[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0737133A1 - Thermisches auftragsverfahren für hydrophile schichten auf hydrophoben substraten und verwendung so beschichteter substrate als trägerkörper für offsetdruckplatten - Google Patents

Thermisches auftragsverfahren für hydrophile schichten auf hydrophoben substraten und verwendung so beschichteter substrate als trägerkörper für offsetdruckplatten

Info

Publication number
EP0737133A1
EP0737133A1 EP95904503A EP95904503A EP0737133A1 EP 0737133 A1 EP0737133 A1 EP 0737133A1 EP 95904503 A EP95904503 A EP 95904503A EP 95904503 A EP95904503 A EP 95904503A EP 0737133 A1 EP0737133 A1 EP 0737133A1
Authority
EP
European Patent Office
Prior art keywords
grain size
microns
mixtures
oxide powder
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95904503A
Other languages
English (en)
French (fr)
Other versions
EP0737133B1 (de
Inventor
Heinrich Kühn
Dieter Jaculi
Engelbert Pliefke
Ulrich Bos
Werner Frass
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agfa Gevaert AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE4344692A external-priority patent/DE4344692A1/de
Priority claimed from DE4401059A external-priority patent/DE4401059A1/de
Application filed by Hoechst AG filed Critical Hoechst AG
Publication of EP0737133A1 publication Critical patent/EP0737133A1/de
Application granted granted Critical
Publication of EP0737133B1 publication Critical patent/EP0737133B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/14Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying for coating elongate material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/006Printing plates or foils; Materials therefor made entirely of inorganic materials other than natural stone or metals, e.g. ceramics, carbide materials, ferroelectric materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N3/00Preparing for use and conserving printing surfaces
    • B41N3/03Chemical or electrical pretreatment
    • B41N3/032Graining by laser, arc or plasma means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides

Definitions

  • the invention relates to a thermal method for applying hydrophilic ceramic layers on carrier materials for printing plates. Due to the achievable surface topography, this hydrophilized carrier material is particularly well suited for coating with light-sensitive layers, from which printing plates can be produced, which after exposure and development result in printing forms with a uniform topography, high circulation stability and good dampening solution management.
  • the printing plates most frequently used for the offset printing process usually consist of a carrier material onto which a light-sensitive layer is applied in a non-stick manner. This layer is exposed, after which the non-image portion must be removed from the surface without residue. Due to the remaining hydrophobic layer (part of the image), ink can be applied to the product to be printed, but this is only guaranteed if water is present in the area of the non-image areas. For a high quality print image, wettability with water (hydrophilic property) in the area of the non-image areas is of crucial importance. Alumina is known to have such properties.
  • DE-AS-13 00 579 has disclosed a method in which a plasma is generated by an electric arc between a heat-resistant electrode and a metallic carrier material in a protective gas jacket, with the aid of which printing plates are roughened with small amounts of waste, and by adding materials the surface can be modified so that it has an improved hydrophilicity.
  • this method is difficult to implement in practice, since it is very dependent on the intensities of the transmitted arcs, which are determined by several factors.
  • DE-AS-23 48 717 has disclosed a further method for applying layers containing dampening solution to printing plates for the offset printing method.
  • Layers of sparingly or insoluble carbonates, silicates or quartz are provided, which are applied to roughened carriers by the plasma spraying process and then ground to produce the appropriate roughness.
  • the image portion area is obtained by partially removing the coating.
  • this method is very complex.
  • the aim of the present invention was to provide a thermal coating process for hydrophilizing surfaces in which not only aluminum supports but also other metals such as steels and other non-ferrous metals and alloys or even plastics can be coated in a controllable and adhesive manner.
  • the residues are to be reduced to a minimum and should be created so that recycling is easily possible.
  • the aim is achieved according to the invention by a method of the type mentioned at the outset, the characteristic features of which are that, in a first treatment step, a surface roughness R a in the range from 0.3 to 1.5 ⁇ m is produced on the surface of the carrier film by mechanical micro-roughening and that the carrier film is then coated by thermal spraying of powdery oxides and / or oxidic mixtures and compounds with an average grain size in the range from -40 to + 1 ⁇ m with a permanently stable, hydrophilic coating.
  • grain size specifications of the type -40 to + 1 ⁇ m mean that there are no particles with a grain size of greater than 40 ⁇ m and no particles with a grain size of less than 1 ⁇ m in the powder with the corresponding grain size specification.
  • the hydrophilic layer applied according to the invention fulfills several functions which have a positive effect when coated with photosensitive resins and when used as offset printing plates.
  • FIG. 1 schematically shows a process sequence with the enlarged surface states.
  • a metal or plastic film 1 as a base support for offset printing plates is continuously unwound from a roll 2 at a constant belt speed, the base support preferably having a thickness in the range from 100 to 500 ⁇ m, particularly preferably from 120 to 350 ⁇ m, and a thickness tolerance of ⁇ 2% with scratch and scar-free surface that is free of coarse organic or mineral residues.
  • Aluminum and its alloys of the preferred composition or stainless steels or refined steels can be provided as metallic materials. Other metallic materials that resist corrosion by the dampening solution and that fulfill the mechanical properties can also be used.
  • Thermoplastic polyesters can preferably be used as plastics, polyethylene terephthalate-containing homopolymers and copolymers and mixtures thereof with other polyesters or polyamides being particularly suitable.
  • the plastics may also contain fillers in an amount of up to 5% by weight, inorganic fillers such as alumina, titanium dioxide and / or aluminum oxide being particularly suitable. There is preferably at least 1.5% by weight of fillers in the plastic.
  • the basic carrier 1 is guided over a freely rotating, vertically guided movable roller 3 to accommodate speed compensation and to ensure the largest possible wrap angle for the treatment roller 4 arranged thereafter.
  • the form-fitting base body 1 is mechanically roughened according to the invention in a first working step in such a way that a micro-rough surface is produced without damaging the base body by warping.
  • Sandblasting processes for rust removal, for removing paint layers or for solidifying surfaces are already known, but it was surprising that thin films can be provided with particularly uniform micro-rough surface topographies with little distortion.
  • a 'pressure jet method' is advantageously used, in which the jet pressure is in the range from 0.5 to 2 bar, preferably from 0.6 to 1.5 bar.
  • the distance of the nozzle from the base body 1 is in the range from 50 to 150 mm, preferably from 50 to 80 mm.
  • Sharp-edged blasting media are particularly suitable as blasting media, in particular mineral blasting media such as Al2O3 or corundum with a grain size in the range from 10 to 100 ⁇ m, preferably from 20 to 50 ⁇ m.
  • the amount of abrasive is 500 to 1000 g / irr base carrier, which is dosed consistently.
  • the metering is advantageously carried out by rotating mechanical metering devices.
  • the blasting device 5 which can optionally also comprise a plurality of nozzles, is moved parallel to the longitudinal axis 6 of the treatment roller 4 at a speed of 1000 to 2000 mm / s. After the blasting process, the surface of the base body is freed of dusts.
  • a wear-resistant body with small masses and a flexible rubber pad can be provided as the roller 3.
  • the base body belt 1 has a micro-rough surface 7 with a roughness R a of 0.5 to 1.5 ⁇ m, preferably 0.2 to 1.0 ⁇ m, and can be carried out continuously or in increments to the coating station, plasma spraying, be performed.
  • the thermal spray process, plasma spraying with a plasma torch 10 in a natural ambient atmosphere with a non-transmitted arc acc. DIN 32530, is known as technology for the application of thick layers.
  • Oxide layers, on rotationally symmetrical parts or a surface or partial surface coating with robots by repeated painting, in thicknesses of 50 to 500 ⁇ m are state of the art.
  • the base support 1 which can have a width of 500 to 2000 mm, is applied for coating by plasma spraying continuously or cyclically in accordance with the spray jet width, which can be 6 to 12 mm in the zenith, by a driven treatment roller 8 at a speed in the range of 5 to 50 mm / s moved under the hot gas jet of the plasma torch 10.
  • the use of several plasma spray guns is particularly advantageous and increases the coating speed many times over, depending on the number of guns.
  • an area in the range from 300 to 1000 nr / h can be coated.
  • the roller body of the treatment roller 8 which may consist of steel, aluminum or other metal alloys, also has the task of absorbing and dissipating the heat from the thermal process with which the base support for printing plates is inevitably applied. Additional cooling of the roll body with heat-dissipating flow media, avoiding falling below the dew point, results in trouble-free process control.
  • Ceramic powder is added by a metering device 12, 13 into the hot gas jet of the plasma torch, which is moved parallel to the longitudinal axis 11 of the treatment roller 8 over the base support 1 at a speed of 1000 to 2000 mm / s in a uniform, undulating or oscillating manner.
  • plasma spray layers with a thickness of 5 to 20 ⁇ m and with a layer thickness tolerance of ⁇ 5% can be applied.
  • the layers have an adhesion which corresponds to the "film test" as is usual in electroplating. Adhesive strips are pressed onto the coated surface and then jerkily removed again perpendicular to the coating plane. The coating material must not adhere to the adhesive layer. The layers cannot be removed by flaking the base body 1 through an angle of 90 °.
  • Argon and nitrogen can be used as the plasma-forming hot gases.
  • Gas mixtures such as argon-nitrogen, nitrogen-hydrogen or particularly advantageously argon-hydrogen are advantageously used.
  • the electrical power introduced is advantageously 20 to 50 KW, particularly advantageously 25 to 35 KW.
  • a very fine powder with an average grain size of ⁇ 20 ⁇ m is used to produce a layer with a roughness R g of 1 to 2 ⁇ m. Powders with an average grain size of 5 to could be particularly advantageous 12 ⁇ m can be used.
  • a second powder fraction with a grain size of 20 to 40 ⁇ m, which is expediently added separately, has the effect that, from the basic roughness 14, individual tips 15 that can be controlled in the amount and are distributed statistically uniformly over the surface can be produced.
  • the grains can have a different chemical composition, such as round layer AI2O3 - tips AI2O3 + 3%
  • aluminum oxides and mixtures or compounds with other oxides can preferably be used which, according to the invention, give a light absorption factor of 50 to 70% on the surface of the layer.
  • aluminum alloys such as. B. AlSi, AlMg or Al-Si-Fe and perlet or sintered mixtures with these compositions by oxidation of fine powders, the preferred grain sizes ⁇ 20 microns, oxidic mixtures or compounds with hydrophilic layer properties are generated.
  • powdered oxides of the type described as such but optionally also powdered metals which oxidize in the plasma jet, or a combination of these.
  • the layer combination of base body and thermally applied hydrophilic ceramic layer has a different hydrophilicity and an increased wear resistance in comparison to the oxide mixtures of metals generated in the plasma gas jet.
  • cleaning 16 is expediently carried out by blowing off and sucking off the non-adhering particles. Analogous to the sandblasting process, these can also be returned to the material cycle together with the dusts that are generated in the plasma spraying process.
  • the cleaned tapes are then coated at a coating station 17 on the hydrophilized surface 19 with a light-sensitive layer 18. The coated strips are then dried and, if necessary, exposed to tempering processes.
  • the printing plates can be cut to their final size from the ribbon material.
  • the actual formatting into printing plates takes place in the printing houses, according to known processes.
  • a rolled aluminum foil tape WSt. No. 3.0205 with a thickness of 300 ⁇ m and a width of 1600 mm was subjected to a sandblasting process in a first step.
  • Two blasting nozzles with a diameter of 8 mm were moved at a distance of 60 mm parallel to the longitudinal axis of the sandblasting roller at a speed of 1.5 mm / s over the film strip.
  • the sandblasting roller itself moved at a speed of 25 mm / s.
  • the abrasive was dosed through a rotating disc with a metering groove in such a way that the film strip with a quantity of abrasive 700 g / m 2 was applied.
  • the amount of compressed air was 250 m 3 / h at a pressure of 1.2 bar.
  • the blasting material used was conveyed to a dust screening system, where dusts with a particle diameter of ⁇ 3 ⁇ m were removed from the blasting medium.
  • the dust-free abrasive was then used again. This measure reduced the total abrasive consumption to 35 g / m.
  • the sheet had a roughness R a of 0.92 ⁇ m measured in accordance with DIN 4768.
  • the cleaned film strip was then coated with a powder combination of 99.5% aluminum oxide, aluminum titanium oxide 97: 3, and partially oxidized aluminum using the plasma spraying process.
  • the grain size of the aluminum oxide was -12 ⁇ m + 5 ⁇ m (designation powder A)
  • the aluminum oxide with 3% titanium oxide had a grain size of -40 ⁇ m + 20 ⁇ m (designation powder B).
  • a mixture with 95% powder A and 5% powder B was produced from these oxides (designation powder C).
  • the grain size of the aluminum was -20 ⁇ m + 5 ⁇ m (designation powder D).
  • a gas mixture of 8% hydrogen and 92% argon was used to generate the hot gas jet (plasma flame), and the electrical power was 28 kW. Powder C and D were injected separately into the plasma flame.
  • the plasma flame was moved over the film strip at a distance of 70 mm at a speed of 1800 mm / sec.
  • the film strip was moved discontinuously by a water-cooled roller in steps of 12 mm, which are triggered by the guide unit of the plasma flame.
  • the water temperature of the roll was + 10 ° C, the wrap angle 180 ° and the contact force of the film was 10 N.
  • the layer produced in this way had a layer thickness of 10 ⁇ m and a surface roughness R a of 1.2 to 1.5 ⁇ m (DIN 4768 ).
  • the adhesion of the layer was tested with an adhesive film and showed very good adhesion.
  • the hydrophilized film strip was then coated with a light-sensitive layer, exposed and developed into a printing plate.
  • the printing plate obtained had good quality in a printing test and has the following features:
  • Example 1 An aluminum foil strip as in Example 1 was moved with the same machine order as in Example 1.
  • the hydrophilic layer was applied by the high speed flame spraying process.
  • a powder C and D as in Example 1 was used in the burner.
  • Powder C was injected directly into the center of the flame, using acetylene in an amount of 4,400 l / h and oxygen in an amount of 6,200 l / h as the fuel gas.
  • Powder D was injected into the flame before the burner. 5 burners were mounted on the traverse unit so that a width of 75 mm could be coated at the same time.
  • the burner distance was 200 mm.
  • the layer thus produced has microns a layer thickness of 10 to 12 and a roughness R a 1, 2 to 1, 5 .mu.m. Examination of the adhesive strength of the applied layer with an adhesive strip showed very good adhesion. Processing into a printing plate was carried out analogously to Example 1.
  • Example 3 A powder C and D as in Example 1 was used in the burner.
  • Powder C
  • a biaxially stretch-oriented and heat-fixed sheet of polyethylene terephthalate with a thickness of 300 ⁇ m and a width of 1600 mm was subjected to micro-roughening as indicated in Example 1.
  • the blasted surface was cleaned by blowing it off with dry compressed air, but without organic solvents, and had a non-purple, fine-grained, micro-rough surface topography with a roughness R a of 0.8 to 1.2 ⁇ m, measured according to DIN 4768.
  • the blasted film strip was then led to the plasma injection station. There it was positively pressed with a force of 10 N onto a roll cooled with water to a temperature of + 10 ° C.
  • the roller spun at a uniform speed of 25 mm / s under two plasma torches, which themselves were horizontal, i.e. parallel to the longitudinal axis of the roll, were moved back and forth at a speed of 2000 mm / s.
  • the distance between the burners and the film tape was 100 mm.
  • a gas mixture of 10% by volume hydrogen and 90% by volume argon was used to operate the plasma flame, and the electrical power was 28 KW.
  • a mixture of powder D and powder C (name as in Example 1) in a mixing ratio of 30:70 was introduced into the plasma flame from two separate metering systems. The total amount of powder was adjusted so that with a powder efficiency of 90% a uniform layer with a thickness of 5 microns is formed. The thickness fluctuation of the layer produced in this way was ⁇ 5%.
  • the surface roughness R a of the layer was 0.95 ⁇ m, measured in accordance with DIN 4768.
  • the color location determination gave an L value of 75, measured with the Cielab system in accordance with DIN 5033.
  • the number of peaks in the range between 3 to 10 ⁇ m was 1000 / m 2 , determined by means of image analysis.
  • the adhesion of the layer was tested with an adhesive film as in Example 1 and found that it was not possible to peel off parts of the layer through the adhesive film perpendicular to the layer plane and starting from the outer edge, ie very good adhesion.
  • the hydrophilized film tape was then coated with a positive diazo copy layer, exposed and developed into a printing plate.
  • the printing plate obtained had a high quality in a printing test and has the following features:
  • Example 1 An aluminum foil strip as in Example 1 was coated with a conventional aluminum powder with a grain size - 80 + 40 ⁇ m and a conventional aluminum oxide powder with a grain size - 53 + 10 ⁇ m by the plasma spraying process.
  • the two grits were mixed in a weight ratio of 1: 1 and injected into the plasma flame.
  • Common parameters were used as they can be found in data sheets from plant manufacturers for coating oxides.
  • An argon-hydrogen mixture with 75 vol.% Argon and 25 vol.% Hydrogen with an electrical output of 37 KW is recommended.
  • the layer had a roughness R a of 4 ⁇ m (DIN 4768) and an uneven composition, since the lightly melting aluminum adhered to the injector and detached itself in larger flat forms as melting material and as peak-shaped elevation was deposited on the film tape.
  • R a 4 ⁇ m
  • the printing plate produced therefrom as in Example 1 only the 25 ⁇ m lines in the UGRA test were reproduced intact. Furthermore, punctiform portions of the image remained in the area of the non-image areas due to the high roughness.
  • the printing plates produced in this way do not meet the quality standards of offset printers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Printing Plates And Materials Therefor (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Manufacture Or Reproduction Of Printing Formes (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur mechanischen Mikroaufrauhung und einer anschließenden thermischen Auftragung von hydrophilen Schichten auf Trägerfolien für Offsetdruckplatten, bei dem ein Folienband aus Kunststoff oder Metall mit narbenfreier, fettarmer Oberfläche mechanisch so aufgerauht wird, daß eine gut verklammerbare mikrorauhe Oberfläche entsteht, und bei dem dann diese Oberfläche durch Plasmaspritzen von pulverförmigen Oxiden und/oder oxidischen Gemischen und Verbindungen mit einer dünnen, dauerbeständing festhaftenden, hydrophilen Schicht überzogen wird.

Description

Thermisches Auftragsverfahren für hydrophile Schichten auf hydrophoben Substraten und Verwendung so beschichteter Substrate als Trägerkörper für Offsetdruckplatten
Die Erfindung betrifft ein thermisches Verfahren zur Auftragung von hydrophilen Keramikschichten auf Trägermaterialien für Druckplatten. Dieses hydrophilierte Trägermaterial eignet sich aufgrund der erzielbaren Oberflächentopographie besonders gut zum Beschichten mit lichtempfindlichen Schichten, aus denen Druckplatten hergestellt werden können, die nach Belichtung und Entwicklung Druckformen mit gleichmäßiger Topographie, hoher Auflagenstabilität und guter Feuchtmittelführung ergeben.
Die am häufigsten verwendeten Druckplatten für das Offsetdruckverfahren be¬ stehen üblicherweise aus einem Trägermaterial auf das eine lichtempfindliche Schicht haftfest aufgebracht wird. Diese Schicht wird belichtet, wonach der Nichtbildstellenanteil rückstandsfrei von der Oberfläche entfernt werden muß. Durch die zurückbleibende hydrophobe Schicht (Bildanteil) kann Farbe auf das zu bedruckende Produkt aufgetragen werden, was jedoch nur dann gewährleistet ist, wenn im Bereich der Nichtbildstellen Wasser vorhanden ist. Für ein qualitativ hochwertiges Druckbild ist die Benetzbarkeit mit Wasser (hydrophile Eigenschaft) im Bereich der Nichtbildstellen von entscheidender Bedeutung. Es ist bekannt, daß Aluminiumoxid solche Eigenschaften besitzt.
Daher ist es naheliegend, Trägermaterialien aus Aluminium zu verwenden, diese zur besseren Verklammerung des Druckbildes aufzurauhen und die Oberflächen zu oxidieren. Chemische oder elektrochemische Verfahren, auch in Kombination mit mechanischen Verfahren zur Aufrauhung von Reinaluminium sind beispielsweise aus der DE-A-34 13 899 bekannt geworden. Die mehrstufigen Verfahren sind an eine gleichmäßige Aluminiumzusammensetzung an der Trägeroberfläche gebunden, um zu gewährleisten, daß bei geregelter chemischer Prozeßführung eine gleichmäßige Oberflächentopographie frei von Narben entsteht. Die Entsorgung der Bäder und des anfallenden Feststoffanteils sind als Negativfaktoren zu betrachten.
Durch DE-AS-13 00 579 ist ein Verfahren bekannt geworden, bei dem durch einen elektrischen Lichtbogen zwischen einer hitzebeständigen Elektrode und einem metallischen Trägermaterial in einem Schutzgasmantel ein Plasma erzeugt wird, mit dessen Hilfe Druckplatten mit geringen Abfallmengen aufgerauht, und durch Zugabe von Materialien die Oberfläche so modifiziert werden kann, daß sie eine verbesserte Hydrophile aufweist. Dieses Verfahren läßt sich in der Praxis jedoch schwer realisieren, da es sehr stark von den durch mehrere Faktoren bestimmten Intensitäten der übertragenen Lichtbögen abhängig ist.
Aus der DE-AS-23 48 717 ist ein weiteres Verfahren zur Auftragung von feuchtmittelführenden Schichten auf Druckplatten für das Offsetdruckverfahren bekanntgeworden. Es sind Schichten aus schwer- oder unlöslichen Carbonaten, Silikaten oder Quarz vorgesehen, die nach dem Plasmaspritzverfahren auf aufgerauhte Träger aufgebracht, und dann zur Erzeugung der geeigneten Rauheit geschliffen werden. Die Bildanteilsfläche wird durch teilweises Entfernen der Beschichtung erhalten. Dieses Verfahren ist jedoch, bedingt durch die mechanische Bearbeitung und den Ätzvorgang zur Entfernung der Schicht, sehr aufwendig.
Ziel der vorliegenden Erfindung war es, ein thermisches Beschichtungsverfahren zur Hydrophilierung von Oberflächen bereitzustellen, bei dem nicht nur Aluminiumträger sondern auch sonstige Metalle wie Stähle und andere Nichteisenmetalle und Legierungen oder sogar Kunststoffe sicher beherrschbar und haftfest beschichtet werden können. Die Reststoffe sind auf ein Minimum zu reduzieren und sollen so anfallen, daß eine Wiederverwertung leicht möglich ist. Das Ziel wird erfindungsgemäß durch ein Verfahren der eingangs genannten Gattung erreicht, dessen Kennzeichenmerkmale darin bestehen, daß in einem ersten Behandlungsschritt auf der Oberfläche der Trägerfolie durch mechanische Mikroaufrauhung eine Oberflächenrauheit Ra im Bereich von 0,3 bis 1 ,5 μm erzeugt wird und daß die Trägerfolie dann durch thermisches Spritzen von pulverförmigen Oxiden und/oder oxidischen Gemischen und Verbindungen mit einer mittleren Korngröße im Bereich von -40 bis + 1 μm mit einem dauerbeständig gut haftenden hydrophilen Überzug beschichtet wird.
Korngrößenangaben der Art -40 bis + 1 μm bedeuten im Rahmen der vorliegenden Erfindung, daß in dem Pulver mit der entsprechenden Korngrößenangabe keine Teilchen mit einer Korngröße von größer als 40 μm und keine Teilchen mit einer Korngröße von kleiner als 1 μm vorhanden sind.
Die erfindungsgemäß aufgetragene hydrophile Schicht erfüllt mehrere Funktionen, die bei der Beschichtung mit lichtempfindlichen Harzen und der Verwendung als Offsetdruckplatten von positiver Wirkung sind.
Für Fachleute war es überraschend, daß sich besonders dünne, flexible und abriebsbeständige Beschichtungen mit geringen Schichtdickentoleranzen ohne mechanische Bearbeitung so auftragen lassen, daß eine in der Kernrauhtiefe (Begriff angelehnt an DIN 4776) gleichmäßige Oberfläche entsteht. Die Oberfläche ist insbesondere so gestaltet, daß statistisch gut verteilte punktförmige Vertiefungen entstehen die so ausgebildet sind, daß die darauf aufgebrachte lichtempfindliche Harzschicht zur Erzeugung des Bildanteils haftfest verklammert werden kann. Ein weiterer Effekt, der sich positiv bei der Belichtung bemerkbar macht, wurde dadurch erreicht, daß statistisch gut verteilte Spitzen aus der Kernrauhtiefe erreicht werden können. Weitere Vorteile dieses Verfahrens sind darin zu sehen, daß mit der gleichen Maschinenanordnung die unterschiedlichsten Trägermaterialien wie Kunststoffe oder Metalle Verwendung finden können, und von ihrer chemischen Zusammensetzung unterschiedliche Beschichtungsstoffe auf den jeweiligen Anwendungsfall zugeschnitten eingesetzt werden können. Die entstehenden Abfallstoffe können sortenrein und trocken erfaßt und in den Stoffkreislauf zurückgeführt werden.
Die nachfolgende Beschreibung bevorzugter Ausführungsformen der Erfindung dient im Zusammenhang mit der Zeichnung der näheren Erläuterung.
Die Fig. 1 zeigt schematisch einen Verfahrensablauf mit den vergrößerten Oberflächenzuständen.
Eine Metall- oder Kunststoffolie 1 als Grundträger für Offsetdruckplatten wird von einer Rolle 2 kontinuierlich mit gleichbleibender Bandgeschwindigkeit abgewickelt, wobei der Grundträger vorzugsweise eine Dicke im Bereich von 100 bis 500 μm, besonders bevorzugt von 120 bis 350 μm, besitzen soll sowie eine Dickentoleranz von ± 2 % mit kratzer- und narbenfreier Oberfläche die frei von groben organischen oder mineralischen Rückständen ist. Als metallische Werkstoffe können Aluminium und seine Legierungen der bevorzugten Zusammensetzung oder Edelstahle oder veredelte Stähle vorgesehen sein. Es können auch andere metallische Werkstoffe, die der Korrosion durch das Feuchtmittel widerstehen und die mechanischen Eigenschaften erfüllen, Verwendung finden.
Als Kunststoffe können vorzugsweise thermoplastische Polyester eingesetzt werden, wobei polyethylenterephthalathaltige Homo- und Copolymere sowie Mischungen davon mit anderen Polyestern oder Polyamiden besonders geeignet sind. Die Kunststoffe können ferner noch Füllstoffe in einer Menge von bis zu 5 Gew.-% enthalten, wobei anorganische Füllstoffe wie Tonerde, Titandioxid und/oder Aluminiumoxid besonders geeignet sind. Vorzugsweise befinden sich wenigstens 1 ,5 Gew.-% Füllstoffe in dem Kunststoff. Der Grundträger 1 wird über eine frei drehende, vertikal geführte bewegliche Rolle 3 zur Aufnahme eines Geschwindigkeitsausgleiches und zur Sicherstellung eines möglichst großen Umschlingungswinkels für die im Anschluß daran angeordnete Behandlungsrolle 4 geführt. Auf der Behandlungsrolle 4 wird der formschlüssig anliegende Grundkörper 1 erfindungsgemäß in einem ersten Arbeisschritt mechanisch so aufgerauht, daß eine mikrorauhe Oberfläche entsteht, ohne den Grundkörper durch Verzüge zu schädigen. Sandstrahlverfahren zum Entrosten, zur Entfernung von Lackschichten oder zur Verfestigung von Oberflächen sind zwar schon bekannt, es war aber überraschend, daß sich dünne Folien verzugsarm mit besonders gleichmäßigen mikrorauhen Oberflächentopographien versehen lassen.
Erfindungsgemäß wird vorteilhafterweise ein 'Druckstrahlverfahren' eingesetzt, bei dem der Strahldruck im Bereich von 0,5 bis 2 bar, vorzugsweise von 0,6 bis 1 ,5 bar, liegt. Der Abstand der Düse von dem Grundkörper 1 liegt im Bereich von 50 bis 150 mm, vorzugsweise von 50 bis 80 mm. Als Strahlmittel sind scharfkantige Strahlmittel besonders geeignet, insbesondere mineralische Strahlmittel wie AI2O3 oder Korund mit einer Korngröße im Bereich von 10 bis 100 μm, vorzugsweise von 20 bis 50 μm. Die Strahlmittelmenge beträgt dabei 500 bis 1000 g/irr- Grundträger, wobei diese gleichbleibend dosiert wird. Die Dosierung wird vorteilhaft durch rotierende mechanische Dosiervorrichtungen vorgenommen. Die Strahlvorrichtung 5, die gegebenenfalls auch mehrere Düsen umfassen kann, wird parallel zur Längsachse 6 der Behandlungswalze 4 mit einer Geschwindigkeit von 1000 bis 2000 mm/s bewegt. Nach dem Strahlvorgang wird die Oberfläche des Grundkörpers von Stäuben befreit.
Als Rolle 3 kann ein verschleißbeständiger Körper mit geringen Massen mit einer flexiblen Gummiauflage vorgesehen sein. Das Grundkörperband 1 besitzt nach der erfindungsgemäßen Aufrauhbehandlung eine mikrorauhe Oberfläche 7 mit einer Rauheit Ra von 0,5 bis 1 ,5 μm, vorzugsweise von 0,2 bis 1 ,0 μm, und kann kontinuierlich oder in Taktschritten zur Beschichtungsstation, dem Plasmaspritzen, geführt werden.
Das thermische Spritzverfahren, Plasmaspritzen mit einem Plasmabrenner 10 in natürlicher Umgebungsatmosphäre mit einem nichtübertragenen Lichtbogen gem. DIN 32530, ist als Technologie zur Auftragung von Dickschichten bekannt. Oxidische Schichten, auf rotationssymetrischen Teilen oder eine Flächen- oder Teilflächenbeschichtung mit Robotern durch mehrmaliges Überstreichen, in Dicken von 50 bis 500 μm sind Stand der Technik.
Das kontinuierliche Beschichten von bandförmigen dünnen Folien mit oxidischen hydrophilen Schichten durch Plasmaspritzen in Dicken von < 20 μm zur Verwendung als Druckplatten, ist in der WO 94/5507 beschrieben, dort findet der Fachmann aber keinen Hinweis auf die erfindungsgemäße Mikroaufrauhung.
Der Grundträger 1 , der eine Breite von 500 bis 2000 mm haben kann, wird zur Beschichtung durch Plasmaspritzen kontinuierlich oder taktförmig entsprechend der Spritzstrahlbreite, die im Zenit 6 bis 12 mm betragen kann, formschlüssig anliegend von einer angetriebenen Behandlungswalze 8 mit einer Geschwindigkeit im Bereich von 5 bis 50 mm/s unter dem heißen Gasstrahl des Plasmabrenners 10 hindurchbewegt.
Eine Verwendung von mehreren Plasmaspritzbrennern ist besonders vorteilhaft und steigert die Beschichtungsgeschwindigkeit um das Vielfache, entsprechend der Brenneranzahl. So kann z.B bei einer besonders vorteilhaften Verwendung von 10 Plasmaspritzbrennern eine Fläche im Bereich von 300 bis 1000 nr /h beschichtet werden. Der Walzenkörper der Behandlungswalze 8, der aus Stahl, Aluminium oder sonstigen Metallegierungen bestehen kann, hat ferner die Aufgabe die Wärme aus dem thermischen Prozeß, mit der der Grundträger für Druckplatten zwangsläufig beaufschlagt wird, aufzunehmen und abzuleiten. Eine zusätzliche Kühlung des Walzenkörpers mit wärmeableitenden Fließmedien, wobei eine Taupunktsunterschreitung zu vermeiden ist, bewirkt eine störungsfreie Prozeßführung.
In den heißen Gasstrahl des Plasmabrenners, der parallel zur Längsachse 11 der Behandlungswalze 8 über den Grundträger 1 mit einer Geschwindigkeit von 1000 bis 2000 mm/s gleichförmig, wellenförmig oder oszillierend bewegt wird, wird keramisches Pulver durch eine Dosiervorrichtung 12, 13 zugegeben.
Erfindungsgemäß können so Plasmaspritzschichten mit einer Dicke von 5 bis 20 μm und mit einer Schichtdickentoleranz von ± 5 % aufgetragen werden. Die Schichten besitzen eine Haftfähigkeit die dem "Filmtest", wie er in der Galvanik üblich ist, entsprechen. Dabei werden Klebestreifen auf die beschichtete Oberfläche angepreßt und danach ruckartig wieder senkrecht zu der Beschichtungsebene abgezogen. Dabei darf das Beschichtungsmaterial an der Klebeschicht nicht anhaften bleiben. Die Schichten können durch Biegen des Grundkörpers 1 um einen Winkel von 90° nicht durch Abplatzen entfernt werden.
Als plasmabildende heiße Gase können Argon und Stickstoff Verwendung finden. Vorteilhaft werden Gasgemische wie Argon-Stickstoff, Stickstoff-Wasserstoff oder besonders vorteilhaft Argon-Wasserstoff eingesetzt. Die eingebrachte elektrische Leistung beträgt vorteilhaft 20 bis 50 KW, besonders vorteilhaft 25 bis 35 KW.
Erfindungsgemäß wird zur Erzeugung einer Schicht mit einer Rauheit Rg von 1 bis 2 μm ein sehr feines Pulver mit einer mittleren Korngröße < 20 μm eingesetzt. Besonders vorteilhaft konnten Pulver mit einer mittleren Korngröße von 5 bis 12 μm eingesetzt werden. Eine zweite Pulverfraktion mit einer Körnung von 20 bis 40 μm, die zweckmäßigerweise getrennt zugegeben wird, bewirkt, daß sich aus der Grundrauhigkeit 14 heraus einzelne in der Menge steuerbare, statistisch gleichmäßig über die Oberfläche verteilte Spitzen 15 erzeugen lassen. In dieser Schichtkombination können die Körnungen eine unterschiedliche chemische Zusammensetzung haben, wie z.B. Rundschicht AI2O3 - Spitzen AI2O3 + 3%
Ti02.
Zur Erzielung einer hydrophilen verschleißbeständigen Schicht können bevorzugt Aluminiumoxide und Mischungen oder Verbindungen mit anderen Oxiden Verwendung finden, die erfindungsgemäß an der Schichtoberfläche einen Lichtabsorbtionsfaktor von 50 bis 70 % ergeben.
Überraschenderweise konnten in der Plasmaflamme ferner aus Aluminium, Aluminiumlegierungen, wie z. B. AlSi, AlMg oder Al-Si-Fe und perletierten oder gesinterten Gemischen mit diesen Zusammensetzungen durch Oxidation von feinen Pulvern, der bevorzugten Korngrößen < 20 μm, oxidische Gemische oder Verbindungen mit hydrophilen Schichteigenschaften erzeugt werden.
Erfindungsgemäß ist es möglich, pulverförmige Oxide der beschriebenen Art als solche, wahlweise aber auch pulverförmige Metalle, die in dem Plasmastrahl oxidieren, oder eine Kombination aus diesen anzuwenden.
Die Schichtkombination aus Grundkörper und thermisch aufgetragener hydrophiler Keramikschicht hat eine andere Hydrophile sowie eine erhöhte Verschleißbeständig¬ keit im Vergleich zu dem in dem Plasmagasstrahl erzeugten Oxidgemischen aus Metallen. Im Rahmen der Erfindung ist es ferner möglich, von einem mit Aluminium oder AI- Legierung umhüllten Keramikpulver auszugehen oder von einem Kornagglomerat aus Metall und Keramik und damit Trägermaterial für Offsetdruckplatten zu beschichten.
Nach dem Plasmaspritzprozeß wird zweckmäßigerweise eine Reinigung 16 durch Abblasen und Absaugen der nichthaftenden Partikel vorgenommen. Diese können analog zum Sandstrahlprozeß zusammen mit den Stäuben, die im Plasmaspritzprozeß anfallen, ebenfalls in den Stoffkreislauf zurückgeführt werden. Die gereinigten Bänder werden dann an einer Beschichtungsstation 17 auf der hydrophilierten Oberfläche 19 mit einer lichtempfindlichen Schicht 18 beschichtet. Die beschichteten Bänder werden dann getrocknet und ggf. Temperprozessen ausgesetzt.
Nach diesem Prozeß können die Druckplatten auf ihre endgültige Größe aus dem bandförmigen Material zugeschnitten werden. Die eigentliche Formatierung zu Druckplatten erfolgt in den Druckereien, nach bekannten Verfahren.
Beispiel 1
Ein gewalztes Aluminiumfolienband WSt. Nr. 3.0205 von einer Dicke von 300 μm und einer Breite von 1600 mm wurde in einem ersten Arbeitsschritt einem Sandstrahlprozeß unterzogen. Zwei Strahldüsen mit einem Durchmesser von 8 mm wurden in einem Abstand von 60 mm parallel zur Längsachse der Sandstrahlrolle mit einer Geschwindigkeit von 1 ,5 mm/s über das Folienband bewegt. Die Sandstrahlrolle selbst bewegte sich mit einer Geschwindigkeit von 25 mm/s. Als Strahlmittel wurde ein geschmolzenes und gebrochenes scharfkantiges Aluminiumoxid mit 3 Gew.-% Titanoxid verwendet, das eine mittlere Korngröße von 20 bis 45 μrn hatte. Das Strahlmittel wurde durch eine rotierende Scheibe mit einer Dosierrille so dosiert, daß das Folienband mit einer Strahlmittelmenge von 700 g/m2 beaufschlagt wurde. Die Druckluftmenge betrug 250 m3/h bei einem Druck von 1 ,2 bar. Das benutzte Strahlgut wurde wurde in eine Staubsichtungsanlage gefördert und dort wurden Stäube mit einem Partikeldurchmesser von < 3 μm aus dem Strahlmittel entfernt. Das staubfreie Strahlmittel wurde dann erneut verwendet. Der Gesamtstrahlmittelverbrauch konnte durch diese Maßnahme auf eine Menge von 35 g/m reduziert werden.
Nach den Strahlen wurde die Oberfläche des Folienbandes durch Abblasen mit trockener Druckluft und anschließend mit einem schnellverdunstenden handelsüblichen Lösemittel in einem Sprühprozeß gereinigt. Das Blech hatte eine Rauheit Ra von 0,92 μm gemessen nach DIN 4768.
Das gereinigte Folienband wurde dann nach dem Plasmaspritzverfahren mit einer Pulverkombination aus Aluminiumoxid 99,5 %, Aluminium-Titanoxid 97:3, teiloxidiertes Aluminium überzogen. Die Korngröße des Aluminiumoxids betrug -12 μm + 5 μm (Bezeichnung Pulver A), das Aluminiumoxid mit 3 % Titanoxid hatte eine Korngröße von -40 μm + 20 μm (Bezeichnung Pulver B). Aus diesen Oxiden wurde eine Mischung mit 95 % Pulver A und 5 % Pulver B hergestellt (Bezeichnung Pulver C). Die Korngröße des Aluminiums betrug -20 μm + 5 μm (Bezeichnung Pulver D). Zur Erzeugung des heißen Gasstrahls (Plasmaflamme) wurde ein Gasgemisch aus 8 % Wasserstoff und 92 % Argon verwendet, die elektrische Leistung betrug 28 kW. In die Plasmaflamme wurde Pulver C und D getrennt injektiert. Die Plasmaflamme wurde in einem Abstand von 70 mm mit einer Geschwindigkeit von 1800 mm/sec über das Folienband bewegt. Das Folienband wurde durch eine wassergekühlte Rolle diskontinuierlich in Schritten von 12 mm, die durch die Führungseinheit der Plasmaflamme ausgelöst werden, bewegt. Die Wassertemperatur der Rolle betrug + 10 °C, der Umschlingungswinkel 180° und die Anlagekraft der Folie betrug 10 N. Die so hergestellte Schicht hatte eine Schichtdicke von 10 μm und eine Oberflächenrauhigkeit Ra von 1 ,2 bis 1 ,5 μm (DIN 4768). Die Haftung der Schicht wurde mit einem Klebefilm geprüft und ergab sehr gute Haftung. Das hydrophilierte Folienband wurde anschließend mit einer lichtempfindlichen Schicht überzogen, belichtet und zu einer Druckplatte entwickelt. Die erhaltene Druckplatte hatte in einem Druckversuch eine gute Qualität die folgende Merkmale aufweist:
1.) Die 6 μm Linien waren im UGRA Test heil wiedergegeben
2.) Das Freilaufverhalten als Indiz für eine gute Feuchtmittelführung zeigte kein störendes Verhalten auf. 3.) Im Vergleich zu einem marktüblichen Korrekturmittel (KP 273) treten nach der Korrektur keine Farbunterschiede auf ( = Farbschleierfreiheit) 4.) Die Druckauflage betrug 130 000 Drucke 5.) Die Druckauflage betrug bei einer nach dem Entwickeln 5 Minuten bei
230 °C gehärteten Platte 500 000 Drucke.
Beispiel 2
Ein Aluminiumfolienband wie in Beispiel 1 wurde mit der gleichen Maschinenordnung wie in Beispiel 1 bewegt. Die hydrophile Schicht wurde nach dem Hochgeschwindigkeitsflammspritzverfahren aufgetragen. Es wurde im Brenner ein Pulver C und D wie aus Beispiel 1 verwendet. Pulver C wurde direkt in das Zentrum der Flamme injiziert bei der als Brenngas Acetylen in einer Menge von 4 400 l/h und Sauerstoff in einer Menge von 6200 l/h verwendet wird. Pulver D wurde vor dem Brenner in die Flamme injiziert. Es wurden 5 Brenner auf der Travesiereinheit angebracht, so daß gleichzeitig eine Breite von 75 mm beschichtet werden konnte. Der Brennerabstand betrug 200 mm. Die so hergestellte Schicht hat eine Schichtdicke von 10 bis 12 μm und eine Rauheit Ra 1 ,2 bis 1 ,5 μm. Die Prüfung der Haftfestigkeit der aufgetragenen Schicht mit einem Klebestreifen ergab eine sehr gute Haftung. Die Verarbeitung zu einer Druckplatte erfolgte analog zu Beispiel 1. Beispiel 3
Ein biaxial streckorientiertes und hitzefixiertes Folienband aus Polyethylenterephthalat mit einer Dicke von 300 μm und einer Breite von 1600 mm wurde wie in Beispiel 1 angegeben einer Mikroaufrauhung unterzogen. Die gestrahlte Oberfläche wurde durch Abblasen mit trockener Druckluft, aber ohne organische Lösemittel gereinigt und hatte eine nicht riliige, feinkörnige, mikrorauhe Oberflächentopographie mit einer Rauheit Ra von 0,8 bis 1 ,2 μm, gemessen nach DIN 4768.
Das gestrahlte Folienband wurde dann zur Piasmaspritzstation geführt. Dort wurde es mit einer Kraft von 10 N formschlüssig an eine mit Wasser auf eine Temperatur von + 10 °C gekühlte Rolle angepresst. Die Rolle drehte sich mit einer gleichförmigen Geschwindigkeit von 25 mm/s unter zwei Plasmabrennern, die selbst horizontal, d.h. parallel zur Längsachse der Rolle, mit einer Geschwindigkeit von 2000 mm/s hin- und herbewegt wurden.
Der Abstand zwischen den Brennern und dem Folienband betrug 100 mm. Zum Betreiben der Plasmaflamme wurde ein Gasgemisch aus 10 Vol.-% Wasserstoff und 90 VoI.-% Argon verwendet, die elektrische Leistung betrug 28 KW. In die Plasmaflamme wurde aus zwei getrennten Dosiersystemen ein Gemisch aus Pulver D und Pulver C (Bezeichnung wie in Beispiel 1 ) in einem Mischungsverhältnis von 30 : 70 eingegeben. Die Gesamtpulvermenge wurde so eingestellt, daß bei einem Pulverwirkungsgrad von 90 % eine gleichmäßige Schicht mit einer Dicke von 5 μm entsteht. Die Dickenschwankung der so hergestellten Schicht betrug ± 5 %.
Die Oberflächenrauheit Ra der Schicht betrug 0,95 μm, gemessen nach DIN 4768. Die Farbortbestimmung ergab einen L-Wert von 75, gemessen mit dem Cielabsystem nach DIN 5033. Die Anzahl der Spitzen im Bereich zwischen 3 bis 10 μm betrug 1000/m2, bestimmt mittels Bildanalyse. Die Haftung der Schicht wurde mit einem Klebefilm wie in Beispiel 1 geprüft und ergab, daß es nicht möglich war, Teile der Schicht durch den Klebefilm senkrecht zur Schichtebene und vom äußeren Rand beginnend abzuziehen, also sehr gute Haftung. Das hydrophilierte Folienband wurde anschließend mit einer positiv Diazokopierschicht überzogen, belichtet und zu einer Druckplatte entwickelt. Die erhaltene Druckplatte hatte in einem Druckversuch eine hohe Qualität die folgende Merkmale aufweist:
1.) Die 6 μm Linien waren im UGRA Test heil wiedergegeben
2.) Das Freilaufverhalten als Indiz für eine gute Feuchtmittelführung zeigte kein störendes Verhalten auf. 3.) Im Vergleich zu einem marktüblichen Korrekturmittel (KP 273) treten nach der Korrektur keine Farbunterschiede auf ( = Farbschleierfreiheit) 4.) Die Druckauflage betrug 120 000 Drucke 5.) Die Druckauflage betrug bei einer nach dem Entwickeln 5 Minuten bei
230 °C gehärteten Platte 450 000 Drucke.
Vergleichsbeispiel
Ein Aluminiumfolienband wie in Beispiel 1 wurde mit einem herkömmlichen Aluminiumpulver der Korngröße - 80 + 40 μm und einen herkömmlichen Aluminiumoxidpulver der Korngröße - 53 + 10 μm nach dem Plasmaspritzverfahren beschichtet. Die beiden Körnungen wurden in einem Gewichtsverhältnis von 1 :1 gemischt und in die Plasmaflamme injiziert. Es wurden übliche Parameter wie sie aus Datenblättern von Anlagenherstellern zum Beschichten von Oxiden zu entnehmen sind verwendet. Empfohlen wird ein Argon-Wasserstoffgemisch mit 75 Vol.% Argon und 25 Vol.% Wasserstoff bei einer elektrischen Leistung von 37 KW. Die Schicht hatte eine Rauheit Ra von 4 μm (DIN 4768) und eine ungleichmäßige Zusammensetzung, da das leichtschmelzende Aluminium am Injektor anhaftete und sich in größeren Fladen als Schmelzgut ablöste und als peakförmige Erhebung auf dem Folienband niedergeschlagen war. Bei der daraus wie in Beispiel 1 hergestellte Druckplatte waren erst die 25 μm Linien im UGRA Test heil wiedergegeben. Ferner verblieben im Bereich der Nichtbildstellen punktförmige Bildstellenanteile aufgrund der zu hohen Rauheit haften. Die so hergestellten Druckplatten entsprechen nicht den Qualitätsstandarts von Offsetdruckereien.

Claims

Patentansprüche
1. Verfahren zum Herstellen von Druckplatten bei dem auf einer Trägerfolie durch thermisches Spritzen eine hydrophile Schicht erzeugt wird, dadurch gekennzeichnet, daß in einem ersten Behandlungsschritt auf der Oberfläche der Trägerfolie durch mechanische Mikroaufrauhung eine Oberflächenrauheit Ra im Bereich von 0,3 bis 1 ,5 μm erzeugt wird und daß dann durch thermisches Spritzen von pulverförmigen Oxiden und/oder oxidischen Gemischen und Verbindungen mit einer Korngröße im Bereich von -40 bis + 1 μm mit einem dauerbeständig gut haftenden hydrophilen Überzug beschichtet wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß die Mikroaufrauhung durch ein Strahldruckverfahren bewirkt wird, bei dem unter einem Strahldruck im Bereich von 0,5 bis 2 bar ein scharfkantiges mineralisches Strahlmittel mit einer Korngröße im Bereich von -100 bis + 10 μm auf die Oberfläche der Trägerfolie aufgestrahlt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Trägerfolie eine Metallfolie ist mit einer Dicke im Bereich von 100 bis 500 μm, bevorzugt von 120 bis 350 μm, mit kratzer- und narbenfreier Oberfläche die frei von groben organischen oder mineralischen Rückständen ist.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Metallfolie aus Aluminium oder dessen Legierungen, Edelstahlen oder veredelten Stählen oder Metallhybriden zusammengesetzt ist.
5. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Trägerfolie eine biaxial streckorientierte und thermofixierte Kunststoffolie mit einer Dicke von 100 bis 500 μm aus einem thermoplastischen Kunststoff wie Polyvinylchlorid, Polyester, beispielsweise Polyethylenterephthalat oder Polybutylenterephthalat, Polyamid, Polyphenylensulfid oder Polypropylen ist.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Trägerfolie nach der Mikroaufrauhung von einer Rolle über eine frei drehende, vertikal geführte Rolle zu einer nachgeschalteten Behandlungsrolle geführt und formschlüssig an diese anliegend unter dem heißen Gasstrahl einer Spritzeinrichtung hindurchbewegt wird, wobei die Spritzeinrichtung parallel zur Längsachse der Behandlungsrolle gradlinig oder wellenförmig über die Trägerfolie bewegt wird.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die Spritzeinrichtung mindestens zwei Spritzbrenner umfaßt.
8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß die Behandlungsrolle von wärmeableitenden Fließmedien durchströmt ist.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß das Oxidpulver Aluminiumoxid und/oder Mischungen und Verbindungen mit Aluminiumoxid und anderen Oxiden ist.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß das Oxidpulver eine Korngröße von -20 bis + 1 μm besitzt.
1 1 . Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß zu dem Oxidpulver der Korngröße -20 bis + 1 ein weiteres Oxidpulver zugemischt oder getrennt in den Plasmastrahl eingegeben wird, das eine Korngröße von -40 bis + 20 besitzt.
12. Verfahren nach Anspruch 1 1 , dadurch gekennzeichnet, daß das weitere Oxidpulver eine andere chemische Zusammensetzung als das Oxidpulver mit der Korngröße -20 bis + 1 hat.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß das weitere Oxidpulver Zirkonoxid oder Magnesiumoxid ist.
14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß dem Oxidpulver zusätzlich feines Metallpulver zugegeben wird, vorzugsweise Aluminium und dessen Legierungen und/oder Mischungen mit anderen Metallen, die in der Plasmaflamme zu Gemischen und/oder Verbindungen mit hydrophilen Eigenschaften umgesetzt werden.
15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß Oxidpulver verwendet werden, die aus mechanischen Mischungen, pelletierten oder gesinterten Mischungen aus Metall und Keramik, Kornagglomeraten aus diesen oder mit Metallen, bevorzugt Aluminium und dessen Legierungen, umhüllten Oxiden bestehen.
16. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß als thermisches Spritzverfahren das Plasmaspritzen mit den bevorzugten plasmabildenden Gasen Argon, Stickstoff, Argon/Stickstoff, Stickstoff/Wasserstoff oder Argon/Wasserstoff oder das Hochgeschwindigkeitsflammspritzen mit den bevorzugten Brenngasen Wasserstoff, Acetylen, Propan, Propylen und Sauerstoff eingesetzt wird.
17. Verwendung einer Druckplatte, hergestellt nach einem Verfahren gemäß einem der Ansprüche 1 bis 16, für den Offsetdruck.
18. Verwendung einer Druckplatte, hergestellt nach einem Verfahren gemäß einem der Ansprüche 1 bis 16, als Bliriddruckplatte im Offsetdruck.
EP95904503A 1993-12-27 1994-12-19 Thermisches auftragsverfahren für hydrophile schichten auf hydrophoben substraten und verwendung so beschichteter substrate als trägerkörper für offsetdruckplatten Expired - Lifetime EP0737133B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE4344692A DE4344692A1 (de) 1993-12-27 1993-12-27 Thermisches Auftragsverfahren für hydrostabile Schichten auf hydrophoben Substraten und Verwendung so beschichteter Substrate als Trägerkörper für Offsetdruckplatten
DE4344692 1993-12-27
DE4401059A DE4401059A1 (de) 1994-01-15 1994-01-15 Verfahren zur mechanischen Mikroaufrauhung und einer anschließenden thermischen Auftragung von hydrophilen Schichten auf Folien und Verwendung so beschichteter Substrate als Trägerkörper für Offsetdruckplatten
DE4401059 1994-01-15
PCT/EP1994/004218 WO1995018019A1 (de) 1993-12-27 1994-12-19 Thermisches auftragsverfahren für hydrophile schichten auf hydrophoben substraten und verwendung so beschichteter substrate als trägerkörper für offsetdruckplatten

Publications (2)

Publication Number Publication Date
EP0737133A1 true EP0737133A1 (de) 1996-10-16
EP0737133B1 EP0737133B1 (de) 1998-07-29

Family

ID=25932585

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95904503A Expired - Lifetime EP0737133B1 (de) 1993-12-27 1994-12-19 Thermisches auftragsverfahren für hydrophile schichten auf hydrophoben substraten und verwendung so beschichteter substrate als trägerkörper für offsetdruckplatten

Country Status (6)

