。
・ 酸素量測定:HORIBA社製酸素/窒素同時分析装置を用いた。AlN粉末を1500℃にさらし、ガス化した酸素を定量評価する。
・練土粘度:降下式フローテスターにより、せん断応力0.3MPa時の粘度を測定した。
・シート厚みバラツキR:マイクロメーターを用いて、シート幅方向に端から他端へ5mm間隔で厚みを測定し、(3)式より求めた。
<Measuring method>
・ Particle size distribution measurement: Laser diffraction scattering measurement device (“LS-230” manufactured by Beckman Coulter, Inc.), measurable range is 0.04 to 2000 μm, measurement principle is to irradiate powder with laser light, and size of particles from scattering pattern The particle size is measured from the intensity of scattering.
-Oxygen measurement: An oxygen / nitrogen simultaneous analyzer manufactured by HORIBA was used. The AlN powder is exposed to 1500 ° C., and the gasified oxygen is quantitatively evaluated.
-Dough viscosity: Viscosity at a shear stress of 0.3 MPa was measured with a descending flow tester.
Sheet thickness variation R: Using a micrometer, the thickness was measured at intervals of 5 mm from the end to the other end in the sheet width direction, and obtained from the formula (3).
・シート密度:金型プレス後の成形体を用いて(4)式より求めた。
-Sheet density: It calculated | required from (4) Formula using the molded object after metal mold | die press.
・焼結体の収縮率:(5)式より求めた。
-Shrinkage of sintered body: determined from equation (5).
シート化までの日数内訳を以下に記す。粉末と液体の調製に要する日数:0.5日、粉末と液体の混合調製に要する日数:0.5日、混合品の寝かせに要するに日数:3日、混合品の混練に要する日数:1日、混練品の寝かせに要するに日数:3日とした。
・焼結体のL方向およびW方向変形率:(6)式より求めた。
The breakdown of the number of days until sheeting is shown below. Number of days required for preparation of powder and liquid: 0.5 days, number of days required for mixed preparation of powder and liquid: 0.5 days, number of days required for laying mixed product: 3 days, number of days required for kneading mixed product: 1 day The number of days required for laying the kneaded product was set to 3 days.
-L direction and W direction deformation rate of sintered body: determined from equation (6).
・焼結体密度:アルキメデス法により(7)式から算出した。
-Sintered body density: It calculated from Formula (7) by the Archimedes method.
・焼結体の抗折強度:下部スパン30mm、クロスヘッド速度0.5mm/分の条件にて3点曲げ試験(JIS R1601)を行い、その破壊荷重を(8)式により求めた(n=10)。
-Fracture strength of the sintered body: A three-point bending test (JIS R1601) was performed under the conditions of a lower span of 30 mm and a crosshead speed of 0.5 mm / min, and the breaking load was obtained from equation (8) (n = 10).
・焼結体の熱伝導率:AlN基板表面にカーボンスプレー処理を施し、レーザーフラッシュ法にて測定した。
・焼結体の反り量:株式会社東京精密社製触針式輪郭測定器『CONTOURECORD 1600D』を用いて測定した。
・熱履歴衝撃試験:(−25℃、10分→室温、10分→125℃、10分→室温、10分)を1サイクルとして、3000サイクルのヒートサイクルに供試体を晒す試験。
-Thermal conductivity of sintered body: The AlN substrate surface was subjected to carbon spray treatment and measured by a laser flash method.
-Warpage amount of sintered body: Measured using a stylus type contour measuring instrument "CONTOURECORD 1600D" manufactured by Tokyo Seimitsu Co., Ltd.
Thermal history impact test: A test in which a specimen is exposed to a heat cycle of 3000 cycles, with (−25 ° C., 10 minutes → room temperature, 10 minutes → 125 ° C., 10 minutes → room temperature, 10 minutes) as one cycle.
実施例2は、金属回路及び金属放熱板として銅板を使用し、以下の方法で接合したこと以外は、実施例1と同様に行った。結果を表4に併記する。 Example 2 was performed in the same manner as Example 1 except that a copper plate was used as the metal circuit and the metal heat sink, and was joined by the following method. The results are also shown in Table 4.
