EP1382720A2 - Verfahren und Vorrichtung zum Kaltgasspritzen - Google Patents
Verfahren und Vorrichtung zum Kaltgasspritzen Download PDFInfo
- Publication number
- EP1382720A2 EP1382720A2 EP03012313A EP03012313A EP1382720A2 EP 1382720 A2 EP1382720 A2 EP 1382720A2 EP 03012313 A EP03012313 A EP 03012313A EP 03012313 A EP03012313 A EP 03012313A EP 1382720 A2 EP1382720 A2 EP 1382720A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- gas
- cold gas
- spray
- helium
- workpiece
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005507 spraying Methods 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 claims abstract description 30
- 239000007789 gas Substances 0.000 claims description 70
- 239000007921 spray Substances 0.000 claims description 61
- 239000002245 particle Substances 0.000 claims description 54
- 239000012159 carrier gas Substances 0.000 claims description 35
- 239000001307 helium Substances 0.000 claims description 22
- 229910052734 helium Inorganic materials 0.000 claims description 22
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 22
- 238000000576 coating method Methods 0.000 claims description 10
- 239000011248 coating agent Substances 0.000 claims description 8
- 238000011084 recovery Methods 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 239000000203 mixture Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 230000008901 benefit Effects 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 239000003570 air Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- UDWPONKAYSRBTJ-UHFFFAOYSA-N [He].[N] Chemical compound [He].[N] UDWPONKAYSRBTJ-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000010285 flame spraying Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- PWKWDCOTNGQLID-UHFFFAOYSA-N [N].[Ar] Chemical compound [N].[Ar] PWKWDCOTNGQLID-UHFFFAOYSA-N 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 150000002835 noble gases Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C24/00—Coating starting from inorganic powder
- C23C24/02—Coating starting from inorganic powder by application of pressure only
- C23C24/04—Impact or kinetic deposition of particles
Definitions
- the invention relates to a method for producing a coating on a Workpiece or a molded part in a cold gas injection process, using a carrier gas and powdery spray particles are relaxed in a cold gas spray gun and the spray particles at high speeds, for example up to 2000 m / s, to be brought.
- the spray particles are added as powder by conveying the particles into the main gas stream with an auxiliary gas stream.
- the powder usually comprises particles with a size of 1 to 50 ⁇ m.
- the spray particles receive the high kinetic energy during gas expansion.
- the gas is expanded in a nozzle after the injection of the spray particles into the main gas jet, the carrier gas and spray particles being accelerated to speeds above the speed of sound.
- Nitrogen, helium and nitrogen-helium mixtures are generally used as carrier gases. The same gas or different gases can be used for the main and auxiliary gas flow. Nitrogen, the most commonly used carrier gas, is a good inert and inexpensive gas for the cold gas spraying process. Air, on the other hand, is only considered for a few applications despite its high nitrogen content due to the oxygen content. With helium as the carrier gas, as fundamental studies show, the highest particle speeds are achieved. Since very large amounts of carrier gas are required, in practice only nitrogen-helium mixtures with a low helium content are used.
- the consumption of carrier gas for cold gas spraying is between 40 and 150 m 3 / h.
- the gas consumption depends on the carrier gas used for the main and auxiliary gas flow and the material of the spray particles.
- helium as the carrier gas have shown that in order to spray 3 kg of spray material (eg McrAIY), a bundle of helium with 110 m 3 is necessary.
- the focus is on economic aspects that do not allow the use of carrier gases that are optimal in terms of process technology.
- the present invention is therefore based on the object of a method specify which one is the best one for the cold gas spraying process Carrier gas for main and auxiliary gas flow allowed and the process of Cold gas spraying improved.
- the object is achieved in that the cold gas spraying process in Low pressure is carried out at values below 800 mbar (80 kPa).
- This can the spray gun be mounted in the housing of a vacuum chamber so that it Aiming into the interior or the cold gas spray gun and that too coating workpiece or the molded part in a vacuum chamber brought.