Country Link
US (1) US5967047A (de)
EP (1) EP0737133B1 (de)
JP (1) JP3402368B2 (de)
AU (1) AU1316395A (de)
DE (1) DE59406576D1 (de)
WO (1) WO1995018019A1 (de)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6397746B1 (en) * 1999-08-09 2002-06-04 Fuji Photo Film Co., Ltd. Camera-ready copy sheet for lithographic printing plates
JP4233199B2 (ja) * 2000-06-30 2009-03-04 富士フイルム株式会社 平版印刷版の製造方法
DE10037998A1 (de) * 2000-08-04 2002-02-14 Heidelberger Druckmasch Ag Verfahren und Vorrichtung zum Löschen einer wiederbebilderbaren Druckform
US6777045B2 (en) * 2001-06-27 2004-08-17 Applied Materials Inc. Chamber components having textured surfaces and method of manufacture
JP3780958B2 (ja) * 2002-02-12 2006-05-31 コニカミノルタホールディングス株式会社 印刷版材料及び印刷版
US20040040145A1 (en) * 2002-08-29 2004-03-04 Halliday James W. Method for making a decorative metal sheet
US7964085B1 (en) 2002-11-25 2011-06-21 Applied Materials, Inc. Electrochemical removal of tantalum-containing materials
US20060105182A1 (en) * 2004-11-16 2006-05-18 Applied Materials, Inc. Erosion resistant textured chamber surface
US7910218B2 (en) 2003-10-22 2011-03-22 Applied Materials, Inc. Cleaning and refurbishing chamber components having metal coatings
US7579067B2 (en) * 2004-11-24 2009-08-25 Applied Materials, Inc. Process chamber component with layered coating and method
US8617672B2 (en) 2005-07-13 2013-12-31 Applied Materials, Inc. Localized surface annealing of components for substrate processing chambers
US7762114B2 (en) 2005-09-09 2010-07-27 Applied Materials, Inc. Flow-formed chamber component having a textured surface
CH697933B1 (de) * 2005-11-03 2009-03-31 Tetra Laval Holdings & Finance Verfahren und Vorrichtung zur Beschichtung von Kunststofffolien mit einer Oxidschicht.
JP4189421B2 (ja) * 2006-07-13 2008-12-03 パナソニック株式会社 直描型印刷原版およびその製造方法ならびにこれを用いた製版方法
US7981262B2 (en) 2007-01-29 2011-07-19 Applied Materials, Inc. Process kit for substrate processing chamber
US7942969B2 (en) 2007-05-30 2011-05-17 Applied Materials, Inc. Substrate cleaning chamber and components
US20090202938A1 (en) * 2008-02-08 2009-08-13 Celin Savariar-Hauck Method of improving surface abrasion resistance of imageable elements
US20100015354A1 (en) * 2008-07-16 2010-01-21 Lee Tai-Cheung Method of making rollers with a fine pattern
US20140141173A1 (en) * 2012-11-16 2014-05-22 General Electric Company Method of applying a coating to a perforated substrate
CN114834149B (zh) * 2022-06-06 2024-10-01 福建金石能源有限公司 一种全开口网版及其制造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2064354C3 (de) * 1970-12-30 1979-09-27 Hoechst Ag, 6000 Frankfurt Verfahren und Vorrichtung zum kontinuierlichen Vorbehandeln eines insbesondere zur Herstellung von lithographischen Flachdruckplatten dienenden Metallfolienbandes
US4301730A (en) * 1977-09-29 1981-11-24 Pamarco Incorporated Anilox roll and method of making the same
US4183788A (en) * 1978-02-28 1980-01-15 Howard A. Fromson Process for graining an aluminum base lithographic plate and article thereof
AT375880B (de) * 1980-03-11 1984-09-25 Teich Ag Folienwalzwerk Verfahren zur herstellung von grundmaterial fuer offsetdruckplatten
JPS59103794A (ja) * 1982-12-06 1984-06-15 Nippon Seihaku Kk 平版印刷版用複合体材料の製造法
DE3305067A1 (de) * 1983-02-14 1984-08-16 Hoechst Ag, 6230 Frankfurt Platten-, folien- oder bandfoermiges material aus mechanisch und elektrochemisch aufgerauhtem aluminium, ein verfahren zu seiner herstellung und seine verwendung als traeger fuer offsetdruckplatten
JPS59214697A (ja) * 1983-05-19 1984-12-04 Fuji Photo Film Co Ltd 平版印刷版用支持体の製造方法
US4526839A (en) * 1984-03-01 1985-07-02 Surface Science Corp. Process for thermally spraying porous metal coatings on substrates
US4596189A (en) * 1984-03-01 1986-06-24 Surface Science Corp. Lithographic printing plate
DE3512176A1 (de) * 1985-04-03 1986-10-09 Winfried 7758 Meersburg Heinzel Verfahren zur oberflaechenbehandlung eines druckmaschinenzylinders
JPS6227192A (ja) * 1985-07-26 1987-02-05 Fuji Photo Film Co Ltd 平版印刷版用支持体の製造方法
JPH0698851B2 (ja) * 1988-06-15 1994-12-07 新日本製鐵株式会社 平版印刷機の湿し水給水ローラ
DE3941303C1 (de) * 1989-12-14 1990-12-13 Man Roland Druckmaschinen Ag, 6050 Offenbach, De
DE4235242C1 (de) * 1992-10-20 1993-11-11 Roland Man Druckmasch Löschbare Druckform
US5432046A (en) * 1993-09-29 1995-07-11 Hoechst Celanese Corporation Process for preparing improved lithographic printing plates by brushgraining with alumina/quartz slurry

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9518019A1 *

Also Published As

Publication number Publication date
DE59406576D1 (de) 1998-09-03
AU1316395A (en) 1995-07-17
US5967047A (en) 1999-10-19
JP3402368B2 (ja) 2003-05-06
JPH09504241A (ja) 1997-04-28
WO1995018019A1 (de) 1995-07-06
EP0737133B1 (de) 1998-07-29

Similar Documents

Publication Publication Date Title
EP0737133B1 (de) Thermisches auftragsverfahren für hydrophile schichten auf hydrophoben substraten und verwendung so beschichteter substrate als trägerkörper für offsetdruckplatten
DE19610015C2 (de) Thermisches Auftragsverfahren für dünne keramische Schichten und Vorrichtung zum Auftragen
EP0355622B1 (de) Verfahren und Vorrichtung zur Oberflächenvorbehandlung von ein- oder mehrschichtigem Formmaterial mittels einer elektrischen Koronaentladung
DE69700672T2 (de) Etikett mit einer metallischen Schicht kontrollierter Dicke
EP2737101B1 (de) Beschichtungsverfahren nutzend spezielle pulverförmige beschichtungsmaterialien und verwendung derartiger beschichtungsmaterialien
EP0010632A1 (de) Verfahren zur Oberflächenbehandlung von Kunststoffen und nach diesem Verfahren hergestellte Folie
EP1997565A2 (de) Artikel mit plasmapolymerer Beschichtung und Verfahren zu dessen Herstellung
EP1382720A2 (de) Verfahren und Vorrichtung zum Kaltgasspritzen
EP0990715B1 (de) Bandbedampfungsanlage zur Herstellung von planparallelen Plättchen
EP0815280B1 (de) Thermisches auftragsverfahren für dünne keramische schichten und vorrichtung zum auftragen
DE102006038780A1 (de) Verfahren und Vorrichtung zum Herstellen einer Beschichtung
EP0355621B1 (de) Flächengebilde aus einem Substrat und einem Überzug und Verfahren zu seiner Herstellung
WO2006106149A2 (de) Komponente für eine lackiereinrichtung und vorrichtung zu ihrer entlackung
EP1871921B1 (de) Verfahren zur partiellen oder vollständigen beschichtung der oberflächen von bauteilen aus aluminiummaterial
DE10223865B4 (de) Verfahren zur Plasmabeschichtung von Werkstücken
DE3732166A1 (de) Selbsttragendes flaechengebilde mit ueberlegenen antistatischen eigenschaften
DE102006015591B3 (de) Organischer Werkstoff mit katalytisch beschichteter Oberfläche und Verfahren zu dessen Herstellung
DE68926236T2 (de) Druckblätter
DE4344692A1 (de) Thermisches Auftragsverfahren für hydrostabile Schichten auf hydrophoben Substraten und Verwendung so beschichteter Substrate als Trägerkörper für Offsetdruckplatten
DE69501226T2 (de) Mit Tinte für PVC gedrückte Gegenstände aus Polyolefnien und Verfahren zur Herstellung
DE4401059A1 (de) Verfahren zur mechanischen Mikroaufrauhung und einer anschließenden thermischen Auftragung von hydrophilen Schichten auf Folien und Verwendung so beschichteter Substrate als Trägerkörper für Offsetdruckplatten
EP2707152B1 (de) Trägerfunktionsschichtanordnung
JPH07114990B2 (ja) 塗装マスキング用フィルム
EP1340616B1 (de) Oberfläche von Maschinenteilen einer Druckmaschine
DE2609982B2 (de) Gravurbeschichtungswalze, Verfahren zu deren Herstellung und Beschichtungsvorrichtung mit einer Gravurwalze

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960729

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT NL

17Q First examination report despatched

Effective date: 19961104

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

REF Corresponds to:

Ref document number: 59406576

Country of ref document: DE

Date of ref document: 19980903

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19981113

Year of fee payment: 5

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19981027

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19981209

Year of fee payment: 5

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

NLS Nl: assignments of ep-patents

Owner name: AGFA-GEVAERT AG

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BECA Be: change of holder's address

Free format text: 19990318 *AGFA-GEVAERT A.G.:KAISER-WILHELM ALLEE, 51373 LEVERKUSEN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991231

BERE Be: lapsed

Owner name: AGFA-GEVAERT A.G.

Effective date: 19991231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000831

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20000810

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031027

Year of fee payment: 10

Ref country code: DE

Payment date: 20031027

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20031118

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050701

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20041219

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051219