Ag85質量%、Cu10質量%、Zr2質量%、TiH3質量%からなる混合粉末と、外割で30質量%テルピネオールからなるペースト状混合液をAlN焼結体の両面に塗布し、その両面に70×50mm×0.2mm厚の無酸素銅板を貼付け、それを14枚積層したものをカーボン治具にカーボンネジ締めにより設置を行った後、850℃で2時間保持させてAlN焼結体を銅板で挟んだ接合体を作製した。接合体の一主面には所定の形状の回路パターンを、もう一方の主面には放熱板パターンを形成させるべく、UV硬化型レジストインクをスクリーン印刷した後、UVランプを照射させてレジスト膜を硬化させた。次いで、レジスト塗布した部分以外を塩化第2銅溶液でエッチングした後、フッ化アンモニウム水溶液にてレジスト剥離し、銅回路AlN基板を作製した。 A mixed powder composed of 85% by mass of Ag, 10% by mass of Cu, 2% by mass of Zr, and 3% by mass of TiH, and a paste-like mixed liquid composed of 30% by mass of terpineol as an outer part was applied to both sides of the AlN sintered body, and 70 × An oxygen-free copper plate with a thickness of 50 mm x 0.2 mm was pasted, and 14 layers of the laminate were placed on a carbon jig by tightening carbon screws, and then held at 850 ° C. for 2 hours to hold the AlN sintered body with the copper plate. A sandwiched assembly was produced. In order to form a circuit pattern of a predetermined shape on one main surface of the joined body and a heat sink pattern on the other main surface, a UV curable resist ink is screen-printed and then irradiated with a UV lamp to form a resist film. Was cured. Next, after etching the portions other than the resist-coated portion with a cupric chloride solution, the resist was peeled off with an aqueous ammonium fluoride solution to produce a copper circuit AlN substrate.
〈使用材料〉
無酸素銅板:住友金属鉱山伸銅株式会社製、商品名『3100系』(対応JIS番号)。
<Materials used>
Oxygen-free copper plate: Sumitomo Metal Mining Shindoh Co., Ltd., trade name "3100 series" (corresponding JIS number).
[図1]
1 粉末供給口
2 液体供給口
3 2軸押出機
4 ベント口
5 ストランドダイス
6 真空室
7 ニーダー
8 シートダイス
9 1軸成形機
[Figure 1]
DESCRIPTION OF
[図2]
1 混練スクリュー
2 搬送スクリュー
[Figure 2]
1 Kneading
[図3]
1 回路側金属板
2 放熱側金属板
3 AlN基板
[Fig. 3]
1 Circuit
Claims (2)
(1)窒化アルミニウム粉末、焼結助剤及び有機バインダー粉末からなる混合粉末を2軸押出機の粉末供給部より供給し、
(2)液状の有機バインダー、離型剤及び可塑剤からなる混合液体を2軸押出機の液体供給部より供給し、
(3)2軸押出機内の混練部にて前記混合粉末と混合液体を混練し、
(4)2軸押出機と1軸押出機の間に設けられた真空室内を1333Pa以下に保ち、
(5)シートダイスを取付けた1軸成形機によりシート成形を行う。 As the raw material powder, each of the three regions of 10 to 20 μm, 0.5 to 1.5 μm, and 0.3 μm or less has a maximum value of the particle diameter, and the particle content in the three regions is on a volume basis. Using aluminum nitride powder in the range of 50-70%, 20-40%, 5-20% and oxygen content of 0.6-1.0% by mass, twin screw is in the same direction The discharge port of the rotating twin screw extruder and the raw material supply port of the single screw molding machine whose screw diameter is equal to or larger than the screw diameter of the twin screw extruder are connected, and the connected discharge temperature is 5 in the cooling chiller unit. A method for producing a ceramic sheet, wherein a ceramic sheet having a thickness of 0.2 to 10 mm is formed by the following steps (1) to (5) using an extruder adjusted to -15 ° C.