- the cold gas spray gun and the spray material are in one Vacuum chamber, the entire spraying process takes place under Vacuum conditions instead.
- the Spray particle speed which is achieved with the method according to the invention, is significantly above the spray particle speed, which with an analog arrangement is achieved under normal conditions.
- the cold gas spray process under vacuum conditions also allows Use a wide spray jet. Maintaining the high The speeds of the particles in low pressure right down to the workpiece can be seen Particularly pronounced when the workpiece and spray gun are more than 60 mm. This is because the speed of the Particle increases immediately after leaving the spray gun before the Braking caused by the ambient air. Are the spraying distances The advantages of low pressure and the associated benefits are shown over 60 mm Absence of deceleration clearly. Spray distances of more than 60 mm have been found as advantageous if large workpieces or a large number of workpieces are coated the spray jet continues on the longer way to the workpiece fanned out and the fanned out beam compared to the bundled beam Coating over a larger area is made possible. Furthermore, if the spray distance so large, even workpieces with an uneven surface, where the distance varies widely between spray gun and material surface, without problems be coated.
- the cold gas spraying process is carried out a pressure between 1 and 500 mbar (0.1 to 50 kPa), preferably between 20 to 100 mbar (2 to 10 kPa). At this low pressure, the above are Advantages of cold gas spraying under vacuum conditions are given. This print area is easily achieved with commercially available vacuum pumps.
- the invention has the great advantage that now with much less effort same high particle speeds can be achieved or with the same effort higher speeds. If you need e.g. 40 bar to under ambient pressure Bringing particles to a desired speed is sufficient at 500 mbar Pressure in the chamber 20 bar gas pressure. When spraying in a chamber at 100 bar even 4 bar gas pressure are sufficient for the same effects
- the method according to the invention is in principle with all gases and gas mixtures as well as air feasible.
- the noble gases and inert gases are particularly suitable as gases Gases and their mixtures.
- helium, argon and nitrogen as well as mixtures of these gases.
- Helium is particularly advantageous in Carrier gas included. With helium and helium-containing mixtures as carrier gas very high particle speeds achieved. High spray particle speeds guarantee dense and firmly adhering coatings and thus high quality Cold gas spraying results.
- the carrier gas contains at least 20% by volume of helium with particular advantage preferably between 30 and 80 vol .-%. These helium components ensure the high spray particle speeds. Have been particularly advantageous Mixtures of helium and nitrogen as well as of helium and argon have been proven. But argon-nitrogen mixtures are also used.
- spray particles with a grain size of up to 150 ⁇ m. Larger spray particles must be accelerated to higher particle speeds than smaller particles until their kinetic energy is sufficient to adhere to the workpiece to be coated.
- Spray particles that have been customary to date have particle sizes in the range from 5 to 25 ⁇ m, in some cases also up to 50 ⁇ m, and are usually accelerated in air or nitrogen.
- helium or helium-containing gas mixtures as carrier gas on a larger scale. Helium achieves significantly higher spray particle speeds, which means that even larger spray particles with a grain size in the range of 80 to 150 ⁇ m are accelerated sufficiently so that they adhere well to the workpiece.
- the carrier gas is fed to a recovery unit after the cold gas spraying process.
- the recovery unit cleans the carrier gas of impurities that got into the carrier gas during cold gas spraying and during supply and discharge.
- the used carrier gas is removed from the vacuum chamber with a vacuum pump, which is preceded by a particle filter, and fed to the recovery unit.
- the recovery unit cleans the used carrier gas from the impurities and possibly separates individual gas components.
- the recovery of helium is economically very advantageous and also enables helium to be used as the carrier gas.
- the cleaned carrier gas or the recovered gas component is then either collected in a container and used for a different purpose or, after being stored in an intermediate container, is fed back to the cold gas spraying device.
- the object is achieved with respect to the device in that the cold gas spray gun (3) and the workpiece / molding (5) to be coated in one Vacuum chamber (4) are arranged. This arrangement enables cold gas spraying under vacuum conditions with all its advantages mentioned above.
- FIG. 1 shows an inventive device for cold gas spraying under Vacuum conditions.
- the gas feed line 1 reaches the main gas stream, for example a helium-nitrogen mixture with 40 vol .-% helium, and via the line 2, the spray particles in Auxiliary gas flow into the vacuum chamber 4, where there is a pressure of 40 mbar, and there in the cold gas spray gun 3.
- the supply lines 1 and 2 are in the Inserted vacuum chamber 4, in which both the cold gas spray gun 3 and the workpiece 5 is also located. The entire cold gas spraying process takes place in the Vacuum chamber 4 instead.
- the carrier gas which during cold gas spraying together with the spray particles from the spray gun 3 and the spray particles to the workpiece carries, after the injection process in the vacuum chamber 4.
- the used Carrier gas is removed via the gas line 6 from the vacuum chamber 4 by means of the Vacuum pump 8 removed. Between the vacuum pump 8 and vacuum chamber 4 is the Particle filter 7 switched, which free spray particles from the used carrier gas removed so that the solid particles do not damage the pump.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Nozzles (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Coating By Spraying Or Casting (AREA)
Abstract
Description
Als Trägergase werden im allgemeinen Stickstoff, Helium und Stickstoff-Helium-Gemische verwendet. Für Haupt- und Hilfsgasstrom kann dabei das gleiche Gas oder es können unterschiedliche Gase verwendet werden. Stickstoff, das am häufigsten verwendete Trägergas, eignet sich als inertes und preiswertes Gas gut für den Kaltgasspritzprozess. Luft hingegen kommt trotz seines hohen Stickstoffanteils aufgrund des Sauerstoffanteils nur für wenige Anwendungen in Betracht. Mit Helium als Trägergas werden, wie Grundlagenuntersuchungen zeigen, die höchsten Partikelgeschwindigkeiten erreicht. Da sehr große Mengen Trägergas benötigt werden, kommen in der Praxis jedoch nur Stickstoff-Helium-Gemische mit geringem Heliumanteil zum Einsatz.
In Weiterbildung der Erfindung wird das Trägergas nach dem Kaltgasspritzprozess einer Rückgewinnungseinheit zugeführt. Die Rückgewinnungseinheit reinigt das Trägergas von Verunreinigungen, welche beim Kaltgasspritzen und beim Zu- und Ableiten in das Trägergas gelangten. Dazu wird das verbrauchten Trägergas aus der Vakuumkammer mit einer Vakuumpumpe, welcher ein Partikelfilter vorgeschaltet ist, entnommen und der Rückgewinnungseinheit zugeführt. Die Rückgewinnungseinheit reinigt das verbrauchte Trägergas von den Verunreinigungen und trennt evtl. einzelne Gaskomponenten ab. Insbesondere das Rückgewinnen von Helium ist wirtschaftlich sehr vorteilhaft und ermöglicht es auch Helium als Trägergas einzusetzen. Das gereinigte Trägergas bzw. die wiedergewonnene Gaskomponente wird nun entweder in einem Behälter gesammelt und einer andersartigen Verwendung zugeführt oder nach Speicherung in einem Zwischenbehälter der Kaltgas-Spritzvorrichtung wieder zugeführt.
Claims (7)
- Verfahren zur Herstellung einer Beschichtung auf einem Werkstück oder eines Formteils in einem Kaltgasspritzprozess, wobei ein Trägergas in einer Kaltgas-Spritzpistole entspannt wird und dabei Spritzpartikel auf hohe Geschwindigkeiten beschleunigt und auf das Werkstück/Formteil aufgebracht werden, dadurch gekennzeichnet, dass der Kaltgasspritzprozess im Niederdruck bei Werten unterhalb von 800 mbar (80 kPa) ausgeführt wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Kaltgasspritzprozess bei einem Druck zwischen 1 und 500 mbar (0,1 bis 50 kPa), vorzugsweise zwischen 20 bis 100 mbar (2 bis 10 kPa) ausgeführt wird.
- Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass Helium im Trägergas enthalten ist.
- Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass im Trägergas mindestens 20 Vol.-% Helium, vorzugsweise 30 bis 80 Vol.-% Helium enthalten sind.
- Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass Spritzpartikel mit einer Korngröße von bis zu 150 µm verwendet werden.
- Verfahren nach einem der Ansprüche 1 bis5, dadurch gekennzeichnet, dass das Trägergas nach dem Kaltgasspritzprozess einer Rückgewinnungseinheit zugeführt wird.
- Vorrichtung zur Herstellung einer Kaltgasspritz-Beschichtung auf einem Werkstück oder eines Formteils umfassend eine Kaltgas-Spritzpistole (3) und eine Werkzeughalterung für das zu beschichtende Werkstück / das Formteil (5), dadurch gekennzeichnet, dass die Kaltgas-Spritzpistole (3) und das zu beschichtende Werkstück / das Formteil (5) in einer Vakuumkammer (4) angeordnet sind.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10224780 | 2002-06-04 | ||
DE10224780A DE10224780A1 (de) | 2002-06-04 | 2002-06-04 | Verfahren und Vorrichtung zum Kaltgasspritzen |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1382720A2 true EP1382720A2 (de) | 2004-01-21 |
EP1382720A3 EP1382720A3 (de) | 2005-12-07 |
EP1382720B1 EP1382720B1 (de) | 2007-02-28 |
Family
ID=29557530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03012313A Expired - Lifetime EP1382720B1 (de) | 2002-06-04 | 2003-05-28 | Verfahren und Vorrichtung zum Kaltgasspritzen |
Country Status (4)
Country | Link |
---|---|
US (1) | US20040037954A1 (de) |
EP (1) | EP1382720B1 (de) |
AT (1) | ATE355400T1 (de) |
DE (2) | DE10224780A1 (de) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008024504A1 (de) | 2008-05-21 | 2009-11-26 | Linde Ag | Verfahren und Vorrichtung zum Kaltgasspritzen |
US7910051B2 (en) | 2005-05-05 | 2011-03-22 | H.C. Starck Gmbh | Low-energy method for fabrication of large-area sputtering targets |
DE102009053987A1 (de) | 2009-11-23 | 2011-06-01 | Linde Aktiengesellschaft | Verfahren und Vorrichtung zum Herstellen einer mehrlagigen Spule |
EP2333133A1 (de) | 2009-11-23 | 2011-06-15 | Linde Aktiengesellschaft | Verfahren und Vorrichtung zum Herstellen einer mehrlagigen Spule |
US8002169B2 (en) | 2006-12-13 | 2011-08-23 | H.C. Starck, Inc. | Methods of joining protective metal-clad structures |
US8043655B2 (en) | 2008-10-06 | 2011-10-25 | H.C. Starck, Inc. | Low-energy method of manufacturing bulk metallic structures with submicron grain sizes |
US8197894B2 (en) | 2007-05-04 | 2012-06-12 | H.C. Starck Gmbh | Methods of forming sputtering targets |
US8226741B2 (en) | 2006-10-03 | 2012-07-24 | H.C. Starck, Inc. | Process for preparing metal powders having low oxygen content, powders so-produced and uses thereof |
US8246903B2 (en) | 2008-09-09 | 2012-08-21 | H.C. Starck Inc. | Dynamic dehydriding of refractory metal powders |
US8703233B2 (en) | 2011-09-29 | 2014-04-22 | H.C. Starck Inc. | Methods of manufacturing large-area sputtering targets by cold spray |
US8802191B2 (en) | 2005-05-05 | 2014-08-12 | H. C. Starck Gmbh | Method for coating a substrate surface and coated product |
EP1801256B2 (de) † | 2005-12-21 | 2015-07-01 | Sulzer Metco (US) Inc. | Hybridplasmakaltgasspritzenverfahren und Vorrichtung |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7164520B2 (en) | 2004-05-12 | 2007-01-16 | Idc, Llc | Packaging for an interferometric modulator |
DE102004059716B3 (de) * | 2004-12-08 | 2006-04-06 | Siemens Ag | Verfahren zum Kaltgasspritzen |
DE102005005359B4 (de) * | 2005-02-02 | 2009-05-07 | Siemens Ag | Verfahren zum Kaltgasspritzen |
US20060269685A1 (en) * | 2005-05-31 | 2006-11-30 | Honeywell International, Inc. | Method for coating turbine engine components with high velocity particles |
DE102005031101B3 (de) | 2005-06-28 | 2006-08-10 | Siemens Ag | Verfahren zum Herstellen von keramischen Schichten |
DE102005047688C5 (de) | 2005-09-23 | 2008-09-18 | Siemens Ag | Kaltgasspritzverfahren |
EP1772228A1 (de) * | 2005-10-07 | 2007-04-11 | Siemens Aktiengesellschaft | Verfahren zum Reparieren eines Bauteils mit einer gerichteten Mikrostruktur |
DE102005053263A1 (de) * | 2005-11-08 | 2007-05-10 | Linde Ag | Verfahren zur Herstellung einer photokatalytisch aktiven Schicht |
ATE400674T1 (de) | 2006-01-10 | 2008-07-15 | Siemens Ag | Kaltspritzanlage und kaltspritzverfahren mit moduliertem gasstrom |
EP1806183A1 (de) | 2006-01-10 | 2007-07-11 | Siemens Aktiengesellschaft | Düsenanordnung und Verfahren zum Kaltgasspritzen |
WO2007136706A1 (en) | 2006-05-17 | 2007-11-29 | Qualcomm Mems Technologies Inc. | Desiccant in a mems device |
AU2007317650B2 (en) * | 2006-11-07 | 2012-06-14 | H.C. Starck Surface Technology and Ceramic Powders GmbH | Method for coating a substrate and coated product |
DE102007001477B3 (de) * | 2007-01-09 | 2008-01-31 | Siemens Ag | Verfahren und Vorrichtung zum Kaltgasspritzen von Partikeln unterschiedlicher Festigkeit und/oder Duktilität |
WO2009041951A1 (en) | 2007-09-28 | 2009-04-02 | Qualcomm Mems Technologies, Inc. | Optimization of desiccant usage in a mems package |
US8410690B2 (en) * | 2009-02-13 | 2013-04-02 | Qualcomm Mems Technologies, Inc. | Display device with desiccant |
US8535755B2 (en) | 2010-08-31 | 2013-09-17 | General Electric Company | Corrosion resistant riser tensioners, and methods for making |
DE102012212682A1 (de) | 2012-07-19 | 2014-01-23 | Siemens Aktiengesellschaft | Verfahren zum Kaltgasspritzen mit einem Trägergas |
US9335296B2 (en) | 2012-10-10 | 2016-05-10 | Westinghouse Electric Company Llc | Systems and methods for steam generator tube analysis for detection of tube degradation |
WO2016036750A1 (en) * | 2014-09-02 | 2016-03-10 | Sung Wung Yeom | Applying a coating to a substrate; composite structures formed by application of a coating |
JP6481154B2 (ja) * | 2014-10-18 | 2019-03-13 | エムテックスマート株式会社 | 粉粒体の塗布方法 |
DE102016217367A1 (de) | 2016-09-13 | 2018-03-15 | Robert Bosch Gmbh | Verfahren zur Herstellung eines Aktivmaterials für eine Elektrode einer Batteriezelle, Anordnung zur Herstellung eines Aktivmaterials für eine Elektrode einer Batteriezelle und Batteriezelle |
ES2892150T3 (es) * | 2016-10-03 | 2022-02-02 | Westinghouse Electric Co Llc | Revestimiento dúplex tolerante a accidentes para barras de combustible nuclear |
US11031145B2 (en) * | 2017-03-06 | 2021-06-08 | Westinghouse Electric Company Llc | Method of manufacturing a reinforced nuclear fuel cladding using an intermediate thermal deposition layer |
EP3486070B8 (de) * | 2017-11-15 | 2023-04-12 | Concept Laser GmbH | Verfahren zur generativen fertigung von dreidimensionalen objekten |
DE102018209937A1 (de) | 2018-06-20 | 2019-12-24 | Robert Bosch Gmbh | Verfahren zur Herstellung eines Polymerverbundwerkstoffs für eine elektrochemische Zelle mittels eines gequollenen Polymers |
EP3677702B1 (de) * | 2019-01-07 | 2023-06-14 | Rolls-Royce plc | Spritzbeschichtungsverfahren |
US11935662B2 (en) | 2019-07-02 | 2024-03-19 | Westinghouse Electric Company Llc | Elongate SiC fuel elements |
ES2955292T3 (es) | 2019-09-19 | 2023-11-29 | Westinghouse Electric Co Llc | Aparato para realizar pruebas de adherencia in situ de depósitos de pulverización en frío y procedimiento de empleo |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0484533A1 (de) * | 1990-05-19 | 1992-05-13 | Anatoly Nikiforovich Papyrin | Beschichtungsverfahren und -vorrichtung |
EP0911425A1 (de) * | 1997-10-27 | 1999-04-28 | Linde Aktiengesellschaft | Verfahren zum thermischen Beschichten von Substratwerkstoffen |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5679167A (en) * | 1994-08-18 | 1997-10-21 | Sulzer Metco Ag | Plasma gun apparatus for forming dense, uniform coatings on large substrates |
US5795626A (en) * | 1995-04-28 | 1998-08-18 | Innovative Technology Inc. | Coating or ablation applicator with a debris recovery attachment |
US6317913B1 (en) * | 1999-12-09 | 2001-11-20 | Alcoa Inc. | Method of depositing flux or flux and metal onto a metal brazing substrate |
US6517791B1 (en) * | 2000-12-04 | 2003-02-11 | Praxair Technology, Inc. | System and process for gas recovery |
US6630207B1 (en) * | 2001-07-17 | 2003-10-07 | Science Applications International Corporation | Method and apparatus for low-pressure pulsed coating |
US6759085B2 (en) * | 2002-06-17 | 2004-07-06 | Sulzer Metco (Us) Inc. | Method and apparatus for low pressure cold spraying |
-
2002
- 2002-06-04 DE DE10224780A patent/DE10224780A1/de not_active Withdrawn
-
2003
- 2003-05-28 EP EP03012313A patent/EP1382720B1/de not_active Expired - Lifetime
- 2003-05-28 DE DE50306633T patent/DE50306633D1/de not_active Expired - Lifetime
- 2003-05-28 AT AT03012313T patent/ATE355400T1/de not_active IP Right Cessation
- 2003-06-04 US US10/453,872 patent/US20040037954A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0484533A1 (de) * | 1990-05-19 | 1992-05-13 | Anatoly Nikiforovich Papyrin | Beschichtungsverfahren und -vorrichtung |
EP0911425A1 (de) * | 1997-10-27 | 1999-04-28 | Linde Aktiengesellschaft | Verfahren zum thermischen Beschichten von Substratwerkstoffen |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7910051B2 (en) | 2005-05-05 | 2011-03-22 | H.C. Starck Gmbh | Low-energy method for fabrication of large-area sputtering targets |
US8802191B2 (en) | 2005-05-05 | 2014-08-12 | H. C. Starck Gmbh | Method for coating a substrate surface and coated product |
EP1801256B2 (de) † | 2005-12-21 | 2015-07-01 | Sulzer Metco (US) Inc. | Hybridplasmakaltgasspritzenverfahren und Vorrichtung |
US8715386B2 (en) | 2006-10-03 | 2014-05-06 | H.C. Starck Inc. | Process for preparing metal powders having low oxygen content, powders so-produced and uses thereof |
US8226741B2 (en) | 2006-10-03 | 2012-07-24 | H.C. Starck, Inc. | Process for preparing metal powders having low oxygen content, powders so-produced and uses thereof |
US9095932B2 (en) | 2006-12-13 | 2015-08-04 | H.C. Starck Inc. | Methods of joining metallic protective layers |
US8002169B2 (en) | 2006-12-13 | 2011-08-23 | H.C. Starck, Inc. | Methods of joining protective metal-clad structures |
US9783882B2 (en) | 2007-05-04 | 2017-10-10 | H.C. Starck Inc. | Fine grained, non banded, refractory metal sputtering targets with a uniformly random crystallographic orientation, method for making such film, and thin film based devices and products made therefrom |
US8197894B2 (en) | 2007-05-04 | 2012-06-12 | H.C. Starck Gmbh | Methods of forming sputtering targets |
DE102008024504A1 (de) | 2008-05-21 | 2009-11-26 | Linde Ag | Verfahren und Vorrichtung zum Kaltgasspritzen |
US8530391B2 (en) | 2008-05-21 | 2013-09-10 | Linde Aktiengesellschaft | Method and device for cold gas spraying |
GB2460147B (en) * | 2008-05-21 | 2011-02-16 | Linde Ag | Method for cold gas spraying |
US8470396B2 (en) | 2008-09-09 | 2013-06-25 | H.C. Starck Inc. | Dynamic dehydriding of refractory metal powders |
US8246903B2 (en) | 2008-09-09 | 2012-08-21 | H.C. Starck Inc. | Dynamic dehydriding of refractory metal powders |
US8961867B2 (en) | 2008-09-09 | 2015-02-24 | H.C. Starck Inc. | Dynamic dehydriding of refractory metal powders |
US8043655B2 (en) | 2008-10-06 | 2011-10-25 | H.C. Starck, Inc. | Low-energy method of manufacturing bulk metallic structures with submicron grain sizes |
EP2333133A1 (de) | 2009-11-23 | 2011-06-15 | Linde Aktiengesellschaft | Verfahren und Vorrichtung zum Herstellen einer mehrlagigen Spule |
DE102009053987A1 (de) | 2009-11-23 | 2011-06-01 | Linde Aktiengesellschaft | Verfahren und Vorrichtung zum Herstellen einer mehrlagigen Spule |
US8734896B2 (en) | 2011-09-29 | 2014-05-27 | H.C. Starck Inc. | Methods of manufacturing high-strength large-area sputtering targets |
US8703233B2 (en) | 2011-09-29 | 2014-04-22 | H.C. Starck Inc. | Methods of manufacturing large-area sputtering targets by cold spray |
US9108273B2 (en) | 2011-09-29 | 2015-08-18 | H.C. Starck Inc. | Methods of manufacturing large-area sputtering targets using interlocking joints |
US9120183B2 (en) | 2011-09-29 | 2015-09-01 | H.C. Starck Inc. | Methods of manufacturing large-area sputtering targets |
US9293306B2 (en) | 2011-09-29 | 2016-03-22 | H.C. Starck, Inc. | Methods of manufacturing large-area sputtering targets using interlocking joints |
US9412568B2 (en) | 2011-09-29 | 2016-08-09 | H.C. Starck, Inc. | Large-area sputtering targets |
Also Published As
Publication number | Publication date |
---|---|
EP1382720A3 (de) | 2005-12-07 |
EP1382720B1 (de) | 2007-02-28 |
DE10224780A1 (de) | 2003-12-18 |
US20040037954A1 (en) | 2004-02-26 |
ATE355400T1 (de) | 2006-03-15 |
DE50306633D1 (de) | 2007-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1382720B1 (de) | Verfahren und Vorrichtung zum Kaltgasspritzen | |
EP1382719A2 (de) | Verfahren und Vorrichtung zum Kaltgasspritzen | |
DE60009712T3 (de) | Verfahren und vorrichtung zur sprühbeschichtung | |
EP2486163B1 (de) | Atmosphärendruckplasmaverfahren zur herstellung oberflächenmodifizierter partikel und von beschichtungen | |
DE69701877T2 (de) | Verfahren und vorrichtung zum thermischen spritzen | |
DE69108963T2 (de) | Verschleissfeste Titannitridbeschichtung und Verfahren zum Aufbringen. | |
DE69800158T2 (de) | Vorrichtung und Verfahren zum Wärmebehandeln | |
EP0911425A1 (de) | Verfahren zum thermischen Beschichten von Substratwerkstoffen | |
DE112004002500T5 (de) | Kaltspritzvorrichtung mit Pulvervorheizeinrichtung | |
DE19758111C2 (de) | Verfahren und Vorrichtung zur Herstellung feiner Pulver durch Zerstäubung von Schmelzen mit Gasen | |
DE69522098T2 (de) | Thermische sprühdüse zur herstellung von thermischen rauhen sprühbeschichtungen; verfahren zur herstellung von thermischen rauhen sprühbeschichtungen | |
DE102009052946A1 (de) | Verfahren und Vorrichtung zur Bauteilbeschichtung | |
EP1791645B1 (de) | Verfahren zum kaltgasspritzen und kaltgasspritzpistole mit erhöhter verweildauer des pulvers im gasstrahl | |
DE102005059706A1 (de) | Verfahren und Vorrichtung zum Herstellen einer Trennschicht | |
EP0630295B1 (de) | Verfahren und vorrichtung zur verminderung der zunderbildung beim warmumformen von metall, insbesondere von stahl | |
EP0990711B1 (de) | Bearbeitung von mittels thermischen Spritzens zu beschichtender Oberflächen | |
EP1506816A1 (de) | Lavaldüse für thermisches oder kinetisches Spritzen | |
EP0911423A1 (de) | Verbinden von Werkstücken | |
CH697092A5 (de) | Anordnung für eine Plasmaspritzanlage. | |
EP0911424A1 (de) | Herstellung von Verbundkörpern | |
DE102017222182A1 (de) | Verfahren zum Aufbringen einer Titanaluminidlegierung, Titanaluminidlegierung und Substrat umfassend eine Titanaluminidlegierung | |
EP0791400B1 (de) | Verfahren und Vorrichtung zum Aufbringen einer Beschichtung auf einen Gegenstand | |
WO2013075695A1 (de) | Haftgrundvorbereitung für das kaltgasspritzen | |
DE102004022358B3 (de) | Hartstoffbeschichtungsverfahren und dessen Verwendung | |
DE4112156A1 (de) | Mit hilfe eines plasmabrenners aufgebrachte beschichtung sowie plasmabrenner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
17P | Request for examination filed |
Effective date: 20060321 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070228 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070228 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070228 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 50306633 Country of ref document: DE Date of ref document: 20070412 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20070503 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20070529 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070531 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20070515 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070608 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070730 |
|
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070228 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070228 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070228 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070531 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070228 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20070709 Year of fee payment: 5 |
|
26N | No opposition filed |
Effective date: 20071129 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: LINDE AKTIENGESELLSCHAFT Free format text: LINDE AKTIENGESELLSCHAFT#ABRAHAM-LINCOLN-STRASSE 21#65189 WIESBADEN (DE) -TRANSFER TO- LINDE AKTIENGESELLSCHAFT#LEOPOLDSTRASSE 252#80807 MUENCHEN (DE) |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070529 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070528 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CA |
|
BERE | Be: lapsed |
Owner name: LINDE A.G. Effective date: 20080531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070228 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070528 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20090515 Year of fee payment: 7 Ref country code: IT Payment date: 20090521 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070228 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070901 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20090513 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20090527 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100528 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20110131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100531 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100528 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100528 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 50306633 Country of ref document: DE Owner name: SULZER METCO AG, CH Free format text: FORMER OWNER: LINDE AG, 80331 MUENCHEN, DE Effective date: 20120507 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20160628 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50306633 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171201 |