(1) A mixed powder composed of aluminum nitride powder, a sintering aid and an organic binder powder is supplied from a powder supply unit of a twin screw extruder,
(2) supplying a mixed liquid composed of a liquid organic binder, a release agent and a plasticizer from a liquid supply section of a twin screw extruder;
(3) Kneading the mixed powder and the mixed liquid in a kneading section in the twin-screw extruder,
(4) Keep the vacuum chamber provided between the twin screw extruder and the single screw extruder at 1333 Pa or less,
(5) Sheet forming is performed by a uniaxial molding machine equipped with a sheet die.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004223344A JP4520243B2 (en) | 2004-07-30 | 2004-07-30 | Manufacturing method of ceramic sheet, ceramic substrate using the same, and use thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004223344A JP4520243B2 (en) | 2004-07-30 | 2004-07-30 | Manufacturing method of ceramic sheet, ceramic substrate using the same, and use thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006036615A JP2006036615A (en) | 2006-02-09 |
JP4520243B2 true JP4520243B2 (en) | 2010-08-04 |
Family
ID=35902000
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004223344A Expired - Fee Related JP4520243B2 (en) | 2004-07-30 | 2004-07-30 | Manufacturing method of ceramic sheet, ceramic substrate using the same, and use thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4520243B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000086213A (en) * | 1998-09-16 | 2000-03-28 | Toyo Alum Kk | Aluminum nitride powder |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60141511A (en) * | 1983-12-29 | 1985-07-26 | 株式会社村田製作所 | Soil kneader |
JPH03104607A (en) * | 1989-09-19 | 1991-05-01 | Hitoshi Nagai | Vacuum pugmill |
JPH06227868A (en) * | 1993-02-01 | 1994-08-16 | Sumitomo Kinzoku Ceramics:Kk | Aluminum nitride powder for forming green sheet and its production |
JP3771950B2 (en) * | 1995-07-03 | 2006-05-10 | 株式会社トクヤマ | Aluminum nitride green sheet |
-
2004
- 2004-07-30 JP JP2004223344A patent/JP4520243B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000086213A (en) * | 1998-09-16 | 2000-03-28 | Toyo Alum Kk | Aluminum nitride powder |
Also Published As
Publication number | Publication date |
---|---|
JP2006036615A (en) | 2006-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5042829B2 (en) | Manufacturing method of ceramic sheet | |
JP5339214B2 (en) | Method for manufacturing silicon nitride substrate and silicon nitride substrate | |
JP4804343B2 (en) | Manufacturing method of ceramic sheet | |
EP1914213B1 (en) | Silicon nitride circuit board | |
CN113632217A (en) | Silicon nitride substrate, silicon nitride-metal composite, silicon nitride circuit substrate and semiconductor package | |
JP2002171037A (en) | Ceramic circuit board and method of manufacturing the same | |
CN112912356B (en) | Method for manufacturing silicon nitride substrate and silicon nitride substrate | |
JP4347206B2 (en) | Manufacturing method of ceramic sheet, ceramic substrate using the same, and use thereof | |
JP4520243B2 (en) | Manufacturing method of ceramic sheet, ceramic substrate using the same, and use thereof | |
WO2023038151A1 (en) | Method for producing boron nitride sintered body, and boron nitride sintered body | |
JP4339212B2 (en) | Manufacturing method of ceramic substrate and use thereof | |
JP4593062B2 (en) | Aluminum nitride sintered body and method for producing the same | |
JP4850667B2 (en) | Aluminum nitride sintered body and manufacturing method thereof | |
JP4510579B2 (en) | Manufacturing method of ceramic sheet | |
JP5073135B2 (en) | Aluminum nitride sintered body, production method and use thereof | |
JP2001019555A (en) | Silicon nitride sintered body and circuit board using the same | |
JP7322323B1 (en) | Boron nitride sintered body and composite | |
JP4142556B2 (en) | Aluminum nitride sintered body, manufacturing method and use thereof | |
JP2023050453A (en) | Ceramic substrate, ceramic circuit board, and method of manufacturing ceramic substrate | |
JP5031147B2 (en) | Method for producing aluminum nitride sintered body | |
JPH10310475A (en) | Aluminum nitride sintered compact and its use | |
JP3461644B2 (en) | Aluminum nitride sintered body, its manufacturing method and circuit board | |
JP2002053377A (en) | Silicon nitride molded body, method for producing silicon nitride sintered body using the same, and silicon nitride sintered body | |
JP3578579B2 (en) | Aluminum nitride sintered body and its use | |
JP2007186385A (en) | Aluminum nitride sintered body and aluminum nitride circuit board using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080616 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080708 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080715 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090519 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090617 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091209 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091218 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100518 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100520 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130528 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4520243 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130528 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |